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THE HYPERBOLIC UMBILIC SINGULARITY IN FAST-SLOW
SYSTEMS

HILDEBERTO JARDÓN KOJAKHMETOV1, CHRISTIAN KUEHN2,
AND MAXIMILIAN STEINERT2,∗

Abstract. Fast-slow systems with three slow variables and gradient structure in the fast
variables have, generically, hyperbolic umbilic, elliptic umbilic or swallowtail singularities.
In this article we provide a detailed local analysis of a fast-slow system near a hyperbolic
umbilic singularity. In particular, we show that under some appropriate non-degeneracy
conditions on the slow flow, the attracting slow manifolds jump onto the fast regime and
fan out as they cross the hyperbolic umbilic singularity. The analysis is based on the
blow-up technique, in which the hyperbolic umbilic point is blown up to a 5-dimensional
sphere. Moreover, the reduced slow flow is also blown up and embedded into the blown-
up fast formulation. Further, we describe how our analysis is related to classical theories
such as catastrophe theory and constrained differential equations.

Keywords. Fast-slow system; Geometric desingularization; Blow-up method; Catastro-
phe theory.
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1. Introduction and main result

In this article we analyze a fast-slow system, also called a singularly perturbed differential
equation, with two fast and three slow variables of the form

εẋ = x2 + ay + b+O(ε)

εẏ = y2 + ax+ c+O(ε)

ȧ = ga(x, y, a, b, c, ε)

ḃ = gb(x, y, a, b, c, ε)

ċ = gc(x, y, a, b, c, ε),

(1.1)

or equivalently, after suitable time change onto the fast time scale,

x′ = x2 + ay + b+O(ε)

y′ = y2 + ax+ c+O(ε)

a′ = εga(x, y, a, b, c, ε)

b′ = εgb(x, y, a, b, c, ε)

c′ = εgc(x, y, a, b, c, ε),

(1.2)

for sufficiently small time scale separation parameter 0 < ε � 1. More precisely, we focus
on the dynamics of (1.2) near the origin, which is the most degenerate singularity of (1.2).
We refer to this singularity as hyperbolic umbilic singularity, since it arises from catastrophe
theory, as will be shown below. For basic fast-slow systems terminology we refer to section
(2.1). For more details and recent results, the reader is referred to, e.g. [20, 14, 32, 7].

Let us outline our motivation to study a hyperbolic umbilic singularity and in particular
system (1.2). The fast-slow system (1.2) arises from the general class of fast-slow systems
of the form

z′ = ∇zV (z, α) +O(ε)

α′ = εg(z, α, ε),
(1.3)

where z ∈ Rn, α ∈ Rr and V is a sufficiently smooth function. The formulation (1.3) gives a
(parameter-dependent) gradient field in the limit ε→ 0. Note that the class of systems of the
form (1.3) contains any fast-slow system having only one fast variable. In particular, (1.3)
contains the fast-slow systems, which exhibit fold or cusp singularities, after suitable center
manifold reduction and transformations [19, 5, 31, 13, 27, 18, 20]. In this article, we are in
general interested in a fast-slow system of the form (1.3) near a singularity, for which at least
two fast variables are necessary. More precisely, we are interested in a fast-slow system (1.3)
near a hyperbolic umbilic singularity. This singularity arises from elementary catastrophe
theory [1, 22] and needs at least two fast variables in (1.3) for its occurrence. Additionally,
this singularity occurs generically for at least three slow variables in (1.3). For a detailed
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explanation and the definition of this singularity in the setting of (1.3) we refer to section
2, in particular to Definition 2.3. The hyperbolic umbilic singularity, among others, already
appeared in Takens’ study of constrained differential equations [29], which are related to the
singular limit of (1.3). In fact, our main motivation is a list of “normal forms” provided by
Takens [29, (4.10)], in which the hyperbolic umbilic singularity is contained. For detailed
statements we refer to section 2. Roughly speaking, we choose the parameter-dependent
potential

V (x, y, a, b, c) =
1

3
x3 +

1

3
y3 + axy + bx+ cy (1.4)

in (1.3), where z = (x, y) ∈ R2 are the fast variables and α = (a, b, c) ∈ R3 are the slow
variables. This choice leads to system (1.1). The potential V , given by (1.4), is a universal
unfolding of the hyperbolic umbilic germ 1

3 (x3 + y3) in the sense of catastrophe theory [22],
see also section 2.3 below. The precise argument for our derivation of the fast-slow system
(1.1) from the general form (1.3) is then given in section 2.5.

The main objective of this article is to provide a detailed analysis of the dynamics of the
fast-slow system (1.1) near the hyperbolic umbilic singularity at the origin, in a generic case.
This analysis faces several challenges as such singularity has not been studied before in the
context of fast-slow systems. To accomplish our objective, we employ geometric techniques
from dynamical systems theory and especially from the theory of fast-slow systems [20].
Our analysis is based on the blow-up technique, which has been used in numerous cases to
desingularize fast-slow systems, e.g. [19, 27, 18, 5, 13, 14, 7].

For the dynamics of (1.1) near the hyperbolic umbilic, we focus on the continuation of
attracting slow manifolds, denoted by Saε , under the flow of the system. Attracting slow
manifolds are obtained by Fenichel theory as “perturbations” from the singular limit ε = 0
of the attracting region of the critical manifold S0 = {∇zV (z, α) = 0}; for Fenichel theory
we refer the reader to [9, 33, 15, 20]. The aim is to analyze how attracting slow manifolds
Saε of (1.1) evolve near the hyperbolic umbilic singularity. Therefore, our analysis of (1.1)
will be of local nature. For sufficiently small ν > 0, we define an entry- and exit section by

∆en = {(x, y, a, b, c) ∈ R5 | y = −ν}, ∆ex = {(x, y, a, b, c) ∈ R5 |x+ y = 2ν}. (1.5)

Let J denote the closed line segment {(x, y, a, b, c) ∈ R5 |x ≥ 0, y ≥ 0, a = b = c = 0} ∩∆ex

and denote by jx and jy the singletons containing the intersection of J with the x-axis,
respectively y-axis. Refer to figure 1 for a sketch. Then, we track slow flow trajectories
contained in (a choice of) an attracting slow manifold Saε , which start at ∆en and come close
to the hyperbolic umbilic singularity. These trajectories correspond to initial conditions in
a subset Iε ⊂ ∆en ∩ Saε in the context of the following main result, which shows that these
trajectories jump onto the fast regime and fan out. This fanning-out behavior is observed
at the exit section ∆ex. A sketch of this result is given in figure 1 and the singular limit
ε = 0 is illustrated in figure 2.

Theorem 1.1 (Attracting slow manifolds jump and fan out at the hyperbolic umbilic).
Consider the fast-slow system (1.1) and assume gb(0) > 0 and gc(0) > 0. For sufficiently
small ε > 0, there exist open sets Iε ⊂ ∆en ∩ Saε such that the transition maps Π: Iε → ∆ex

induced by the flow of (1.1) are well-defined and satisfy the following assertions:

(1) Iε and Π(Iε) are 2-dimensional manifolds and Iε converges in Hausdorff distance to
a single point p for ε→ 0.

(2) There exist open sets Lxε , Rε, Lyε such that Iε = Lxε ∪ Rε ∪ Lyε and Π(Rε) → J ,
Π(Lxε )→ jx, Π(Lyε)→ jy in Hausdorff distance for ε→ 0.

(3) For (x, y, a, b, c) ∈ Π(Iε) it holds that a = O(ε1/3), b = O(ε2/3), c = O(ε2/3).
(4) If ga(x, y, a, b, c, 0) = a · h(x, y, a, b, c) for sufficiently smooth h, then ai = O(ε1/3)

for (xi,−ν, ai, bi, ci) ∈ Iε.

At this point we provide a brief sketch of the proof to give an overview of the upcoming
steps.
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a

x

y

J

jx

jy

∆en

∆ex

Iε

Lyε Rε Lxε

Figure 1. Sketch of Theorem 1.1, describing the transition from a small region of initial
conditions Iε = Ly

ε ∪ Rε ∪ Lx
ε ⊂ ∆en to ∆ex: initial conditions in Ly

ε evolve
close to the violet trajectory, Lx

ε evolves close to the red trajectory, whereas
Rε fans out in-between along the yellow trajectories. The trajectories were
obtained by numerical integration of (1.1) with ε = 10−3, ga = −1, gb =

2, gc = 1 and suitably chosen initial conditions, such that they approach the
hyperbolic umbilic at the origin and fan out. Most randomly sampled initial
conditions near Iε escape close to the x- or y-axis and only a few fan out
in-between. This indicates that Rε is small. The variables b, c are suppressed
in this sketch.

Sketch of the proof of Theorem 1.1. The first step is to understand the slow subsystem,
which is the content of section 3. In particular, we study the so-called desingularized slow
flow, which was already studied to some extent by Takens in [29]. The desingularized slow
flow generically has a non-hyperbolic equilibrium at the hyperbolic umbilic point. Our study
is then continued by blowing up the hyperbolic umbilic point in the fast formulation (1.2)
to a 5-d unit sphere S5. The desingularized slow flow (3.8), which determines singular limit
dynamics on the critical manifold, will be embedded into the blow-up analysis, which is car-
ried out in section 5.3. The transition map Π and its properties are obtained by combining
the results from an entry chart κ−y, the rescaling chart κε and an exit chart κex. The charts
and their notation will be set up in the beginning of section 5. In the entry chart, section
5.2, the main work is to obtain the flow nearby the hyperbolic umbilic in attracting center
manifolds, which contain attracting slow manifolds. This will be accomplished by a center
manifold reduction close to a point called ζ2, which arises from the desingularized slow flow,
see Lemma 5.13. In the rescaling chart κε, the key is to identify the relevant trajectories on
the blow-up sphere, that lead attracting slow manifolds from ζ2 through the blow-up space.
By perturbation arguments, this reduces to the analysis of two decoupled Riccati equations,
which is a similar situation to the non-degenerate fold [19]. This gives the flow close to the
hyperbolic umbilic singularity, i.e. in the corresponding region in the rescaling chart. To
enter this region, the transition Π1 in section 5.4, precisely the structure of (5.19), requires
that we limit the initial conditions suitably, which will eventually lead to Iε shrinking to a
point as ε → 0. In Proposition 5.18 we obtain an invariant 2-manifold Γ on the blow-up
sphere, leading the relevant trajectories in attracting slow manifolds Saε towards the fast
regime in the exit chart κex. In the exit chart κex, we encounter three hyperbolic equilibria
q4,5,6, to which trajectories in Γ connect. These three equilibria give three distinct forward
asymptotic behavior of trajectories in Γ, which lead to the division of Iε into three regions
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Lxε , Rε, L
y
ε . Further, the three equilibria q4,5,6 organize the transition onto the fast regime

and lead to fanning-out, see Proposition 5.28. To obtain the fanning-out, the blown-up vec-
tor field is integrated in the invariant plane corresponding to the fast subsystem. Essentially,
a 45◦ rotation is included in κex, to have all escape directions visible in a single chart. The
scalings of Π(Iε) originate from the convergence of Iε to a point as ε → 0. The detailed
proof is finished in section 5.7. For an overview of the blow-up analysis, we refer to figure
17, in which all ingredients to the proof are visible. �

Remark 1.2. Theorem 1.1 does not cover the fast approach of trajectories towards attract-
ing slow manifolds. However, from the fast subsystem one can roughly infer the basin of
attraction of attracting slow manifolds. Compare to figure 2. Taking the stable manifold of
an attracting slow manifold into account, we remark that Theorem 1.1 does in this case only
apply to suitable “fast initial conditions” located in fibers, whose base passes through Iε.

(a, b, c)

x

y

x

y

a

x

y

 appropriate slow flow  

slow subsystem

fast
sub

sys
tem

at (
0, 0

, 0)

fast
sub

sys
tem

at (
a,
b, c

)

hyperbolic umbilic

double cone of singularities of S0

Figure 2. Singular limit sketch of (1.1). The upper two planar systems are fast
subsystems for particular fixed choices of slow variables, i.e. “parameters”
(a, b, c). The right one is the fast subsystem at the hyperbolic umbilic, i.e.
(a, b, c) = (0, 0, 0). The slow subsystem on the critical manifold can be
parametrized by (x, y, a) and the green double cone represents the singu-
larities. Fast segments of candidate trajectories for (1.1) are shown in red.
The blue trajectory is a particular slow candidate trajectory in the attracting
part of the critical manifold, which approaches the hyperbolic umbilic singu-
larity, depicted in orange. The blue segment can be concatenated with any of
the red segments emanating from the hyperbolic umbilic, which corresponds
to Theorem 1.1 in the singular limit. The violet region depicts a basin of
attraction for the blue sink, which is an instance of the attracting region of
the critical manifold. Here, one can think of (a, b, c) chosen such that this
sink corresponds to the starting point of the blue slow candidate trajectory.
Further, three fast candidate trajectories approaching the attracting critical
manifold are depicted.

To motivate and illustrate the behavior of the system (1.1) and in particular Theorem
1.1, we present a singular limit sketch of (1.1) in figure 2, in which two particular fast
subsystems and a particular slow flow in the slow subsystem are depicted. Note that (1.1)
has a 3-dimensional critical manifold and 2-dimensional fast subsystems. A detailed analysis
of the slow and fast subsystems is carried out in sections 3 and 4. Figure 2 illustrates
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an appropriate way of combining the fast- and slow subsystem, i.e. the concatenation of
candidate trajectories.

Remark 1.3. The assumption gb(0) > 0, gc(0) > 0 of Theorem 1.1 will be motivated in
the singular limit by Lemma 3.4, which shows that there exists a candidate trajectory σ
approaching the hyperbolic umbilic point from inside the attracting critical manifold. This
trajectory σ is depicted in blue in the lower cone in figure 2. In fact, the idea of the blow-up
analysis is to track trajectories close to σ through the blow-up space.

The following remark points out an interesting observation, which will be apparent from
the upcoming blow-up analysis. It is related to the behavior of slow flow trajectories jumping
at folds, away from the hyperbolic umbilic singularity.

Remark 1.4 (Fast-slow systems with folded singularities appear in the blow-up of (1.2)).
In the blow-up analysis of (1.2) in section 5, folded saddles or folded centers appear gener-
ically on the blow-up sphere. This observation is made in section 5.3 and analyzed further
in section 6. These folded singularities seem to organize the transition of attracting slow
manifolds at fold singularities of (1.2). Their further analysis does not lie in the scope of
this article. However, these folded singularities, especially the folded centers, deserve future
attention. In the folded saddle scenario, existing results can be applied, e.g. singular canards
perturb to maximal canard solutions [27].

The article is structured as follows. In section 2 we will briefly recall fast-slow terminology,
formalize what we mean by a hyperbolic umbilic singularity in a fast-slow system and derive
our system (1.1). This derivation is motivated by “Takens’ program” [29]. For convenience
we provide Takens’ definition of constrained differential equations in appendix A.1. Sections
3 and 4 contain an analysis of the slow and fast subsystem of (1.1). The analysis of the
“desingularized” or “reduced” slow flow Y in section 3.2 is fundamental for the upcoming
blow-up analysis of system (1.1). The blow-up analysis is presented in section 5, in which
the origin of (1.2) is blown up to a 5-d sphere. We remark that also the reduced slow
flow Y is blown-up and embedded into the blow-up analysis, which is carried out in section
5.3. The combined analysis from three charts leads to the proof of Theorem 1.1 in section
5.7. Eventually, in section 6 we present further observations made in the blow-up analysis,
concerning the folded singularities on the blow-up sphere and the blown-up desingularized
slow flow.

2. The hyperbolic umbilic singularity and Takens’ program

In this section we provide the basic terminology and the context of our study. We begin
by recalling some basic notion of fast-slow systems. For context, we then describe what
we call “the Takens’ program” and its relationship with catastrophe theory and fast-slow
systems. Ultimately this explains the reason to choose (1.1) for our analysis.

2.1. Fast-slow systems terminology. Throughout this document, we restrict ourselves
to gradient-like fast-slow systems. Consider a general fast-slow system of the form

εż = ∇zV (z, α) +O(ε)

α̇ = g(z, α, ε),
(2.1)

where V : Rn×Rr → R is smooth, 0 < ε� 1 is a small parameter, and g : Rn×Rr×R→ Rr
is smooth. Later on we shall restrict to the case n = 2, but for now this is not necessary.

We briefly recall terminology from the theory of fast-slow systems [20, 15]. The following
two subsystems of (2.1) are fundamental:

0 = ∇zV (z, α)

α̇ = g(z, α, 0),
(2.2)

z′ = ∇zV (z, α)

α′ = 0.
(2.3)

System (2.2) is the slow subsystem (also called reduced problem), obtained from (2.1) by
putting ε = 0. System (2.3) is the fast subsystem (also called layer problem). Let τ
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denote the time in (2.1), also called the slow time scale. Then (2.3) is obtained by a time
change in (2.1) onto the fast timescale t = τ/ε and putting ε = 0. The critical manifold
S0 = {∇zV = 0} appears as equilibria of the fast subsystem and as constrained phase space
of the slow subsystem. Of central importance are the normally hyperbolic points of the
critical manifold S0. In our setting, a point p ∈ S0 is normally hyperbolic if all eigenvalues
of the Hessian D2

z V have nonzero real part. By Schwarz’s theorem the Hessian D2
z V is

symmetric, so its eigenvalues are real. The eigenvalues determine the stability type with
respect to the fast subsystem. In this way, we shall denote the attracting (resp. repelling,
resp. saddle-type) region of the critical manifold as Sa

0 (resp. Sr
0, resp. Ss

0). Accordingly
p ∈ S0 is non-hyperbolic, if at least one eigenvalue of D2

z V is zero.
Away from non-hyperbolic points of S0, one can employ Fenichel theory [9, 33, 15, 20]

to analyze (2.1). Roughly speaking, Fenichel theory allows to conclude that normally hy-
perbolic regions of the critical manifold S0 persist, for sufficiently small ε > 0, in the form
of slow manifolds with the corresponding stability type. The analysis of (2.1) close to
non-hyperbolic points of S0 is considerably more challenging, since Fenichel theory is not
applicable. In our context, non-hyperbolic points of S0 will be referred to as singularities
of (2.1). It is precisely the singularities, which in general give rise to certain phenomena,
for example jumps, canards and relaxation oscillation, see for example [20, 14, 7, 32] and
references therein.

By the implicit function theorem, at a normally hyperbolic point, S0 is locally given as a
graph over the slow α-variables. This determines a flow in the normally hyperbolic regions
of S0. This corresponds to the flow arising from the so called “reduced” or “desingularized”
slow flow, also see section 3.2. The fast subsystem gives dynamics off the critical manifold.
In the singular limit ε = 0, the fast- and slow subsystem (2.3),(2.2) are combined by con-
catenation of trajectories: At singularities of S0 one allows to concatenate fast and slow
trajectory segments. This singular limit analysis is usually the guiding starting point for
further analysis. This is the content of section 3 and 4 in this article. We now come to the
hyperbolic umbilic singularity, the choice of (1.1) and its motivation.

2.2. Takens’ program. As pointed out above, one is interested in singularities of the
critical manifold S0 = {∇zV (z, α) = 0}. The question which “types” of singularities of S0

generically occur is in fact answered by catastrophe theory. For (2.1) with α ∈ Rr, r ≤ 5,
we generically have that the singularities of S0 are Thom’s seven elementary catastrophes
plus four additional catastrophes of codimension 5, see [22]. In the article [29], Takens
introduced the notion of “constrained differential equations” and analyzed their behavior.
We refer to appendix A.1 for Takens’ precise definition. In fast-slow terminology, Takens
roughly studied the singular limit of (2.1), in particular (2.2), and analyzed the effect of
singularities of S0 on the slow flow restricted to the attracting part of the critical manifold.
Takens carried out a local classification of the slow flow near singularities up to topological
equivalence for r ≤ 2. Furthermore, Takens provided a list of “normal forms” for the singular
limit of (2.1) near singularities for r ≤ 3. We refer to this as “Takens’ program”, which is in
fact based on catastrophe theory, and serves as motivation for our analysis.

2.3. Catastrophe theory framework. It will be convenient to briefly recall notions from
catastrophe theory, for details we refer to [22, 8, 1].

We begin with some notations: Let En denote the local ring of germs (of smooth functions)
at 0 ∈ Rn. Let mn denote the ideal of germs vanishing at 0. It follows that mn is the maximal
ideal in En, which means that there does not exist a proper ideal of En strictly containing
mn. Let mkn denote the set of germs f ∈ mn such that the (k − 1)-jet of f vanishes, that is
mkn = {f ∈ mn | jk−1f = 0}. Let ∆(f) denote the Jacobi ideal of f ∈ m2

n, which is the ideal
generated by the partial derivatives of f over En, formally ∆(f) = 〈∂1f, . . . , ∂nf〉En .

Next, let the codimension of f be defined by the dimension of mn/∆(f) as an R-vector
space. Further, two germs f, g ∈ mn are right-equivalent, if they agree up to a local co-
ordinate change, that is, there exists a local diffeomorphism ψ with ψ(0) = 0 such that
f = g ◦ ψ.
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Finally, let us recall the notion of unfoldings. An r-parameter unfolding F of f ∈ mn
is a germ of a smooth function F : Rn × Rr → R, for which F (·, 0) = f . An r-parameter
unfolding F of f is versal, if any other s-parameter unfolding G of f can be expressed
in terms of F (“G is induced by F ”), that is, there exist smooth germs φ : (Rn+s, 0) →
(Rn+r, 0), φ̄ : (Rs, 0)→ (Rr, 0), µ : (Rs, 0)→ (R, 0) such that φ(·, 0) = idRn , pr2 ◦φ = φ̄ ◦ pr2

and G = F ◦ φ + µ ◦ pr2. Here we denote by pr2 the natural projection onto the unfolding
parameters, which discards the spatial variables. Two r-parameter unfoldings F,G of f are
isomorphic, if G is induced by F and φ and φ̄ are local diffeomorphisms. In fact, a germ
f ∈ m2

n has a versal unfolding if and only if its codimension is finite [22]. A versal unfolding
with r-parameters is universal, if the number r is minimal. In fact, the minimal r is given
by the codimension of f . We point out that universal unfoldings of a fixed germ f are not
unique, for an example refer to appendix A.3. Further, note that universal unfoldings are
also called miniversal unfoldings in slightly different contexts.

