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Abstract 

 

Flutter is a divergent oscillation of an aeroelastic structure, and one of a family 

of aeroelastic instability phenomena, that results from the interaction of elastic and 

inertial forces of the structure with the surrounding aerodynamic forces. Airfoil Flutter 

is important due to its catastrophic effect on the durability and operational safety of 

the structure. Traditionally, flutter is prevented within an aircraft's flight envelope 

using passive approaches such as optimizing stiffness distribution, mass balancing, or 

modifying geometry during the design phase. Although these methods are effective 

but they led to heavier airfoil designs. On the other hand, active control methods allow 

for less weight and higher manoeuvring capabilities. 

The main objective of this study is to investigate the potential effectiveness of 

using Model Predective control MPC as an active control strategy to suppress flutter.  

Lagrange’s energy method and Theodorsen’s unsteady aerodynamic theory 

were employed to derive the equations of motion of a typical 2D wing section with a 

flap. Using MATLAB®, the air speed at which the flutter occurs for a specific wing’s 

parameters were found to be 23.96 m/s, at a frequency of 6.12 Hz. A Linear Quadratic 

Gaussian compensator LQG was designed and simulated. MATLAB® was also used 

to design and simulate a discrete MPC using Laguerre orthonormal functions. The 

simulated results for states regulation and reference tracking tasks in the flutter 

airspeed region from both controllers were compared and discussed in terms of 

quantitative performance measures and performance indices. 

The results showed that both LQG and MPC powerfull in suppressing the 

flutter in addition to their effectivness in tracking a reference input rapidly and 

accurately with zero steady state error. The superiority for the constrained MPC is 

manifested by results comparison. MPC were able to save more than 40% of the 

needed settling time for states regulation task. Furthermore, it performed the job with 

much less control energy indicated by the ISE and ISU indices. On top of that, the key 

advantage of MPC, which is the ability to perform real-time optimization with hard 

constraints on input variables, was confirmed. 

 

Keywords: Flutter, Active control, AFS, Optimal control, Regulator, LQR, State 

observer, Kalman filter, LQG, MPC. 
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Title and Abstract (in Arabic) 

 

 تحكم لوح معثنائي الابعاد ح لجناباستخدام المتحكم النشط تخميد الرفرفة 

 صالملخ

( على انها اهتزاز ذواتساع متزايد مع الزمن، تتأثر به Flutterتعرف ظاهرة الرفرفة )

(  وينتج عن التفاعل ما بين Aerodynamicالمرنة المعرضة لقوى الديناميكا الهوائية )الهياكل 

(. تعد الرفرفة من Inertia(، والقصور)Elasticثلاث قوى هي الديناميكا الهوائية، والمرونة )

( خطورة في مجال دراسة الهياكل المرنة Instabilityأكثر ظواهرعدم الاتزان )

(Aeroelasticity المعرضة لقوى الديناميكا الهوائية مثل الاجنحة. وذلك بسبب التأثيرات )

الكارثية طويلة المدى على متانتها وقابليتها للاستخدام بشكل آمن. تقليدياً يتم تجنب الرفرفة عن 

ة اوزان لمناطق معينة في الهيكل.  ولكن هذه طريق  لحل صناعة هياكل اكثر متانة، او اضاف

تعد طرقاً غير مرغوبة لما يصاحبها من زيادة في وزن الهيكل. من ناحية  الطرق ورغم فاعليتها

( بخفة الوزن وزيادة قدرات Active control methodsاخرى  تتميز طرق التحكم النشط )

 المناورة. 

ة واختبار إمكانية استخدام التحكم إن الهدف الأساسي من هذه الدراسة هو دراس

 .( كمتحكم نشط لتخميد الرفرفةModel Predictive Control MPCالاستشرافي )

لغرض الدراسة تم استخدام نموذج الجناح ثنائي الابعاد مع لوح التحكم، وتم اشتقاق  

(، Lagrange’s energy methodالمعادلات الديناميكية للنظام باستخدام طريقة لاغرانج )

( لتمثيل Theodorsen unsteady aerodynamic theoryواستخدمت نظرية ثيودورسين )

تمت محاكاة النظام عند سرعات  MATLAB®قوى الديناميكا الهوائية. ثم باستخدام برنامج 

( لجناح اختبار محدد المواصفات، Flutter speedمختلفة، وحساب السرعة الحرجة للرفرفة )

 ®MATLABهيرتز. تلا ذلك، وباستخدام  6.12متر/ثانية مع تردد  23.96والتي وجدت عند 

( MPC، ومتحكم  استشرافي )(LQG) متحكم خطي تربيعي غاوسيأيضاً، تصميم ومحاكاة 

يير ومؤشرات لنفس الجناح، عند سرعات تقع ضمن نطاق الرفرفة. ولمقارنة النتائج استخدمت معا

 (.Settling time(  و)ISU( و )ISEالآداء التحليلية مثل )

أظهرت نتائج الدراسة ان كلا المتحكمين قادر على اخماد الرفرفة وتغير زاوية لوح 

(، حيث MPCالتحكم الى القيمة المطلوبة بسرعة ودقة. مع تفوق ملحوظ للمتحكم الاستشرافي )

%، وباستهلاك اقل بشكل ملحوظ للطاقة، يظهرمن 40الي استطاع انجازالمهمة بوقت أقل بحو
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(. اضافة الى تميزه بإمكانية تحديد السرعة والزاوية القصوى ISU( و )ISEخلال مؤشرات )

لحركة لوح التحكم دون أن يؤثر ذلك على آداء النظام، وهي ميزة غير متوفرة لدى معظم 

 المتحكمات النشطة. 

 

المتحكم التربيعي مثل، الرفرفة، طرق التحكم النشط، نظرية التحكم الأ: مفاهيم البحث الرئيسية

.المتحكم التربيعي الغاوسي، التحكم الاستشرافي ،مرشح كالمان الخطي،  
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Chapter 1 : Introduction 

 

1.1 Overview 

When an elastic structure is exposed to an air stream, structural deformations 

may take place, these deformations lead to generating additional aerodynamic forces, 

which produce additional structural deformations, and so on. The interaction between 

the elastic, inertial, and aerodynamic forces is called aeroelasticity, and it is 

responsible of several undesirable phenomena that may reduce the structural fatigue 

life or lead to catastrophic failure. 

Static divergence, flutter, limit cycle oscillations are examples of those 

phenomena. Static divergence is a phenomenon that results from the interaction 

between the aerodynamics and elasticity only (static aeroelasticity), while flutter and 

limit cycle oscillations are dynamic aeroelasticity phenomena that result from the 

interaction of all three forces as shown by the shaded area in Figure 1. Flutter is a 

dynamic instability that happens when three forces interact to generate a self-excited 

motion of a lifting surface (De Marqui et al., 2005; Hodges and Pierce, 2011). 

 

 

Figure 1: A diagram of the forces interaction that causes flutter (Ricketts, 1983) 
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Flutter is considered as one of the most important aeroelasticity phenomena. It 

is a dynamic aeroelastic instability, that happens when the structural damping changes 

from positive to negative due to the existence of aerodynamic forces at a spicific speed 

known as the flutter speed. During the transition stage, two modes of vibration 

comsolidate to the same frequency and achive an aeroelastic resonance (De Marqui 

Junior et al., 2006; Kehoe, 1995).  

There are several degrees of freedom that can occur in an airfoil during flutter, 

deemed 'flutter modes', two of which are dominant: first plunge mode (bending) and 

first pitch mode (torsion). Coupled damping occurs because of the airfoil structure and 

aerodynamic forces, and the damping ratio of the critical flutter mode may begin to 

decrease beyond some point with increasing airspeed. A flutter occurs when the 

damping ratio of the critical flutter mode reaches zero. 

At the flutter speed the airframe structure undergo a divergent sinusoidal 

oscillation which has the following characteristics (Akmeşe, 2006): 

1. It is a self-excited oscillation; this mean that once the vibration started, then no 

external action is required to maintain it. The system keeps getting more energy 

from the flow by itself. 

2. Flutter starts at a certain airspeed and frequency called the flutter speed and 

flutter frequency.  

At speeds above the flutter speed, the oscillation amplitude keeps increasing 

with time until a structural failure happens. The critical speed at which the flutter starts 

is a function of structural parameters like the structural damping, shape, stiffness, and 

mass distribution. It is also a function of flight parameters like the angle of attack, 

Mach number, the airspeed, and the altitude. 
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Airfoil flutter is typically prevented within an aircraft's flight envelope by 

optimizing stiffness distribution, mass balancing, or modifying geometry during the 

design phase. These are known as passive approaches for reducing airfoil flutter, which 

are effective but on the other hand led to heavier airfoil designs.  

Passive approaches have included other techniques that can be found in 

literature such as the use of viscoelastic materials, these techniques have some 

advantages including inherent stability, and economical cost for fabrication and 

maintenance. Nevertheless a major drawback of these materials is the variation of its 

properties with temperature as presented in (Cunha-Filho et al., 2016).  

The increase in flight speeds started to since World War II, flutter, among other 

aeroelastic phenomena, has become more significant. In addition, maximization of the 

modern aircraft performance which demands for extremely lightweight structures with 

less stiffness has increased the sensitivity to these aeroelastic problems. As a result, 

control technology has been brought into the field of aeroelasticity (De Marqui et al., 

2005; Theis et al., 2016). 

By applying appropriate control efforts to counteract flutter once it begins, one 

can further delay the onset of airfoil flutter to a higher airspeed without excessive 

structure modification and weight penalty. It is categorized as an active approach, 

which has been proven effective theoretically and experimentally in several leading 

research projects since the 1970s. 

Active flutter suppression is employing a control surface the deflection of 

which is commanded by a calculated control law. The control law is the relationship 

between the motion of the main wing surface and the control surface deflection (York, 

1980). 



4 

 

 

 

 

The field that studies the interactions of aeroelasticity with active control 

systems is called Aeroservoelasticity. Its primary goal is to adjust a system's 

aeroelastic behavior using calculated control forces (Tewari, 2015). 

1.2 Statement of the Problem 

Flutter is considered as one of the most important instability phenomena in 

aeroelasticity filed due to its catastrophic effect on the long-term durability and 

operational safety of the aircrafts wing. Traditionally passive solutions had been 

presented and used for many years, but they were not favorable due to the weight 

adding penalty which reduces the aircraft performance.  

Active control methods allow for less weight and higher maneuvering 

capabilities. Although many active control methods have been studied and shown 

success in the past few decades, none of them has achieved operational status on any 

aircraft this is due to the fact that aircraft designers and operators are risk averse (Scott 

and Pado, 2000).  

Nevertheless, with the recent improvements in the control systems hardware 

and software capabilities, and the increasing desire to increase flexibility and reduce 

the structural weight, AFS implementation could be closer than ever before (Livne, 

2018; Marchetti et al., 2020). 

 This study is concerned with the active control methods, used to suppress 

wings flutter. Its main objective is to contribute to the efforts of finding the most 

capable and reliable active control strategy by investigating the potential effectiveness 

of using Model Predictive Control. This is achieved as following: 
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• Deriving a mathematical model of a typical two-dimensional wing section with 

three degrees of freedom, using Lagrange’s energy method and Theodorsen’s 

unsteady aerodynamic theory. 

• Finding the flutter critical speed and the flutter frequency using by system’s 

eigen value analysis for a specific experimental wing data. 

• Validating the model by comparing the flutter speed and flutter frequency with 

an experimental work paper for the same wing. 

• Designing a LQG compensator, then tuning and simulating it numerically using 

MATLAB® software to find the best performance parameters in for initial 

disturbance dissipation and reference input tracking, at a speed where the flutter 

is expected. 

• Designing a discrete MPC controller using Laguerre functions with a Kalman 

filter, then tuning and simulating it to find the best performance.  

• Comparing the simulated performance from both controllers analytically using 

performance indices. 

• Discussing the results and concluding the research. 

1.3 Relevant Literature 

Formal beginning of active control methods can be traced back to the early 

1970’s, when the US Air Force launched the Load Alleviation and Mode Stabilization 

(LAMS) program. The improvements in this field during that period were facilitated 

by the advancements of optimal control theory.  

In the 1980’s and 1990’s, the Aeroservoelasticity analysis and design efforts 

continued and boosted by the development of robust multivariable control theory 

(Glad and Ljung, 2018). 
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Active flutter suppression is based on using a calculated control law to 

command the deflection of a control surface (flab) to suppress the flutter. This control 

law is determined by applying methods from control systems theory (York, 1980). 

1.3.1 Active Flutter Suppression Methods 

Flutter suppression early works presented an approach that study the physics 

or mathematical structure of the flutter problem to find the mechanisms responsible 

for the flutter and try to suppress them. Among these physics approach is the 

“Aerodynamic Energy” that is the most presented in literature (Barker et al., 1999). 

