353 research outputs found

    Structural dynamics branch research and accomplishments to FY 1992

    Get PDF
    This publication contains a collection of fiscal year 1992 research highlights from the Structural Dynamics Branch at NASA LeRC. Highlights from the branch's major work areas--Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are included in the report as well as a listing of the fiscal year 1992 branch publications

    Lewis Structures Technology, 1988. Volume 1: Structural Dynamics

    Get PDF
    The specific purpose of the symposium was to familiarize the engineering structures community with the depth and range of research performed by the Structures Division of the Lewis Research Center and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive testing, dynamical systems, fatigue and damage, wind turbines, hot section technology, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics

    14th Conference on Dynamical Systems Theory and Applications DSTA 2017 ABSTRACTS

    Get PDF
    From Preface: This is the fourteen time when the conference “Dynamical Systems – Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and the Ministry of Science and Higher Education. It is a great pleasure that our invitation has been accepted by so many people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcome nearly 250 persons from 38 countries all over the world. They decided to share the results of their research and many years experiences in the discipline of dynamical systems by submitting many very interesting papers. This booklet contains a collection of 375 abstracts, which have gained the acceptance of referees and have been qualified for publication in the conference proceedings [...]

    NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems

    Get PDF
    Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach

    Suppress vibration on robotic polishing with impedance matching

    Get PDF
    Installing force-controlled end-effectors on the end of industrial robots has become the mainstream method for robot force control. Additionally, during the polishing process, contact force stability has an important impact on polishing quality. However, due to the difference between the robot structure and the force-controlled end-effector, in the polishing operation, direct force control will have impact during the transition from noncontact to contact between the tool and the workpiece. Although impedance control can solve this problem, industrial robots still produce vibrations with high inertia and low stiffness. Therefore, this research proposes an impedance matching control strategy based on traditional direct force control and impedance control methods to improve this problem. This method's primary purpose is to avoid force vibration in the contact phase and maintain force-tracking performance during the dynamic tracking phase. Simulation and experimental results show that this method can smoothly track the contact force and reduce vibration compared with traditional force control and impedance control

    Research and Technology Highlights 1995

    Get PDF
    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission is accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, other NASA Centers, the educational community, and the local community. This report contains highlights of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate both the broad range of research and technology (R&T) activities carried out by NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research. An electronic version of the report is available at URL http://techreports.larc.nasa.gov/RandT95. This color version allows viewing, retrieving, and printing of the highlights, searching and browsing through the sections, and access to an on-line directory of Langley researchers

    FLUTTER SUPPRESSION BY ACTIVE CONTROLLER OF A TWO-DIMENSIONAL WING WITH A FLAP

    Get PDF
    Flutter is a divergent oscillation of an aeroelastic structure, and one of a family of aeroelastic instability phenomena, that results from the interaction of elastic and inertial forces of the structure with the surrounding aerodynamic forces. Airfoil Flutter is important due to its catastrophic effect on the durability and operational safety of the structure. Traditionally, flutter is prevented within an aircraft\u27s flight envelope using passive approaches such as optimizing stiffness distribution, mass balancing, or modifying geometry during the design phase. Although these methods are effective but they led to heavier airfoil designs. On the other hand, active control methods allow for less weight and higher manoeuvring capabilities. The main objective of this study is to investigate the potential effectiveness of using Model Predictive Control MPC as an active control strategy to suppress flutter. Lagrange’s energy method and Theodore’s unsteady aerodynamic theory were employed to derive the equations of motion of a typical 2D wing section with a flap. Using MATLAB®, the airspeed at which the flutter occurs for a specific wing’s parameters were found to be 23.96 m/s, at a frequency of 6.12 Hz. A Linear Quadratic Gaussian compensator LQG was designed and simulated. MATLAB® was also used to design and simulate a discrete MPC using Laguerre orthonormal functions. The simulated results for states regulation and reference tracking tasks in the flutter airspeed region from both controllers were compared and discussed in terms of quantitative performance measures and performance indices. The results showed that both LQG and MPC are powerful in suppressing the flutter in addition to their effectiveness in tracking a reference input rapidly and accurately with zero steady-state error. The superiority for the constrained MPC is manifested by results comparison. MPC were able to save more than 40% of the needed settling time for states regulation task. Furthermore, it performed the job with much less control energy indicated by the ISE and ISU indices. On top of that, the key advantage of MPC, which is the ability to perform real-time optimization with hard constraints on input variables, was confirmed

    American Society for Engineering Education/NASA Summer Faculty Fellowship Program 1982

    Get PDF
    A program of summer faculty fellowships for engineering and science educators is described. The program involves participation in cooperative research and study. Results of the program evaluation are summarized. The research fellows indicated satisfaction with the program. Benefits of the program cited include: (1) enhancement of professional abilities; (2) contact with professionals in a chosen area of research; (3) familiarity with research facilities; and (4) development of new research techniques and their adaptation to an academic setting. Abstracts of each of the research projects undertaken are presented

    Index to 1986 NASA Tech Briefs, volume 11, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1986 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
    corecore