A fundamental result in catastrophe theory is the classification up to right-equivalence of
germs in m2

n with low codimension. Here we present a version of this result up to codimension
4, which is also known under the name “Thom’s seven elementary catastrophes”. Recall that
a germ f has a non-degenerate critical point at the origin if ∇f(0) = 0 and the Hessian
D2 f(0) is invertible. Recall as well that such f with non-degenerate critical point can locally
be written in simple form by the Morse Lemma.

Theorem 2.1 (Thom’s seven elementary catastrophes [22, 1, 4]). Let f ∈ m2
n with codi-

mension ≤ 4. Then f is either non-degenerate (i.e. Morse) or right-equivalent to one of the
following germs, up to sign and up to addition of a non-degenerate quadratic form in other
variables.

catastrophe germ universal unfolding codimension

fold x3 x3 + ax 1
cusp x4 x4 + ax2 + bx 2
swallowtail x5 x5 + ax3 + bx2 + cx 3
hyperbolic umbilic x3 + y3 x3 + y3 + axy + bx+ cy 3
elliptic umbilic x3 − xy2 x3 − xy2 + a(x2 + y2) + bx+ cy 3
butterfly x6 x6 + ax4 + bx3 + cx2 + dx 4
parabolic umbilic x2y + y4 x2y + y4 + ax2 + by2 + cx+ dy 4

Table 1. The seven elementary catastrophes. The third column contains a choice of
universal unfolding for each corresponding germ in the second column.

Remark 2.2. Note that Theorem 2.1 says that for any germ f with f(0) = 0,∇f(0) = 0
and codimension ≤ 4, we can find local coordinates (x1, . . . , xn) centered at the origin such
that f is of the form

±h(x1, . . . , xk) +
∑
i>k

±x2
i , (2.4)

where either h is (up to right-equivalence) a germ appearing in the above list with k ∈ {1, 2},
or h = 0 and k = 0.

2.4. Singularities of (2.1). In view of the above discussion, we propose the following
natural definition to classify singularities of (2.1). More precisely, we want to classify the
singularities of the critical manifold S0 = {∇zV (z, α) = 0} of (2.1) without considering any
dynamics. Due to the scope of this paper, we are particularly interested in the catastrophes
of codimension 3, especially the hyperbolic umbilic singularity.

Definition 2.3 (Singularities of the critical manifold of (2.1)). Consider the fast-slow system
(2.1) with z ∈ Rn, α ∈ Rr. We say that (2.1) has a ∗ singularity at (z̄, ᾱ) ∈ S0, if S0 is
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locally an r-dimensional manifold at (z̄, ᾱ) and the germ fz̄,ᾱ := V (·+ z̄, ᾱ)− V (z̄, ᾱ) ∈ m2
n

is right-equivalent to

±h(z1, . . . , zk) +
∑
i>k

±z2
i , (2.5)

where h is a germ for the ∗ catastrophe in table 1, and k ∈ {1, 2} accordingly.

To this definition, we shall give the following remarks.

Remark 2.4.

(a) Definition 2.3 does not concern dynamics on or nearby S0.
(b) Normally hyperbolic points of S0 correspond to germs fz̄,ᾱ that are non-degenerate

(i.e. Morse).
(c) If r ≤ 4, for generic V the critical manifold is indeed r-dimensional and the only

singularities that occur are the catastrophes in table 1 [22]. A similar statement
holds for r ≤ 5 by extending table 1 to codimension 5 catastrophes [1, 22].

(d) The number k is given by the corank of fz̄,ᾱ, which is the corank of its Hessian at
the origin.

(e) Definition 2.3 does not cover non-degeneracy conditions for the singularity. An
example for this is the 1-d choice V (z) = z3, which leads to the set {z = 0} of fold
singularities.

(f) In the case that a choice of V leads to a transcritical singularity or a pitchfork
singularity, the critical manifold fails to be a manifold near the singularities.

(g) Finite determinacy of germs can lead to conditions for singularities on the level of
jets. An example for this is the hyperbolic umbilic germ f = x3 + y3. One can check
that this germ is 3-determined, which implies that any choice of V , such that fz̄,ᾱ
has the same 3-jet as f and the critical manifold is indeed locally a manifold, gives a
hyperbolic umbilic singularity at (z̄, ᾱ). Note that one can also take the 3-determined
germ f = x3+xy2 to represent the hyperbolic umbilic singularity, among many other
possible choices.

2.5. The choice of (1.1). We are interested in the hyperbolic umbilic singularity, which
is the first catastrophe in table 1, for which two fast directions are needed. Our choice is
motivated by Takens’ work [29, (4.10)] and we will argue similarly to Takens by giving the
following “derivation” for the fast-slow system (1.1):

Let us call V (z, α) from (2.1) a (parameter-dependent) potential. The catastrophes of
codimension 3 from Theorem 2.1 occur at isolated points for generic 3-parameter potentials.
Thus we restrict to (2.1) with α = (a, b, c) ∈ R3. There exists an open and dense set of
potentials J , such that V ∈ J in fact gives a versal unfolding of the singularity it unfolds
and the critical manifold is indeed a 3-d critical manifold [22, (9.17)]. Assume that such
generic potential V unfolds a hyperbolic umbilic singularity at the origin. Then the germ
f := V (·, 0) − V (0, 0) ∈ m2

n is right-equivalent to g := x3 + y3 +
∑

2<j≤n±z2
j , where zj

are, if n > 2, the remaining coordinates of Rn. In other words, we have g = f ◦ ψ for a
local diffeomorphism ψ. We remark that at this point we make a choice, namely, we choose
the germ x3 + y3 to represent the hyperbolic umbilic. This choice is not canonical and it
influences the family of fast subsystems we eventually obtain. For now we neglect the fast
dynamics, but we will argue for our choice after Remark 2.6.

The potential V is (up to shift) a versal unfolding of f . A (uni-)versal unfolding of g is
given by G := x3 + y3 + axy+ bx+ cy+

∑
2<j≤n±z2

j . Then one can check that V (ψ(·), ·) is
a versal unfolding of g and any two versal unfoldings with the same number of parameters
are isomorphic [22]. Thus there exists a local diffeomorphism φ : (Rn+3, 0)→ (Rn+3, 0) with
φ(·, 0) = ψ and pr2 ◦φ = φ̄ ◦ pr2 for a local diffeomorphism φ̄ : (R3, 0) → (R3, 0), such that
V = G◦φ up to addition of a constant and a smooth function in the parameters. Hence there
are local coordinates (x, y, z3, . . . , zn, a, b, c) centered at 0, such that the critical manifold
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{∇zV = 0} ⊂ Rn+3 of (2.1) near the origin can be written as the set satisfying:

0 = 3x2 + ay + b

0 = 3y2 + ax+ c

0 = ±2z3

...
0 = ±2zn.

(2.6)

For the slow subsystem the zj directions are irrelevant. In the family of fast subsystems the
zj directions are hyperbolic directions. Thus, by a center manifold argument, we discard
the zj variables. This leads to the slow subsystem we are interested in. Again, we point out
that this slow subsystem choice is carried out similarly in Takens’ program [29]. Finally,
we take the fast-slow system of the form (2.1), which contains the above constructed slow
subsystem.

For convenience we scale the germ x3 + y3 to x3/3 + y3/3 and hence consider a universal
unfolding given by V := x3/3 + y3/3 + axy+ bx+ cy. This leads to a fast-slow system (1.1),
i.e. a fast-slow system of the form

εẋ = x2 + ay + b+O(ε)

εẏ = y2 + ax+ c+O(ε)

ȧ = ga(x, y, a, b, c, ε)

ḃ = gb(x, y, a, b, c, ε)

ċ = gc(x, y, a, b, c, ε),

(2.7)

which precisely has, at the origin, a hyperbolic umbilic singularity in the sense of Definition
2.3.

Remark 2.5. By replacing the potential V by −V , the attracting and repelling regions of
the critical manifold swap their stability types. Therefore, on the level of fast-slow systems
of the form (2.1), the sign in front of V cannot be neglected in general. An example for
this is the cusp [5, 13]. However, for the hyperbolic umbilic singularity, the setting of −V
is analogous to V , as will be apparent from the upcoming analysis.

We remark that so far we neglected the effect of the above constructed local diffeomor-
phism on the fast dynamics, i.e. the family of fast subsystems (2.3), which is a family of
gradient vector fields. First, an important remark about the fast subsystems of (2.7) seems
to be in order. This remark addresses the fact that versality in the sense of catastrophe
theory on the level of potential functions does in general not give versality in the sense of
unfoldings of vector fields, i.e. on the level of flows of the associated gradient fields.

Remark 2.6 (Versality in the sense of unfoldings of vector fields). The family of gradient
systems Za,b,c given by the family of fast subsystems of (2.7), which is precisely the planar
family (4.1), does not give a versal unfolding of the vector field Z0,0,0 = x2∂x + y2∂y in
the space of (gradient) vector fields. Here, we mean by versal unfolding of a vector field
the following: Let X0 be a vector field, then we call a family of vector fields Xµ containing
X0 versal if for any other family Yλ containing X0, there exist a homeomorphism h(λ) = µ
between the parameter spaces and a family of homeomorphisms Hλ, not necessarily depending
continuously on λ, such that Yλ is topologically equivalent to Xh(λ) via Hλ. The latter is
also known as fiber topological equivalence [21]. The proof that Za,b,c does not give a versal
unfolding of Z0,0,0 is given by Guckenheimer in [10]: small perturbations of Z0,0,0 in the
space of gradient vector fields produce phase portraits, which contain a saddle connection.
However, the family Za,b,c does not contain phase portraits with saddle connections, refer
to the analysis of the fast subsystem in section 4. Thus Za,b,c cannot be versal in the above
sense. In [10] Guckenheimer uses the name “universality” instead of versality. The minimal
number of parameters for a versal unfolding of Z0,0,0 in the above sense is 4, and a proof of
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this claim is contained in [30]. The notion of a versal unfolding of a vector field given above
is called an almost universal unfolding in [30], where “almost” refers to the fact that in this
case Hλ does not depend continuously on λ in a neighborhood of the origin.

x

y

a

Figure 3. Numerical integration of (1.3) with z = (x, y), α = (a, b, c), V = y3/3+yx2+
a(y2 − x2) + bx + cy and g = (−1, 1, 2). According to Definition 2.3, this
system has a hyperbolic umbilic singularity at the origin, but corresponds to
a different choice of germ representing a hyperbolic umbilic catastrophe, i.e.
y3/3 + yx2, and an associated universal unfolding (see appendix A.3). Ten
initial conditions close to the point (x, y, a, b, c) = (−1.5,−2, 1,−2,−1) were
chosen, which fan out near the origin. Similar to figure 1, most randomly
sampled initial conditions close to this point would escape close to the two
orange trajectories. Besides that, the fast approach towards attracting slow
manifolds is visible here: the transition from fast to slow dynamics happens
at the kink on the left.

In the above derivation in section 2.5, we have chosen the germ x3 + y3 (up to scaling)
to represent the hyperbolic umbilic catastrophe, which leads to (2.7), which is identical to
(1.1). As already mentioned, in general this choice might affect the fast dynamics, more
precisely the fast subsystems. For example, we could have chosen the germ y3 + yx2, which
is right-equivalent to x3 + y3, see e.g. appendix A.3. However, the associated gradient fields
to these germs are not topologically equivalent: x2∂x + y2∂y has two hyperbolic sectors and
two parabolic sectors, whereas 2xy∂x + (3y2 + x2)∂y only has two hyperbolic sectors and
no parabolic sectors [28, 17]. However, by a result from Khesin [17, 16], the family of fast
subsystems of our chosen system (2.7) is generic in the following sense:

In [17] it is shown that there are seven three-parameter families of gradient fields, whose
fiber topological equivalence classes (up to orientation of the orbits) form an open and dense
set in the space of three-parameter families of gradient fields, which have a degenerate critical
point at the origin. Three out of these seven families unfold a hyperbolic umbilic singularity
in the sense of catastrophe theory. From the upcoming analysis in section 4 it follows that the
family of fast subsystems of (2.7) is equivalent to family number 5 of Theorem 1 in Khesin’s
article [17], since they topologically have the same bifurcation set and do not show saddle
connections. Also see Corollary 2 in [16]. The main point is that the fast subsystem of (2.7)
is generic in the set of three-parameter families of gradient fields, which have a degenerate
critical point at the origin. Further, the phase portraits in Khesin’s family number 6 and
family number 5 in [17] differ only at parameter values zero. At vanishing parameters, the
phase portraits of these two families differ precisely in the way the phase portraits of the
gradients of the germs x3 + y3 and y3 + yx2 above differ. Hence, the analysis of the fast
subsystem in section 4 for parameters (a, b, c) 6= (0, 0, 0) does also apply to Khesin’s family
number 6. Moreover, we conjecture that the choice of family number 6 (i.e. choosing the
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germ y3 +yx2 and a corresponding universal unfolding for V ) would still result in a fanning-
out behavior similar to Theorem 1.1. This conjecture is supported by a numerical simulation
of (1.3) with potential V = y3/3 + yx2 + a(y2 − x2) + bx + cy, shown in figure 3. Also see
appendix A.3 for this potential.

In summary, in this section we have argued and justified the choice of (1.1) as an appro-
priate representative of any fast-slow system of the form (1.3) near an isolated hyperbolic
umbilic singularity. We now proceed with the singular limit analysis of the fast-slow system
(1.1), or equivalently (1.2).

3. Critical manifold and slow flow

The slow subsystem of (1.1) is given by

0 = x2 + ay + b

0 = y2 + ax+ c

ȧ = ga(x, y, a, b, c, 0)

ḃ = gb(x, y, a, b, c, 0)

ċ = gc(x, y, a, b, c, 0).

(3.1)

3.1. The critical manifold and its singularities. The 3-dimensional critical manifold
S0 of (1.1) is given by

S0 = {x2 + ay + b = 0, y2 + ax+ c = 0}. (3.2)

Since the fast variables of (1.1) are of gradient type, the singular points of S0 are precisely
the points, where D2 V is not invertible. Explicitly, these are all points on S0, where

det D2 V = det

[
2x a
a 2y

]
= 4xy − a2 = 0. (3.3)

The projection of the 3-manifold S0 onto the ambient (x, y, a)-coordinates is a bijection.
This gives a parametrization for S0, given by

Ψ: R3 → R5, (x, y, a) 7→ (x, y, a, b = −x2 − ay, c = −y2 − ax). (3.4)

Via Ψ the singular points (3.3) appear as a double-cone, see figure 4. The following Lemma
establishes the different stability regions Sa

0 ,Sr
0,Ss

0 of S0 with respect to the fast subsystem.

Lemma 3.1. The critical manifold S0 has three connected normally hyperbolic parts, each
having different stability properties with respect to the fast subsystem: An attracting part
Sa

0 , a saddle-type part Ss
0 and a repelling part Sr

0. Via Ψ, such regions are given by Sa
0 =

{4xy − a2 > 0, x+ y < 0}, Sr
0 = {4xy − a2 < 0}, and Ss

0 = {4xy − a2 > 0, x+ y > 0}.

Proof. Recall that D2 V can be viewed as linearization of the fast subsystem. The regions
are determined by the signs of the eigenvalues of D2 V , which are determined by the signs
of det D2 V = 4xy−a2 and tr D2 V = 2(x+ y). This directly leads to the above regions. �

We now aim to classify the singular points of S0. Let π be the natural projection
π : (x, y, a, b, c) 7→ (a, b, c) onto the parameter subspace. Then π̃ = π ◦Ψ,

π̃ : (x, y, a) 7→ (a,−x2 − ay,−y2 − ax) (3.5)

gives a smooth map S0 → R3 of 3-manifolds, which is the restriction of π to S0 in the
coordinates Ψ from (3.4). In catastrophe theory π̃ is called the catastrophe map. The
singular points of S0 correspond to singularities of π̃, that is, points at which the linearization
is singular. Further, the set of singular points is generically stratified into submanifolds of
singularities of the same type [2, 3, 34, 12]. In our case, the singular points are stratified as
follows:

Lemma 3.2. Besides the hyperbolic umbilic singularity at the origin, there is a line of cusp
points given by x = y = a/2, and the remaining surface 4xy− a2 = 0 consists of fold points.
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Sa
0

Sr
0

Ss
0

a

x

y

Figure 4. Stratification of S0: The critical manifold itself corresponds to the ambient
(x, y, a)-space. The double cone determined by (3.3) represents the singular
points of the critical manifold S0 via Ψ, compare to figure 2. The hyperbolic
umbilic singularity is located at the origin. The 2-manifold given by the
double cone away from the origin consists of a surface of fold points (green)
and a line of cusp points (red). The attracting region Sa

0 is the region inside
the lower cone, the repelling region Sr

0 is the region inside the upper cone.

Proof. Let Σ1(π̃) be the set of points, where the kernel of dπ̃ has dimension 1. Then Σ1(π̃)
is precisely the 2-manifold determined by 4xy − a2 = 0 and (x, y) 6= 0. Folds and cusps are
contained in there. Restrict π̃ to Σ1(π̃). Then dπ̃

∣∣
Σ1(π̃)

has a one dimensional kernel along
x = y = a/2, which gives the cusp line. The situation is depicted in figure 4. The notation
Σ1(·) refers to the (Thom-Boardman) symbols ΣI , refer to [2, 3]. �

3.2. The slow flow and its desingularization. The right hand side g of the slow sub-
system (3.1) determines dynamics on the critical manifold S0 through the equations (3.2) of
the critical manifold. This dynamics is refered to as slow flow on S0. The goal of this section
is to analyze this slow flow, more precisely its interaction with the hyperbolic umbilic point.
Since we are intuitively dealing with a flow on the manifold S0, the natural approach would
be to use charts and push forward this flow to euclidean space. However, we point out that
the slow flow is in general not a flow in the usual sense of vector fields on manifolds. In (3.1),
the behavior of the slow flow is linked to the geometry of S0. More precisely, away from the
singular points of S0, the slow flow behaves like a usual flow of a vector field on S0. But this
behavior breaks down at the singular points of S0. For example, existence and uniqueness of
integral curves might fail at singular points. The procedure to obtain integral curves for the
slow flow on S0 was carried out by Takens in [29]. Let us outline this important procedure.

Recall that g is the right hand side of (3.1). A natural idea is to “transform” g via
π̃ : S0 → R3, which maps points in S0 parametrized by (x, y, a) via Ψ to their parameters
(a, b, c). Note that π̃ is a local diffeomorphism away from the singular points, which allows
to pullback g. In fact, one can “lift” the slow flow g to a vector field Y on S0 formally given
by

Y = det dπ̃ · (dπ̃)−1g(x, y, π̃(x, y, a)), (3.6)

although dπ̃ is not invertible everywhere. The reason for this is that by Cramer’s rule

(dπ̃)−1 =
1

det dπ̃
adj(dπ̃), (3.7)

where adj(·) denotes the transpose of the cofactor matrix. Therefore (3.6) reduces to Y =
adj(dπ̃)g(x, y, π̃(x, y, a)). Away from singular points of S0, Y is just a rescaling of the vector
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field (dπ̃)−1g. The factor det dπ̃ = 4xy − a2 serves as desingularization, which leads to the
term “desingularized slow flow” for Y . Note that Y is smooth if g is. It is important to note
that by the desingularization factor det dπ̃ in (3.6), the orientation of trajectories is reversed
in the region {det dπ̃ < 0}. This time reversion in the region {det dπ̃ < 0} on S0 must not
be neglected, since only after this we obtain the correct flow on the critical manifold away
from singular points. For illustrating examples of the desingularization procedure (3.6) we
refer to [12].

In our case of the hyperbolic umbilic, (3.6) leads to the following desingularized slow flow:

Lemma 3.3. The desingularized slow flow Y for (1.1) is given by

ẋ = ag̃c(x, y, a)− 2yg̃b(x, y, a) + (xa− 2y2)g̃a(x, y, a)

ẏ = ag̃b(x, y, a)− 2xg̃c(x, y, a) + (ya− 2x2)g̃a(x, y, a)

ȧ = (4xy − a2)g̃a(x, y, a),

(3.8)

where the time orientation of trajectories needs to be reversed in the saddle-type region
Ss

0 = {4xy − a2 < 0}. The notation g̃•(x, y, a) = g•(x, y, π̃(x, y, a), 0) = g•(x, y, a,−x2 −
ay,−y2 − ax, 0) is used.

Proof. Computation of adj(dπ̃)g(x, y, π̃(x, y, a), 0). The region {det dπ̃ < 0} where the ori-
entation of trajectories must be reversed coincides with the saddle-type region Ss

0. �

Recall that Y induces dynamics on S0. For the remainder of this article we let Y denote
the vector field (3.8), where the orientation of integral curves in Ss

0, i.e. outside of the double
cone of singularities, is reversed.

We are interested in the dynamics close to the hyperbolic umbilic singularity, located at
the origin. From now on, let

A0 := ga(0), B0 := gb(0), C0 := gc(0). (3.9)

Note that Y (3.8) has an equilibrium at the origin. We can classify this equilibrium of Y
according to the following lemma. This is similar to [12].