The aerodynamic energy method can be found in researches such as York 

(1980), where the fact that the stability is determined by the net work done per cycle 

by the forces acting on the system is employed. if the sign is positive, then the energy 

is being transferred from the surroundings to the system resulting in an unstable 

condition. The energy method is based upon increased energy dissipation near the 

flutter instability region by introducing the control flab to the system, where the added 

servo hinge torque is contributing to the rate of kinetic energy transferred to the system. 

Although the physics approach has achieved major accomplishments, the 

development in general control systems theory has pushed it a side over time. Where 

a variety of active control law synthesis from classical and modern control theories 

have been developed and tested.  

Classical control system design and analysis techniques using frequency 

domain is a trait in older works such as Horikawa and Dowell (1979), where the 

standard root locus technique had been used. The classical theory based on the Nyquist 

stability criterion is implemented in works such as Marretta and Marino (2007), 

Horikawa and Dowell (1979) to formulate a control law for SISO system. Although 
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the classic theory methods have successfully suppressed the flutter, Horikawa and 

Dowell (1979) had to neglect the inertia and damping effects of the trailing edge in 

addition to the structural and aerodynamic damping terms of the model, to keep the 

system at not more than fourth order.  

In general, the classic design is working on varying the controller transfer 

function to achieve the desired closed-loop performance. This is indicated through the 

closed loop frequency response, or the location of the poles. For a large order system, 

by varying a limited number of constants in the controller transfer function, the 

location of a few of the closed loop poles could be varied, but not all of them. This is 

a major limitation of the classical design approach (Ashish, 2002). 

Modern control theory techniques that are based on state-space modeling and 

analysis are more efficient in dealing with higher order, and multi-input, multi-output 

systems. These techniques have appeared in newer works. The Pole assignment with 

state feedback has been used in many papers such as De Marqui et al. (2005), and 

Karpel (1982). Linear quadratic regulator LQR optimal control method is another 

successful controller that has been used in Block et al. (1997), Garrard and Liebst 

(1985), Hopwood et al. (2019), and Olds (1997). 

Uncertainty is inherent to the unsteady aerodynamic models. This fact must be 

taken in consideration while designing a successful controller. In general, when 

designing a linear system controller, robustness to modeling uncertainties can be 

achieved using high-gain feedback, but this deteriorates the response to high-

frequency measurement noise. To reach a middle ground between robustness and noise 

rejection, linear feedback strategies such as LQG, where an optimal estimator is 

integrated with the LQR controller has been used in Bhoir and Singh (2004), Mahesh 

et al. (1981), and Sutherland (2010). 
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Controllers that are self-adaptive to changing flight conditions have also been 

developed and become of major interest as in Eversman and Roy (1997), Borglund 

and Kuttenkeuler (2002), in addition to gain-scheduling method presented in Barker 

et al. (1999). 

Solving problems described by Linear Matrix Inequalities using convex 

optimization algorithms (LMIs) is one of the recent developments in active control 

field. This was investigated with the aim to design and simulate a robust control 

methodology as a flutter suppression control law by Silva and Lopes Júnior (2006). 

Some Non-conventional techniques like fuzzy logic have also proofed success 

in suppressing flutter. Belo and Rocha JR (2001) simulated a rectangular wing 

aeroelastic structure and applied fuzzy logic using the method of Mamdani. 

Kassem et al. (2020) designed an active dynamic vibration absorber by adding 

an active element that derives the mass to the classical mass-spring-damper system. 

Where a PI based hysteresis compensator controllers used feedback signal from the 

response of the aeroelastic system to generate the control law. 

In the past few decades, the model predictive control has got much attention as 

an effective tool for the control of industrial systems. MPC is a real-time optimization 

strategy that computes an optimal control sequence every time step, based on the 

knowledge of the plant dynamics (a model) and the feedback information, in addition 

to a set of constraints (Boscariol et al., 2010).  

Predictive control that has been around since early 1970’s but due to its need 

of high computational power, it was limited to the industrial applications that are 

considered as slow dynamical systems such as chemical factories. However, with the 

recent massive technological improvements in controllers’ and power electronics’ 
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capabilities and speed, the model predictive control has received more attention as a 

useful tool for a wider range of application (Na, 2001; Pinheiro and Silveira, 2021). 

MPC is a very powerful tool as it solves an optimization problem to find the 

optimal input trajectory every time step (real-time optimization), which gives it the 

ability to count for systems physical constraints in addition to any deviation in the 

measurements, which may happen due to unmeasured disturbances. 

 This study aims to investigate the potential effectiveness of discrete time MPC 

controller using Laguerre functions in flutter suppression application. Where MPC is 

expected to bring the advantages of real-time optimization to one on the most 

important Aeroservoelasticity applications. 

1.3.2 Aeroelastic Model Derivation 

Deriving an accurate aeroelastic model, based on modeling of the unsteady 

aerodynamic forces is considered as the main challenge in designing an active flutter 

suppression controller (Borglund and Kuttenkeuler, 2002).  

Flutter can be formally defended as: a dynamic instability of a flight vehicle 

associated with the interaction of aerodynamic, elastic, and inertial forces. This 

definition implies that a quite good knowledge of the system’s structural dynamic and 

aerodynamic properties is essential to investigate the subject (Hodges and Pierce, 

2011). 

For the structural model, Typical 2D section with three degrees of freedom 

model is the most common model in the literature related to flutter analysis, it has been 

used by NASA Langley Research Centre’s in The Benchmark Active Control 

Technology (BACT) project (Waszak, 1996), in addition to many researches such as 
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York (1980), Hopwood et al. (2019), Conner et al. (1997), Edwards and Wieseman 

(2008), and Sutherland (2011).  

The BACT is a rigid rectangular scaled wing with a NACA 0012 airfoil section, 

and a partial span trailing-edge control surface (Flab) shown in Figure 2. The model is 

equipped with linear accelerometers, which serve as the principal feedback control 

sensors. The wing is held by a pitch and plunge mechanism, which provides the 

necessary two degrees of freedom for flutter (Marretta and Marino, 2007). 

 

Figure 2: NACA 0012 BACT wing (Marretta and Marino, 2007) 

Some other studies have used the elastic modelling of the wing and control 

surface, but this method results in a big number of states, so it is much more 

complicated, but gives more realistic results. Elastic modelling can be found where 

structural nonlinearities are involved such as Hoadley and Karpel (1991), Roger et al. 

(1975), Yehezkely and Karpel (1996). 

Moving to the aerodynamic forces, thin airfoil with steady incompressible 

aerodynamics had appeared in early studies such as Horikawa and Dowell (1979). 

Nevertheless, as reported in  Abdelkefi et al. (2013), this model is unsatisfactory in its 

ability to accurately predict the flutter speed under incompressible flow compared to 

the unsteady aerodynamic model which can be found in most of the recent works such 
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as Hopwood et al. (2019), Borglund and Kuttenkeuler (2002), Conner et al. (1997), 

Sutherland (2011). 

The unsteady aerodynamic model is obtained in most works using optimized 

rational function approximations, fitted to the frequency-domain aerodynamic data in 

the harmonic limit (Eversman and Tewari, 1991). 

It can also be found using experimental model-based approach, where the 

flexible dynamics may be reliably predicted using system-identification techniques. 

The experimental aeroelastic model estimated using these techniques is in general of 

a low order, low complexity, and suitable for the model-based control design (Zeng et 

al., 2012). 

The full system mathematical equation of motion of the typical 2D section can 

be obtained using either Newton’s second law of motion, and the moment equation for 

a rigid body in planar motion as in York (1980) and Olds (1997). Or using Lagrange’s 

equations and the principle of virtual work, which is used in (BACT) project, to 

formulate a model of the dynamic behavior of the Benchmark Active Controls 

Technology (wind-tunnel model) for application to design and analysis of flutter 

suppression controllers (Waszak, 1996). Lagrange’s method has also been used in 

many other works such as De Marqui et al. (2005), and Sutherland (2011). 
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Chapter 2 : Theory and Methods 

 

2.1 The Aeroelastic Model 

In this study, the modal representation is used to set up a lifting surface (wing) 

flutter analysis as a linear set of ordinary differential equations that can be transformed 

into an eigenvalue problem to investigate the stability characteristics. To do so, a 

simple model is needed (Hodges and Pierce, 2011). 

The typical two-dimensional airfoil with a control flab model is shown in 

Figure 3. This system was used by Theodorsen to develop his theory of unsteady 

aerodynamics, and it can be seen as section of a long and finite wing. The springs 

𝑘ℎ, 𝑘𝛼 represent the wing structural bending and torsional stiffness while dampers 

𝑐ℎ, 𝑐𝛼 represent the damping effect. The reference point is the elastic axis (Dimitriadis, 

2017).  

The distance 𝑏 is the mid-cord distance, 𝑎𝑏 is the elastic access position 

measured from the mid-cord (positive aft of the mid-cord). 𝑏𝑥𝛼  is the distance to the 

center of gravity point from the elastic axis (positive aft the elastic axis). 

 

Figure 3: A typical two-dimensional airfoil with flab. 
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The control flab hinge location is at a distance 𝑐𝑏 from the mid-cord (positive 

aft the mid-cord), and center of gravity for the flab is at a distance 𝑏𝑥𝛽 from the hinge 

line. The spring 𝑘𝛽 and damper 𝑐𝛽 represents the flab rotational stiffness and damping. 

The setup is placed in a uniform, incompressible air flow of speed 𝑈 and 

density 𝜌∞. The air flow generates aerodynamic lift and pitching moment about the 

elastic axis while the control flab is subjected to a torque about its hinge. In addition, 

the flab is equipped with an actuator that can apply a torque 𝑢 about the control flap 

hinge line relative to the airfoil to control the system (Sutherland, 2008). 

2.2 The Aeroelastic System’s Equations of Motion 

2.2.1 Deriving the Equations of Motion Using Lagrange’s Method 

For the development of the model, the generalized coordinates to represent the 

three degrees of freedom are the lateral position ℎ (positive downward), the wing’s 

pitch angle 𝛼 (positive nose up) and the control flab deflection angle 𝛽 (positive for a 

downward rotation). 

The three degree of freedom equations of motion of the airfoil are derived using 

Lagrange’s equation is generally expressed as follows:  

 
𝑑

𝑑𝑡
(
𝜕 𝐾𝐸

𝜕𝑞�̇�
) −

𝜕 𝐾𝐸

𝜕𝑞𝑖
+

𝜕𝐷

𝜕𝑞�̇�
+

𝜕 𝑃𝐸

𝜕𝑞𝑖
= 𝐹𝑖 (2.1) 

Where 𝑞𝑖 are the generalized coordinates, and  𝐹𝑖 is the generalized force 

associated with the generalized coordinates. 

The total kinetic energy 𝐾𝐸 is the sum of the kinetic energies of the wing and 

the control surface, using the variables in Figure 3, it can be written as: 
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𝐾𝐸 =
1

2
𝑚ℎ2̇ +

1

2
𝐼𝛼�̇�2  +

1

2
𝐼𝛽�̇�2 + 𝑚𝑥𝛼𝑏ℎ̇�̇� + 𝑚𝑥𝛽𝑏ℎ̇�̇�

+ [(𝑐 − 𝑎)𝑏2𝑚𝑥𝛽 + 𝐼𝛽]�̇��̇� 

(2.2) 

Where 𝑚 is the total mass of the wing (with the control surface) per unit span, 

𝑚𝛽 is the mass of the control surface per unit span. 𝐼𝛼, 𝐼𝛽 are respectively the mass 

moment of inertia of the wing (with the control surface) about the elastic axis per unit 

span, and the mass moment of inertia of the control surface about its hinge line.  

