1,741 research outputs found

    Technical background, chapter 3, part B

    Get PDF
    A description is given of the physics of electromagnetic scattering from the sea and a guideline is presented to relate an observable (such as the radar cross section) to the hydrodynamics or physical properties of the sea. As specific examples of the interdisciplinary science of electromagnetics and geophysical oceanography, the physics is discussed in connection with data provided by three instruments: namely, the scatterometer, the altimeter, and the imaging radar. The data provided by each instrument are discussed in context with specular point and Bragg scattering theories. Finally, the degrading effect of extraneous sources of noise is discussed as a limiting mechanism of the accuracy of the ocean surface measurement

    The brightness temperature of the air-sea interface at microwave frequencies

    Get PDF
    Available results of observation have shown that at nadir the brightness temperature of the sea surface at 19.35 GHz increases linearly with increasing wind speed. The computational results of the modified theoretical model presented are in good agreement with the measurement results both at nadir and other angles. The model depicts that, for a fully developed sea driven by the wind with speed above 5 m/sec, the air in the transitional zone immediately above the air-sea interface is mixed with sea water droplets from bursting air bubbles. The droplet concentration has a profile tapering off to zero at a certain height. The dielectric constant of the inhomogeneous droplet profile is thus both a function of the height above the interface and the wind speed. Both the inhomogeneity effect and the possible attenuation effect of the droplet concentration have been considered

    Computation of Brightness Temperature of Sea-foam Modelled as Sequences of Thin Phase Screens using Matlab

    Get PDF
    Sea surface temperature of the ocean is a significant climate parameter. Satellites provide data for analysing and monitoring the sea surface temperature (SST). Satellite remote sensing provide thermal data in a short duration over large area. Temperature measurement by remote sensing is dependent on the principle that most objects emit electromagnetic (EM) radiation corresponding to temperature, wavelength and emissivity of the objects. Brightness temperatures are detected by thermal sensors, however, brightness temperature coincides with the real temperature of objects if they are black bodies. In this paper, we estimated the effective dielectric constant of sea foam layer which is a very important parameter in investigating ocean brightness temperature. This was done at WindSat frequencies and using a discretization method to evaluate the dielectric constant of a random distribution of air-bubbles discretized into slices of sea foam layer. For efficient evaluation of scattering by foam covered sea surface and measurement of brightness temperature in milli-Kelvin, we develop a discrete based physical model of sea foam which provides accurate estimate of the complex effective dielectric constant of sea foam. The foam covered sea foam layer is modelled as sequences of thin phase screens ( slices ofsea foam layer) with equal depth . Each layer comprised of random distribution of bubbles that follows a log-normal distribution pattern with geometrical and optical properties such as foam layer thickness, foam void fraction, foam volume fraction, sea surface temperature and sea surface salinity. Results of sea surface emissivity and brightness temperature as a function of polarization, angle of incidence, WindSat frequencies and thickness of sea foam are presented

    A study of radiometric emission from a rough sea surface

    Get PDF
    The equations which describe the emissivity of a rough ocean surface are developed. The theory includes effects of large scale and small scale wave structure and the influence of shadowing by the large ocean waves. Also included are investigations of the emission properties of foam and the influence of the thermal boundary layer on the brightness temperature characteristics of the ocean surface

    The emissivity of foam-covered water surface at L-band: theoretical modeling and experimental results from the FROG 2003 field experiment

    Get PDF
    Sea surface salinity can be measured by microwave radiometry at L-band (1400–1427 MHz). This frequency is a compromise between sensitivity to the salinity, small atmospheric perturbation, and reasonable pixel resolution. The description of the ocean emission depends on two main factors: 1) the sea water permittivity, which is a function of salinity, temperature, and frequency, and 2) the sea surface state, which depends on the wind-induced wave spectrum, swell, and rain-induced roughness spectrum, and by the foam coverage and its emissivity. This study presents a simplified two-layer emission model for foam-covered water and the results of a controlled experiment to measure the foam emissivity as a function of salinity, foam thickness, incidence angle, and polarization. Experimental results are presented, and then compared to the two-layer foam emission model with the measured foam parameters used as input model parameters. At 37 psu salt water the foam-induced emissivity increase is 0.007 per millimeter of foam thickness (extrapolated to nadir), increasing with increasing incidence angles at vertical polarization, and decreasing withPostprint (published version

    The Emissivity Of Foam-Covered Water Surface At L-Band: Theoretical Modeling And Experimental Results From The FROG 2003 Field Experiment