Lemma 3.4. For any g = (ga, gb, gc) in (1.1), the origin is a non-hyperbolic equilibrium of
the desingularized slow flow Y (3.8). The linearization at the origin has eigenvalues 0 and
±2
√
B0C0. Taking the time reversion in Ss

0 into account, the local behavior near the origin
is characterized by the following arrangement of invariant manifolds according to the values
of B0 and C0:

B0, C0 > 0 : two 1-d stable manifolds and 1-d center manifold
B0, C0 < 0 : two 1-d unstable manifolds and 1-d center manifold

B0, C0 have opposite sign : 1-d center manifold and rotational behavior around it
B0 = 0 or C0 = 0 : degenerate case

The first three cases occur generically.

Proof. The linearization at the origin is given by 0 −2B0 C0

−2C0 0 B0

0 0 0

 , (3.10)

which has the eigenvalues 0,±2
√
B0C0. In the case B0, C0 > 0 the eigenvalues and corre-

sponding eigenvectors of the linearization are given by

0:

(
B0

2C0
,
C0

2B0
, 1

)
, −2

√
B0C0 :

(√
B0/C0, 1, 0

)
, 2
√
B0C0 :

(
−
√
B0/C0, 1, 0

)
. (3.11)

In the case B0, C0 < 0 we have

0:

(
B0

2C0
,
C0

2B0
, 1

)
, −2

√
B0C0 :

(
−
√
B0/C0, 1, 0

)
, 2
√
B0C0 :

(√
B0/C0, 1, 0

)
. (3.12)



THE HYPERBOLIC UMBILIC SINGULARITY IN FAST-SLOW SYSTEMS 15

a

x

y

Sa
0

Sr
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Figure 5. Four trajectories of the desingularized slow flow Y (3.8) approach the origin
in the case B0, C0 > 0, which correspond to the 1-d stable/unstable manifolds
at the origin before desingularization. In the vicinity of the origin one of such
manifolds is contained in Sa

0 (denoted by σ) and Sr
0, and the other in Ss

0.
Also compare to figure 2, where σ appears as blue trajectory. A 1-d center
manifold, not shown, also exists and is tangent to the cone at the origin.
In particular, the hyperbolic umbilic is not a funnel in the sense of Takens
[29], and thus we shall concentrate on tracking σ and its perturbations. This
property of the hyperbolic umbilic is evident in the blow-up analysis. Away
from the center manifold, almost all trajectories of the slow flow leave Sa

0 via
folds (and cusps), as depicted by means of two trajectories in gray.

Note the swapped eigenvectors corresponding to the latter two nonzero eigenvalues. This is
due to the fact that C0

√
B0/C0 = −

√
B0C0 if B0, C0 < 0. In the case B0, C0 > 0, there

exists a 1-d stable manifold contained in Sa
0 ∪ Sr

0 close to the origin. Further, there exists a
1-d unstable manifold contained in Ss

0 close to the origin. Due to the time reversion in Ss
0

we obtain four trajectories approaching the origin. See figure 5. Similarly, we obtain four
trajectories emanating from the origin if B0, C0 < 0. Note that in both cases the 1-d center
manifolds are “tangent” to the double cone surface at the origin. �

Lemma 3.4 topologically determines the slow flow dynamics away from the 1-d center
manifold(s) in case of B0C0 6= 0, close to the origin. Motivated by Lemma 3.4, we shall
restrict the forthcoming analysis to the generic sub-case B0, C0 > 0. The simple reason for
this is that the flow on the stable manifolds is directed towards the hyperbolic umbilic point
in this case. In contrast, for B0, C0 < 0 there are no trajectories approaching the hyperbolic
umbilic point, except possibly on the center manifold. In the case of B0, C0 having opposite
sign (i.e. B0C0 < 0), we obtain a pair of conjugated purely imaginary eigenvalues at the
hyperbolic umbilic. To desingularize this case, the approach of [11] might be applicable.

Remark 3.5 (The non-hyperbolic equilibrium of Y at the origin). For any g = (ga, gb, gc)
in (1.1), respectively (3.1), the vector field Y (3.8) has a non-hyperbolic equilibrium at the
origin. Roughly speaking, this occurs due to two fast variables in (1.1) with appropriate
non-linear right hand side for ε = 0, in our case second order polynomials. The equilibrium
at the origin is due to the presence of adj(dπ̃) in (3.6) and the non-hyperbolicity is due
to the quadratic factor det dπ̃ = 4xy − a2 in the third equation of (3.8), coming from the
desingularization process. This is in contrast to the case of folds, cusps and the swallowtails,
where the desingularized slow flow is generically nonzero at the most degenerate singularity
[29]. In the case of folded singularities [27], the desingularized slow flow generically has a
hyperbolic equilibrium at the folded singularity.
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From now on, we assume B0, C0 > 0, if not stated otherwise. Note that by swapping the
coordinate labels b↔ c and x↔ y in (1.1), we obtain (1.1) with swapped gb ↔ gc, fx ↔ fy
and permuted first two arguments in these functions. This suggests that in the singular
limit the case gb = gc might play a special role. Indeed, if gb = gc then {x = y} is invariant
for (3.8). We will see later that the case B0 = C0 will play a special role on the blow-up
sphere.

Let σ denote the unique trajectory, which approaches the origin off the center manifold in
forward time from inside Sa

0 sufficiently close to the origin. Refer to figure 5. This trajectory
will play an important role in the forthcoming analysis, as we aim to track it through the
hyperbolic umbilic.

4. Fast subsystem

In this section we analyze the fast subsystem of (1.1): its equilibria, their bifurcations
and heteroclinic connections. This analysis is naturally the next step to analyze the singular
limit of a fast-slow system. The analysis will show the interplay of the fast fibers with the
critical manifold S0, since equilibria of the fast subsystem are instances of S0. Considering
(2.3), we have the parameter space (a, b, c) and the planar gradient system

x′ = x2 + ay + b

y′ = y2 + ax+ c.
(4.1)

Let Za,b,c(x, y) denote the vector field determined by (4.1). This system was already analyzed
to certain extent in [10, 30, 17].

4.1. Equilibria and their bifurcations. The vector field Za,b,c has at most four equilibria,
since, for a 6= 0, they correspond to intersections of the two parabolas

0 = x2 + ay + b

0 = y2 + ax+ c.
(4.2)

One parabola is symmetric with respect to the y-axis, the other symmetric with respect to
the x-axis. Depending on the sign of a, the parabolas either open right and up or open left
and down. For a = 0, each of the parabolas degenerates into a pair of parallel lines.

Linearization of Za,b,c(x, y) gives det DZa,b,c(x, y) = 4xy−a2, tr DZa,b,c(x, y) = 2(x+y).
Note that for each a, these two expressions determine the regions, in which the phase space
(x, y) of the vector field Za,b,c(x, y) contains sinks, sources, saddles or fold/cusp bifurcations.
These regions appear precisely as in taking a section a = const through figure 4. Also refer
to figure 6, in which these regions are separated by the green dashed curves.

Thus, there are four generic configurations of the equilibria of Za,b,c(x, y), which are
shown in figure 6: (A) no equilibria, (B) a saddle and a sink, (C) a saddle and a source and
(D) two saddles, a source and a sink. Note that (B) can only occur for a > 0, while (C)
can only occur for a < 0. The fold/cusp bifurcations, which happen upon variation of the
parameters a, b, c, visually correspond to transitions between the configurations in figure 6.
That is, by suitably shifting the parabolas along their symmetry-axes by varying b, c and
changing the parabolas’ “width” by varying a.

The following symmetries allow to simplify the study of the family of vector fields Za,b,c
and its bifurcations.

Lemma 4.1. The family of vector fields Z, as defined in (4.1), has the following symmetries:

(S1) Za,c,b◦A = A◦Za,b,c, where A is reflection along x = y. That is, Za,b,c and Za,c,b are
conjugate via A. In particular, the stability types of the reflected equilibria remain
invariant.

(S2) Z−a,b,c ◦ R = Za,b,c, where R is rotation by 180◦. Integral curves of Z−a,b,c are
obtained from integral curves of Za,b,c by rotation via R and time reversion. In
particular, under a 7→ −a, the positions of equilibria of Z are rotated by R and
saddles remain saddles, but sinks become sources and vice versa.
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(A) (B) (C) (D)

(A) (B) (C) (D)

Figure 6. The generic intersections of the two parabolas (4.2) give the generic configu-
rations (A),(B),(C),(D) of equilibria of Z. The dashed green curves indicate
the fold curves for fixed |a| > 0, which divide the plane in three regions: sinks
occur in the lower left region, sources in the upper right region, saddles in
between.

Proof. (S1) follows by direct computation using A(x, y) = (y, x). For (S2), observe that
since R amounts to multiplication by (−1), Z−a,b,c and −Za,b,c are conjugate via R, which
implies the statements. �

We will simply refer to the properties (S1) and (S2) from Lemma 4.1 by (S1) and (S2) in
the remainder of this section. Note how the symmetries appear in figure 6: switching from
the upper configuration (A) to the lower configuration (A) amounts to (S2), similarly for
(D). Switching from the upper row to the lower row in case of (B) and (C) amounts to (S1).

Recall the catastrophe set or bifurcation set, which is given by projection of the set of
singularities (represented by the double cone) onto the parameter space (a, b, c). By the
symmetries (S1) and (S2) from Lemma 4.1, the bifurcation set in the parameter space is
symmetric to the planes a = 0 and b = c. Furthermore, the bifurcation set is qualitatively
well known, see e.g. [26, 4]. This leads to the qualitative bifurcation diagram depicted
in figure 7. The bifurcation set divides the parameter space into four connected regions
(A),(B),(C) and (D), which correspond to the generic configurations in figure 6. Topological
equivalence of the associated vector fields Z in these regions follows from the absence of
saddle connections:

Lemma 4.2. In each of the open and connected regions (A),(B),(C),(D) the family of vector
fields Za,b,c(x, y) has topologically equivalent flows.

Proof. The vector field Za,b,c(x, y) is a gradient. By the Andronov-Pontryagin criterion
for planar structural stability we only need to consider the region (D), where a saddle to
saddle connection is possible. But the vector fields Za,b,c(x, y) in (D) do not show a saddle
connection. This was already shown implicitly in [10]. Here we give an alternative argument,
similar to [17]: by [6] saddle connections in quadratic planar gradient systems can only occur
along straight lines. Assume that Za,b,c(x, y) has an invariant straight line y = mx + d
connecting the two saddles. Note that necessarily m < 0, see figure 6. Then the zero level
set of p(x, y) = y′ −mx′ = y2 −mx2 + a(x−my) + c−mb needs to contain y = mx+ d for
all x-values between the saddles. The gradient ∇p vanishes in a single point, so away from
this point p(x, y) = 0 determines a smooth curve. If the straight line and p(x, y) = 0 locally
agree, there would exist a real valued function λ(x), such that∇p(x,mx+d) = λ(x)[−m 1],
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the latter being the normal vector to the invariant line. This implies λ(x) = 2x− a/m and
λ(x) = m(2x− a) + 2d. But due to m < 0 this cannot hold, even locally. �

a

b

c

cusp

fold

(A)

(B)

(C)

(D)

(D)

Figure 7. Qualitative bifurcation diagram of Za,b,c (4.1) in parameter space: The bi-
furcation set is given by projection of the singular points of S0 onto (a, b, c),
and corresponds to the hyperbolic umbilic point at the origin, a curve of cusp
points (red) and two surfaces of fold points (green), which intersect along the
negative b- and c-axes. The phase portraits show the qualitative behavior
of the fast subsystem at bifurcations and between them. Folds are shown
in green, cusps in red, sinks in blue, sources in black and saddles in white.
Naturally, sinks/sources and saddles correspond to points in Sa

0/Sr
0 and Ss

0,
respectively.

4.2. Feasible jumps. We now aim to combine the analysis of the fast and slow subsystem
away from the hyperbolic umbilic singularity. The goal is to see which concatenations of
singular candidate trajectories are possible at all, due to the geometry of S0 and the fast
subsystems. In the following we will focus on the possibilities at jump points, i.e. singular
points, where singular candidate trajectories on the critical manifold “jump” onto the fast
subsystem. As in lower dimensions, one expects that generic fold points indeed serve as
jump points: that is, if the slow flow is transverse to the surface of fold points. Refer to
the “normal switching condition” in [20]. In fact, at the fold or cusp points, we can locally
employ a center manifold reduction to reduce to one fast variable. This allows to directly
apply the existing theory, but only locally. We now aim to obtain global insight. Since the
fast subsystem is 2-dimensional and the critical manifold is 3-dimensional, a visualization of
feasible jumps as in, e.g. [13], is not directly applicable. Moreover, in case there is only one
fast variable present, the effect of the fast subsystem for candidate trajectories is usually
straight forward, since it amounts to projection along the fast fibers. Here, the fast fibers are
2-d with dynamics determined by a gradient vector field. The essential question for jumps
is: To which equilibria can the fast subsystem lead candidate trajectories, emanating from a
fold or cusp point?
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To answer this question, we need to do consider Za,b,c(x, y) at parameter values (a, b, c)
that correspond to a fold or a cusp bifurcation. We then need to check which candidate tra-
jectories, emanating from these “static” bifurcating equilibria are feasible. That is, we need
to check the forward asymptotic behavior of trajectories, which are backward asymptotic
to these bifurcation equilibria. Consider the generic configurations (A),(B),(C),(D), which
correspond to regions in parameter space as indicated in the bifurcation diagram in figure
7. These regions are separated by the bifurcation set. We call a fold bifurcation of type
(A) ↔ (B), if it occurs in Za,b,c for parameter variation (a, b, c) from region (A) to region
(B) or vice versa. Similarly, we use this notation for all other bifurcations according to the
bifurcation diagram in figure 7. Note that if a = 0 we can have two simultaneuous folds and
two “overlapping” cusps at a = b = c = 0, i.e. the hyperbolic umbilic.

In the following we will encounter fast candidate trajectories, which “escape” towards
infinity. To treat this behavior, let us setup a suitable “exit” section, which solutions pass
before escaping. For the vector field Za,b,c consider the section

∆ex = {x+ y = 2ν}, (4.3)

for ν > 0. Then there is an open neighbourhood K of the origin in parameter (a, b, c)-space,
such that all equilibria of Za,b,c for (a, b, c) ∈ K are located below ∆ex. This assumption is
merely to simplify the following statements. In the scope of the current section ν > 0 can
be chosen arbitrarily large. In this setting, we state the following Lemma, which constructs
positively invariant regions, in which jumping candidate trajectories need to be contained.
Eventually, this leads to feasible jumps along the fast subsystem.

Lemma 4.3. Consider Za,b,c at parameter values (a, b, c) ∈ K contained in the bifurcation
set.

(a) If (a 6= 0, b, c) does not correspond to a fold or cusp bifurcation (B) ↔ (D), then
any trajectory emanating from the bifurcation equilibrium arrives at the section ∆ex.

(b) If (a 6= 0, b, c) corresponds to a fold or cusp bifurcation (B) ↔ (D), then every
trajectory emanating from the bifurcation equilibrium either arrives at ∆ex or is
forward asymptotic to a sink or a saddle.

(c) If (a = 0, b, c): Any trajectory emanating from a fold equilibrium located on the neg-
ative x- or y-axis arrives at ∆ex. Any trajectory emanating from a fold equilibrium
located on the positive x- or y-axis is forward asymptotic to the simultaneuous fold
on the negative axis or arrives at ∆ex. Any trajectory of Z0,0,0 emanating from the
origin arrives at ∆ex.

(d) From ∆ex any trajectory escapes towards infinity and cannot connect to equilibria.

Proof. This follows by looking at the nullclines of Za,b,c, i.e. the configuration of the parabo-
las (4.2), for parameters in the bifurcation set. The proof is given by means of figure 8, which
contains four qualitative phase portraits, to which all cases except Z0,0,0 can be reduced.
We explain the reduction and figure 8: Assume a 6= 0. Consider the phase portrait of Za,b,c
at parameter values as mentioned above. Due to (S1) from Lemma 4.1, the argument for
the folds reduces to four qualitatively distinct phase portraits corresponding to folds (A) ↔
(B), (A) ↔ (C), (B) ↔ (D) and (C) ↔ (D). By (S2), we can take the phase portrait for a
fold (B)↔ (D) and obtain the phase portrait for a fold (C)↔ (D) by 180◦ rotation and time
reversion. Similarly for folds (A)↔ (B) and (A)↔ (C). Hence only two fold phase portraits
contain all the information we need for the proof. In figure 8, these are the upper two phase
portraits: Trajectories being backward asymptotic to the folds (green) must be contained in
the violet regions, which are positively invariant. Trajectories being forward asymptotic to
the folds must be contained in the orange regions, which are negatively invariant. After time
reversion and 180◦ rotation the orange region corresponds to a positively invariant region
containing trajectories emanating from folds in reverse time.
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cusp
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Figure 8. Qualitative phase portraits for the proof of Lemma 4.3: Up to (S1) and (S2),
these four phase portraits qualitatively contain all relevant phase portraits
of Za,b,c at parameter values contained in the bifurcation set. The black
parabolas (which degenerate into straight lines for a = 0) are the nullclines,
the arrows indicate the signs of x′, y′, i.e. the direction of the flow. The violet
regions define positively invariant regions, in which trajectories emanating
from the bifurcating equilibrium (fold in green or cusp in red) are contained.
After time reversion the orange regions play a similar role. Folds are shown
in green, cusps in red, sinks in blue, saddles in white. Recall that ∆ex =
{x+ y = 2ν}.

The upper left portrait treats folds (A)↔ (B) with the violet positively invariant region and,
via time reversion and 180◦ rotation (S2), folds of type (A) ↔ (C) with orange. The upper
right portrait treats (B) ↔ (D) with the violet positively invariant region and (C) ↔ (D)
with the orange negatively invariant region, where again time reversion and 180◦ rotation
(S2) needs to be employed. Recall that (S2) turns a sink into a source. Two additional
configurations of the nullclines lead to cusps, which can be reduced again by (S2) to a single
phase portrait containing all the necessary information. This is the lower left phase portrait
in figure 8. It treats cusps (B)↔ (D) with the violet region, cusps (C)↔ (D) with the orange
region via (S2). The case a = 0 follows similarly, the nullcline parabolas just degenerate into
(pairs of) straight lines. The case Z0,0,0 follows easily. By (S1), the remaining cases with
a = 0 can be reduced to a single phase portrait. This is the lower right portrait in figure 8,
which does only show the violet and orange regions corresponding to the fold on the right
hand side. Note that in a = 0 away from the origin two folds happen simultaneously. The
case of Z0,0,0, which is the fast subsystem at the hyperbolic umbilic itself, follows easily by
looking at its phase portrait. Assertion (d) follows from Remark 4.5. �

Remark 4.4 (The geometry near folds and cusps). Near the singularly perturbed cusp in
dimension three [5, 13] the critical manifold is “S-shaped” due to two intersecting fold curves.
Further, along the fold curves, an attracting branch is “folded over” a repelling branch.



THE HYPERBOLIC UMBILIC SINGULARITY IN FAST-SLOW SYSTEMS 21

Combined with the “S-shaped” critical manifold, this can lead to singular limit relaxation
oscillation type behavior near the cusp. In our case, however, the above analysis shows that
at folds a branch of Ss

0 is folded over either a branch of Sa
0 or Sr

0, given that a 6= 0. See
for example figure 7. Moreover, at folds near the cusp curves, where Ss

0 is folded over Sa
0 ,

there are only instances of Ss
0 and Sr

0 present in the fast subsystem, except for the fold itself.
Hence, at such folds we can in principle only jump to Ss

0. These are folds of type (C)↔ (D),
and Lemma 4.3 shows that the fast subsystem does not allow jumps to Ss

0. Thus, a direct
jump back to S0 is impossible, and therefore a singular limit relaxation oscillation behavior
as in the 3-d cusp is impossible. In particular, a singular limit return mechanism from Sa

0

back to Sa
0 must go through the hyperbolic umbilic. At folds near the cusp curves, where Ss

0

is folded over Sr
0, there are only instances of Ss

0 and Sa
0 present in the fast subsystem, except

the fold itself. These are folds of type (B) ↔ (D). Lemma 4.3 does not exclude jumps from
these folds to Ss

0 or Sa
0 .

Remark 4.5 (The exit section ∆ex and escape towards infinity). The vector field Za,b,c(x, y)
might not be transverse to ∆ex at isolated points in the regions x′ < 0, y′ > 0 and x′ >
0, y′ < 0. However, this section still works as suitable “exit” section: Any section of the
form {x = const} or {y = const} is transverse to the flow in these regions, which we can
place “before” ∆ex. Together with ∆ex this then gives “triangular”-like compact regions, which
solutions need to exit in finite time through ∆ex by Poincaré-Bendixson. Further, figure 8
shows that in this case trajectories can only escape towards infinity and cannot connect to
any equilibrium.

Remark 4.6 (Asymptotic estimates from the positively/negatively invariant regions). By
employing the nullclines and the direction of Za,b,c(x, y) along the diagonal x = y, it is easy
to obtain forward asymptotic estimates for trajectories, which jump onto the fast subsystem
at folds. At folds (C) ↔ (D), any solution (x, y) emanating from the corresponding fold
equilibrium satisfies the following: if b < c: x = O(

√
y) while y → +∞, if c < b: y = O(

√
x)

while x→ +∞. At folds (A) ↔ (B), any solution (x, y) emanating from the fold equilibrium
satisfies: if b < c: y > x and y → +∞, if c < b: x < y and x → +∞. In the upcoming
blow-up analysis, these estimates can be employed to connect the corresponding orbits on the
equator of the blow-up sphere to their “exit equilibria” in the charts κ±a.