Similarly, the total potential energy 𝑃𝐸 is: 

 𝑃𝐸 =
1

2
𝑘ℎℎ2 +

1

2
𝑘𝛼𝛼2 +

1

2
𝑘𝛽𝛽2 (2.3) 

The total energy dissipation 𝐷 function (often characterized as a viscus force 

without friction) is: 

 𝐷 =
1

2
𝑐ℎℎ2̇ +

1

2
𝑐𝛼𝛼2̇ +

1

2
𝑐𝛽𝛽2̇ (2.4) 

Differentiating (2.2), (2.3), and (2.4) and substituting them in Lagrange’s 

Equation (2.1), gives the following equations of motion: 

 𝑚ℎ̈ + 𝑚𝑥𝛼𝑏�̈� + 𝑚𝑥𝛽𝑏�̈� + 𝑐ℎℎ̇ + 𝑘ℎℎ = 𝐿 (2.5) 

 𝐼𝛼�̈� + 𝑚𝑥𝛼𝑏ℎ̈ + [(𝑐 − 𝑎)𝑏2𝑚𝑥𝛽 + 𝐼𝛽]�̈� + 𝑐𝛼�̇� + 𝑘𝛼𝛼 = 𝑀𝛼 (2.6) 

 𝑚𝑥𝛽𝑏ℎ̈ + [(𝑐 − 𝑎)𝑏2𝑚𝑥𝛽 + 𝐼𝛽]�̈� + 𝐼𝛽�̈� + 𝑐𝛽�̇� + 𝑘𝛽𝛽 = 𝑀𝛽 (2.7) 

The three coupled equations of motion, in addition to the flap hinge torque (that 

is required to drive the flap and control the system) can be represented in matrix form 

as: 

 Ms {
ℎ̈
�̈�
�̈�

} + Ds {
ℎ̇
�̇�
�̇�

} + Ks {
ℎ
𝛼
𝛽
} = {

𝐿(𝑡)
𝑀𝛼(𝑡)
𝑀𝛽(𝑡)

} + Lc{𝛽𝑐}   (2.8) 

Where the structural inertia matrix Ms is: 
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 Ms = [

𝑚 𝑆𝛼 𝑆𝛽

𝑆𝛼 𝐼𝛼 (𝑐 − 𝑎)𝑏𝑆𝛽 + 𝐼𝛽
𝑆𝛽 (𝑐 − 𝑎)𝑏𝑆𝛽 + 𝐼𝛽 𝐼𝛽

] (2.9) 

𝑆𝛼 = 𝑚𝑏𝑥𝛼 and 𝑆𝛽 = 𝑚𝑏𝑥𝛽 are the static mass moment of wing about the 

wing’s elastic axis per unit span and the static mass moment of control surface about 

its hinge line per unit span. 

The stiffness Ks, and damping Ds matrices are: 

For simplicity, the flutter suppression system in this study does not include 

servo dynamics for the flap control, which means that the commanded flap angle 𝛽𝑐 

and the flap angle 𝛽 are identical. The control load matrix Lc is which is required to 

represent the flap driving hinge torque is: 

 Lc = [

0
0
𝐾𝛽

] (2.12) 

2.2.2 Representing the Unsteady Aerodynamic Forces 

The external forces acting on the airfoil are the unsteady lift 𝐿 (assumed to act 

at the quarter chord position), the unsteady pitching moment 𝑀𝛼 and the unsteady flap 

hinge moment 𝑀𝛽 .These forces, are due to aerodynamics. They result from the 

distributed pressures applied to the surface of the wing (Sutherland, 2008; Waszak, 

1996). 

 Ks = [

𝑘ℎ 0 0
0 𝑘𝛼 0
0 0 𝑘𝛽

] (2.10) 

 Ds = [

𝑐ℎ 0 0
0 𝑐𝛼 0
0 0 𝑐𝛽

] (2.11) 
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To find the full system dynamic equations, the aerodynamic forces must be 

represented in terms of the generalized coordinates (ℎ, 𝛼, and 𝛽). The flow is unsteady 

due to two reasons, first is the unsteady motion of the wing with respect to the air. The 

second, is when the movement of the airfoil disrupts the flow, and shedding a vortex 

at the trailing edge that generates a downwash, which in turn changes the flow on the 

airfoil (Hodges and Pierce, 2011). 

Assuming a thin section with infinite aspect ratio airfoil, and small angle of 

attack, under small oscillations in all vibration modes, and in incompressible flow, the 

unsteady aerodynamic forces can be approximated to depend linearly on the exciting 

structural motion, using Theodorsen’s method (Fung, 2002; Tewari, 2015). 

The air flow over the wing produces steady components of lift and pitching 

moment, as well as dynamic forces in reaction to the small fluctuations in the lifting 

surface motion (Hodges and Pierce, 2011). 

For simplicity, it is assumed that the aerodynamic moments can be modeled as 

first-order lag (or circulatory) effects of the unsteady wake generated by the airfoil, as 

well as the non-circulatory contributions of the aerodynamics to inertia (known as the 

apparent mass effect), damping, and stiffness (Tewari, 2015). 

Theodorsen unsteady aerodynamic theory shows that the aerodynamic forces 

acting on a typical section are due to two physical phenomena, the circulatory effect is 

due to the vorticity in the flow, and the non-circulatory effects, that does not depend 

on the frequency, it is generated when the wing motion has a non-zero acceleration, so 

a part of air surrounding the wing is carried with it, leading to inertial forces (due to 

the air finite mass) opposing its acceleration (Hodges and Pierce, 2011; Matter et al., 

2018). 
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 𝐿(𝑡) = 𝐿𝑐(𝑡) + 𝐿𝑛𝑐(𝑡) (2.13) 

 𝑀𝛼(𝑡) = 𝑀𝛼,𝑐(𝑡) + 𝑀𝛼,𝑛𝑐(𝑡) (2.14) 

 𝑀𝛽(𝑡) = 𝑀𝛽,𝑐(𝑡) + 𝑀𝛽,𝑛𝑐(𝑡) (2.15) 

The non-circulatory part is represented as: 

 𝐿𝑛𝑐(𝑡) = −𝜋𝜌∞𝑏2{ℎ̈ + 𝑈�̇� − 𝑏𝑎�̈� −
𝑏

𝜋
𝑇1�̈� −

𝑈

𝜋
𝑇4�̇�} (2.16) 

 

𝑀𝛼,𝑛𝑐(𝑡) = 𝜋𝜌∞𝑏2 {𝑏𝑎ℎ̈ − 𝑈𝑏 (
1

2
− 𝑎) �̇� − 𝑏2 (

1

8
+ 𝑎2) �̈�

+
𝑏2

𝜋
(𝑇7 + (𝑐 − 𝑎)𝑇1)�̈�

−
𝑏𝑈

𝜋
(𝑇1 − 𝑇8 − (𝑐 − 𝑎)𝑇4 +

1

2
𝑇11) �̇�

−
𝑈2

𝜋
(𝑇4 + 𝑇10)𝛽} 

(2.17) 

 

𝑀𝛽,𝑛𝑐(𝑡) = 𝜌∞𝑏2 {𝑏𝑇1ℎ̈ − 2𝑏2𝑇13�̈� +
𝑏2

𝜋
𝑇3�̈�

+ 𝑈𝑏 [2𝑇9 + 𝑇1 − 𝑇4 (𝑎 −
1

2
)] �̇� +

𝑏𝑈

2𝜋
𝑇4𝑇11�̇�

−
𝑈2

𝜋
(𝑇5 − 𝑇4𝑇10)𝛽} 

(2.18) 

While the circulatory is: 

 𝐿𝑐(𝑡) =  −2𝜋𝜌∞𝑈𝑏𝐶(𝑘)𝑄(𝑡) (2.19) 

 𝑀𝛼,𝑐(𝑡) =  2𝜋𝜌∞𝑈𝑏2  (𝑎 +
1

2
)𝐶(𝑘)𝑄(𝑡) (2.20) 

 𝑀𝛽,𝑐(𝑡) =  −𝜌∞𝑈𝑏2𝑇12 𝐶(𝑘)𝑄(𝑡) (2.21) 
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Where 𝑄(𝑡) is the total dynamic downwash (a measure of circulation) and is 

represented as: 

 𝑄(𝑡) = 𝑈𝛼 + ℎ̇ + 𝑏 (
1

2
− 𝑎) �̇� +

𝑏

2𝜋
𝑇11�̇� +

𝑈

𝜋
𝑇10𝛽 (2.22) 

𝐶(𝑘) is known as Theodorsen’s function, it accounts for circulatory lift caused 

by vortex shedding of the fluttering airfoil or in other words, the lag between sinusoidal 

oscillation and lift development (Fung, 2002), it is a complex number function depends 

on the nondimensional reduced frequency  𝑘 =
𝑏𝜔

𝑈
 of the airfoil. 

𝜌∞ is the air density and 𝑈 is the air speed, and the geometric 

coefficients 𝑇𝑖 , 𝑖 = 1,2, … are called Theodorsen constants. They are functions of the 

nondimensional distances 𝑐 and 𝑏 as defined in the wing model, so they are specific 

for a typical section model and are listed in report no. 496 by Theodorsen (1935). 

Assuming simple harmonic motion for all vibration modes, so we can model 

the position, rate, and acceleration of each degree of freedom in terms of the frequency 

𝜔 as: 

 ℎ(𝑡) = ℎ°𝑒
𝑖𝜔𝑡 ;            ℎ̇(𝑡) = 𝑖𝜔ℎ;           ℎ̈(𝑡) = −𝜔2ℎ (2.23) 

 𝛼(𝑡) = 𝛼°𝑒
𝑖𝜔𝑡 ;            �̇�(𝑡) = 𝑖𝜔𝛼;           �̈�(𝑡) = −𝜔2𝛼 (2.24) 

 𝛽(𝑡) = 𝛽°𝑒
𝑖𝜔𝑡 ;            �̇�(𝑡) = 𝑖𝜔𝛽;           �̈�(𝑡) = −𝜔2𝛽  (2.25) 

Using Equations (2.23), (2.24), and (2.25) to temporarily convert the total 

dynamic downwash (2.22) to the frequency domain gives: 

 

𝑄(𝜔) =
1

𝑖𝜔
[𝑖𝜔𝑈𝛼 − 𝜔2ℎ − 𝜔2𝑏 (

1

2
− 𝑎)𝛼 −

1

2𝜋
𝑏𝑇11𝜔

2𝛽

+
1

𝜋
𝑇10𝑈𝑖𝜔𝛽] 

(2.26) 
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The first derivative of (2.22) with respect to time is: 

 �̇�(𝑡) = 𝑈�̇� + ℎ̈ + 𝑏 (
1

2
− 𝑎) �̈� +

1

2𝜋
𝑏𝑇11�̈� +

1

𝜋
𝑇10𝑈�̇� (2.27) 

Using Equations (2.23), (2.24), and (2.25) again to temporarily convert the first 

derivative of the total dynamic downwash (2.27) to the frequency domain gives: 

 

𝑄′(𝜔) = 𝑖𝜔𝑈𝛼 − 𝜔2ℎ − 𝜔2𝑏 (
1

2
− 𝑎)𝛼 −

1

2𝜋
𝑏𝑇11𝜔

2𝛽

+
1

𝜋
𝑇10𝑈𝑖𝜔𝛽 

(2.28) 

Comparing (2.26) and (2.28), 𝑄(𝜔) can be expressed as: 

 𝑄(𝜔) =
1

𝑖𝜔
  𝑄′(𝜔) (2.29) 

By substituting (2.29) in the circulatory part of aerodynamic forces Equations 

(2.19), (2.20), and (2.21) they are transferred to frequency domain and expressed as 

follows: 

 𝐿𝑐(𝜔) =  −2𝜋𝜌∞𝑈𝑏
𝐶(𝑘)

𝑖𝜔
 𝑄′(𝜔) (2.30) 

 𝑀𝛼,𝑐(𝜔) =  2𝜋𝜌∞𝑈𝑏2  (𝑎 +
1

2
)
𝐶(𝑘)

𝑖𝜔
𝑄′(𝜔) (2.31) 

 𝑀𝛽,𝑐(𝜔) =  −𝜌∞𝑈𝑏2𝑇12  
𝐶(𝑘)

𝑖𝜔
𝑄′(𝜔) (2.32) 

The Fourier inverse ℱ−1 [
𝐶(𝑘)

𝑖𝜔
] is noun as Wagner’s function Φ(t), which can 

be approximated using Jones’ approximation as: 

 Φ(𝑡) = 1 − 𝛿1𝑒
−𝜆1

𝑈
𝑏𝑡  − 𝛿2𝑒

−𝜆2
𝑈
𝑏𝑡

 (2.33) 

Where the constants 𝛿1 = 0.165,   𝛿2 = 0.335,   𝜆1 = 0.041,   𝜆2 = 0.320  
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Equations (2.30), (2.31), and (2.32) can now be transferred back to time 

domain using Fourier inversion and convolution theory. The convolution of two 

functions 𝑓 and 𝑔 is defined as: 

 𝑓 ∗ 𝑔 = ∫ 𝑓(𝑡 − 𝜏)𝑔(𝜏)𝑑𝜏
𝑡

0

 (2.34) 

And the inverse Fourier transform of two multiplied functions 

ℱ−1{𝐹(𝜔)𝐺(𝜔)} is their convolution 𝑓 ∗ 𝑔, where 𝑓  and  𝑔 are the inverse Fourier 

transform of 𝐹(𝜔) and 𝐺(𝜔), this gives: 

 𝐷(𝑡) = ℱ−1 {
𝐶(𝑘)

𝑖𝜔
 𝑄′(𝜔)} =  ∫ Φ(𝑡 − 𝜏)�̇�(𝜏)𝑑𝜏

𝑡

0

 (2.35) 

By substituting Jones’ approximation (2.33) in (2.35), and rearranging we get 

 

𝐷(𝑡) =  ∫ �̇�(𝜏)𝑑𝜏 − 𝛿1 ∫ 𝑒−𝜆1
𝑈
𝑏
(𝑡−𝜏)

𝑡

0

 �̇�(𝜏)𝑑𝜏          
𝑡

0

− 𝛿2 ∫ 𝑒−𝜆2
𝑈
𝑏
(𝑡−𝜏)

𝑡

0

 �̇�(𝜏)𝑑𝜏 

(2.36) 

Equation (2.36) can be divided into two parts: 

 ∫ �̇�(𝜏)𝑑𝜏
𝑡

0

= 𝑄(𝑡) (2.37) 

and   

 ℓ𝑛(𝑡) = ∫ 𝑒−𝜆𝑛
𝑈
𝑏
(𝑡−𝜏)

𝑡

0

 �̇�(𝜏)𝑑𝜏 = 𝑒−𝜆𝑛
𝑈
𝑏 𝑡 ∫ 𝑒𝜆𝑛

𝑈
𝑏 𝜏

𝑡

0

 �̇�(𝜏)𝑑𝜏 (2.38) 

The term ℓ𝑛 is called the nth aerodynamic lag state. It is associated with the 

unsteady aerodynamics and is a measure of the lag in the induced aerodynamic loads 

in following the motion of the airfoil.  