    Get PDF
    Sea surface salinity can be measured by microwave radiometry at L-band (1400-1427 MHz). This frequency is a compromise between sensitivity to the salinity, small atmospheric perturbation, and reasonable pixel resolution. The description of the ocean emission depends on two main factors: (1) the sea water permittivity, which is a function of salinity, temperature, and frequency, and (2) the sea surface state, which depends on the wind-induced wave spectrum, swell, and rain-induced roughness spectrum, and by the foam coverage and its emissivity. This study presents a simplified two-layer emission model for foam-covered water and the results of a controlled experiment to measure the foam emissivity as a function of salinity, foam thickness, incidence angle, and polarization. Experimental results are presented, and then compared to the two-layer foam emission model with the measured foam parameters used as input model parameters. At 37 psu salt water the foam-induced emissivity increase is /spl sim/0.007 per millimeter of foam thickness (extrapolated to nadir), increasing with increasing incidence angles at vertical polarization, and decreasing with increasing incidence angles at horizontal polarization.Peer Reviewe

    Toward RADSCAT measurements over the sea and their interpretation

    Get PDF
    Investigations into several areas which are essential to the execution and interpretation of suborbital observations by composite radiometer - scatterometer sensor (RADSCAT) are reported. Experiments and theory were developed to demonstrate the remote anemometric capability of the sensor over the sea through various weather conditions. It is shown that weather situations found in extra tropical cyclones are useful for demonstrating the all weather capability of the composite sensor. The large scale fluctuations of the wind over the sea dictate the observational coverage required to correlate measurements with the mean surface wind speed. Various theoretical investigations were performed to establish a premise for the joint interpretation of the experiment data. The effects of clouds and rains on downward radiometric observations over the sea were computed. A method of predicting atmospheric attenuation from joint observations is developed. In other theoretical efforts, the emission and scattering characteristics of the sea were derived. Composite surface theories with coherent and noncoherent assumptions were employed

    Effects of foam on ocean surface microwave emission inferred from radiometric observations of reproducible breaking waves

    Get PDF
    Includes bibliographical references.WindSat, the first satellite polarimetric microwave radiometer, and the NPOESS Conical Microwave Imager/Sounder both have as a key objective the retrieval of the ocean surface wind vector from radiometric brightness temperatures. Available observations and models to date show that the wind direction signal is only 1-3 K peak-to-peak at 19 and 37 GHz, much smaller than the wind speed signal. In order to obtain sufficient accuracy for reliable wind direction retrieval, uncertainties in geophysical modeling of the sea surface emission on the order of 0.2 K need to be removed. The surface roughness spectrum has been addressed by many studies, but the azimuthal signature of the microwave emission from breaking waves and foam has not been adequately addressed. RECENtly, a number of experiments have been conducted to quantify the increase in sea surface microwave emission due to foam. Measurements from the Floating Instrumentation Platform indicated that the increase in ocean surface emission due to breaking waves may depend on the incidence and azimuth angles of observation. The need to quantify this dependence motivated systematic measurement of the microwave emission from reproducible breaking waves as a function of incidence and azimuth angles. A number of empirical parameterizations of whitecap coverage with wind speed were used to estimate the increase in brightness temperatures measured by a satellite microwave radiometer due to wave breaking in the field of view. These results provide the first empirically based parameterization with wind speed of the effect of breaking waves and foam on satellite brightness temperatures at 10.8, 19, and 37 GHz.This work was supported in part by the Department of the Navy, Office of Naval Research under Awards N00014-00-1-0615 (ONR/YIP) and N00014-03-1-0044 (Space and Remote Sensing) to the University of Massachusetts Amherst, and N00014-00-1-0152 (Space and Remote Sensing) to the University of Washington. The National Polar-orbiting Operational environmental Satellite System Integrated Program Office supported the Naval Research Laboratory's participation through Award NA02AANEG0338 and supported data analysis at Colorado State University and the University of Washington through Award NA05AANEG0153

    A theory of microwave apparent temperature over the ocean

    Get PDF
    In the microwave region combined active (scatterometer) and passive (radiometer) remote sensors over the ocean show promise of providing surface wind speeds and weather information to the oceanographer and meteorologist. This has aroused great interest in the investigation of the scattering of waves from the sea surface. A composite surface scattering theory is investigated. The two-scale scattering theory proposed by Semyonov was specifically extended to compute the emmision and scattering characteristics of ocean surfaces. The effects of clouds and rain on the radiometer and scatterometer observations are also investigated using horizontally stratified model atmospheres with rough sea surfaces underneath. Various cloud and rain models proposed by meteorologist were employed to determine the rise in the microwave temperature when viewing downward through these model atmospheres. For heavy rain-fall rates the effects of scattering on the radiative transfer process are included

    Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    Get PDF
    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths
    • …
    corecore