Now, the jump possibilities given by Lemma 4.3 can be visualized by attaching the quali-
tative fast subsystems to the corresponding regions on the double cone from figure 4, which
represent the singularities of S0. This is shown in figure 9. In principle, this allows to concate-
nate candidate trajectories of the singular limit of system (1.1), if we add the desingularized
slow flow Y to the figure 9 and respect the statements from Lemma 4.3. An example how
to read figure 9 and concatenate trajectories is given in the proof of Proposition 4.7.

Roughly speaking, the feasible jumps from Lemma 4.3 and figure 9 are summarized in
the following proposition.

Proposition 4.7 (Feasible singular limit jumps). The fast-slow system (1.1) allows the
following singular limit jump behavior via fast segments:

(a) It is impossible to jump via a fast candidate trajectory from folds or cusps enclosing
Sa0 back onto the critical manifold S0.

(b) From folds enclosing Sr
0 for a > 0, there exist fast candidate trajectories jumping to

Sa
0 and Ss

0.
(c) From cusps next to Sr

0 for a > 0, there exist fast candidate trajectories jumping to
Sa

0 .
(d) From folds enclosing Sr

0 for a = 0, there exists a single fast candidate trajectory
jumping to a fold enclosing Sa

0 .
(e) Any other jumping candidate trajectory escapes towards infinity and cannot arrive

at S0.

Proof. (a): From figure 6 one can deduce that folds and in particular cusps next to Sa
0 are

of type (C) ↔ (D), in particular for a < 0, compare to figure 7. Then Lemma 4.3 implies
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Sa
0

Sr
0

Ss
0

Figure 9. Qualitative fast subsystems corresponding to the singularities on the double
cone for a 6= 0, each fast subsystem phase portrait is attached to a set of
singularities on the cone. The a-axis is directed towards the observer. Cusp
points are depicted in red, fold points in green, sinks in blue, sources in black
and saddles in white. Recall that equilibria appearing in the fast subsystem
correspond to instances of Sa

0 ,Sr
0,Ss

0 or singular points of S0, as indicated by
the color coding. The phase portraits only contain few heteroclinic connec-
tions and “escaping” trajectories, but give a qualitatively complete picture
according to Lemma 4.3. For future reference, it is worth noting that the
only trajectories that can jump towards Sa

0 are those jumping at the upper
cone.

assertion (a), which is clarified by Remark 4.4. In figure 9 this is visualized as follows:
Starting inside Sa

0 , we assume that a suitable slow flow brings us to a fold surrounding the
attracting region. Then we look to the four attached fast subsystems, which qualitatively
show the fast dynamics at these folds or cusps. In each of these portraits we need to follow
trajectories emanating from the fold equilibrium (green) or cusp (red), which all escape
towards infinity.
(b) and (c): Similarly, this follows from Lemma 4.3 by checking that a heteroclinic connection
from the fold equilibrium to the saddle indeed exists. In figure 9, this is visualized by
considering the four fast subsystems attached to the upper cone. We see that in this case
connections to the sink (blue) and saddle (white) exist for a > 0.
(d): This occurs qualitatively in the setting of the lower right phase portrait of figure 8,
which is (d) in Lemma 4.3.
(e): In the language of Lemma 4.3 this corresponds to arrival at the exit section ∆ex =
{x+ y = 2ν}. In the scope of this section ν > 0 can be chosen arbitrarily. �

The fact that there cannot be jumps from fold points enclosing Sa
0 back to Sa

0 was already
proven in [12]. However, note that the latter did not assume any dynamics in the fast fibers,
since there Takens’ setting of constrained differential equations was used. Proposition 4.7
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shows that a return mechanism from Sa
0 back to Sa

0 solely via folds or cusps is impossible.
However, via a singular canard through the hyperbolic umbilic point one can get a candidate
trajectory from Sa

0 to Sr
0 (or Ss

0) and possibly jump back to Sa
0 from the upper cone of

singularities. This was already observed in Remark 4.4. By Lemma 3.4 a singular canard
through the hyperbolic umbilic cannot occur for B0C0 > 0.

Moreover, the above results give the idea that generically the hyperbolic umbilic point
will behave “like a catapult”. In particular, any trajectory jumping at a singularity seems to
escape generically along the positive x- or y-direction. Note that for trajectories approaching
folds on the upper cone from the saddle-type region Ss

0 there is the possibility for a relaxation
oscillation in the singular limit: Hitting a fold on the upper cone in a > 0, the trajectory
might then jump to the saddle-type region “on the other side” of the cone, from where, upon
hitting another fold on the front of the upper cone, the trajectory might jump back to the
starting point. A rigorous analysis of these relaxation oscillations, i.e. the question wether
they possibly persist for ε > 0 is beyond the scope of this document. Once an orbit jumps
onto the attracting part upon hitting a fold point, we observe the “catapult behavior” again,
if we assume that the singularities serve indeed as jump points. Generically, a fold point
is indeed a jump point. In general, there possibly exist folded singularities on the double
cone, which can give rise to canard trajectories passing to nearby regions of S0 with distinct
stability properties, see e.g. [27, 20].

Next, we are going to investigate the dynamics in the vicinity of the hyperbolic umbilic
point by means of a blow-up, which is the main part of the present article.

5. Blow-up analysis

We are interested in the behavior of attracting slow manifolds of (1.1) in a vicinity of
the hyperbolic umbilic point for small ε > 0. We investigate (1.1) by means of the following
vector field X, which is of the form

x′ = x2 + ay + b+ εfx(x, y, a, b, c, ε)

y′ = y2 + ax+ c+ εfy(x, y, a, b, c, ε)

a′ = εga(x, y, a, b, c, ε)

b′ = εgb(x, y, a, b, c, ε)

c′ = εgc(x, y, a, b, c, ε)

ε′ = 0.

(5.1)

We assume that the functions fx, fy, ga, gb, gc are sufficiently smooth. Recall that we use
the notation A0 = ga(0), B0 = gb(0), C0 = gc(0). According to the hypothesis of Theorem
1.1, and motivated by Lemma 3.4, we shall be concerned with the case B0, C0 > 0.

5.1. Preparations for blowing up. In the following we blow-up the vector field X at the
origin. That is, we “replace” the origin by the 5-d sphere S5. First, we set up the notation
that is heavily used in the following analysis. With these we also briefly recall the blow-up
method, see [14, 20] for further details. More precisely, we transform the vector field X (5.1)
by the weighted (quasi-homogeneous) blow-up transformation

Φ: B := S5 × [0, r̃) ⊂ R7 → R6

(x̄, ȳ, ā, b̄, c̄, ε̄, r̄) 7→ (r̄x̄, r̄ȳ, r̄ā, r̄2b̄, r̄2c̄, r̄3ε̄),
(5.2)

where x̄2 + ȳ2 + ā2 + b̄2 + c̄2 + ε̄2 = 1. The map Φ is a diffeomorphism for r̄ > 0, to
where we can pullback the vector field X. There exists a sufficiently smooth extension X̄
on B, such that the pushforward of X̄ is X, i.e. Φ∗X̄ = X. Note that by this procedure,
we have “blown up” the hyperbolic umbilic singularity at the origin to a sphere S5 × {0}.
Typically, by blowing up a sufficiently degenerate singularity, X̄ vanishes on the blow-up
sphere {r̄ = 0} ' S5. The key point of the blow-up method is that one aims to rescale X̄
(dividing out a common factor) in such a way, that distinct (semi-)hyperbolic equilibria on
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{r̄ = 0} appear. By this, the orbit structure of X̄ in {r̄ > 0} remains unchanged. Often this
rescaling is taken out locally, i.e. by studying X̄ locally in charts. The general goal is then
to infer the dynamics in {r̄ > 0} close to the sphere from the dynamics on the invariant
blow-up sphere {r̄ = 0}.

In the following we refer to S5 as the blow-up sphere and identify it with S5 × {0} ⊂
S5 × [0, r̃) = B, where we call B the blow-up space. Note that the blow-up space and
the blow-up sphere are (sub-)manifolds. To work on them in a convenient way one usually
introduces charts, in which Φ takes the form of a “directional blow-up”.

Let us denote these “usual” charts by κ±•, where • corresponds to a coordinate direction.
Then

Φ±• := Φ ◦ κ−1
±• (5.3)

is simply given by putting •̄ = ±1 in (5.2) and renaming the variables accordingly. This
notation comes from the fact that in κ±• the blow-up space B|±•̄>0 is visible. Let us give
a brief example to clarify this notation: The chart κ−y is precisely designed in such a way,
that the blow-up Φ in chart κ−y is given by

Φ−y : (x1, r1, a1, b1, c1, ε1) 7→ (r1x1,−r1, r1a1, r
2
1b1, r

2
1c1, r

3
1ε1), (5.4)

where (x1, r1, a1, b1, c1, ε1) are the local coordinates determined by κ−y. Note how Φ−y is
obtained from Φ (5.2) by putting ȳ = −1 and relabelling the coordinates.

Remark 5.1. The blow-up exponents in (5.2) are chosen in such a way, that they match the
quasi-homogeneity of X in the fast variables and allow for rescaling in the slow variables.
For example, in the chart κ−y, all terms in the first component in the pullback of X via Φ−y
(i.e. the equation for x′1) share the same power of r1 as factor. This allows to rescale and
obtain nontrivial dynamics on {r̄ = 0}. Moreover, with this exponent choice, the critical
manifold of X appears as 2-submanifold on the blow-up sphere {r̄ = 0}.

We aim to study X̄ by means of the directional blow-ups Φ±• in the charts κ±•. For
reference, we state all blow-up maps Φ• that are to be used in the forthcoming analysis.
This also fixes the naming conventions for the coordinates determined by the charts κ•. The
blow-up maps we are going to use explicitly are:

Φ−y : x = r1x1, y = −r1, a = r1a1, b = r2
1b1, c = r2

1c1, ε = r3
1ε1;

Φε : x = r2x2, y = r2y2, a = r2a2, b = r2
2b2, c = r2

2c2, ε = r3
2;

Φa : x = r3x3, y = r3y3, a = r3, b = r2
3b3, c = r2

3c3, ε = r3
3ε3;

Φ−a : x = r4x4, y = r4y4, a = −r4, b = r2
4b4, c = r2

4c4, ε = r3
4ε4;

Φex : x = r5(1 + x5), y = r5(1− x5), a = r5a5, b = r2
5b5, c = r2

5c5, ε = r3
5ε5.

(5.5)

We emphasize the slightly “unusual” blow-up Φex, which is roughly obtained by including a
45◦ degree rotation in the fast variables. For further details on Φex refer to the exit chart
analysis in section 5.6.

We now give an overview of the forthcoming blow-up analysis, which also describes which
charts/blow-ups we will use. The goal is to understand the dynamics of the fast-slow vector
field X close to the origin. Notice that X has a manifold of equilibria S0 × {ε = 0}, i.e.,
the critical manifold. By Fenichel theory [9, 15] compact submanifolds of the normally
hyperbolic regions of S0 perturb for sufficiently small ε > 0 to (non-unique) invariant slow
manifolds, on which the flow converges to the slow flow on the critical manifold for ε → 0.
These invariant slow manifolds appear in sections ε = constant of 4-dimensional center
manifolds along Sa

0 × {ε = 0},Sr
0 × {ε = 0} and Ss

0 × {ε = 0}. Trajectories, which approach
slow manifolds, will generically approach slow manifolds obtained as perturbations of the
attracting region Sa

0 . Refer to figure 4 for the region Sa
0 . In the blow-up of X, the hyperbolic

umbilic singularity is “replaced” by the 5-d sphere S5 ' B|{r̄=0}. In all of the charts, we
will see certain regions of phase space and away from {r̄ = 0} all objects, e.g. invariant
manifolds or the critical manifold, appear in a locally diffeomorphic manner. In the singular
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limit ε = 0, the blow-up space is restricted to {ε̄ = 0}, and the blow-up sphere S5 reduces
to B|{ε̄=0,r̄=0} ' S4, to which we will refer as equator of the blow-up sphere.

Remark 5.2. The following notational convention will be used: objects in original coordi-
nates, which are visible in a blow-up Φ• will be indexed by the corresponding index used for
the new coordinates in Φ•. For example, Sa

0 seen in Φ−y (i.e. the blow-up in κ−y) will be
denoted by Sa

0,1. Similarly, the section ∆ex seen in Φex will be denoted by ∆ex
5 . However, we

will always simply use the variable t to denote time (i.e. the variable to parametrize integral
curves) in each of the blown-up vector fields and we remark that the meaning of t will be
clear from the context.

In the following we present the analysis in the entry chart κ−y, the rescaling chart (also
called central chart) κε and the exit chart κex. The charts κ±a are only relevant in section 6
and are not used to prove Theorem 1.1. However, in (5.5), Φ±a appear before the exit chart
blow-up Φex, since in principle one would study transitions from the entry chart κ−y to κ±a
in order to analyze the dynamics away from the hyperbolic umbilic singularity. To cover
all transitions onto the fast regime in a single exit chart, we use a slightly “unusual” chart
κex, which includes, up to scaling, a 45◦ rotation of the fast variables of X. In our notation,
κex intuitively corresponds to “κx+y”. The corresponding blow-up map Φex can then also be
roughly understood as blowing up X “in direction of x+y”. This choice is motivated by (4.3)
and Lemma 4.3. After the analysis in the three charts κ−y, κε, κex we are in position to
prove Theorem 1.1. Finally, we also present a brief analysis of the dynamics on the blow-up
sphere in the two charts κ±a in section 6, which are useful to understand the desingularized
slow flow near the hyperbolic umbilic singularity and the flow on the blow-up sphere close
to the equator {ε̄ = r̄ = 0}.

5.2. Analysis in the entry chart κ−y. Blowing up the vector field X (5.1) by Φ−y, as
defined in (5.5), and desingularizing accordingly by dividing out the common factor r1, we
obtain the blow-up in κ−y:

x′1 = x2
1 − a1 + b1 + x1(1 + a1x1 + c1) + r1ε1(fx + x1fy)

r′1 = −r1(1 + a1x1 + c1)− r2
1ε1fy

a′1 = a1(1 + a1x1 + c1) + r1ε1(ga + a1fy)

b′1 = 2b1(1 + a1x1 + c1) + ε1gb + 2r1ε1b1fy

c′1 = 2c1(1 + a1x1 + c1) + ε1gc + 2r1ε1c1fy

ε′1 = 3ε1(1 + a1x1 + c1) + 3r1ε
2
1fy.

(5.6)

In (5.6) we use the shorthand fx for fx ◦Φ−y, similarly for fy, ga, gb, gc. Recall that dividing
out the common factor r1 amounts to a time reparametrization of trajectories away from
the blow-up sphere. The system (5.6) has invariant subspaces {r1 = 0}, {ε1 = 0} and
{r1 = 0, ε1 = 0}. The subspace {r1 = 0} corresponds to dynamics on the blowup sphere
S5. Analogously, the subspace {ε1 = 0} corresponds to the singular limit and the subspace
{r1 = 0, ε1 = 0} to the part of the 4-dimensional equator of S5, where ȳ < 0 holds. Note
the constant of motion r3

1ε1, induced by the blown-up invariant sets {ε = const} of X.
In {r1 = 0, ε1 = 0} the system (5.6) reduces to

x′1 = x2
1 + (1 + a1x1 + c1)x1 − a1 + b1

a′1 = a1(1 + a1x1 + c1)

b′1 = 2b1(1 + a1x1 + c1)

c′1 = 2c1(1 + a1x1 + c1),

(5.7)

which has two isolated equilibria

q1 := (x1 = 0, a1 = 0, b1 = 0, c1 = 0)

q2 := (x1 = −1, a1 = 0, b1 = 0, c1 = 0)
(5.8)
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Sa
0,1: attracting

Ss
0,1: saddle-type

r1

a1

x1

folds

cusps

hyper
bolic umbilic

Figure 10. Stratification of the blown-up critical manifold in chart κ−y , given by
Lemma 5.3.

and a 2-manifold of equilibria determined by

x2
1 + b1 − a1 = 0

1 + a1x1 + c1 = 0.
(5.9)

In {ε1 = 0} the system (5.6) simplifies to

x′1 = x2
1 + (1 + a1x1 + c1)x1 − a1 + b1

r′1 = −r1(1 + a1x1 + c1)

a′1 = a1(1 + a1x1 + c1)

b′1 = 2b1(1 + a1x1 + c1)

c′1 = 2c1(1 + a1x1 + c1).

(5.10)

In addition to the isolated equilibria q1, q2 on the blow-up sphere, system (5.10) has a 3-
manifold of equilibria

S0,1 = {x2
1 + b1 − a1 = 0, 1 + a1x1 + c1 = 0}, (5.11)

where the 2-manifold determined by (5.9) appears as slice S0,1

∣∣
r1=0

. Via Φ−y the manifold
S0,1

∣∣
r1>0

corresponds to the critical manifold S0

∣∣
y<0

. One should recall that the hyperbolic
umbilic point is an object of codimension 3 in the critical manifold. In blown-up coor-
dinates, it corresponds to the intersection of the 3-dimensional critical manifold with the
5-dimensional blow-up sphere S5, which gives a 2-dimensional manifold. This 2-manifold
will appear in multiple charts and is contained in the singular limit. That is, it is contained
in the equator {ε̄ = 0, r̄ = 0} ' S4 of the blow-up sphere S5, which precisely is given by
(5.9) in the chart κ−y. The manifold S0,1 is a graph over the (x1, r1, a1)-coordinates.

Lemma 5.3. The manifold S0,1

∣∣
r1≥0

is subdivided into an attracting region Sa
0,1 := {4x1 +

a2
1 < 0, r1 > 0}, a saddle-type region Ss

0,1 := {4x1 + a2
1 > 0, r1 > 0}, a fold surface given

by {4x1 + a2
1 = 0, r1 > 0}, which contains the cusp line {x1 = −1, a1 = −2, r1 > 0}. The

2-manifold S0,1

∣∣
r1=0

represents the blown-up hyperbolic umbilic singularity.

Proof. Lemma 3.2 blown up by Φ−y. See figure 10. �

For the following it is convenient to rectify the critical manifold S1 by introducing a
coordinate transformation T : x1 = x1, r1 = r1, a1 = a1, u = x2

1 + b1 − a1, v = 1 + a1x1 +
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c1, ε1 = ε1. Applying this transformation to (5.6) leads to

x′1 = u+ x1v + r1ε1(fx + x1fy)

r′1 = −r1v − r2
1ε1fy

a′1 = a1v + r1ε1(ga + a1fy)

u′ = 2x1u+ a1v + 2uv + ε1gb +O(r1ε1)

v′ = a1u− 2v + 2v2 + ε1gc +O(r1ε1)

ε′1 = 3ε1v + 3r1ε
2
1fy.

(5.12)

Again, we use the shorthand fx = fx ◦Φ−y ◦ T−1, similarly for fx, fy, ga, gb, gc. Each of the
O(r1ε1) terms is of the form r1ε1f̃ , for a sufficiently smooth function f̃ . The effect of T is
that the critical manifold S0,1 in (5.12) is now given by {u = 0, v = 0, ε1 = 0}.

Lemma 5.4. Along Sa
0,1 there exist 4-dimensional attracting center manifolds W c(Sa

0,1),
which can be extended to r1 = 0. Via Φ−y the center manifolds along Sa

0 × {ε = 0} (in
original coordinates) correspond to instances ofW c(Sa

0,1)|r1>0. The attracting slow manifolds
obtained by Fenichel theory coincide with intersections of the formW c(Sa

0,1)∩{r3
1ε1 = const}.

Proof. Linearization of (5.12) along S0,1 ' {ε1 = 0, u = 0, v = 0} is given by the matrix
0 0 0 1 x1 O(r1)
0 0 0 0 −r1 O(r2

1)
0 0 0 0 a1 O(r1)
0 0 0 2x1 a1 B0 +O(r1)
0 0 0 a1 −2 C0 +O(r1)
0 0 0 0 0 0

 . (5.13)

The matrix (5.13) has a quadruple zero eigenvalue and two further eigenvalues λ1,2 = x1 −
1 ±

√
(1− x1)2 + 4x1 + a2

1. Notice that λ1,2 < 0 along Sa
0,1 and λ1 > 0 > λ2 along Ss

0,1.
Note that along the fold surface given by

{
4x1 + a2

1 = 0
}
we have λ1 = 0, λ2 = 2(x1 − 1),

while x1 ≤ 0. Since ε = r3
1ε1 is a constant of motion in κ−y, the (blown-up) attracting slow

manifolds are contained in intersections of the form W c(Sa
0,1) ∩ {r3

1ε1 = const}. �

Remark 5.5. The equilibria q1, q2 from (5.8) arise from interaction with the fast subsystem.
For further illustration, refer to figure 14 and the explanation next to (5.50).

5.3. Blow-up of the desingularized slow flow Y . The desingularized slow flow Y (3.8)
constitutes a singular limit slow flow on the critical manifold S0. It is worth recalling the
necessary time reversion for Y in the saddle region Ss

0 due to the desingularization process.
A natural idea is to incorporate Y into our blow-up analysis, i.e. the blow-up of the fast
formulation X (5.1). By this we aim to study the singular limit interaction of Y with the
blown-up hyperbolic umbilic singularity. That is, we will “embed” Y into the blow-up of X.
Note that this step was also implicitly carried out in the analysis of a fold singularity or
cusp singularity [19, 5, 13]. However, in these cases, the desingularized slow flow was regular
and therefore considerably simpler to embed into the blow-up analysis. In contrast to this,
we are dealing with a desingularized slow flow Y , which has a non-hyperbolic equilibrium
at the hyperbolic umbilic singularity. Even in the studies of folded singularities [27, 24, 7],
these appear as hyperbolic singularities of the desingularized slow flow.