Using (2.37) and (2.38), Equation (2.36) can be written as: 
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 𝐷(𝑡) = 𝑄(𝑡) − ∑ 𝛿𝑛 

2

𝑛=1

ℓ𝑛 (2.39) 

Substituting (2.39) in the circulatory part of aerodynamic forces Equations 

(2.30), (2.31), and (2.32) give: 

 𝐿𝑐(𝑡) =  −2𝜋𝜌∞𝑈𝑏 𝐷(𝑡) =  −2𝜋𝜌∞𝑈𝑏 [𝑄(𝑡) − 𝛿1 ℓ1  − 𝛿2 ℓ2] (2.40) 

 

𝑀𝛼,𝑐(𝑡) =  2𝜋𝜌∞𝑈𝑏2  (𝑎 +
1

2
)  𝐷(𝑡)                             

=  2𝜋𝜌∞𝑈𝑏2  (𝑎 +
1

2
) [𝑄(𝑡) − 𝛿1 ℓ1  − 𝛿2 ℓ2] 

(2.41) 

 

𝑀𝛽,𝑐(𝑡) =  −𝜌∞𝑈𝑏2𝑇12 𝐷(𝑡)                                          

= −𝜌∞𝑈𝑏2𝑇12[𝑄(𝑡) − 𝛿1 ℓ1  − 𝛿2 ℓ2]  
(2.42) 

A solution for ℓ𝑛 is required to solve these equations. The first derivative of 

(2.38) with respect to time is: 

 

ℓ̇𝑛(𝑡) = −𝜆𝑛

𝑈

𝑏
 𝑒−𝜆𝑛

𝑈
𝑏 𝑡 ∫ 𝑒𝜆𝑛

𝑈
𝑏 𝜏

𝑡

0

 �̇�(𝜏)𝑑𝜏                    

+ 𝑒−𝜆𝑛
𝑈
𝑏 𝑡 𝑑

𝑑𝑡
[∫ 𝑒𝜆𝑛

𝑈
𝑏 𝜏

𝑡

0

 �̇�(𝜏)𝑑𝜏] 

(2.43) 

This is equivalent to: 

 ℓ̇𝑛(𝑡) = −𝜆𝑛

𝑈

𝑏
 ℓ𝑛(𝑡) + �̇�(𝑡) (2.44) 

or 

 

ℓ̇𝑛(𝑡) = −𝜆𝑛

𝑈

𝑏
 ℓ𝑛(𝑡) +  𝑈�̇� + ℎ̈ + 𝑏 (

1

2
− 𝑎) �̈� +

1

2𝜋
𝑏𝑇11�̈�

+
1

𝜋
𝑇10𝑈�̇� 

(2.45) 
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This results in two simultaneous linear differential equations. where ℓ1 and ℓ2 

are evaluated by solving them. In matrix form, they can be expressed as: 

 {
ℓ̇1(𝑡)

ℓ̇2(𝑡)
} = Qa {

ℎ̈
�̈�
�̈�

} + Qv {
ℎ̇
�̇�
�̇�

} + Lλ {
ℓ1

ℓ2
} (2.46) 

where 

 Qa = [
1 𝑏 (

1

2
− 𝑎)

𝑏𝑇11

2𝜋

1 𝑏 (
1

2
− 𝑎)

𝑏𝑇11

2𝜋

] (2.47) 

 Qv = 𝑈 [
0 1

𝑇10

𝜋

0 1
𝑇10

𝜋

] (2.48) 

 Lλ = [
−𝜆1

𝑈

𝑏
0

0 −𝜆2

𝑈

𝑏

] (2.49) 

The total unsteady aerodynamic forces (circulatory and non-circulatory) can be 

expressed as: 

 

𝐿(𝑡) = −𝜋𝜌∞𝑏2ℎ̈ + 𝜋𝜌∞𝑏3𝑎�̈� + 𝜌∞𝑏3𝑇1�̈� − 2𝜋𝜌∞𝑏𝑈ℎ̇

− 2𝜋𝜌∞𝑏2𝑈(1 − 𝑎)�̇� + 𝜌∞𝑏2𝑈(𝑇4 − 𝑇11)�̇�

− 2𝜋𝜌∞𝑏𝑈2𝛼 − 2𝜌∞𝑏𝑈2𝑇10𝛽 + 2𝜋𝜌∞𝑏𝑈𝛿1 ℓ1

+ 2𝜋𝜌∞𝑏𝑈𝛿2 ℓ2  

(2.50) 
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 𝑀𝛼(𝑡) = 𝜋𝜌∞𝑏3𝑎ℎ̈ − 𝜋𝜌∞𝑏4 (
1

8
+ 𝑎2) �̈�                

+ 𝜌∞𝑏4(𝑇7 + (𝑐 − 𝑎)𝑇1)�̈�

+ 2𝜋𝜌∞𝑏2𝑈 (𝑎 +
1

2
) ℎ̇ − 2𝜋𝜌∞𝑏3𝑈𝑎 (

1

2
− 𝑎) �̇�

+ 𝜌∞𝑏3𝑈(𝑇8 − 𝑇1 + (𝑐 − 𝑎)𝑇4 + 𝑎𝑇11)�̇�

+ 𝜌∞𝑏2𝑈2(2𝑎𝑇10 − 𝑇4)𝛽 

+  2𝜋𝜌∞𝑏2𝑈2  (𝑎 +
1

2
)𝛼

− 2𝜋𝜌∞𝑏2𝑈 (𝑎 +
1

2
) 𝛿1 ℓ1  

− 2𝜋𝜌∞𝑈𝑏2  (𝑎 +
1

2
) 𝛿2 ℓ2 

(2.51) 

 

𝑀𝛽(𝑡) = 𝜌∞𝑏3𝑇1ℎ̈ − 2𝜌∞𝑏4𝑇13�̈� + 𝜌∞𝑏4
1

𝜋
𝑇3�̈� − 𝜌∞𝑏2𝑈𝑇12ℎ̇

+ 𝜌∞𝑏3𝑈 [2𝑇9 + 𝑇1 + (𝑇4 − 𝑇12) (
1

2
− 𝑎)] �̇�

+ 𝜌∞𝑏3𝑈
1

2𝜋
𝑇11(𝑇4 − 𝑇12)�̇� − 𝜌∞𝑏2𝑈2𝑇12𝛼

− 𝜌∞𝑏2𝑈2
1

𝜋
[𝑇5 − 𝑇10(𝑇4 − 𝑇12)]𝛽

+ 𝜌∞𝑈𝑏2𝑇12𝛿1 ℓ1 + 𝜌∞𝑈𝑏2𝑇12𝛿2 ℓ2 

(2.52) 

In Matrix form, the three equations can be expressed as: 

 {

𝐿(𝑡)

𝑀𝛼(𝑡)

𝑀𝛽(𝑡)
} = Ma  {

ℎ̈
�̈�
�̈�

} + Da  {
ℎ̇
�̇�
�̇�

} + Ka  {
ℎ
𝛼
𝛽
} + Lδ {

ℓ1

ℓ2
} (2.53) 

Where the aerodynamic inertia matrix Ma is: 
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 Ma = 𝜋𝜌∞𝑏3

[
 
 
 
 
 −

1

𝑏
𝑎

𝑇1

𝜋

𝑎 −𝑏 (
1

8
+ 𝑎2) −

2𝑏𝑇13

𝜋
𝑇1

𝜋
−

2𝑏𝑇13

𝜋

𝑏𝑇3

𝜋2 ]
 
 
 
 
 

 (2.54) 

The aerodynamic damping matrix Da is: 

Da = 𝜌∞𝑏2𝑈 

[
 
 
 
 
 −

2𝜋

𝑏
−2𝜋(1 − 𝑎) (𝑇4 − 𝑇11)

𝜋(2𝑎 + 1) −𝜋𝑏𝑎(1 − 2𝑎) 𝑏(𝑇8 − 𝑇1 + (𝑐 − 𝑎)𝑇4 + 𝑎𝑇11)

−𝑇12 𝑏 (2𝑇9 + 𝑇1 + (𝑇12 − 𝑇4) (𝑎 −
1

2
))

𝑏

2𝜋
𝑇11(𝑇4 − 𝑇12)

]
 
 
 
 
 

 (2.55) 

The aerodynamic stiffness matrix Ka is: 

 Ka = 𝜌∞𝑏2𝑈2

[
 
 
 
 
 0 −

2𝜋

𝑏
−

2𝑇10

𝑏

0 2𝜋 (𝑎 +
1

2
) 2𝑎𝑇10 − 𝑇4

0 −𝑇12 −
1

𝜋
(𝑇5 − 𝑇10(𝑇4 − 𝑇12))]

 
 
 
 
 

 (2.56) 

And the aerodynamic lagging matrix Lδ is: 

 Lδ = 𝑏2𝑈

[
 
 
 
 

2𝜋𝛿1

𝑏

2𝜋𝛿2

𝑏

−2𝜋 (𝑎 +
1

2
) 𝛿1 −2𝜋 (𝑎 +

1

2
) 𝛿2

𝑇12𝛿1 𝑇12𝛿2 ]
 
 
 
 

 (2.57) 

2.2.3 The Full System Equations in Dimensionless Form  

To further simplify the problem, the equations are rewritten in dimensionless 

form, this can be achieved using the following dimensionless variables (Hodges and 

Pierce, 2011): 
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1. 𝜇 =
𝑚

𝜋𝜌∞𝑏2; the ratio of the total wing’s mass to the mass of the air 

affected by the wing 

2. 𝑟𝛼
2 =

𝐼𝛼

𝑚𝑏2;  the dimensionless radius of gyration of the wing about 

the elastic axis  

3. 𝑟𝛽
2 =

𝐼𝛽

𝑚𝛽𝑏2;  the dimensionless radius of gyration of the control 

surface about its hinge 

4. 𝐾ℎ = 𝑚𝜔ℎ
2;  is the plunge structural stiffness, where 𝜔ℎis uncoupled 

plunge frequency 

5. 𝐾𝛼 = 𝐼𝛼𝜔𝛼
2;  is the pitch structural stiffness, where 𝜔𝛼is uncoupled 

pitch frequency 

6. 𝐾𝛽 = 𝐼𝛽𝜔𝛽
2;  is the control surface structural stiffness, where 𝜔𝛽is 

uncoupled control surface frequency 

7. 𝜎 =
𝜔ℎ

𝜔𝛼
;  is the ratio of uncoupled plunge and pitch natural 

frequencies. 

8. 𝑉 =
𝑈

𝑏𝜔𝛼 
;  is the reduced velocity, or the dimensionless free 

stream speed of air. 

9. 𝑐ℎ = 2𝑚𝜔ℎ𝜁ℎ; is the plunge structural damping, where 𝜁ℎis the plunge 

damping ratio. 