Recall the blow-up transformation Φ given by (5.2). Let Θ: S2× [0, r̄)→ R3, (x̄, ȳ, ā, r̄) 7→
(r̄x̄, r̄ȳ, r̄ā) be the blow-up arising from Φ restricted to the (x, y, a)-coordinates. Define the
blown-up Ȳ of the desingularized slow flow Y by

Θ∗Ȳ = Y. (5.14)

In fact, Ȳ has nontrivial dynamics on the blow-up sphere S2 without employing a time
rescaling. Note that one can use the charts κ±x,±y,±a to study Ȳ , as this just amounts
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to blowing up Y by the corresponding directional blow-ups induced by Θ. We denote the
directional blow-ups induced by Θ with the same subscripts, i.e. Θ•.

Since Y determines the slow flow on the critical manifold S0, in blown-up coordinates Ȳ
determines the slow flow on the blown-up critical manifold in each of the charts κ±x,±y,±a.
By this we mean the following: Looking at the blow-up of X in chart κ•, i.e. blowing
up X with Φ•, the critical manifold appears as a manifold of equilibria. The slow flow
on this manifold of equilibria is then determined by the blow-up of Y by Θ•. Note that
since the critical manifold is parametrized by (x, y, a)-coordinates, the coordinates used for
parametrizing the critical manifold in the chart κ• match with the coordinates used for
blowing up Y by Θ•. This directly allows to “embed” the blown-up slow flow Ȳ in each
of the above charts into the blow-up of X. For example, in the chart κ−y, we have that
the critical manifold appears as the manifold S0,1, which is parametrized by the coordinates
(x1, r1, a1). These are precisely the coordinates, which are used for blowing up Y by Θ−y.
We will start with the analysis of Ȳ in κ−y in this section. Similarly, one can employ the
other charts to complete the analysis of Ȳ . Eventually, this leads to a blown-up version of
figure 5, i.e. a “usual” blow-up analysis of the vector field Ȳ , with time reversion in Ss

0. A
sketch of the flow of Ȳ is shown in figure 12.

To embed Y into X̄ in chart κ−y, we take the desingularized slow flow Y (3.8) and
transform it by

Θ−y : x = r1x1, y = −r1, a = r1a1. (5.15)

This gives

ẋ1 = a1g̃c − 2g̃b + r1(a1x1 − 2)g̃a + x1J

ṙ1 = −r1J

ȧ1 = a1J − r1(4x1 + a2
1)g̃a,

(5.16)

where J = J(x1, r1, a1) = a1g̃b − 2x1g̃c − r1(a1 + 2x2
1)g̃a and the shorthand g̃• for g̃• ◦Θ−y

is used with g̃• defined in (3.8). System (5.16) represents a vector field on the manifold
S0,1 in the coordinates (x1, r1, a1) and, simultaneously, a “usual” blow-up of Y in negative
y-direction. The invariant set {r1 = 0} of (5.16) corresponds to the blown-up hyperbolic
umbilic point. Refer to figure 10, in which (5.16) now induces a flow. Recall that for Y we
need to reverse the time orientation of trajectories in the saddle-type region. This we have
to take into account for Ȳ as well: In (5.16) we reverse the time-orientation of orbits in the
saddle-type region

{
4x1 + a2

1 > 0
}
, now including r1 = 0, in order to obtain a consistent

flow.

Remark 5.6. Another way to motivate the time reversion in {r1 = 0, 4x1 + a2
1 > 0} will

be apparent from the charts κ±a in section 6. In these charts, the regions {r1 = 0, a1 >
0, 4x1 + a2

1 > 0} and {r1 = 0, a1 < 0, 4x1 + a2
1 > 0} appear as saddle-type regions of 2-d

critical manifolds. Hence, its desingularized slow flow undergoes a time reversion in such
regions.

Recall from our notation that g̃a(0) = A0, g̃b(0) = B0 and g̃c(0) = C0. The vector field
(5.16) has three equilibria in {r1 = 0}, which are located at

ζ1 := (x1 = −B2
0/C

2
0 , a1 = −2B0/C0),

ζ2,3 := (x1 = ∓
√
B0/C0, a1 = 0).

(5.17)

Note that ζ2 and ζ3 only exist if B0, C0 have identical sign. The equilibrium point ζ1 lies
on
{

4x1 + a2
1 = 0

}
, which is the extension of the fold surface from Lemma 5.3 to {r1 = 0}.

In case of B0 = C0 6= 0, ζ1 extends the cusp line to {r1 = 0}. In the vicinity of ζ2 lies the
attracting part of the (blown-up) critical manifold Sa

0,1, while ζ3 lies next to the saddle-type
part Ss

0,1. See figure 11. We now analyze in further detail the equilibria ζ1,2,3, since they
organize the flow.
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Lemma 5.7. Let B0, C0 > 0. With reversed time orientation in
{

4x1 + a2
1 > 0

}
, the points

ζ2,3 are hyperbolic equilibria with the following stability: In the invariant plane {r1 = 0}
ζ2,3 are sources. At each of ζ2,3 there exist unique 1-d stable manifolds transverse to the
plane {r1 = 0}. If the time reversion is neglected, the x1-axis is invariant and establishes a
heteroclinic connection from ζ2 to ζ3.

Proof. Linearization of (5.16) at a point (x1, r1 = 0, a1) leads toB0a1 − 4C0x1 ∗ C0 + x1B0

0 −B0a1 + 2C0x1 0
−2C0a1 ∗ 2B0a1 − 2C0x1

 . (5.18)

The stars ∗ denote unspecified entries. At ζ2 this leads to eigenvalues 4
√
B0C0, 2

√
B0C0 in

the invariant plane {r1 = 0} and −2
√
B0C0 with eigenvector transverse to {r1 = 0}. At

ζ3 there are eigenvalues −4
√
B0C0,−2

√
B0C0 in the invariant plane {r1 = 0} and 2

√
B0C0

with eigenvector transverse to it. Taking into account the reversed time orientation for
4x1 + a2

1 > 0 implies the assertions. The hetercolinic connection along the invariant x1-axis
to ζ3 is clear. �

ζ1

ζ3

ζ2 Sa
0,1

Ss
0,1

r1

a1

x1

σ1

S0,1
|r1=0

Figure 11. Sketch of the blown-up desingularized slow flow (5.16) for B0 > C0 > 0
close to S0,1|r1=0. Time reversion is taken into account above the green
surface of fold points, that is in Ss

0,1. The black trajectories indicate the
flow on the invariant plane {r1 = 0} ' S0,1|r1=0, containing ζ1,2,3. The
trajectory σ1 (the blown-up version of σ) approaches ζ2 from inside Sa

0,1

and the orange trajectory reaches ζ3 from inside Ss
0,1, see Lemma 3.4. The

center manifold based at ζ1 is not depicted.

Recall the trajectory σ from Lemma 3.4, which represents the stable manifold of the
origin in the attracting part of S0. Let σ1 denote σ in the present blown-up coordinates.

Remark 5.8. Recall figure 5. Via Θ−y the equilibrium ζ2 serves as arrival point for the
trajectory σ at the blown-up hyperbolic umbilic. The equilibrium ζ3 serves as arrival point
for the unique trajectory, which approaches the hyperbolic umbilic point from the saddle-type
region y < 0. Similarly, there will exist two more equilibria ζ4 and ζ5 of Ȳ on the blow-up
sphere, which correspond to the two other trajectories, which arrive the hyperbolic umbilic
from y > 0.
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Refer to figure 11 for a sketch of the flow of (5.16) close to the invariant plane {r1 = 0}.
Note that Lemma 5.7 shows that the trajectory σ1 is transverse to the plane {r1 = 0}. This
implies that σ1 is transverse to {r1 = ν}, for sufficiently small ν > 0.

There exists the third equilibrium ζ1 in {r1 = 0}, which lies on 4x1+a2
1 = 0, the extension

of the fold surface to r1 = 0. Employing the linearization (5.18) gives

Lemma 5.9. Let B0C0 6= 0. In {r1 = 0}, without taking the time reversion into account, ζ1
has eigenvalues ±2

√
B0C0. Hence ζ1 is a saddle if B0C0 > 0 and ζ1 is a center if B0C0 < 0.

There exists a 1-d center manifold at ζ1, transverse to {r1 = 0}.

In fact, in the charts κ∓a, there appear fast-slow systems on the blow-up sphere, in which
ζ1 is a folded saddle, respectively a folded center. For more details on the folded singularities
arising in the blow-up analysis we refer to section 6.

Remark 5.10. For the following analysis we are interested in the flow close to ζ2, since
the trajectory σ1 arrives there. In particular, we will not investigate the role of the center
manifold at ζ1 further.

Until this point, we have analyzed the blow-up Ȳ in the chart induced by κ−y. For a full
picture of Ȳ it remains to study Ȳ in other charts to obtain the complete dynamics of Ȳ
close to the blow-up sphere S2. In κ−x (and similarly in κx or κy) the findings are similar
to κ−y and we omit the presentation here.

Remark 5.11. The heteroclinic connections from ζ2,3 to ζ1 as shown in figure 11 are implied
by the analysis in chart κ−a by Lemma 6.4. In particular, the stable/unstable manifolds of
ζ1 in {r1 = 0} are transverse to the extended fold surface for B0 6= C0.

Employing several charts to analyze Ȳ , we obtain the complete blow-up of Ȳ , as visualized
in figure 12. Once again, we emphasize the time reversion in the saddle-type region, which
needs to be taken into account. The qualitative flow in figure 12 is implied by the analysis
in the charts κ±a in section 6, in particular 6.2. On the blow-up sphere there exist three
further equilibria which we denote by ζ4, ζ5 and ζ6. The equilibria ζ5,6 are analogous to
ζ2,1, but are located next to the repelling region of the critical manifold. The role of the
equilibrium ζ4 is analogous to ζ3. We remark that figure 12 is the blown-up version of figure
5.

Remark 5.12. The idea of the following analysis is to track small perturbations of the
trajectory σ ' σ1 for small ε > 0 through the blow-up. The importance of σ ' σ1 is that in
the case B0, C0 > 0 it approaches the blow-up sphere at ζ2 from inside Sa

0 , see figures 11 and
12. Consequently, we will focus on a neighborhood of ζ2 for the transition into the rescaling
chart κε. Further, we remark that in principle trajectories might arrive at ζ1 through a
center manifold from inside Sa

0 . Since we focus on a neighborhood of ζ2 this has no effect on
our analysis and we do not investigate a center manifold at ζ1 further. However, we note
that Lemma 6.1 shows that there do not exist trajectories on the blow-up sphere emanating
from ζ1 into the rescaling chart.

5.4. Transition from κ−y to κε. Recall that we are interested in the evolution of trajec-
tories in attracting slow manifolds close to the hyperbolic umbilic point. From Lemma 5.4,
these trajectories are contained in the center manifold W c(Sa

0,1) . In the singular limit, the
only slow flow trajectory reaching the hyperbolic umbilic is σ, which we denote by σ1 in
blown-up coordinates κ−y. From the previous section we know that σ1 reaches the blow-up
sphere at ζ2. Thus, ζ2 will be our “base point” to study transitions inside W c(Sa

0,1) into the
rescaling chart κε. In other words, we aim to track the flow close to ζ2 in W c(Sa

0,1).

Lemma 5.13. Let x̃1 = x1 +
√
B0/C0, such that ζ2 is translated to the origin. Then the

flow in W c(Sa
0,1)|ε1>0 close to ζ2 = (x̃1 = 0, a1 = 0, r1 = 0, ε1 = 0) is determined up to
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σ

−ā

x̄

ȳ

ζ1
ζ2

ζ4

ζ6

ζ3

ζ5

Figure 12. Complete blow-up Ȳ of the desingularized slow flow Y (3.8) for B0 > C0 > 0

at the origin, with time reversion in the saddle-type region taken into ac-
count. The green dashed curves depict the fold curves, which bound the
attracting/repelling/saddle-type regions on the blow-up sphere. We remark
that this figure shows a blown-up version of figure 5, but for visualization
reasons the negative a-direction points here towards the observer. On the
blow-up sphere S2, only trajectories contained in the stable/unstable man-
ifolds of the folded saddles ζ1, ζ6 and trajectories on the equator ā = 0 are
depicted. These organize the flow on S2. For further details refer to section
6, in particular 6.2. The red points depict the cusp points, i.e. where the
cusp curves touch the blow-up sphere.

orbital equivalence by

x̃′1 = 2x̃1 + Λ

a′1 = a1 + r1
g̃a
G

+ r3
1ε1f1

r′1 = −r1

ε′1 = 3ε1,

(5.19)

where Λ = Λ(x̃1, a1, r1, ε1) satisfies Λ(0) = ∂x̃1
Λ(0) = 0, g̃a is a shorthand recycled notation

for g̃a ◦ Θ−y, where g̃a is defined in (3.8), and G is a sufficiently smooth function with
G(0) > 0.

Proof. Consider the system (5.12) with its linearization (5.13). The critical manifold is
given by {u = v = ε1 = 0}. Close to ζ2 the center manifold W c(Sa

0,1) is given as a graph
(u, v) = h(x̃1, a1, r1, ε1) = (h1, h2). It follows that the map h factors ε1. Further h is tangent
to the center eigenspace Ec of the linearization (5.13) at ζ2. The eigenspace Ec is given as
the graph of the linear function (u, v) = (ε1

√
B0C0/2, ε1C0/2). This implies that h2 is of

the form h2 = ε1h̃2, with h̃2(ζ2) = C0/2 > 0. We now plug (u, v) = h into (5.12), where we
first translate ζ2 to the origin, to obtain the flow in W c(Sa

0,1) close to ζ2. This leads to a
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vector field of the form
x̃′1 = (x̃1 −

√
B0/C0)(ε1h̃2 + r1ε1fy) + ε1h̃1 + r1ε1fx

a′1 = a1(ε1h̃2 + r1ε1fy) + r1ε1ga

r′1 = −r1(ε1h̃2 + r1ε1fy)

ε′1 = 3ε1(ε1h̃2 + r1ε1fy).

(5.20)

For clarity we omit all function arguments. For ε1 > 0 the factor ε1(h̃2 + r1fy) is positive
sufficiently close to ζ2. Therefore we divide (5.20) by ε1(h̃2 + r1fy).

x̃′1 = (x̃1 −
√
B0/C0) +

h̃1

h̃2 + r1fy
+ r1

fx

h̃2 + r1fy

a′1 = a1 + r1
ga

h̃2 + r1fy

r′1 = −r1

ε′1 = 3ε1.

(5.21)

Note that this uncovers a flow in the critical manifold W c(Sa
0,1)|ε1=0 close to ζ2. In fact,

we must recover, up to orbital equivalence, the desingularized slow flow (5.16) near ζ2 for
ε1 = 0. We want to simplify (5.21) further. First, note that by the shorthand ga we actually
mean the function (ga ◦ Φ−y ◦ T−1)(x̃1 −

√
B0/C0, r1, a1, u, v, ε1), where further u = ε1h̃1

and v = ε1h̃2 are plugged in. Written out, this equals ga(r1x1,−r1, r1a1, r
2
1(ε1h̃1 − x2

1 +

a1), r2
1(ε1h̃2 − 1 − a1x1), r3

1ε1). By splitting off ga|ε=0 in original coordinates by a Taylor
argument, this can be rewritten as (g̃a ◦Θ−y)(x1, r1, a1) + r3

1ε1f1, where f1 is a sufficiently
regular function (which is bounded in a neighborhood of the origin in original coordinates)
and g̃a(x, y, a) = ga(x, y, a,−x2 − ay,−y2 − ax, 0). Let G = h̃2 + r1fy, where fy is a
shorthand for (fy ◦Φ−y ◦T−1)(x1, r1, a1, ε1h̃1, ε1h̃2, ε1). For the first equation, the constant
term cancels out with h̃1(0)/h̃2(0) and employing the invariance equation for the graph of
the center manifold with the ansatz h̃1 =

√
B0C0/2 + ξ1x̃1 + . . . and h̃2 = C0/2 + ξ2x̃1 + . . .

implies the assertion. �

Note that the linearization of (5.19) at ζ2 has resonant eigenvalues 2, 1,−1, 3. LetW c(ζ2)
denote the intersection of (any instance of) W c(Sa

0,1) with the blow-up sphere {r1 = 0} in
κ−y.

Lemma 5.14. The branch ε1 > 0 of the 3-dimensional attracting center manifold W c(ζ2)
is unique.

Proof. By Lemma 5.13, the equilibrium ζ2 is a source in W c(ζ2)|ε1≥0. Moreover, W c(ζ2) is
attracting. Then, the asymptotic rate fibration with base being the center manifold implies
uniqueness of the branch for ε1 > 0. �

W c(ζ2) contains the “singular continuations” of σ1, which start at ζ2 and emanate on the
blow-up sphere into the rescaling chart κε. In general, we are interested in the transition
from trajectories in attracting slow manifolds starting at ∆en close to the hyperbolic umbilic
point. The section ∆en appears in κ−y as

∆en
1 = {r1 = ν}. (5.22)

The attracting slow manifolds are contained in W c(Sa0,1) and their evolution close to ζ2 is
determined by (5.19). To enter the rescaling chart κε we set up a section

∆en→ε
1 = {ε1 = δ}, (5.23)

for small δ > 0, and aim to study a transition of the form ∆en
1 ∩W c(Sa0,1)|ε1>0 → ∆en→ε

1 near
ζ2 via the flow of (5.19). Note that ζ2 is a source on the blow-up sphere and the r1-direction
is decreasing. The eigenvalue of the linearization of (5.19) on the blow-up sphere transverse
to the equator is 3, so the expansion is strongest in this direction. Since the 1-d stable



THE HYPERBOLIC UMBILIC SINGULARITY IN FAST-SLOW SYSTEMS 33

manifold of ζ2 is given by σ1 ⊂ {ε1 = 0}, we expect that initial conditions close to σ1 will
lead to solution trajectories with least blow-up. Recall that we want to see the evolution of
slow manifolds near the hyperbolic umbilic, which is located in a = 0 in original coordinates.
In fact, also from the analysis in the rescaling chart it will be clear that we need control on
the variable a1.

Consider a transition map Π1 : I1 ⊂ ∆en
1 ∩ W c(Sa0,1)|ε1>0 → ∆en→ε

1 . Take an initial
condition (x̃i, ai, ν, εi). From (5.19) we have that r1(t) = νe−t, ε1(t) = εie

3t, where we use
t to indicate the time parametrization in the current chart. This gives the transition time
T = log(δ/εi)/3 for Π1. Assume for a moment that the function ga|ε=0 factors the variable
a. Then we have

Lemma 5.15. Assume that ga|ε=0 = a · ḡa for some sufficiently smooth ḡa. Then the
transition map Π1 : I1 ⊂ ∆en

1 ∩W c(Sa0,1)|ε1>0 → ∆en→ε
1 is of the form

Π1 :


xi
ai
ν
εi

 7→


Π1x1
(xi, ai, ν, εi)(

δ

εi

)1/3

O(ai) +O
(
ε

2/3
i log εi

)
ν
(εi
δ

)1/3

δ


(5.24)

Proof. Let a1(t) = et(ai + za(t)), such that za(0) = 0. It follows from (5.19) that z′a =
e−tr2

1a1ḡa + r3
1ε1f1, for sufficiently smooth functions ḡa, f1. This implies

za(T ) =

∫ T

0

ν2e−2taiḡa dt+

∫ T

0

ν2e−2tzaḡa dt+

∫ T

0

εiν
3f1 dt, (5.25)

where the functions are evaluated along the corresponding integral curve. Recall that ḡa, f1

are bounded close to the blow-up sphere and that T = log(δ/εi)/3. The last integral is
of order O(εi log εi). The first integral is of order O(ai). Application of the Grönwall
inequality gives that the second integral is also O(ai). Hence a1(T ) is of the form a1(T ) =
( δεi )1/3(ai +O(ai) +O(εi log εi)). �

In the general case that ga|ε=0 does not factor the variable a, we have the rough estimate
a1(T ) = ( δεi )1/3(ai +O(ν)) in context of the above Lemma.

Remark 5.16. The assumption that ga|ε=0 = a · ḡa allows to control a1(T ) solely in terms
of ai and εi. In particular, Lemma 5.15 implies that the domain I1 of Π1 must be of width
O(ε

1/3
i ) in a1-direction, to have a1(T ) small. That is, for small, fixed εi, the domain I1|εi is

a thin (but bounded) strip of width O(ε
1/3
i ). In the singular limit, it contains the trajectory

σ1, which lies in the invariant plane {a1 = 0} in this case. In the general setting, i.e. without
the assumption ga|ε=0 = a · ḡa, the domain I1 needs to be chosen sufficiently small in order
to guarantee that a1(T ) is small. We do not have an estimate of the size of the domain with
respect to the initial conditions in this case. We shall choose I1 sufficiently small in section
5.7 by a time reversion argument. In the singular limit, I1 coincides with the single point
p := σ1 ∩∆en

1 .

5.5. Analysis in the rescaling chart κε. Blowing up X via Φε and rescaling time ac-
cordingly leads to

x′2 = x2
2 + a2y2 + b2 +O(r2)

y′2 = y2
2 + a2x2 + c2 +O(r2)

a′2 = A0r2 +O(r2
2)

b′2 = B0 +O(r2)

c′2 = C0 +O(r2)

r′2 = 0.

(5.26)
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In {r2 = 0} the vector field (5.26) reduces to a coupled system of two Riccati-type
equations

x′2 = x2
2 + a2y2 + b2

y′2 = y2
2 + a2x2 + c2

a′2 = 0

b′2 = B0

c′2 = C0,

(5.27)

whose phase space is foliated into invariant sets {a2 = const}. Note that a2 = a1ε
−1/3
1 , which

gives the invariant sets on the blow-up sphere in κ−y, also visible in (5.6). Further note that
the sets {C0b2 −B0c2 = const} are invariant. Recall the attracting center manifold W c(ζ2)
from the previous section. We aim to follow trajectories inW c(ζ2)|ε1>0, which emanate from
ζ2 on the blow-up sphere into the rescaling chart. We expect that these orbits will transition
onto the fast regime, that is, connect to the appropriate equilibria “on the other side” of the
blow-up sphere. In {a2 = 0} the coupling of (5.27) is absent. For a2 close to 0 the flow
of (5.27) is a regular perturbation of the flow in {a2 = 0}. The full flow (5.26) is in turn
a regular perturbation of (5.27). Therefore, we begin with the analysis of the invariant set
{a2 = 0} of (5.27). Note that this essentially leads to a pair of decoupled Riccati equations,
as they appear in the rescaling chart for the non-degenerate fold [19]. The task is now to
identify the trajectories being backward asymptotic to ζ2 and to determine their forward
asymptotics.

For a2 = 0 the vector field (5.27) is of product structure (Z1, Z2), where both Zi are
vector fields on R2. In fact, each Zi has a unique “dividing solution”, denote it by γi for the
moment, which is an integral curve dividing the phase plane in two classes of solutions with
different asymptotic behavior, itself having distinct behavior [19, 23]. Only combinations of
these γi lead to trajectories being backward asymptotic to ζ2, as shall be apparent from the
proof of Proposition 5.18 below.

Remark 5.17. To state the following result in a convenient way, we anticipate the main
objects visible in the exit chart κex. These are three equilibria denoted by q4, q5, q6, which
are located on the equator of the blow-up sphere. As will turn out later, they arise from the
interaction of the fast subsystem with the hyperbolic umbilic singularity and will serve as
transition points onto the fast regime. Refer to section 5.6, in particular figure 14.

Proposition 5.18. Let B0, C0 > 0. In {a2 = 0} the vector field (5.27) has a 1-parameter
family of integral curves γs, s ∈ R, given by

γs(t) = (γx2
(t), γy2(t+ s), a2 = 0, B0t, C0(t+ s)), (5.28)

which are the only trajectories in {a2 = 0} backward asymptotic to ζ2. In (5.28), γx2
is

given by (5.34) and γy2 by (5.36). The family γs determines an invariant 2-manifold Γ in
{r2 = a2 = 0}. The trajectories γs have the following forward asymptotic behavior:

• For s > s0, γs is forward asymptotic to q4,
• γs0 is forward asymptotic to q5,
• for s < s0, γs is forward asymptotic to q6,

where q4, q5, and q6 are equilibria visible in the chart κex (see Remark 5.17), s0 = (B
−1/3
0 −

C
−1/3
0 )z0, and z0 < 0 is the first zero of the Airy function Ai of the first kind, see e.g. [25,

9.9(i)].

Proof. In {a2 = 0}, system (5.27) reduces to two decoupled Riccati equations, as they appear
in the rescaling chart of the regular fold [19]. First, consider

x′2 = x2
2 + b2

b′2 = B0.
(5.29)
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In [23, Chapter II, 9.] the asymptotic behavior of a Riccati equation is studied by reduction
to a Bessel equation. Here, we choose to reduce to an Airy equation. Letting x2 = −u

′

u and
b2 = B0t transforms (5.29) into

u′′ = −B0tu

t′ = 1,
(5.30)

which has the two linearly independent solutions Ai(−B1/3
0 t),Bi(−B1/3

0 t). Hence, we obtain
the general solution for (5.29) given by

x2(t) =
B

1/3
0 ω1 Ai′(−B1/3

0 t) +B
1/3
0 ω2 Bi′(−B1/3

0 t)

ω1 Ai(−B1/3
0 t) + ω2 Bi(−B1/3

0 t)
, (5.31)

where ω1 and ω2 are constants that do not vanish simultaneously. It is convenient to re-write
the solutions (5.31) in terms of a single parameter d ∈ (−∞,∞] as

x2(t) =

B̃
dAi′(−B̃t)+Bi′(−B̃t)
dAi(−B̃t)+Bi(−B̃t) , d <∞,

B̃Ai′(−B̃t)
Ai(−B̃t) , d = +∞,

(5.32)

where d = ω1

ω2
, and B̃ = B

1/3
0 . Each choice of d defines a curve with asymptotes at certain

values of t, due to the zeros of the denominator. The solutions (5.32) are sketched in figure
13. The case d = +∞ corresponds to the so called “dividing solution”. By Lemma A.3, we

t

x2

d
=
−
1
0
0

d
=
−
1
0
0

d
=

1

d = +∞

d
=
500

Figure 13. Qualitative plot of the solutions (5.32) to the Riccati equation (5.29) with
t = b2/B0 and d = −100, 1, 500,+∞. Any solution is defined for almost
every t ∈ R, countably many vertical asymptotes arise from the properties
of the Airy functions. Note the appearance of the parabola B0t = −x22,
which opens to the left and which all solutions approach as t→ −∞.

write the equations of the critical manifold from κ−y (and similarly in κ−x) in κε-coordinates,
which yields

b2 = −a2y2 − x2
2

c2 = −a2x2 − y2
2 .

(5.33)

Again by Lemma A.3, solutions of (5.27) are backward asymptotic to S0,1

∣∣
r1=0

in κ−y if and
only if they asymptotically satisfy (5.33) for y2 → −∞. We seek for solutions in {a2 = 0}
being backward asymptotic to ζ2. Hence, we seek solutions of (5.27) satisfying b2 = −x2

2 as
x2 → −∞ and c2 = −y2

2 as y2 → −∞ asymptotically in backward time. The requirement
b2 = −x2

2 as x2 → −∞ is only satisfied by the “dividing solution”, i.e. (5.32) with d = +∞:
The Airy functions Ai,Bi do not have zeros on the positive half-line and have asymptotic
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expansions [25, 9.7(ii)]. Employing such asymptotic expansions, it follows that x2 → −∞
in (5.32) as t→ −∞ only in the case d = +∞: for t→ −∞ one has

γx2(t) := B̃
Ai′(−B̃t)
Ai(−B̃t)

∼ −
√
−B0t, (5.34)

so γx2
is backward asymptotic to the branch x2 < 0 of the parabola b2 = B0t = −x2

2,
see figure 13. Note that solutions obtained from (5.32), which are defined on finite time
intervals (t1, t2), may also show x2 → −∞ for t ↓ t1. However, in this case, b2 6→ −∞, so
these solutions cannot satisfy b2 = −x2

2 as x2 → −∞.
An identical analysis as above applies to the second half of (5.27) in {a2 = 0}, which is the
system

y′2 = y2
2 + c2

c′2 = C0.
(5.35)

The “dividing solution” for (5.35) is given by

γy2(t) := C̃
Ai′(−C̃t)
Ai(−C̃t)

, (5.36)

where C̃ = C
1/3
0 . By the product structure of (5.27) in {a2 = 0} we obtain all integral

curves built from the “dividing solutions” γi essentially by putting (γ1(t), γ2(t+s)) for a free
parameter s ∈ R. Thus, we obtain a 1-parameter family of solutions in {a2 = 0}, determined
by

γs(t) = (γx2(t), γy2(t+ s), a2 = 0, B0t, C0(t+ s)), (5.37)

where s ∈ R. The above argument then implies that the trajectories γs are precisely the
integral curves, which are backward asymptotic to the critical manifold. Then, employing
asymptotic expansions of the Airy functions [25, 9.7(ii)] and Lemma A.3, one checks that

γx2
(t)

−γy2(t+ s)
→ −

√
B0/C0, (5.38)

as t → −∞. This implies that the trajectories γs are precisely the solutions of (5.27) in
{a2 = 0}, which are backward asymptotic to ζ2.

What remains to be checked is the forward asymptotics of the trajectories γs. We will
employ κε→ex from Lemma A.3 and the fact that the Airy function Ai does have a largest
zero [25, 9.9(i)], which we denote by z0. Let M,N be the first zeros of the denominators
of γx2 and γy2 , in the sense that Ai(−B1/3

0 t) is defined on (−∞,M) and Ai(−C1/3
0 t) is

defined on (−∞, N), both domains maximal. Thus z0 = −B1/3
0 M = −C1/3

0 N . Then γx2
is

defined on (−∞,M) and γy2(· + s) is defined on (−∞, Ns), where Ns = N − s. Since Ai
is positive before its first zero z0 and Ai′(z0) > 0, it follows that γx2

(t) → +∞ for t ↑ M
and γy2(t + s) → +∞ for t ↑ Ns. Each γs(t) is defined for all t < min{M,Ns}. The ratio
of M and Ns determines the forward asymptotics of γs. The relevant component of the
coordinate change κε→ex is

x5 =
x2 − y2

x2 + y2
, (5.39)

since by Lemma A.3 all other components converge to zero along every γs in forward time.
By (5.49) we have that q4 corresponds to x5 = −1, q5 to x5 = 0 and q6 to x5 = 1. Consider
the three cases M > Ns, M < Ns and M = Ns:

If M > Ns then γy2(t+ s) blows up as t ↑ Ns, so

x5 =

(
γx2(t)

γy2(t+ s)
− 1

)(
γx2(t)

γy2(t+ s)
+ 1

)−1

→ −1 for t ↑ Ns < M. (5.40)
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If M < Ns then γx2
(t) blows up as t ↑M , so

x5 =

(
1− γy2(t+ s)

γx2
(t)

)(
1 +

γy2(t+ s)

γx2
(t)

)−1

→ 1 for t ↑M < Ns. (5.41)

IfM = Ns ⇐⇒ s = N−M , both γx2(t)→ +∞ and γy2(t+s)→ +∞ as t ↑M . In the case
of B0 = C0, and therefore s = 0, we directly see from (5.39) that γ0 is forward asymptotic
to q5. To treat the general case s = N −M , consider

x5 =

(
γx2(t)

γy2(t+N −M)
− 1

)(
γx2(t)

γy2(t+N −M)
+ 1

)−1

. (5.42)

To find the limit of γx2
(t)

γy2 (t+N−M) as t ↑ M , note that a first order Taylor expansion gives

Ai(−B̃t) ∼ −B̃Ai′(z0) as t → M . Similarly Ai(−C̃(t + N −M)) ∼ −C̃ Ai′(z0) as t → M .
This implies that γx2

(t)

γy2 (t+N−M) → 1. Hence, γN−M is forward asymptotic to q5, and we let
s0 = N −M . �

Remark 5.19. Solutions (x2, y2, b2, c2) in {r2 = 0} need to asymptotically satisfy b2 =
−a2y2 − x2

2, c2 = −a2x2 − y2
2 in order to be asymptotic to the critical manifold. Further

they need to show y2 → −∞ in order to arrive at the equator in κ−y, x2 → −∞ to arrive
at the equator in κ−x, et cetera. Suppose that such solutions are asymptotic to slow flow
equilibria ζ2,3,4,5 or fast subsystem equilibria q1,2,3,4,5,6 (in fact, there do not exist solutions
of (5.27) being asymptotic to ζ1,6, see Remark 5.20). It is then possible to determine the
forward/backward limits of all solutions in {r2 = 0, a2 = 0} by proceeding similarly to the
proof of Proposition 5.18.

Remark 5.20. At this point we remark that the charts κ±a can be used to supply an analysis
of the flow of (5.27) for sufficiently large |a2|. More precisely, the fast-slow systems (6.3)
and (6.4) in section 6 are instances of (5.27) for large |a2|. In fact, in the singular limit
analysis of (6.3) and (6.4), Remark 4.6 can be employed to show that the relevant candidate
trajectories coming from ζ2 are jumping and arriving to q4 or q6, depending on the location
of the jump. Moreover, in κ±a one sees that there do not exist trajectories of (5.27) being
forward/backward asymptotic to ζ1, see e.g. Lemma 6.1. An analogous statement can be
obtained for ζ6.

The family γs from Proposition 5.18 gives all trajectories in W c(ζ2)|a2=0, which enter the
rescaling chart κε and are backward asymptotic to ζ2. Recall thatW c(ζ2) is contained in the
blow-up sphere. The section ∆−y→ε1 , which appears in κε as ∆−y→ε2 = {y2 = −δ−1/3}, has
transverse intersection with Γ, where Γ is the invariant manifold determined by the family
γs.

For a2 sufficiently close to zero, the flow of (5.27) is a regular perturbation of the flow
in {a2 = 0}. Perturbations of γs give a 2-parameter family of integral curves following
Γ closely through the rescaling chart. Furthermore, the a2-perturbations of any γs are
backward asymptotic to ζ2: Since these regular perturbations are O(a2)-uniformly close
to the unperturbed solutions on any finite time interval, the a2-perturbations must also
be contained in W c(ζ2), because in backward time they cannot get exponentially repelled
from W c(ζ2). Moreover, by Lemma (5.13), the equilibrium ζ2 appears in W c(ζ2) as source,
which implies the backward asymptotic behavior of the perturbations. Let Γ̂ denote the
invariant 3-manifold obtained by regular a2-perturbations of trajectories in Γ and note that
Γ̂ = {r2 = 0, |a2| < L} for some small L > 0. For trajectories in the submanifold Γ ⊂ Γ̂
we have established the forward asymptotic behavior. The forward asymptotic behavior of
trajectories in Γ̂ will be established in the exit chart κex after Lemma 5.27.

For small r2 > 0 the full system (5.26) is again a regular perturbation of the flow in
{r2 = 0}, i.e. (5.27). In particular, trajectories in Γ̂ get regularly perturbed for small r2 > 0.
These are the trajectories in attracting slow manifolds close to the hyperbolic umbilic. We
will track these further in the exit chart κex. Recall from Lemma A.3 that we can change
coordinates to κex, as soon as x2 + y2 > 0.
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We conclude this section with a simple statement on the structure of a regular transition
map Π2 from a suitable subset of ∆−y→ε2 to (one choice of) suitable sections close to the
equilibria q4,5,6, which will be specified later.

Lemma 5.21. Let V ⊂ ∆−y→ε2 be an open set corresponding to initial conditions obtained
from r2-perturbations of Γ̂ and let Ω be any hypersurface, which intersects all trajectories
with initial condition in V . Then the transition Π2 : V → Ω is of the form

Π2 :


xj

−δ−1/3

aj
bj
cj
rj

 7→

xe
ye
0
be
ce
0

+


O(aj)
O(aj)
aj

O(aj)
O(aj)

0

+


O(rj)
O(rj)
O(rj)
O(rj)
O(rj)
rj

 , (5.43)

where aj and rj are sufficiently small and the map (xj ,−δ−1/3, bj , cj) 7→ (xe, ye, be, ce) is
determined by the flow in Γ, its integral curves are given by (5.28).

Proof. By the above considerations and regular perturbation theory. �

Remark 5.22. C0b2−B0c2 is a constant of motion for (5.27). In fact, for γs ∈ Γ we have
C0b2 − B0c2 = −B0C0s. That is, the b2- and c2-component of the initial condition of γs
determine s and therefore its forward limit. Hence bj and cj in (5.43) determine the family
member γs, from which the transition (5.43) is a regular perturbation.

5.6. Analysis in the exit chart κex. Let us briefly explain how the chart κex and its
blow-up Φex are obtained. Recall that Φex is defined by

Φex : x = r5(1 + x5), y = r5(1− x5), a = r5a5, b = r2
5b5, c = r2

5c5, ε = r3
5ε5. (5.44)

Let x̃ = x−y
2 and ỹ = x+y

2 . Up to scaling the coordinates, this is a 45◦ rotation. In these
new coordinates x̃, ỹ, the map Φex is a usual weighted blow-up in direction of ỹ. Further,
note that (5.44) implies x−y

2 = r5x5 and x+y
2 = r5. We can also transform the original

vector field X (5.1) according to x̃ = x−y
2 and ỹ = x+y

2 . The first two components of X
then transform to

x̃′ = 2x̃ỹ − ax̃+
b− c

2
+O(ε)

ỹ′ = x̃2 + ỹ2 + aỹ +
b+ c

2
+O(ε).

(5.45)

For ε = 0, this is a gradient vector field in the fast variables (x̃, ỹ) arising from the potential

Ṽ =
1

3
ỹ3 + ỹx̃2 + ã(ỹ2 − x̃2) + b̃x̃+ c̃ỹ, (5.46)

with parameters ã = a
2 , b̃ = b−c

2 and c̃ = b+c
2 . In fact, the potential Ṽ is another universal

unfolding of the hyperbolic umbilic catastrophe. This is shown in appendix A.3. With this
universal unfolding Ṽ , the double cone of singularities is given by ỹ2 = ã2 + x̃2, i.e. the
rotational axis of the double cone is the ỹ-axis.

Remark 5.23. For the prior analysis we have chosen the universal unfolding V leading
to (1.1), since the expressions of the desingularized slow flow and the vector field in the
rescaling chart are more convenient to analyze.
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Blowing up X with Φex and dividing out a common factor r5 leads to

x′5 = 2x5 − a5x5 +
b5 − c5

2
− x5F + r5ε5

fx − fy
2

r′5 = r5F

a′5 = −a5F + r5ε5ga

b′5 = −2b5F + ε5gb

c′5 = −2c5F + ε5gc

ε′5 = −3ε5F,

(5.47)

where F = F (x5, r5, a5, b5, c5, ε5) = 1 + x2
5 + a5 + b5+c5

2 + r5ε5
fx+fy

2 and the shorthand fx
for fx ◦ Φex is used, similarly for fy, ga, gb, gc.

The subspaces {r5 = 0} and {ε5 = 0} are invariant. Furthermore, {r5 = 0, a5 = 0},
{ε5 = 0, a5 = 0}, {ε5 = 0, b5 = 0} and {ε5 = 0, c5 = 0} (and any of their intersections) are
also invariant.

Consider (5.47) restricted to the invariant subspace {r5 = 0, ε5 = 0}. Similarly to the
entry charts, this leads to a 3-manifold of equilibria determined by

1 + x2
5 + a5 +

b5 + c5
2

= 0

2x5 − a5x5 +
b5 − c5

2
= 0,

(5.48)

which is the critical manifold appearing in the exit chart. Besides that, there are three
isolated equilibria

q4 = (x5 = −1, a5 = 0, b5 = 0, c5 = 0),

q5 = (x5 = 0, a5 = 0, b5 = 0, c5 = 0),

q6 = (x5 = 1, a5 = 0, b5 = 0, c5 = 0),

(5.49)

which are precisely the equilibria on the blow-up sphere arising from the fast subsystem.
We now further motivate the role of the equilibria q4,5,6. Recall the fast subsystem

obtained from X (5.1) by letting ε = 0. Trajectories in the fast subsystem can only approach
the origin in forward or backward time if a = b = c = 0. Hence, in the singular limit, the
fast dynamics interacting with the hyperbolic umbilic singularity are given by the system

x′ = x2

y′ = y2,
(5.50)

where the hyperbolic umbilic point appears as nilpotent equilibrium. Also refer to figure 2,
which contains the phase portrait of (5.50). The blow-up of (5.50) is contained in the blow
up of the vector field X (5.1) by restricting to the subspace {ā = b̄ = c̄ = ε̄ = 0}. In κex

this corresponds to the invariant subspace {ε5 = 0, a5 = 0, b5 = 0, c5 = 0}, which we will
analyze shortly in the following.

The blow-up of (5.50) is visualized in figure 14. From Proposition 5.18 we know that
the family of integral curves γs in {r2 = a2 = 0} ⊂ κε connects in forward time to q4,5,6.
More precisely, only γs0 connects to q5, whereas the remaining members of the family γs
connect to either q4 or q6. In the singular limit, from q4,5,6, such trajectories continue
onto the fast regime and away from the blow-up sphere. This motivates that trajectories
of X, which are contained in attracting slow manifolds and come close to the hyperbolic
umbilic, will transition onto the fast regime near the equilibria q4,5,6. The saddle q5 leads to
trajectories fanning out in-between the positive x- and y-axis. The main goal of this section
is to investigate this transition away from the blow-up sphere.

Remark 5.24. Due to the rotated choice of Φex (5.44), the three equilibria q4,5,6 and all
“fast escape directions” are visible in the single chart κex.
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q3

q2
q1

q6

q5

q4

x̄

ȳ

Figure 14. Blow-up of (5.50), i.e. the fast subsystem interacting with the hyperbolic
umbilic point. The blow-up sphere S5 restricted to ā = b̄ = c̄ = ε̄ = 0
appears as S1 (blue), with six equilibria q1,2,3,4,5,6 (red), where q4,5,6 are
visible in κex, q1,2 appear in κ−y and q2,3 in κ−x. Note that the unstable
manifolds at q4,5,6 also appear in this figure. As we show in this section, in
the singular limit the trajectories coming from the rescaling chart κε escape
towards the fast regime along the aforementioned unstable manifolds.

We briefly look at the linearization of (5.47) at q4,5,6. This directly leads to the following
result.

Lemma 5.25. At q4, q5, q6, the resonant linearizations of (5.47) are of the following upper-
triangular form:

At q4, q6 :


−2 0

2 ∗
−2

−4
−4

−6

 , at q5 :


1 0

1 ∗
−1

−2
−2

−3

 .

The equilibria q4,5,6 are hyperbolic, but have resonant eigenvalues. Note that in the
invariant subspace {a5 = b5 = c5 = ε5 = 0} the system (5.47) reduces to

x′5 = x5(1− x2
5)

r′5 = r5(1 + x2
5).