10. 𝑐𝛼 = 2𝐼𝛼𝜔𝛼𝜁𝛼;  is the pitch structural damping, where 𝜁𝛼is the pitch 

damping ratio 

11. 𝑐𝛽 = 2𝐼𝛽𝜔𝛽𝜁𝛽;  is the control surface structural damping, where 𝜁𝛽is 

the control surface damping ratio 

12. 𝜏 = 𝜔𝛼𝑡;   is the dimensionless time  
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Substituting those parameters in the system matrices and simplifying, gives 

the following dimensionless matrices: 

 M̅s = 𝜇

[
 
 
 
 
 1 𝑥𝛼

𝑚𝛽

𝑚
𝑥𝛽

𝑥𝛼 𝑟𝛼
2

𝑚𝛽

𝑚
[(𝑐 − 𝑎)𝑥𝛽 + 𝑟𝛽

2]

𝑚𝛽

𝑚
𝑥𝛽

𝑚𝛽

𝑚
[(𝑐 − 𝑎)𝑥𝛽 + 𝑟𝛽

2]
𝑚𝛽

𝑚
𝑟𝛽

2
]
 
 
 
 
 

 (2.58) 

 D̅s = 2𝜇

[
 
 
 
𝜎𝜁ℎ 0 0

0 𝑟𝛼
2𝜁𝛼 0

0 0
𝑚𝛽

𝑚

𝜔𝛽

𝜔𝛼
𝑟𝛽

2𝜁𝛽]
 
 
 
 (2.59) 

 

 

 

  

K̅s = 𝜇

[
 
 
 
𝜎2 0 0
0 𝑟𝛼

2 0

0 0
𝑚𝛽

𝑚
(
𝜔𝛽

𝜔𝛼
)
2

𝑟𝛽
2

]
 
 
 

 (2.60) 

 L̅c = 𝜇 [

0
0

𝑚𝛽

𝑚
(
𝜔𝛽

𝜔𝛼
)
2

𝑟𝛽
2
] (2.61) 

 

 

 

 

  

M̅a =

[
 
 
 
 
 −1 𝑎

𝑇1

𝜋

𝑎 −(
1

8
+ 𝑎2) −

2𝑇13

𝜋
𝑇1

𝜋
−

2𝑇13

𝜋

𝑇3

𝜋2 ]
 
 
 
 
 

 (2.62) 
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D̅a = 𝑉

[
 
 
 
 
 
 −2 −2(1 − 𝑎)

𝑇4 − 𝑇11

𝜋

1 + 2𝑎 𝑎(1 − 2𝑎)
1

𝜋
(𝑇8 − 𝑇1 + (𝑐 − 𝑎)𝑇4 + 𝑎𝑇11)

−
𝑇12

𝜋

1

𝜋
(2𝑇9 + 𝑇1 + (𝑇12 − 𝑇4) (𝑎 −

1

2
))

𝑇11

2𝜋2
(𝑇4 − 𝑇12)

]
 
 
 
 
 
 

 (2.63) 

 K̅a = 𝑉2

[
 
 
 
 
 0 −2 −

2𝑇10

𝜋

0 1 + 2𝑎
1

𝜋
(2𝑎𝑇10 − 𝑇4)

0 −
𝑇12

𝜋
−

1

𝜋2
(𝑇5 − 𝑇10(𝑇4 − 𝑇12))]

 
 
 
 
 

 (2.64) 

 

  

L̅δ = 2𝑉

[
 
 
 
 

𝛿1 𝛿2

−(
1

2
+ 𝑎) 𝛿1 −(

1

2
+ 𝑎) 𝛿2

𝑇12𝛿1

2𝜋

𝑇12𝛿2

2𝜋 ]
 
 
 
 

 (2.65) 

 Q̅a = [
1

1

2
− 𝑎

𝑇11

2𝜋

1
1

2
− 𝑎

𝑇11

2𝜋

] (2.66) 

 Q̅v = 𝑈 [
0 1

𝑇10

𝜋

0 1
𝑇10

𝜋

] (2.67) 

 L̅λ = 𝑉 [
−𝜆1 0
0 −𝜆2

] (2.68) 

With the dimensionless state vector for the modal displacements of the three 

degrees of freedom 𝑥𝑠 = [
ℎ

𝑏
𝛼 𝛽]

𝑇
, And the two aerodynamic lag states 𝑥𝑎 =

[ℓ1 ℓ2] 
𝑇
.          

Using the matrices (2.58) to (2.68), the full system can be represented as: 
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[M̅s − M̅a] {
ℎ̈/𝑏
�̈�
�̈�

} + [D̅s − D̅a] {
ℎ̇/𝑏
�̇�
�̇�

} + [K̅s − K̅a] {
ℎ/𝑏
𝛼
𝛽

}

=  L̅δ {
ℓ1

ℓ2
} + L̅c{𝛽𝑐} 

(2.69) 

2.2.4 Converting the System’s Equations to State Space Representation 

Using state space representation is a noticeable characteristic in modern control 

theory. Where the system is described by a set of first-order differential equations that 

relates the system input-output dynamics (Zhang, 2010). 

State space representation has the advantage of being easily extended to 

multivariable case, which can then be easily used to analyze the system response and 

design controllers (Rossiter, 2003). 

Equation (2.69) can now be converted to the standard state space form which 

is: 

 �̇� = A𝑥 + B𝑢 (2.70) 

 𝑦 = C𝑥 + D𝑢 (2.71) 

The complete state vector is defined by combining �̇�𝑠 , 𝑥𝑠 and 𝑥𝑎 as following: 

 𝑥 = [ℎ̇/𝑏 �̇� �̇� ℎ/𝑏 𝛼 𝛽 ℓ1 ℓ2]
𝑇 (2.72) 

The system matrix A is: 

 A = [

A11 A12 A13

A21 A22 A23

A31 A32 A33

] (2.73) 

where 

 A113x3
= −[M̅s − M̅a]

−1[D̅s − D̅a] (2.74) 
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 A123𝑥3
= −[M̅s − M̅a]

−1[K̅s − K̅a] (2.75) 

 A133𝑥2
= [M̅s − M̅a]

−1L̅δ (2.76) 

 A213𝑥3
= [

1 0 0
0 1 0
0 0 1

] (2.77) 

 A223𝑥3
= [

0 0 0
0 0 0
0 0 0

] (2.78) 

 A233𝑥2
= [

0 0
0 0
0 0

] (2.79) 

 A312𝑥3
= Q̅aA11 + Q̅v (2.80) 

 A322𝑥3
= Q̅aA12 (2.81) 

 A332𝑥2
= Q̅aA13 + L̅λ (2.82) 

The input matrix B is: 

 B8𝑥1 = [
B11

B21

B31

] (2.83) 

 B113𝑥1
= [M̅s − M̅a]

−1[L̅c] (2.84) 

 B213𝑥1
= [

0
0
0
] (2.85) 

 B312𝑥1
= Q̅aB11 (2.86) 

The output matrix C relates the state variables to the measured system 

variables. For this system, the two aerodynamic lag states are unmeasurable. In 
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addition, measuring all the remaining six states encounters unnecessary cost, so it’s 

been decided to measure only one state (the control surface angle), while the remining 

seven states are estimated using state estimator. 

 C = [0 0 0 0 0 1 0 0] (2.87) 

2.3 Open Loop Stability Analysis 

When a lifting surface is disturbed while it is being in an airstream at a speed 

less than its flutter speed, the oscillations resulted from those disturbances will vanish 

out in time with exponentially decreasing amplitudes. This is because the air is 

providing damping for all these motions. While when the speed is above flutter speed, 

what happens can be described as negative damping provided by the air. Thus, the 

oscillation amplitude grows exponentially. 

The open loop aeroelastic system is represented in state space form as: 

 �̇� = A𝑥 (2.88) 

Where the system matrix A, is a function of the airspeed 𝑈, and air density 𝜌.  

The system stability can be analyzed, and the flutter speed can be calculated 

using the eigen value analysis of the state matrix of A (the roots of the system’s 

characteristic equation), over a range of air speeds where the flutter is expected (De 

Marqui et al., 2005). 

For a given airspeed and density, the eigen values has a complex form  𝑝 =

𝑔 + 𝑖𝜔, where the real part represents the damping frequency, and the imaginary is the 

oscillation angular frequency at that speed. The system is stable if the real part of each 

eigen value is negative. When the real part of any one eigenvalue becomes positive, 

the entire system becomes unstable (Conner et al., 1997). 
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To find the flutter speed, the modal damping at each air speed (real part of the 

eigen value) is calculated and then plotted against the air speeds range to find the zero-

damping point (flutter speed), at which the sign of the damping frequency is changing 

from negative (stable system) to positive (unstable) (York, 1980). 

2.4 Closed Loop System Design 

The main goal of the controller is to suppress the flutter instability and keep 

the system stable over a wild range of velocities. In theory, closed loop control can be 

achieved in a few simple steps, the first step is the measurement (or estimation) of the 

motion components (or state variables) needed to construct the control law. Then the 

flap deflection command is formed by the control law and fed into the actuator which 

deflects the flap at the proper rate and phase. And hence it provides the aerodynamic 

forces and moments that oppose the motion of the wing. Generating the control law 

can be done in many different techniques such as classical control methods, modern 

control, optimal and other non-conventional methods (De Marqui et al., 2005; York, 

1980). 

In this study, two methods are used to find and simulate the control law. First 

is the LQG optimal controller. Then the MPC, which can implement a real-time 

optimization process on the system’s states taking in consideration the physical system 

constraints. 

2.4.1 System’s Controllability and Observability 

Controllability and observability are important characteristics of the plant, that 

are necessary to be checked prior to design a controller and an observer, respectively. 

A system is said to be controllable if there exist a control input 𝑢(𝑡) that can change 



32 

 

 

 

 

the system’s states from any arbitrary initial value 𝒙(0), to any final value 𝒙(𝑡𝑓), in a 

finite time 𝑡𝑓 (Tewari, 2011). 

It can be shown that an LTI (linear time invariant) system is controllable if and 

only if its controllability matrix has a full rank. 

 𝑟𝑎𝑛𝑘 (𝐶𝑂) = 𝑟𝑎𝑛𝑘 [B AB A2B ⋯ An−1B] = 𝑛 (2.89) 

In practical cases, where not all system states are measurable, an observer is 

needed to estimate the states.  

A continuous-time system is observable if for any initial state 𝑥(0) can be 

uniquely determined by knowledge of the input 𝑢(𝜏) and output 𝑦(𝜏) for all 𝜏 ∈ [0, 𝑡] 

(Simon, 2006). 

It can be shown that an LTI system is observable if and only if the observability 

matrix has a full rank. 

 𝑟𝑎𝑛𝑘 (𝑂𝐵) = 𝑟𝑎𝑛𝑘 [C CA CA2 ⋯ CAn−1]T = 𝑛 (2.90) 

2.4.2 Linear Quadratic Regulator Optimal Controller 

Optimal control is an important filed in modern control theory. The main idea 

behind its concept is to design the best possible control system for a given performance 

requirements. which is typically the minimum control energy to satisfy the constraints 

of the maximum overshoot and settling time (Ashish, 2002). 

If the state equations and the initial conditions of the system, in addition to the 

objectives set are given, optimal control methods can find a feasible control, such that 

the system that starts from the given initial conditions transfers its states to the 

objectives set, and in so doing minimizes a cost function (Zhang, 2010). 



33 

 

 

 

 

When the air speed 𝑈 is greater than the flutter speed 𝑈𝑓, the airfoil become 

unstable, the objective of the closed loop system is to find a control function 𝑢(𝑡) on 

time period [0,∞] to stabilize the system. In other words, for a system in the state 

space form shown in Equations (2.70), and (2.71), if the required input is zero 

(regulator case), the LQR objective is to find a controller in the following form: 

 𝑢(𝑡) = −KLQR𝑥 (2.91) 

The control energy can be expressed in a quadratic form as 𝑢(𝑡)𝑇 RLQR 𝑢(𝑡), 

where RLQR is a square, symmetric matrix called the control cost weighting matrix. 

And the transient energy in the form 𝑥(𝑡)𝑇 QLQR 𝑥(𝑡), where QLQR is also a square 

symmetric matrix called the state weighting matrix. The objective function can then 

be written as: 

 𝐽 = ∫[𝑥(𝑡)𝑇 QLQR 𝑥(𝑡) + 𝑢(𝑡)𝑇 RLQR 𝑢(𝑡)]

∞

0

 𝑑𝑡 (2.92) 

The weighting matrices Q and R play critical roles in the LQR optimization 

process as the compositions of their components have a significant impact on system 

performance. The designer is free to choose the matrices Q and R, however the 

selection of matrices Q and R is often based on an iterative method that incorporates 

experience and practical understanding of the problem (Vinodh Kumar and Jerome, 

2013). 

The optimal control problem consists of solving for the feedback gain matrix 

KLQR such that the performance measure (cost function) 𝐽 is minimized subject to the 

constraint that 𝑥(𝑡) remains the solution of the system’s state space equation (Ashish, 

2002; Xie et al., 2020). 
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The value of KLQR is obtained by solving the algebraic Riccati Equation (2.93) 

to find S which is a unique, symmetric, positive semidefinite solution. 