(5.51)

The vector field (5.51) is precisely a directional blow-up of the fast subsystem, in fact blown
up by Φex. Its flow is visualized in figure 16. Note that the flow of (5.51) appears also in
figure 14 in the region {x̄+ ȳ > 0}.

An immediate consequence is the following.

Lemma 5.26. The unique 2-d unstable manifold at q5 is given by the plane {x5 ∈ (−1, 1), a5 =
b5 = c5 = ε5 = 0}. The unstable manifold at q4 is given by the line {x5 = −1, a5 = b5 = c5 =
ε5 = 0}, and the unstable manifold at q6 is given by the line {x5 = 1, a5 = b5 = c5 = ε5 = 0}.
The parts of these unstable manifolds with r5 > 0 correspond, via Φex, to the positive y-axis
and to the positive x-axis. The equilibria q4,6 appear in {r5 = 0} as sinks. The 4-d stable
manifold W s(q5) of q5 is contained in {r5 = 0} and is transverse to the x5-axis in {r5 = 0}.
The equilibria q4 and q6 are sinks in {r5 = 0}.

Proof. The unstable manifolds follow from (5.51). The identification of the axes follows
from (5.44). Lemma 5.25 gives W s(q5) and its transversality. �
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We now briefly look at the singular limit dynamics on the blow-up sphere in the exit
chart. Restrict the blown-up vector field (5.47) to {r5 = 0, ε5 > 0}. There we can identify
the objects from the analysis in κε. Recall that the family of integral curves γs in the
rescaling chart forms an invariant 2-manifold Γ on the blow-up sphere. The manifold Γ is
contained in {r2 = 0, a2 = 0}, which corresponds to {r5 = 0, a5 = 0, ε5 > 0} in the exit
chart. In the following, we focus on the dynamics close to q4,5,6 and Γ.

v

γs0

q6

q5

q4

γs<s0

γs>s0Γ

x5

ε5

a5 = a2ε
1/3
5

W s(q5)

Figure 15. Sketch of the transverse intersection of Γ andW s(q5) inside {r5 = 0, ε5 > 0}
close to q5. The vector v(t) is a tangent vector of Γ located along γs0 , being
a derivative of the family γs in direction of the family parameter s.

The x5-axis, which is invariant under the flow of (5.47), serves up to q4,6 as unstable
manifold for q5. The stable manifold W s(q5) at q5 is 4-dimensional and transverse to the
x5-axis in {r5 = 0}. The manifold W s(q5) is a hypersurface in {r5 = 0} and separates the
dynamics between the sinks q4 and q6. The intersection of Γ and W s(q5) is nonempty, due
to the existence of γs0 . More precisely, we have the following lemma.

Lemma 5.27. The manifolds Γ and W s(q5) intersect transversely in {r5 = 0, ε5 > 0} near
q5.

Proof. Consider the tangent space of Γ along γs0 , denoted by Tγs0 Γ. Let v(t) = ∂s|(t,s0)γs ∈
Tγs0 (t)Γ, which is the tangent vector of Γ at γs0(t) given by the derivative of γs in di-
rection of the family parameter s. For simplicity, denote the κε-components of γs0(t) by
(x2, y2, 0, b2, c2). Transforming v into κex-coordinates results in(

−2x2
y2

2 + c2
(x2 + y2)2

, 0,−8b2
y2

2 + c2
(x2 + y2)3

,−8c2
y2

2 + c2
(x2 + y2)3

+
4C0

(x2 + y2)2
,−24

y2
2 + c2

(x2 + y2)4

)
.

(5.52)

We know that γs0 converges to q5 for t ↑M . As t ↑M we have x2, y2 → +∞, x2/y2 → 1 and
b2, c2 converge to finite values. Scaling v by the scalar 1/x2 does not affect the direction of
v close to q5. Employing x2, y2 → +∞ and x2/y2 → 1 implies that x−1

2 v → (−1/2, 0, 0, 0, 0)
for t ↑ M , which is a vector along the x5-axis. In {r5 = 0}, the manifold W s(q5) is of
codimension 1 and transverse to the x5-axis. Thus, sufficiently close to q5, the sum of the
tangent spaces of Γ and W s(q5) span {r5 = 0}. �

Recall that the invariant 3-manifold Γ̂ is obtained by perturbation of any γs to small |a2|.
By transversality, the intersection of Γ and W s(q5) perturbs to the leaves {r2 = 0, a2 =

const} for a2 close to zero, that is, to Γ̂. Since q4 and q6 are hyperbolic sinks in {r5 = 0},
the perturbations of γs for s 6= s0 in Γ̂ are also forward asymptotic to q4 or q6, respectively.
The perturbations of γs0 must be contained in W s(q5), due to transversality. In particular,
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the intersection of Γ̂ and W s(q5) is an invariant 2-manifold, which we denote by Γ̂s0 . In
summary, the perturbed trajectories in Γ̂ inherit their forward asymptotic behavior from Γ.

Recall from the rescaling chart that for small r2 > 0, we want to track perturbations
of trajectories in Γ̂. The manifold Γ̂ is foliated by trajectories that emanate from ζ2, and
converge to the three equilibria q4,5,6. The evolution of the perturbations of Γ̂ through the
chart κex will clearly be affected by the hyperbolic, resonant equilibria q4,5,6.

∆ex
5

r5

x5

ε5

q6

q4

q5

K

Γ̂s<s0

Γ̂s0

Γ̂s>s0

' x-axis

' y-axis

Figure 16. Sketch of the dynamics near q4,5,6, in which the coordinates a5, b5, c5 are
suppressed. In the (r5, x5)-plane the flow (5.51) is shown, i.e. a5, b5, c5 are
set to zero. The (ε5, x5)-plane represents the 5-d invariant set {r5 = 0}, in
which trajectories in Γ̂ approach q4,5,6, as sketched.

The setup of the equilibria q4,5,6 is shown in figure 16. We are interested in the transition
of perturbed trajectories from Γ̂ away from the blow-up sphere to the section

∆ex
5 = {r5 = ν} (5.53)

close to q4,5,6 via the flow of (5.47). Due to hyperbolicity of q4,5,6 the qualitative behavior
of the flow close to these equilibria is organized by the stable and unstable manifolds. In
particular, we expect trajectories starting with small r5 > 0 to escape from the saddles q4,5,6

close to the unstable manifolds contained in the (x5, r5)-plane. That is, close to the singular
limit flow (5.51). The key difference between q5 and q4,6 is that at q5 a second unstable
direction is present, namely x5. Therefore, we expect q5 to have the effect of fanning out
trajectories in-between x5 = ±1, i.e. the positive x- and y-axis. Furthermore, we expect
that most trajectories will transition to the fast regime close to q4,6 and escape along the
positive x- and y-axis, since on the blow-up sphere Γ̂s0 is of codimension one in Γ̂. Also
refer to figure 16.

The relevant vector field for the transition is (5.47). The value of the function fx + fy is
constant in {r5 = 0}. Hence, the function F = 1 + x2

5 + a5 + (b5 + c5)/2 + r5ε5(fx + fy)/2
is positive close to the x5-axis. Dividing out F gives, close to the x5-axis, an orbitally
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equivalent vector field of the form

x′5 = −x5 +
2x5 − a5x5 + (b5 − c5)/2

F
+ r5ε5f1

r′5 = r5

a′5 = −a5 + r5ε5ga/F

b′5 = −2b5 + ε5gb/F

c′5 = −2c5 + ε5gc/F

ε′5 = −3ε5,

(5.54)

for a sufficiently regular function f1. As we have seen above, trajectories in Γ̂ ⊂ {r5 = 0}
converge to one of q4,5,6. We now aim to track r2-perturbations of trajectories in Γ̂ via the
flow of (5.54).

Let us choose a compact box K̃ about the x5-axis, such that q4,5,6 are contained in its
interior. On K̃ the functions ga/F, gb/F, gc/F are bounded. Inside K̃, consider another box
of the form

K = {x5 ∈ [−Ξ,Ξ], r5 ∈ [0, ν], ε5 ∈ [0, δ], a5 ∈ [−aM , aM ], b5 ∈ [−bM , bM ], c5 ∈ [−cM , cM ]}
(5.55)

We can find sufficiently small ν, δ, aM , bM , cM > 0 such that integral curves of (5.54) can
exit K only through {r5 = ν} or {x5 = ±Ξ}. Note that the x5-axis is invariant and the flow
on it is directed towards q4,6 for |x5| > 1. Hence we can even find small ν, δ, aM , bM , cM > 0
and Ξ > 1 such that the flow can exit K only through {r5 = ν}.

Next, consider a trajectory with initial condition (xk, rk, ak, bk, ck, εk) ∈ K. This trajec-
tory needs to exit K through ∆ex

5 = {r5 = ν}. Assume rk ∈ (0, ν). We have from (5.54)
that r5(t) = rke

t, ε5(t) = εke
−3t. This implies a travel duration T = log( νrk ) to ∆ex

5 . Let
us now propose the ansatz

a5(t) = e−t(ai + za(t)),

b5(t) = e−2t(bi + zb(t)),

c5(t) = e−2t(ci + zc(t)),

(5.56)

with za(0) = zb(0) = zc(0) = 0. It follows that

z′a = e−trkεk
ga
F
,

z′b = e−tεk
gb
F
,

z′c = e−tεk
gc
F
,

(5.57)

where the functions are evaluated along the corresponding trajectory. Since

za(T ) = rkεk

∫ T

0

ga
F
e−t dt, (5.58)

we directly obtain za(T ) = O(rkεk). Similarly

zb(T ) = εk

∫ T

0

gb
F
e−t dt, (5.59)

which is bounded as rk ↓ 0 and its bound scales with factor εk. In fact, we can write
gb/F = B0/F1 + r5f2, where F1 = F |r5=0 and f2 is a sufficiently regular function. This
leads, for rk → 0, to

zb(T ) = εk

∫ T

0

B0

F1
e−t dt+ εkrk

∫ T

0

f2

F
dt = O(1) +O(rk log rk). (5.60)

A similar calculation holds for zc(T ). Note that by the above considerations, we obtain the
structure of any transition in K to ∆ex

5 in the variables r5, a5, b5, c5, ε5. We are still missing
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the x5-direction, so we proceed as follows: In {a5 = b5 = c0 = ε5 = 0} the vector field (5.54)
reduces to

x′5 =
x5(1− x2

5)

1 + x2
5

, (5.61)

which is separable and can be integrated by employing a partial fraction decomposition. Let
x̄(t, xk) denote the integral curve of (5.61) with x̄(0, xk) = xk. Clearly x̄(t,−xk) = −x̄(t, xk),
and x̄ is explicitly given by

x̄(t, xk) =



|1− x2
k|

2|xk|
e−t +

√
|1− x2

k|2

4|xk|2
e−2t + 1, xk > 1

1, xk = 1

−|1− x
2
k|

2|xk|
e−t +

√
|1− x2

k|2

4|xk|2
e−2t + 1, xk ∈ (0, 1)

0, xk = 0.

(5.62)

For the x′5 equation in (5.54) we take the ansatz x5(t) = x̄(t) + zx(t) with zx(0) = 0.
Rewriting the first equation of (5.54) to

x′5 = −x5 +
2x5 − a5x5 + (b5 − c5)/2

1 + x2
5 + a5 + (b5 + c5)/2

+ r5ε5f2, (5.63)

for some sufficiently regular f2, and employing a Taylor expansion at (x5, 0, 0, 0, 0, 0) in
{r5 = ε5 = 0} leads to the equation z′x = a5f3 + b5f4 + c5f5 + r5ε5f2, where f3, f4, f5 are
sufficiently regular functions. Hence

zx(T ) =

∫ T

0

a5f3 dt+

∫ T

0

b5f4 dt+

∫ T

0

c5f5 dt+

∫ T

0

r5ε5f2 dt, (5.64)

where the functions are evaluated along the corresponding integral curve. Bounding the
functions, plugging in a5(t) = e−t(ak + za(t)), b5(t), c5(t), r5(t), ε5(t) and, where necessary,
integrating by parts, shows that zx(T ) = O(rkεk, ak, bk, ck, εk). Thus, with the analysis
performed above, we obtain the following result that summarizes the transition in the present
chart κex.

Proposition 5.28. Any transition Π5 : K → ∆ex
5 = {r5 = ν} via the flow of (5.54) in K

is of the form 

xk

rk

ak

bk

ck

εk


7→



Πx5
(xk) +O(rkεk, ak, bk, ck, εk)

ν
rk
ν
ak +O(r2

kεk)(rk
ν

)2

(bk +O(εk))(rk
ν

)2

(ck +O(εk))(rk
ν

)3

εk


, (5.65)

where the O(εk) terms are bounded as rk → 0, Πx5(−xk) := −Πx5(xk) and

Πx5
(xk) =



|1−x2
k|

2|xk|
rk
ν +

√
|1−x2

k|2
4|xk|2 ( rkν )2 + 1, xk > 1

1, xk = 1

− |1−x
2
k|

2|xk|
rk
ν +

√
|1−x2

k|2
4|xk|2 ( rkν )2 + 1, xk ∈ (0, 1)

0, xk = 0.

(5.66)
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5.7. Proof of Theorem 1.1. In the following proof we collect the results from sections
5.2 to 5.6 and “glue” them together. Recall that we essentially work inside the continuation
of W c(Sa

0,1), which is a 4-dimensional invariant manifold containing the 3-d attracting slow
manifolds.

Proof of Theorem 1.1. We begin by choosing an open set of initial conditions V1 ⊂ ∆−y→ε∩
W c(Sa

0,1)|r1>0. The analysis in the rescaling chart dictates, which trajectories with initial
condition in V1 we are able to track. After shrinking V1 suitably, we can assume the following
two assertions: First, the flow from Lemma 5.13 takes V1 in backward time to ∆en

1 . Secondly,
the set V2 = κ−y→ε(V1) ⊂ ∆−y→ε2 is lead by the flow of (5.26) along the invariant 3-manifold
Γ̂ ⊂ {r2 = 0} through the rescaling chart close to q4,5,6. Refer to Lemma 5.21 and before for
the definition of Γ̂. The trajectories in Γ̂ are forward asymptotic to one of the hyperbolic
saddles q4,5,6. Hence, by choosing r2 > 0 sufficiently small (i.e. shrinking V1 accordingly),
we can assume that Π2 maps V2 to (faces of) K. Here Π2 is the transition map from Lemma
5.21 and K the compact box defined for Proposition 5.28 in which the transition map Π5 is
defined. Recall that V1 lies in W c(Sa

0,1), and hence we can let V1 flow in backward time via
(5.19) to ∆en

1 ∩W c(Sa
0,1). This gives the domain I1 for the transition Π1 inside the center

manifold. In backward time (5.19) leads to exponential contraction towards the 1-d unstable
manifold, which is given by σ1 ⊂ Sa

0,1. Notice that I1 then degenerates to the single point
p = σ1 ∩∆en

1 for ε1 → 0.
We now distinguish three regions in I1, which give qualitatively different jumping be-

havior. Recall that Γ̂s0 := Γ̂ ∩W s(q5) is an invariant 2-manifold on the blow-up sphere,
consisting of perturbations of γs0 . Similarly, let Γ̂s>s0 and Γ̂s<s0 denote the invariant sub-
manifolds of the 3-manifold Γ̂ consisting of perturbations of some γs>s0 or γs<s0 , respectively.
For small r2 > 0 the manifold Γ̂s0 gets perturbed away from the blow-up sphere to an in-
variant 3-manifold, let us denote it by Σ. Recall that W c(Sa

0,1) is 4-dimensional. Then
V2 ⊂ ∆−y→ε2 ∩ W c(Sa

0,1) is a 3-manifold. Consequently Σ intersects V2 in a 2-manifold.
Limiting to small r2 > 0, Σ ∩ V2 splits V2 into two disjoint open subsets Uq4 and Uq6 ,
where Uq4 contains perturbations of Γ̂ that connect to q4. Furthermore, let Uq5 denote
a (small) neighborhood of Σ ∩ V2 in V2. The sets Uq4 , Uq5 , Uq6 are an open cover of V2

and correspond to distinct jumping behaviors. The set Uq5 leads to trajectories jumping
and fanning out close to q5, whereas Uq4 and Uq6 lead to trajectories jumping close to q4,
respectively q6, with contraction towards the 1-d unstable manifolds Wu(q4) (the y-axis in
original coordinates), and Wu(q6) (the x-axis in original coordinates) respectively.

Next, we let the aforementioned three regions Uq4 , Uq5 , and Uq6 flow in backward time
to I1, which gives three open sets Rq4 , Rq5 , Rq6 covering I1. In backward time, i.e. Π−1

1 ,
the flow contracts towards σ1. Hence, in the singular limit ε1 → 0, the set I1 collapses in
wedge-like fashion into the single point corresponding to σ1 ∩ ∆en: by this we mean that
ε-slices through I1 converge in Hausdorff distance to the single point, after discarding the
ε-direction. Similar statements holds for any of the 3-manifolds Rq4 , Rq5 , Rq6 . We refer to
figure 17 for an overview sketch of the situation. Finally, we “blow-down” by considering the
transition map Π̂ : I → ∆ex defined by

Π̂ = Φex ◦Π5 ◦ κε→ex ◦Π2 ◦ κ−y→ε ◦Π1 ◦ Φ−1
−y, (5.67)

where I = Φ−y(I1) is a 3-manifold. By construction the map Π̂ is the transition map from
∆en to ∆ex along the flow of X given by (5.1). Now let Iε denote a slice through I for
ε = const. Then Π from Theorem 1.1 is given by Π̂|Iε and Iε is a 2-manifold. Clearly, we
discard the ε-direction when we take slices at fixed value of ε. It follows that Iε converges in
Hausdorff distance to a single point. Each Iε also contains the corresponding ε-slices through
Rq4 , Rq5 , Rq6 . Let us denote these slices by Lyε , Rε and Lxε , such that Lyε corresponds to an
ε-slice through Rq5 , similarly Rε to an ε-slice through Rq5 and Lxε to an ε-slice through
Rq6 . We refer to Lxε and Lyε as the lateral regions, which correspond to initial conditions
escaping along the x-axis, respectively the y-axis. The sets Lxε and Lyε are disjoint, and
Iε = Lxε ∪Rε ∪ Lyε , where all sets are open.
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Recall that J is the closed line segment defined by ∆ex∩{x ≥ 0, y ≥ 0, a = b = c = 0} and
let jx, respectively jy, denote its points of intersection with the x-axis, respectively y-axis.
We need to argue that Π(Lxε ) → jx, Π(Lyε) → jy and Π(Rε) → J in Hausdorff distance for
ε→ 0. Let us assume for a moment that the scalings a = O(ε1/3), b = O(ε2/3), c = O(ε2/3)
for (x, y, a, b, c) ∈ Π(Iε) as ε→ 0 hold. Then the assertions follow from the definition of the
sets Uq4 , Uq5 , Uq6 and from the fact that Π is continuous. Indeed, Uq5 is a neighborhood
of Σ∩V2 in V2 and the structure of the transition map Π5 in Proposition 5.28, in particular
(5.66) for rk → 0, imply the assertions.

S5
x5

r5

r2

r1

ε5

σ1

∆en

∆−y→ε

∆ex

ζ2

q4

q5

q6

Γ̂s<s0
Γ̂s0

Γ̂s>s0

Rq6
Rq5

Rq4
Uq6

Uq5

Uq4

Figure 17. Rough sketch of the transition Π5 ◦ κε→ex ◦ Π2 ◦ κ−y→ε ◦ Π1 for initial
conditions in I1 = Rq4∪Rq5∪Rq6 in blow-up space “inside” the continuation
of the 4-d invariant manifold W c(Sa

0,1). We remark that the dimensions
of the sketched objects have been reduced for visualization reasons. The
colored regions inside the sections indicate the 3-manifolds Rq4 , Rq5 , Rq6 ⊂
∆en, respectively Uq4 , Uq5 , Uq6 ⊂ ∆−y→ε, and their evolution steered by
singular limit candidate trajectories up to ∆ex. Note that the fanning-out
behavior of Rq5 is visible. Slices of the form ε = const through Rq5 give
Rε in Theorem 1.1. The sketched coordinate axes correspond by abuse of
notation to the euclidean coordinates transported to blow-up space via the
charts.

Next, we prove the scalings a = O(ε1/3), b = O(ε2/3) and c = O(ε2/3) for (x, y, a, b, c) ∈
Π(Iε). Observe that Proposition 5.28 already suggests these scalings. However, one should
note at this point, that in general Π2 from Lemma 5.21 passes a2 unaffected to leading
order through the rescaling chart. This implies that in the exit chart, the scaling of a1,
caused by Π1 in the entry chart, remains present. The structure of (5.19) suggests that
Π1a(xi, ai, ν, εi) = O(ε

−1/3
i ), which would cancel out with the leading order scaling of Π5.

Thus, heuristically, we should not see any a priori scaling in the a-variable. However, in
our setting of Π(Iε), we expect to see “artificial scalings” caused by our choice of domain Iε,
which shrinks to a single point p for ε → 0. Indeed, as we will shortly show, the scalings
a = O(ε1/3), b = O(ε2/3) and c = O(ε2/3) appear because of our choice of initial conditions
in Iε.

We build the composition Π5 ◦ κε→ex ◦ Π2 : V → ∆ex
5 to see the scalings formally.