 SA + ATS − SBR−1BTS + Q = 0 (2.93) 

Then KLQR can be found as: 

 KLQR = R−1BTS (2.94) 

The regulator closed loop system can then be represented as: 

 �̇� = (A − BKLQR)𝑥 (2.95) 

A block diagram of the linear quadratic regulator is shown in Figure 4. 

 

Figure 4: LQR block diagram 

From the above, the LQR design procedure may be summarized in the 

following steps: 

1. Checking the controllability of the system and control matrices  A and  B. 

2. Selecting the design parameter matrices  QLQR and  RLQR. 

3. Solving the algebraic Riccati equation for S. 

4. Finding the state variable feedback gain using KLQR = R−1BTS. 

5. Tuning the design parameter matrices  QLQR and  RLQR to achieve the 

required performance. 
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2.4.3 State Estimators and Linear Quadratic Gaussian Compensator 

As mentioned in the previous section, LQR optimal control assumes that all 

states values are available for the controller, but in most practical cases, this 

assumption is not true, as some states could be unmeasurable. Even in the cases of 

measurable states, accurate sensors can either be unavailable, or too expensive.  

In addition, one of the LQR theory drawbacks is it’s lake of robustness, so 

systems based on LQR fails to be robust to measurement noise, external disturbances 

and unmodeled dynamics (Naidu, 2002).  

In such cases, a state estimator (observer) is required. The estimator concept 

has been wildly used in the engineering filed. In addition to estimating the full states, 

the state observer can work as a noise filter to reduce the impact of measurement noise 

(Ashish, 2002; Wang, 2009).  

To design an observer for a plant, the plant should be observable, which means 

all the state variables must affect the output. If so, then based on the matrices A, B, C, 

and the input 𝑢, we may estimate the unmeasured 𝑥 states by simply duplicating the 

original system as: 

 �̇̂� = A�̂� + B𝑢 (2.96) 

Equation (2.96) represents the open loop estimator. Using it is not 

recommended, as it requires an initial state estimate for each time step. In addition, if 

the real part of the eigenvalues of the system matrix A are positive, the error will keep 

increasing.  

To overcome the disadvantages of open loop estimator, the error between the 

measured and estimated states 𝑦 − �̂� can be used to close the loop, as shown in Figure 

5. 
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Figure 5: Closed loop state estimator (Observer) block diagram 

The closed loop estimator equations are: 

 �̇̂� = A�̂� + B𝑢 + L(𝑦 − �̂�) (2.97) 

 �̂� = C�̂� (2.98) 

For every new measurement 𝑦, the value is compared with the model value �̂�, 

then the error is corrected for the full state (Brunton, 2017). 

Equation (2.97) can be rearranged as: 

 �̇̂� = [A − LC]�̂� + B𝑢 + L𝑦 (2.99) 

Where [A − LC] is the closed loop observer dynamics matrix, while 𝑢, and 𝑦 

are the inputs to the state estimator. 

It is obvious from Equation (2.99) that the closed loop estimator’s eigenvalues 

can be determined by selecting the observer gain L, if all eigenvalues have negative 

real parts, then all entries of the state’s error vector 𝑒𝑜𝑏𝑠(𝑡) = 𝑥 − �̂� will approach 

zero. But as in the state feedback control systems, determining the gain that gives the 

best eigenvalues is not a simple problem.  

In general, the estimator eigenvalues should be faster than the desired 

eigenvalues of the closed loop system, taking in consideration the saturation and noise 

problems (Chen, 2013). 
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The “optimal” way of evaluating the observer’s gain L is known as “Kalman 

filter”, which was invented in 1960 by R. E. Kalman. Kalman’s filter is an analogue 

of the LQR controller but for estimation, where it minimizes the mean square 

estimation error function 𝐽 using the covariance of the measurement and process noise 

(disturbance) as weighting matrices. 

The state space system equations, with measurement and process noise are: 

 �̇� = A𝑥 + B𝑢 + G𝑤 (2.100) 

 𝑦 = C𝑥 + D𝑢 + 𝑣 (2.101) 

Where  𝑤 is the process noise (disturbance) vector, it is a function of time, and 

may arise due to modeling errors. 

 𝑣 is also a function of time, it represents the errors in measured signals. It is 

assumed that both 𝑤 and 𝑣 are white noise vectors (Gaussian random) with 

covariances QKalman and  RKalman, respectively (Hovland, 2004). 

The mean square estimation error function 𝐽 is: 

 𝐽 = 𝔼[(𝑥(𝑡) − �̂�(𝑡)) 𝑇(𝑥(𝑡) − �̂�(𝑡))] (2.102) 

For steady state Kalman filter, the Gain L is: 

 L = SeC
TR−1 (2.103) 

Where 𝑆𝑒 is the solution of the estimator’s Riccati equation, which is: 

 SeA
T + ASe − SeC

TR−1CSe + Q = 0 (2.104) 

As with LQR design, the Optimal estimator (Kalman filter) design procedure 

is summarized as following: 

1. Checking the observability of the system and output matrices  A and  C 
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2. Using the system model to generate an estimate of the state vector 𝑥 called 

�̂�. 

3. Selecting the design parameter matrices which are the covariance matrices 

of the measurement and modeling noises QKalman, and  RKalman. These 

settings enable the designer to optimally balance the speed of state 

reconstruction with measurement noise protection (Block et al., 1997). 

The system that combines a controller designed using LQR method, and an 

optimal observer (Kalman filter), is referred to as LQG compensator.   

Figure 6 presents the block diagram of LQG. 

  

Figure 6: LQG compensator block diagram 

LQG is represented as: 

 �̇̂� = [A − BKLQR − LC]�̂� + L𝑦 (2.105) 

 𝑢 = −KLQR�̂� (2.106) 

For reference tracking case, where one or more of the desired states are non-

zero, and the objective of the controller is to reach zero steady state error 𝑒(𝑡) =

𝑟(𝑡) − 𝑦(𝑡) while canceling out the effect of the noise (Ashish, 2002). one way to 
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achieve this goal is to use feedforward gain 𝑁 to scale the reference input so that 

𝑢(𝑡) = 𝑁𝑟(𝑡) − 𝑦(𝑡). 

Another more robust and precise way is to add an integrator for each reference 

input as shown in the block diagram of Figure 7, where the integrator error equation is  

 �̇�𝐼(𝑡) = 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡) = 𝑟(𝑡) − C𝑥(𝑡) (2.107) 

In general, the integral state can be augmented into the system dynamics sate 

space model as 

 [
�̇�
�̇�𝐼

] = [
𝐴 0

−𝐶 0
] [

𝑥
𝑥𝐼

] + [
𝐵
0
] 𝑢 + [

0
𝐼
] 𝑟(𝑡) (2.108) 

where the control law 𝑢(𝑡) is 

 𝑢(𝑡) = −K [
𝑥
𝑥𝐼

] = −[K𝑥 K𝐼] [
𝑥
𝑥𝐼

] (2.109) 

The state feedback K which corresponds to K𝑥 and K𝐼 may be generated using 

LQR method as before 

 

Figure 7: LQG compensator with integral action 
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2.4.4 Model Predictive Control using Laguerre Functions 

The principle of prediction control comes basically from the idea that the future 

values of the system outputs can be predicted accurately if an accurate process model 

and current measurements are available. MPC are multivariable control algorithms that 

relay on generating process input values as a solution of a real-time optimization 

problem, constructed based on the process model and measurements, where the real-

time optimization problem takes account of system dynamics, constraints, and control 

objectives, which are not handled explicitly by other control algorithms. Compared to 

optimal control methods, MPC algorithms are known for handling constraints, as they 

permit limitations on allowable control action. This has made it wildly and 

successfully applied in many areas (Holkar and Waghmare, 2010; Nikolaou, 2001; 

Seborg et al., 2010).  

 

Figure 8: MPC block diagram (Seborg et al., 2010) 

As shown in Figure 8, the current values of the output variables are predicted 

using a process model and compared to the actual process outputs. The difference 

value (residuals) is then fed back to the prediction block. The prediction block output 

is required at each sampling instant as an input for set-point calculations and control 

calculations. the setpoints for control calculations (targets) are calculated from an 
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economic optimization based on a steady state model of the process (Seborg et al., 

2010). 

Model predictive control requires minimizing a cost function 𝐽 of the state 𝑥 

and the control input 𝑢 over a finite time horizon called the prediction horizon 𝑁𝑝 

subject to a set of state and input constraints. Based on the current measurements and 

predictions of the future values of the output, a sequence of control moves is computed 

and then applied to the system over a time horizon called the control horizon 𝑁𝑐, where 

𝑁𝑐 ≤ 𝑁𝑝, after which a new optimal control sequence is computed. The control input 

is computed and applied over a sliding window in time (Prazenica, 2014). 

 

Figure 9: How MPC works (Bemporad et al., 2014). 

The measured output, estimated outputs, and manipulated input u (past and 

planed moves) are shown in Figure 9, at the current sampling instant 𝑘 , the controller 

calculates a set of values for the input that includes the current instant 𝑘 input and the 

𝑀 − 1 future inputs to cover the control horizon length. Although 𝑀 inputs are 
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available, only the first computed input is implemented. The procedure is then repeated 

at each subsequent instant (Seborg et al., 2010).  

In MPC the process outputs are called controlled variables (CV’s), while the 

process inputs are the manipulated variables (MV’s). The main components of MPC 

are (Rossiter, 2003): 

1. Actions depend on predictions: unlike most control laws, MPC explicitly 

compute the predicted behavior over some horizon. This allows for 

restricting the choice of the proposed input trajectories to those that do not 

lead to undesired future outputs. 

2. Predictions are model based: to predict the future behavior of a process, 

there must be a model that shows the dependance of the output on the 

current measured variables and the current inputs. The model does not have 

to be linear, and because the decisions are updated regularly, model 

uncertainty can be delt with rapidly. 

3. Selecting the current input: criteria to decide which control action is the 

best is required to select the current input. Like in optimal control, this is 

done by selecting inputs that minimize a cost function. 

4. Receding horizon: predictive control works by considering the predicted 

behavior over some horizon into the future, and therefore at each following 

sampling instant, it predicts one further sample into the future. When new 

information become available the input trajectory is automatically 

modified accordingly.  

5. Optimal performance: MPC is a model-based algorithm, the more precise 

the model, the more accurate is the control.  
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6. Tuning: in MPC, stability and tuning are related to the cost function. They 

will take after themselves If the cost function is right. Tuning is usually 

straight forward if the relative importance of performance in different loops 

is defined. 

7. Handling of constraints: a major advantage of MPC over the other control 

syntheses is its ability to do systematic on-line constraint handling. This is 

done by optimizing the predicted performance subject to constraint 

satisfaction. 

8. Feed forward is integrated with the constraint handling in MPC, this allows 

the controller to take account of future changes in the desired trajectory and 

include it in the overall control design. 

9. Multivariable systems: this is one more major advantage for MPC, as it can 

deal systematically with multi variable MIMO systems.  

Using MPC in the fields of relatively fast dynamic systems, such as aerospace, 

or fast sampling frequency control-loops like power electronics, systems require long 

prediction horizons to describe the complete transitory behavior of the system. The 

classic MPC approach is not computationally efficient for long prediction horizons, as 

it can lead to poorly numerically conditioned solutions, and heavy computational effort 

when implemented in real-time (Pinheiro and Silveira, 2021; Wang, 2004). 

 Researchers have studied and presented several ways to reduce the 

computational effort in MPC. Among these methods is using Laguerre functions, 

which is implemented in this study, as it can be used to capture the future MPC control 

trajectory with small number of parameters that reduces the computational effort and 

yet gives good performance (Rossiter et al., 2010). 
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MPC is usually implemented in discrete time. The general plant discrete-time 

state space model, which can be generated easily by MATLAB® is described by: 

 
𝑥𝑚(𝑘 + 1) = A𝑚𝑥𝑚(𝑘) + B𝑚𝑢(𝑘) + Bd𝑤(𝑘) 

𝑦(𝑘) = Cm𝑥𝑚(𝑘) 

(2.110) 

With 𝑛1 states, 𝑚 inputs and 𝑞 outputs. 𝑢(𝑘) is the vector of manipulated 

variables (inputs), 𝑥𝑚(𝑘) is the state vector, and 𝑤(𝑘) is the input disturbance which 

is assumed to be a sequence of integrated white noise. 

 𝑤(𝑘) − 𝑤(𝑘 − 1) = 𝜖(𝑘) (2.111) 

To eliminate steady state errors, and in the presence of uncertainty or 

disturbances, it is necessary to embed integrators into the model (Rossiter, 2003). 

By defining: 

 
𝛥𝑥𝑚(𝑘) = 𝑥𝑚(𝑘) − 𝑥𝑚(𝑘 − 1) 

𝛥𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1) 

(2.112) 

Then 𝛥𝑥𝑚(𝑘 + 1) will be: 

 𝛥𝑥𝑚(𝑘 + 1) = 𝐴𝑚𝛥𝑥𝑚(𝑘) + 𝐵𝑚𝛥𝑢(𝑘) + 𝐵𝑑𝜖(𝑘) (2.113) 

The output 𝑦(𝑘) can be related to the state variable 𝛥𝑥𝑚(𝑘) by: 

 
𝛥𝑦(𝑘 + 1) = 𝐶𝑚𝛥𝑥𝑚(𝑘 + 1)                                                     

= 𝐶𝑚𝐴𝑚𝛥𝑥𝑚(𝑘) + 𝐶𝑚𝐵𝑚𝛥𝑢(𝑘) + 𝐶𝑚𝐵𝑑𝜖(𝑘) 

(2.114) 

By defining a new state variable vector 𝑥(𝑘) = [𝛥𝑥𝑚(𝑘)𝑇 𝑦(𝑘)𝑇]𝑇, the 

original plant model can be augmented with integrators as following: 

 

[
𝛥𝑥𝑚(𝑘 + 1)

𝑦(𝑘 + 1)
] = [

𝐴𝑚 𝑜𝑚
𝑇

𝐶𝑚𝐴𝑚 𝐼𝑞×𝑞
] [

𝛥𝑥𝑚(𝑘)

𝑦(𝑘)
] + [

𝐵𝑚

𝐶𝑚𝐵𝑚
] 𝛥𝑢(𝑘)

+ [
𝐵𝑑

𝐶𝑚𝐵𝑑
] 𝜖(𝑘) 

(2.115) 
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𝑦(𝑘) = [𝑜𝑚 𝐼𝑞×𝑞] [
𝛥𝑥𝑚(𝑘)

𝑦(𝑘)
] 

Where 𝐼𝑞×𝑞 is identity matrix with 𝑞 × 𝑞 elements, and 𝑜𝑚is a 𝑞 × 𝑛1 zero 

matrix. 

For simplicity, the augmented model is represented as: 

 
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵∆𝑢(𝑘) + 𝐵𝜖𝜖(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) 

(2.116) 

where 

 

𝐴 = [
𝐴𝑚 𝑜𝑚

𝑇

𝐶𝑚𝐴𝑚 𝐼𝑞×𝑞
] ; 𝐵 = [

𝐵𝑚

𝐶𝑚𝐵𝑚
] ; 

𝐵𝜖 = [
𝐵𝑑

𝐶𝑚𝐵𝑑
] ; 𝐶 = [𝑜𝑚 𝐼𝑞×𝑞] 

(2.117) 

The dimensionality of the augmented state-space equation is 𝑛 which equals to 

𝑛1 + 𝑞. 

Defining 𝑘𝑖 as the sampling instant, then the current plant states is denoted by 

𝑥(𝑘𝑖), and the future control trajectory is: 

 𝛥𝑈 = [𝛥𝑢(𝑘𝑖)
𝑇     𝛥𝑢(𝑘𝑖 + 1)𝑇    …   𝛥𝑢(𝑘𝑖 + 𝑁𝑐 − 1)𝑇] 𝑇 (2.118) 

Where 𝑁𝑐 is called the control horizon, which representers the number of 

parameters used for the future control trajectory. 

The future state variables are: 

𝑥(𝑘𝑖 + 1 | 𝑘𝑖)    𝑥(𝑘𝑖 + 2 | 𝑘𝑖)    …     𝑥(𝑘𝑖 + 𝑚 | 𝑘𝑖)     𝑥(𝑘𝑖 + 𝑁𝑝 | 𝑘𝑖) (2.119) 

𝑥(𝑘𝑖 + 𝑚 | 𝑘𝑖) means the predicted state variable at instant 𝑚 given the current 

plant information. 𝑁𝑝 is called the prediction horizon and represents the optimization 

window such that 𝑁𝑐 ≤ 𝑁𝑝. 
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To reduce the computational effort, the designing method selected for this 

study is Laguerre orthonormal functions based MPC. This method is proposed for 

applications where rapid system dynamics are required (Chipofya et al., 2015; Wang, 

2001). 

In this method, the control trajectory 𝛥𝑈 is expressed using a set of 

orthonormal functions called Laguerre functions. The Laguerre networks are known 

for their orthonormality. The z-transforms of the discrete-time Laguerre networks are 

written as: 

 

Γ1(𝑧) =
√1 − 𝑎2

1 − 𝑎𝑧−1
 

Γ2(𝑧) =
√1 − 𝑎2

1 − 𝑎𝑧−1

𝑧−1 − 𝑎

1 − 𝑎𝑧−1
 

⋮ 

Γ𝑁(𝑧) =
√1 − 𝑎2

1 − 𝑎𝑧−1
(
𝑧−1 − 𝑎

1 − 𝑎𝑧−1
)𝑁−1 (2.120) 

Where 𝑎 is the pole of the discrete-time Laguerre network, it is also called the 

scaling factor, and is required to be selected by the user. For stability of the network, 

it should be 0 ≤ 𝑎 ≤ 1 . 

 N is the order of the Laguerre network, and it is used to capture the control 

signal, it has a role similar to the control horizon in classical MPC. 

The inverse z-transform of Γ𝑁(𝑧) is denoted by 𝑙𝑁(𝑘), and so the set of discrete 

time Laguerre functions for 𝑖 = 1,… ,𝑚 inputs are represented in vector form as: 

 𝐿𝑖(𝑘) = [𝑙1(𝑘)     𝑙2(𝑘)   …  𝑙𝑁(𝑘)] 𝑇 (2.121) 

𝐿𝑖(𝑘) can be solved as: 

 𝐿𝑖(𝑘 + 1) = 𝐴𝑙𝑖
𝐿𝑖(𝑘) (2.122) 
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Where 𝐴𝑙𝑖
 is (𝑁 × 𝑁) matrix and a function of 𝑎 and 𝛽 = (1 − 𝑎2) 

The initial condition of (2.121) is: 

 𝐿𝑖(0) = √𝛽 [1    − 𝑎     𝑎2    …  (−1)𝑁−1𝑎𝑁−1]𝑇 (2.123) 

The Laguerre functions orthonormality is used in the design of discrete time 

MPC, and is represented by: 

 ∑ 𝑙𝑖(𝑘) 𝑙𝑗(𝑘) = 0      𝑓𝑜𝑟    𝑖 ≠ 𝑗

∞

𝑘=0

 (2.124) 

 ∑ 𝑙𝑖(𝑘) 𝑙𝑗(𝑘) = 1       𝑓𝑜𝑟    𝑖 = 𝑗

∞

𝑘=0

 (2.125) 

At time instant 𝑘𝑖, the control trajectory 𝛥𝑈 (2.118) is regarded as the impulse 

response of a stable dynamic system. Thus, a set of Laguerre functions, 

𝑙1(𝑘), 𝑙2(𝑘), … , 𝑙𝑁(𝑘) can be used to capture this response with a set of Laguerre 

coefficients 𝑐𝑗 that is determined during the design. At an arbitrary future time instant 

𝑘, ∆𝑢(𝑘𝑖 + 𝑘) is represented as: 

 ∆𝑢(𝑘𝑖 + 𝑘) =  ∑𝑐𝑗(𝑘𝑖)𝑙𝑗(𝑘)

𝑁

𝑗=1

= 𝐿𝑖(𝑘)𝑇𝜂𝑖 (2.126) 

Where 𝑐𝑗are functions of the initial time instant of the moving horizon window 

𝑘𝑖, and 𝜂𝑖 = [𝑐1  𝑐2  …  𝑐𝑁]𝑇. 

The control horizon 𝑁𝑐 from the classical MPC vanishes here, instead, the 

number of terms 𝑁 and the parameter 𝑎 are used to describe the control trajectory 

complexity. 

The goal is now to find the optimal coefficient vector 𝜂 that minimizes the cost 

function 𝐽, where 𝐽 is written as: 
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 𝐽 = ∑ 𝑥(𝑘𝑖 + 𝑚 |𝑘𝑖)
𝑇Q 𝑥(𝑘𝑖 + 𝑚 |𝑘𝑖) + 𝜂𝑇 R 𝜂

𝑁𝑝

𝑚=1

 (2.127) 

The matrices Q and R are symmetric positive definite weighting matrices 

similar to those used in LQR optimal design. 

Once the optimal coefficient vector 𝜂 is found, the receding horizon control 

law is obtained using (2.126), which can be written in form of linear state feedback 

control as  (Wang, 2009). 

 ∆𝑢(𝑘) =  −𝐾𝑚𝑝𝑐𝑥(𝑘) (2.128) 

Where  

𝐾𝑚𝑝𝑐 = 𝐿𝑖(0)𝑇 ((∑ 𝜙(𝑚)
𝑁𝑝

𝑚=1
𝑄 𝜙(𝑚)𝑇 + R)

−1

∑ 𝜙(𝑚)
𝑁𝑝

𝑚=1
Q𝐴𝑚)  

or 

 𝐾𝑚𝑝𝑐 = 𝐿𝑖(0)𝑇𝛺−1𝛹 (2.129) 

Where 𝜙(𝑚)𝑇 = ∑ 𝐴𝑚−𝑖−1𝐵𝐿(𝑖)𝑇𝑚−1
𝑖=0  is the convolution sum to compute the 

prediction of the system shown in (2.15), 𝛺 = ∑ 𝜙(𝑚)
𝑁𝑝

𝑚=1 Q 𝜙(𝑚)𝑇 + R and 𝛹 =

∑ 𝜙(𝑚)
𝑁𝑝

𝑚=1 Q𝐴𝑚. 

Because the prediction of future states is based on the current information on 

𝑥(𝑘𝑖), the set-point information is contained in 𝑥(𝑘𝑖) as follows: 

 

𝑥(𝑘𝑖) = [
𝛥𝑥𝑚(𝑘𝑖)

𝑒(𝑘𝑖)
] 

𝑒(𝑘𝑖) = 𝑦(𝑘𝑖) − 𝑟(𝑘𝑖) 

(2.130) 

And the 𝐾𝑚𝑝𝑐 gain can be rewritten and divided into two parts as: 
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 𝐾𝑚𝑝𝑐 = [𝐾𝑥 𝐾𝑒] (2.131) 

Then the closed loop of discrete time MPC using Laguerre function is: 

 

[
𝛥𝑥𝑚(𝑘 + 1)

𝑦(𝑘 + 1)
] = (𝐴 − 𝐵𝐾𝑚𝑝𝑐) [

𝛥𝑥𝑚(𝑘)

𝑦(𝑘)
] + 𝐵𝐾𝑒𝑦(𝑘) 

𝑦(𝑘) = 𝐶 [
𝛥𝑥𝑚(𝑘)

𝑦(𝑘)
] 

(2.132) 

The operational constraints are known as a reason for performance 

deterioration of the control system when the control signals from the original design 

meet them. The ability to handle hard constraints is one of the main features of MPC. 

In this study the constraint on the difference of control variable and on the amplitudes 

of the control signal are studied. This investigation is motivated by the hard 

constrained mentioned for the experimental work of Block et al. (1997), where the 

dynamics of the motor are neglected, but the maximum possible flap angle is reported 

to be ± 32° and the minimum motor increment is 0.016°. And it is assumed that the 

motor reacts exactly as specified, as long as the maximum velocity does not exceed 

4.75 rad/s.  

Using the Laguerre functions in the design, the incremental control signal is 

represented by: 

 ∆𝑢(𝑘𝑖 + 𝑚) = 𝐿(𝑚)𝑇𝜂 (2.133) 

In principle, all the constraints are defined within the prediction horizon and 

processed as linear inequalities combined with the cost function. In other words, the 

optimization procedure is now to minimize the cost function 𝐽, while ensuring that: 

 Δ𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘𝑖 + 𝑚) ≤ Δ𝑢𝑚𝑎𝑥 (2.134) 

and  
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 𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘𝑖 + 𝑚) ≤ 𝑢𝑚𝑎𝑥 (2.135) 

2.5 Discrete Time Kalman Filter 

As with the LQG, an estimator (observer) is required to estimate the state 

variables from the available output. If the pair 𝐴𝑚 and 𝐶𝑚 are observable, then: 

 �̂�(𝑘𝑖 + 1) = 𝐴�̂�(𝑘𝑖) + 𝐵∆𝑢(𝑘𝑖) + 𝐾𝑜𝑏𝑠(𝑦(𝑘𝑖) − 𝐶�̂�(𝑘𝑖)) (2.136) 

Where 𝐾𝑜𝑏𝑠 is the gain matrix for Kalman filter, and �̂�(𝑘𝑖) is the current 

observer state. 

As in the continues time Kalman filter, the gain 𝐾𝑜𝑏𝑠 is found by solving the 

discrete time Riccati equation (Outanoute et al., 2018; Wang, 2009).  