From Lemma 5.21 we get Π2(xj ,−δ−1/3, aj , bj , cj , rj) = (xe +O(aj , rj), ye +O(aj , rj), aj +
O(rj), be + O(aj , rj), ce + O(aj , rj), rj) ∈ κex→ε(∂K \ {r5 = ν}). According to Lemma A.3
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we can write xe + ye +O(aj , rj) = 2ε
−1/3
k for εk ∈ (0, δ], which implies

(κε→ex ◦Π2)(xj ,−δ−1/3, aj , bj , cj , rj) =



1
2ε

1/3
k (xe − ye +O(aj , rj))

rjε
−1/3
k

ε
1/3
k (aj +O(rj))

ε
2/3
k (be +O(aj , rj))

ε
2/3
k (ce +O(aj , rj))

εk


. (5.68)

Applying Proposition 5.28 leads to Π5 ◦ κε→ex ◦Π2 : V2 → ∆ex
5 given by


xj

−δ−1/3

aj
bj
cj
rj

 7→



∗
ν

rj
ν (aj +O(r2

j ))

(
rj
ν )2(be +O(aj , rj) +O(ε

2/3
k ))

(
rj
ν )2(ce +O(aj , rj) +O(ε

2/3
k ))

(
rj
ν )3


, (5.69)

where the O(ε
2/3
k ) terms are bounded as rk → 0 (and rj → 0) and we leave the entry ∗

unspecified. First, recall that rj = νε
1/3
i = ε1/3. Observe that aj appears in the right hand

side of (5.69), so in general can possibly affect the scalings if aj blows up for ε→ 0. In our
setting, however, we have chosen the domain Iε in such a way, that we only encounter small,
in fact bounded values of aj as ε→ 0. This implies the scalings in a, b and c as claimed in
Theorem 1.1.

It remains to consider the case that ga is factored by a. For this case we have Lemma
5.15, which implies

aj = δ−1/3Π1a(xi, ai, ν, εi) = ε
−1/3
i O(ai) +O(ε

2/3
i log εi). (5.70)

This implies that I1|εi is of width ai = O(ε
1/3
i ) as εi → 0. Thus, for the case of ga being

factored by a, this gives that Iε is a thin strip of width O(ε1/3) in a-direction, for ε→ 0. �

6. Further observations

In this last section we briefly present further observations, obtained by analyzing the
blow-up X̄ of (5.1) in the two charts κ±a. The main observation is that in the blow-up X̄,
one generically encounters fast-slow systems on the blow-up sphere with folded saddles or
folded centers. These organize the flow on the blow-up sphere close to the equator ε̄ = 0.

To formulate the observations, we look at X̄ in the two charts κ±a. The blow-up of X
(5.1) in the chart κa is, after suitable time rescaling, given by

x′3 = x2
3 + y3 + b3 +O(r3ε3)

y′3 = y2
3 + x3 + c3 +O(r3ε3)

r′3 = A0r
2
3ε3 +O(r3

3ε3)

b′3 = B0ε3 +O(r3ε3)

c′3 = C0ε3 +O(r3ε3)

ε′3 = −3A0r3ε
2
3 +O(r2

3ε
2
3).

(6.1)
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Similarly, in the chart κ−a, we obtain the blown-up vector field

x′4 = x2
4 − y4 + b4 +O(r2

4ε4)

y′4 = y2
4 − x4 + c4 +O(r2

4ε4)

r′4 = −A0r
2
4ε4 +O(r3

4ε4)

b′4 = B0ε4 +O(r4ε4)

c′4 = C0ε4 +O(r4ε4)

ε′4 = 3A0r4ε
2
4 +O(r2

4ε
2
4).

(6.2)

We restrict the analysis of (6.1) and (6.2) to the invariant blow-up sphere, i.e. we put r3 = 0
and r4 = 0, respectively. For brevity we give our observations mainly for (6.2) and only
indicate the similar statements for (6.1). In {r4 = 0} (6.2) simplifies to

x′4 = x2
4 − y4 + b4

y′4 = y2
4 − x4 + c4

b′4 = B0ε4

c′4 = C0ε4

ε′4 = 0,

(6.3)

which is a fast-slow system near the equator {ε̄ = 0} ∩ S5, i.e. for small ε4 > 0. The 2-
dimensional critical manifold of (6.3) is given by E4 := {x2

4− y4 + b4 = 0, y2
4 −x4 + c4 = 0},

which is the intersection of the blown-up critical manifold of X̄ with the blow-up sphere in
κ−a. Via κ−y→−a the manifold S0,1

∣∣
r1=0,a1<0

corresponds to E4

∣∣
y4<0

, and so in particular,
if B0C0 > 0, the folded saddle ζ1 from (5.17) is present in (6.3). Furthermore, we have
ε4 = −a−3

2 , so the invariant sets {r2 = 0, a2 = const} of the coupled Riccati system (5.27)
in κε appear in form of the fast-slow system (6.3) in κ−a. The invariant sets {ε4 = const}
for (6.3) imply that there do not exist trajectories in {r2 = 0}, which approach in forward
or backward time points on the half-equator {ε̄ = 0, ā < 0} ∩ S5. In particular, this implies

Lemma 6.1. Let B0C0 > 0. Then no integral curve of (5.27) is forward or backward
asymptotic to ζ1.

In case of B0C0 < 0, the folded equilibrium ζ1 is a folded center and visible in κa instead of
κ−a. Hence, to obtain a similar statement in this case, we need to employ (6.1) in {r3 = 0},
which explicitly is the fast-slow system

x′3 = x2
3 + y3 + b3

y′3 = y2
3 + x3 + c3

b′3 = B0ε3

c′3 = C0ε3

ε′3 = 0,

(6.4)

for small ε3 > 0. A similar argument then implies that Lemma 6.1 also holds for B0C0 < 0.
In fact, in each of these cases, a second folded equilibrium is present, which we denote by ζ6.
That is, ζ6 is the folded singularity of (6.4) in case of B0C0 > 0, but in case of B0C0 < 0 ζ6
appears as folded singularity of (6.3). Analogous results to Lemma 6.1 hold for ζ6 instead
of ζ1 if B0C0 6= 0.

6.1. Folded singularities in X̄ on the blow-up sphere. The fast-slow systems (6.3)
and (6.4) appear in the blow-up X̄ in the charts κ∓a on the blow-up sphere near the equator
{ε̄ = 0} ∩ S5. In fact, the coupled Riccati system (5.27) on the blow-up sphere in κε
corresponds to (6.3) for a2 < 0 and to (6.4) for a2 > 0. As noted already, (6.3) and (6.4),
have folded singularities. Here, we present a brief analysis of (6.3) and comment on the
analogous results for (6.4) afterwards.
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The critical manifold E4 of (6.3) is parametrized by (x4, y4) and has fold points along
4x4y4 = 1 and a cusp point located at x4 = y4 = −1/2, which is implied by Lemma 3.2
restricted to {a = −1}. The desingularized slow flow of (6.3) is given by

U :

[
ẋ4

ẏ4

]
=

[
0 −2B0

−2C0 0

] [
x4

y4

]
−
[
C0

B0

]
(6.5)

with reversed time orientation of orbits in the saddle-type region {4x4y4 < 1}. The desin-
gularized slow flow U is analyzed in the following Lemma. A sketch of the phase portrait is
given in figure 18.

Lemma 6.2. Assume B0C0 6= 0. The desingularized slow flow U (6.5) of (6.3) has a
single folded singularity. If B0C0 > 0, a folded saddle is located on the negative branch of
4x4y4 = 1, which corresponds to ζ1. There exists a singular canard passing from Sa

0 to Ss
0

and a singular faux canard passing from Ss
0 to Sa

0 . In particular, if B0 = C0, ζ1 is located at
the cusp point. If B0C0 < 0, a folded center is located on the positive branch of 4x4y4 = 1,
which corresponds to ζ6 in this case.

Proof. The equilibrium of U is located at x4 = − B0

2C0
, y4 = − C0

2B0
, which is on the lower

fold curve if B0, C0 have the same sign. If B0 = C0 it coincides with the cusp point.
Eigenvalues of the linearization are ±2

√
B0C0, the situation partly resembles Lemma 3.4.

For B0, C0 > 0, the corresponding eigenvectors are

−2
√
B0C0 : (

√
B0/C0, 1), 2

√
B0C0 : (−

√
B0C0, 1). (6.6)

For B0, C0 < 0 the eigenvectors swap, similar to Lemma 3.4. An eigenvector is tangent to
the fold curves if and only if B0 = C0. This is precisely the case when the folded saddle
coincides with the cusp point. If B0, C0 > 0 and B0 6= C0, the stable/unstable manifolds
of ζ1 are transverse to the fold curve. Finally, since U is a desingularized slow flow, time
reversion has to be applied in the saddle-type region {4x4y4 < 1}. �

ζ1

x4

y4

attracting

repelling

saddle-type
ζ2

ζ3

ζ4

ζ5

Figure 18. Phase portrait of the desingularized slow flow U (6.5) on the critical man-
ifold of (6.3) with reversed time orientation in the saddle-type region and
B0 > C0 > 0. The fold curves are indicated dashed green, the red point
represents the cusp. In case of C0 > B0 > 0, the folded saddle ζ1 is located
on the branch “below” the cusp point.
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A similar analysis as above holds for the fast-slow system (6.4). In particular, the desin-
gularized slow flow of (6.4) on the corresponding critical manifold E3 = {x2

3 + y3 + b3 =
0, y2

3 + x3 + c3 = 0} is given by

Q :

[
ẋ3

ẏ3

]
=

[
0 −2B0

−2C0 0

] [
x3

y3

]
+

[
C0

B0

]
, (6.7)

where the time orientation of orbits in the saddle type region {4x3y3 < 1} needs to be
reversed. Lemma 6.2 holds mutatis mutandis for the desingularized slow flow Q (6.7) of
(6.4). In particular, if B0C0 > 0, Q has a folded saddle corresponding to ζ6 on the upper
fold curve. If B0C0 < 0, then Q has a folded center located on the lower fold curve, which
corresponds to ζ1 in this case. A phase portrait of Q for the case C0 > B0 > 0 is given in
figure 19.

attracting

repelling

saddle-type

x3

y3

ζ6

ζ2

ζ4

ζ3

ζ5

Figure 19. Phase portrait of the desingularized slow flow Q (6.7) on the critical man-
ifold of (6.4) with reversed time orientation in the saddle-type region and
B0 > C0 > 0. The fold curves are indicated dashed green, the red point
represents the cusp. In case of C0 > B0 > 0, ζ6 is located on the branch
“above” the cusp point.

6.2. Dynamics of Ȳ on the blow-up sphere. The vector fields U (6.5) and Q (6.7) play
not only an important role in the analysis of the fast-slow systems (6.3) and (6.4), being
their desingularized slow flows on the critical manifold E4, respectively E3. In fact, U also
appears by blowing up the complete desingularized slow flow Y (3.8) via

Θ−a : x = r4x4, y = r4y4, a = −r4, (6.8)

and restricting to the blow-up sphere {r4 = 0}. Note that (6.8) is just the restriction of Φ−a
to the coordinates (x4, y4, r4). In other words, U naturally appears in the blow-up Ȳ , in the
restricted chart κ−a. Similarly Q arises in the blow-up of Y in the restricted chart κa.

We summarize this, in case of U , in the following remark.

Remark 6.3. Let (Θ−a)∗Ȳ
−a = Y , where Y is the desingularized slow flow of X and Θ−a

as in (6.8). Then U = Ȳ −a|r4=0. Denote the vector field (6.2) by X̄−a, such that X̄−a|r4=0

gives the fast-slow system (6.3). Then we have a commutative diagram:
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X Y

X̄−a|r4=0 Ȳ −a|r4=0 = U

slow flow desingularization

blow-up via Φ−a blow-up via Θ−a

slow flow desingularization

As should be clear from the preceeding observations, one can employ U and Q to obtain
the flow of the blown-up desingularized slow flow Ȳ on the blow-up sphere. That is, in the
following we show how the flow on the blow-up sphere in figure 12 was obtained. We consider
the case B0, C0 > 0. The folded saddle of U corresponding to ζ1 organizes the dynamics on
the critical manifold E4. Moreover, it organizes the dynamics of Ȳ on one half of the 2-d
blow-up sphere, where Ȳ is the suitably rescaled blown-up desingularized slow flow (5.14).
In other words, by the following Lemma we obtain the dynamics on the half-sphere ā < 0
in figure 12, if we take the time reversion in the saddle-type region into account.

Lemma 6.4. Let B0, C0 > 0. Any trajectory of U has asymptotic behavior as indicated by
ζ2,3,4,5 in figure 18. That is, neglecting the time reversion for U in the saddle-type region, the
stable manifold of ζ1 is asymptotic to ζ2 for y4 → −∞ and asymptotic to ζ5 for y4 → +∞.
The unstable manifold of ζ1 is asymptotic to ζ4 for y4 → +∞ and ζ3 for y4 → −∞. This
determines the asymptotic behavior of any trajectory of U .

Proof. Neglect the time reversion for U in the saddle-type region. The stable and unstable
manifolds of ζ1 are given by straight lines of the form

x4 = ±
√
B0/C0y4 + const. (6.9)

Employing the appropriate coordinate changes from Lemma A.3 to (6.9), one obtains the
asymptotics in the assertion. Since U is a linear system, the saddle ζ1 determines the
forward and backward asymptotic behavior of all orbits. Hence, in each of the four sectors
determined by the stable and unstable manifolds, any trajectory constitutes a heteroclinic
connection with the corresponding behavior. �

A similar analysis applies to Q. Combining the phase portraits of U and Q leads to the
qualitative flow of the blown-up desingularized slow flow Ȳ on the 2-d blow-up sphere: The
case B0 > C0 > 0 of Ȳ visualized in figure 12 is obtained by glueing the phase portraits
from figures 19 and 18. That is, each desingularized slow flow in κ±a determines the flow on
the half-spheres {ā > 0} and {ā < 0}. The glueing takes place along the equator, on which
heteroclinic orbits run. These appear in figure 11 along the x1-axis, similarly in κ−x, κx, κy.

Remark 6.5. Restricted to the slow flow coordinates (x, y, a), the charts κ±a in fact corre-
spond to gnomonic projections, through which great circles on the blow-up sphere correspond
to straight lines. Therefore the (un-)stable manifolds of ζ1,6 correspond to great circles, as
depicted in figure 12.
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Appendix A.

A.1. Takens’ constrained differential equations. Here we give Takens’ definition of
constrained differential equations and their solutions, taken from [29]. After this, we briefly
compare Takens’ notions to the singular limit of (2.1).

Definition A.1 ([29]). Let π : E → B be a smooth fiber bundle. A constrained differential
equation on E is a pair (V,X) with smooth potential V : E → R and smooth vector field
X : E → TB with X(e) ∈ Tπ(e)B such that

a) V restricted to any fiber is proper and bounded from below,
b) the set SV = {e ∈ E |V |π−1(π(e)) has a critical point in e} is locally compact in the

following sense: for each compact K ⊂ B the set SV ∩ π−1(K) is compact.

Further, define

SV,min = {e ∈ SV | the Hessian of V |π−1(π(e)) is positive (semi-)definite at e}.

Definition A.2 ([29]). Let (V,X) be a constrained differential equation on E as above. A
curve γ : (α, β)→ E is a solution of (V,X) if

i) γ(t+0 ) := limt↓t0 γ(t) and γ(t−0 ) := limt↑t0 γ(t) exist for all t0 ∈ (α, β) and satisfy
π(γ(t+0 )) = π(γ(t−0 )) and γ(t+0 ), γ(t−0 ) ∈ SV,min,

ii) for all t ∈ (α, β), X(γ(t−)) is the left derivative of π ◦ γ and X(γ(t+)) is the right
derivative of π ◦ γ at t,

iii) whenever γ(t−) 6= γ(t+) for some t ∈ (α, β), there is a curve in π−1(π(γ(t+))) from
γ(t−) to γ(t+) along V decreases monotonically.

Let us briefly compare Takens’ notion of a constrained differential equation to the singular
limit of (2.1): The fibers of the bundle can be viewed as the fast subsystems. SV,min can
be viewed as the attracting region of the critical manifold with its surrounding singularities.
Takens’ solutions on SV,min are essentially determined by the vector field X. This is similar
to the slow flow of the slow subsystem of (2.1), which is well defined in regular points of
the critical manifold since the critical manifold is a graph over the slow variables. Note
that in the slow subsystem of (2.1) we allow dynamics on the full critical manifold, not
only the attracting region and nearby singularities. When jumps occur in Takens’ setting,
they do so “infinitly fast” (producing discontinuities) along a fiber, such that the potential
decreases along these jumps. In contrast to this, (2.1) has dynamics in the fast fibers, in
fact gradient dynamics arising from a potential. The gradient dynamics force jumps along
paths of steepest descent/ascent, depending on the used sign.

A.2. Coordinate changes between the charts κ•. Let κ•→◦ denote the coordinate
change from κ• to κ◦, defined on the overlap of the involved charts. That is, κ•→◦ = κ◦◦κ−1

• .
The overlap is apparent from our notation: For example, to switch from κ−y to κε, we need
ε1 > 0 in κ−y. The formula for κ−y→ε can then be computed by relating Φ−y and Φε.
The chart κex plays an exceptional role and intuitively corresponds to the “direction x+ y”.
For example, to apply κε→ex we need points in the overlap with x2 + y2 > 0 in κε. For
convenience of the reader, the following Lemma states the relevant coordinate changes, most
of them used extensively and without reference throughout the analysis in section 5.

Lemma A.3. The relevant coordinate changes κ•→◦ are given by the following maps:

κ−y→ε :



x2 = x1ε
−1/3
1

y2 = −ε−1/3
1

a2 = a1ε
−1/3
1

b2 = b1ε
−2/3
1

c2 = c1ε
−2/3
1

r2 = r1ε
1/3
1 ,

κ−y→−x :



r0 = −r1x1

y0 = x−1
1

a0 = a1(−x1)−1

b0 = b1(−x1)−2

c0 = c1(−x1)−2

ε0 = ε1(−x1)−3,
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κ−y→a :



x3 = x1a
−1
1

y3 = −a−1
1

r3 = r1a1

b3 = b1a
−2
1

c3 = c1a
−2
1

ε3 = ε1a
−3
1

κ−y→−a :



x4 = x1(−a1)−1

y4 = a−1
1

r4 = −r1a1

b4 = b1(−a1)−2

c4 = c1(−a1)−2

ε4 = ε1(−a1)−3

κε→a :



x3 = x2a
−1
2

y3 = y2a
−1
2

r3 = r2a2

b3 = b2a
−2
2

c3 = c2a
−2
2

ε3 = a−3
2

κε→−a :



x4 = x2(−a2)−1

y4 = y2(−a2)−1

r4 = −r2a2

b4 = b2(−a2)−2

c4 = c2(−a2)−2

ε4 = (−a2)−3

κε→−y :



x1 = x2(−y2)−1

r1 = −r2y2

a1 = a2(−y2)−1

b1 = b2(−y2)−2

c1 = c2(−y2)−2

ε1 = (−y2)−3,

κε→ex :



x5 = (x2 − y2)(x2 + y2)−1

r5 = r2(x2 + y2)/2

a5 = 2a2(x2 + y2)−1

b5 = 4b2(x2 + y2)−2

c5 = 4c2(x2 + y2)−2

ε5 = 8(x2 + y2)−3

κa→ex :



x5 = (x3 − y3)(x3 + y3)−1

r5 = r3(x3 + y3)/2

a5 = 2(x3 + y3)−1

b5 = 4b3(x3 + y3)−2

c5 = 4c3(x3 + y3)−2

ε5 = 8ε3(x3 + y3)−3

κ−a→ex :



x5 = (x4 − y4)(x4 + y4)−1

r5 = r4(x4 + y4)/2

a5 = 2(x4 + y4)−1

b5 = 4b4(x4 + y4)−2

c5 = 4c4(x4 + y4)−2

ε5 = 8ε4(x4 + y4)−3

A.3. Another universal unfolding for the hyperbolic umbilic. Consider

Ṽ =
1

3
ỹ3 + ỹx̃2 + ã(ỹ2 − x̃2) + b̃x̃+ c̃ỹ (A.1)

from (5.46). Here we briefly show that Ṽ is a universal unfolding (among others) for the
hyperbolic umbilic catastrophe, compare to table 1.

We briefly recall: Let En denote the local ring of germs at 0 ∈ Rn. Let mn denote the ideal
of germs vanishing at 0. mn is the maximal ideal in En, which means that there does not
exist a proper ideal of En strictly containing mn. Let ∆(f) denote the Jacobi ideal of f ∈ m2

n,
that is, the ideal generated by the partial derivatives of f over En. Let the codimension of f
be defined by the dimension of mn/∆(f) as an R-vector space. The following theorem can
be found in [22], for example.

Theorem A.4. Let f ∈ m2
n be a germ with finite codimension and let b1, . . . , bd be represen-

tatives of a basis for mn/∆(f). Then V (z, α) = f(z)+
∑d
i=1 bi(z)αi is a universal unfolding

of f .

Consider the germ Ṽ unfolds, that is, let f = 1
3y

3 + yx2. The hyperbolic umbilic germ
x3 + y3 is right-equivalent to 2x̃3 + 6x̃ỹ2 by putting x = x̃ + ỹ and y = x̃ − ỹ. By scaling
the variables, the germ 2x̃3 + 6x̃ỹ2 is right equivalent to f . Hence f is a valid germ to
represent the hyperbolic umbilic catastrophe. Now consider m2/∆(f). The Jacobi-ideal
∆(f) is generated by x2 + y2 and 2xy over E2. Surely x and y are not contained in ∆(f).
But xk = xk−2(x2 + y2)− 1

2x
k−1y(2xy) for k ≥ 3, and similarly yk for k ≥ 3 is contained in

∆(f). Certain quadratic germs are still missing in ∆(f). We can choose y2 − x2 together
with x and y to form a basis for the R-vector space m2/∆(f). This gives the universal
unfolding Ṽ .
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