 𝑃(𝑘 + 1) = 𝐴𝑃𝐴𝑇 − 𝐴𝑃𝐶𝑇(R + 𝐶𝑃𝐶𝑇)−1𝐶𝑃𝐴𝑇 + Q (2.137) 

Then 𝐾𝑜𝑏𝑠(𝑘) can be calculated as: 

 𝐾𝑜𝑏𝑠(𝑘) = 𝐴𝑃𝐶𝑇(𝑅 + 𝐶𝑃𝐶𝑇)−1 (2.138) 

Where Q and R are the cost (weighting) matrices and are chosen by the 

designer. 

2.6 System’s Performance Measures and Indices 

The controller’s performance can be quantitatively evaluated by a set of 

performance measures and indices.  

Three performance measures are used in this study to compare the different 

controllers step responses. The 10-90% rise time 𝑇𝑟 to give an indication for the 

swiftness of the response. The present overshoot 𝑃. 𝑂. that gives information about the 

similarity or closeness with which the response matches the step input. And the settling 

time 𝑇𝑠 which indicates how fast the system settle within 2% of the final value.  
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In addition to those measures, the integral of the square of the error, ISE, 

performance indicator is used. It is defined as: 

 𝐼𝑆𝐸 =  ∫ 𝑒2(𝑡) 𝑑𝑡

𝑇

0

 (2.139) 

Where the error 𝑒 is the deference between the input and output signals, as 

shown in Figure 10, and the integral upper limit 𝑇 is the settling time (Dorf and Bishop, 

2008). 

In a similar way, the integral of the control action (ISU) associated with the 

input 𝑢 is: 

 𝐼𝑆𝑈 =  ∫ 𝑢2(𝑡) 𝑑𝑡

𝑇

0

 (2.140) 

 

Figure 10: The calculation of the integral squared error ISE (Dorf and Bishop, 2008). 
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Chapter 3 : Results and Discussion 

This Chapter will present the MATLAB® simulation results. Initially, the 

stability analysis of the open loop system, and flutter speed determination has been 

done using the mathematical model developed in Section 2.1, the system parameters 

used are taken from Conner et al. (1997) and shown in Table 1. 

Table 1: System’s numerical data for simulation (Conner et al., 1997). 

Geometric parameters 

Chord 0.254 m 

Span 0.52 m 

Semi-chord, b 0.127 m 

Elastic axis, a with respect to b -0.5 

Hinge line, c with respect to b 0.5 

Mass parameters 

Mass of the wing 0.62868 kg 

Mass of the aileron  0.18597 kg 

Mass/length of the wing-aileron 0.1558 kg/m 

Mass of support blocks 0.47485 × 2 kg 

Inertial parameters 

Sα (per span) 0.08587 kg m 

Sβ (per span) 0.00395 kg m 

xα  0.434 

xβ 0.01996 

Iα (per span) 0.01347 kg m2 

Iβ (per span) 0.0003264 kg m2 

rα 0.7321 

rβ 0.11397 

κ 0.03984 

Stiffness parameters 

Kα (per span) 14861 1/s2 

Kβ (per span) 155 1/s2 

Kh (per span) 1809 1/s2 

Damping parameters 

ζα (log-dec) 0.01626 

ζβ (log-dec) 0.0115 

ζh (log-dec) 0.0113 
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3.1 Open Loop Analysis 

Using the eigenvalue analysis on the state space model, the modal damping 

(real part), and the oscillation frequencies (imaginary part) has been simulated for a 

constant air density (1.225 kg/m3), in the velocity range at which the flutter is expected. 

The plot of the real part of eigen values (modal damping) with the air speed is shown 

in Figure 11. The instability (flutter speed) was found at the point where the modal 

damping passed through zero which was 23.96 m/s at a frequency of 6.12 Hz as 

presented in Figure 12. 

To validate the mathematical model, the open loop analysis results can be 

compared to the numerical and experimental work of Conner et al. (1997). Where the 

numerical results are very close at 23.9 m/s and 6.112 Hz, while the experimental 

results are within 15% difference at 20.6 m/s and 5.47 Hz. According to Conner et al. 

(1997), this error is most likely due to the aerodynamic effects that are not modeled by 

Theodorsen model, and due to the three-dimensional aerodynamic effects in the wind 

tunnel.  

Figure 11 shows that the damping of both modes initially increases (in negative 

direction), but at some point, the pitching mode damping continues to increase, while 

the plunge mode damping starts to decrease and becomes zero at the flutter speed of 

23.96 m/s. after this critical speed, the plunge damping becomes positive (Prazenica, 

2014). 

From Figure 12, it is noticed that as the airspeed increases, the pitch and plunge 

frequencies of the system begin to approach each other near the flutter speed without 
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coalesce, but rather move close enough in frequency for the two modes to couple 

(Wright and Cooper, 2008).  

 

Figure 11: Modal damping at air speed range 0 – 28 m/s. 

 

Figure 12: System's oscillation frequencies 

To confirm the previous result, plunge, pitch, and flap angle system’s response 

to initial condition (2° pitch angle disturbance) has been simulated in the time domain 

before flutter speed at 23.72 m/s and after flutter speed at 24.20 m/s. The results plotted 

in Figure 13. The plot shows that at less than the critical flutter speed, the oscillation 
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of the plunge, pitch and flap angle asymptotically approaches zero within few seconds. 

Hence, the aeroelastic system is stable at this free stream velocity. While at a speed of 

flow that is slightly higher than the critical flutter speed, the oscillations of the three 

degrees of freedom continue to grow without bound as time increase. In less than 6 

seconds the plunge amplitude reached around 12 mm while the pitch angle crossed 4°. 

On other words a small accidental disturbance of the airfoil can act as a trigger to 

initiate an oscillation of great violence. It is obvious that applying such oscillation to 

a real physical system will eventually lead wing separation or damage (Fung, 2002). 

 

Figure 13: open loop system response to initial condition 
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Next, a reference input of 5° has been applied to the open loop system at a 

speed before that is less than the flutter critical speed. The open loop step response is 

plotted in Figure 14 below. The plot shows that the system failed to track the reference 

input. The output is stable but with oscillations that starts aggressively with high 

amplitudes and frequency then decay with time. In addition, the steady state error is 

quite high and unsatisfactory. 

 

Figure 14: Open loop step response at a speed that is less than the critical flutter speed 

3.2 Closed Loop Linear Quadratic Gaussian Compensator  

The system that combines an optimal linear quadratic regulator, and an optimal 

observer (Kalman filter), is referred to as Linear Quadratic Gaussian compensator. In 

this section, The LQG closed system response to initial disturbance, and the response 

to step input were tuned and simulated at 25.52 m/s air speed, that is 10% higher than 

the critical flutter speed where the open loop system is unstable. The same system 

parameters used in the open loop analysis are also applied here.  

The Simulink diagram for the aeroelastic system with LQG and integral action 

is shown in Figure 15. 
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Figure 15: Simulink block diagram of the aeroelastic system with LQG controller and 

integrator 

The controllability and observability were checked through MATLAB®. 

Where both of them were found to be full rank matrices, this means that a successful 

controller and observer can be designed.  

Next, the LQR tuning process was performed through trial and error of 

different combinations for Q and R weighting matrices, where a quantitative analysis 

for each combination has been done, and the results are shown in Table 3 andTable 4 

for the regulator and reference tracking cases respectively. 

To set a target for the required performance, the actuator limitations presented 

in the experimental work of Block et al. (1997) were selected as limitations (physical 

constraints) for this study. These constraints are summarized in Table 2 below. So, the 

required performance is the fastest possible within these limitations. 
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Table 2: The control surface (flap) actuator physical constraints (Block et al., 1997) 

Constraint description Value 

The maximum control surface deflection (𝒖) ± 32° 

The minimum possible motor increment is  0.016° 

The maximum velocity of control surface deflection   
𝒅𝒖

𝒅𝒕
  270 deg/s 

 

For the optimal observer (Kalman filter), the process noise covariance Q𝑘𝑎𝑙𝑚𝑎𝑛 

was chosen to be 0.001 for all states, and the covariance R𝑘𝑎𝑙𝑚𝑎𝑛 of the measurement 

noise was 0.01. Kalman filter estimates the process states by trading off between the 

measured and estimated data. 

The effect of varying the 𝑄 value for each of the displacement states ℎ, 𝛼, and 

𝛽 , appears from the results of trials 1 to 3 in Table 3. The (ISE) and settling time 𝑇𝑠 

for all state, in addition to the control effort (ISU) achieve the lowest value (best 

performance) when the  weight 𝑄ℎ of plunge displacement state is the highest among 

the other states. While results 3 to 5 show that although the value the control cost 𝑅 

has increased by five times, the impact on the indices value, and the maximum of 

control input are negligible.  

Table 3: Quantitative analysis for the regulator performance as the states weight Q 

change 

Trial 

No. 
Qh Qα Qβ R 

Ts 

for h 

ISE 

for h 

Ts 

for α 

ISE 

for α 

Ts 

for β 

ISE 

for β 
ISU 

u(deg)  

max. 

du/dt 

max 

1 50 50 250 50 1.6 1.41 1.5 0.49 1.6 3.7 4.52 2.9 117 

2 50 250 50 50 1.9 1.83 1.6 0.47 1.9 4.6 5.06 2.8 118 

3 250 50 50 50 1.4 1.02 1.4 0.47 1.5 3.3 3.82 3.0 126 

4 250 50 50 100 1.5 1.11 1.4 0.46 1.5 3.3 3.80 3.0 125 

5 250 50 50 250 1.5 1.19 1.4 0.46 1.6 3.6 3.99 2.9 123 

 

In summary, the regulator tuning trial 3 seems to be the best as it gives the 

fastest performance, and the lowest ISE.  
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Similar procedure has been used to tune and analyze the reference trucking 

case, where the results of the trials presented in Table 4 are all showing good 

performance with less than 0.7 seconds for settling time, and maximum overshoot of 

12%. Furthermore, the required control inputs are within the systems physical 

limitations of Table 2. 

Table 4: Quantitative analysis for the reference tracking performance as the control 

effort wight R changes. 

Trial 

No. 
Qh Qα Qβ R 

ISE  

for β 
Tr P.O. % Ts ISU 

u  

max. 

du/dt 

max. 

1 250 50 50 50 0.78 0.09 11.2 0.64 2.78 7.1 260 

2 250 50 50 100 0.85 0.10 7.65 0.63 2.22 6.9 185 

3 250 50 50 250 0.92 0.11 4.11 0.56 2.20 6.7 117 

 

From Table 4, it can be noticed that the effect of the control cost value 𝑅, on 

the performance of reference tracking is more significant than that on the regulator 

performance. The cheaper the control cost, the faster is the Rise time, but this comes 

with higher overshoot, and higher control ISU.  

The tuning combination of trial 4 from Table 3 is used to plot the regulator 

response to initial disturbance and the results are presented in Figure 16 andFigure 17, 

it is clear that the closed loop system is asymptotically stable. As the values of the 

three position states and the three rate states have settled in around 1.5 seconds. In 

addition, Figure 16 shows that the Kalman filter has successfully converged to the 

actual state values, where state estimates matched the actual states perfectly in less 

than 0.5 seconds. 
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Figure 16: LQG closed loop response to initial disturbance – Displacement states 

 
Figure 17: LQG closed loop response to initial disturbance – Rate states 



61 

 

 

 

 

 

 

Figure 18: LQG closed loop response to initial disturbance – Control signal 

Next, the flap angle tracking case has been simulated using LQG compensator 

with integral action to obtain a constant output with zero steady state error. 

Using the same stream speed of 25.52 m/s, and the tuning combination of trial 

2 in Table 4, the response to a 5° step input is plotted in Figure 19, and the control 

input 𝑢 with its time rate of change 
𝑑𝑢

𝑑𝑡
 are in Figure 20. 

 

Figure 19: Step response results using LQG compensator with integral action 
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Figure 20: The control input and its rate of change - reference tracking case 

From the plots, it is obvious that the compensator simulation has successfully 

derived the flap to the desired position in a very short time (0.6 sec), with zero steady 

state error while maintaining the stability of the system.  

3.3 Closed Loop Discrete Model Predictive Control using Laguerre Functions 

As with LQG, the closed system response to initial disturbance, and the 

reference tracking cases were simulated at 26.36 m/s air speed. The system parameters 

used here are similar to those used in the open loop and LQG analysis. 

MPC tuning was performed through varying the control cost R value and 

setting the input constraints. Then deciding the best performance by the quantitative 

analysis as shown in Table 5 and Table 6 for the regulator, and reference tracking 

cases. 
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Table 5: Quantitative analysis for MPC regulator performance with and without 

constraints 

Trial 

No. 
R 

u(deg) 
Input 

Const. 

du/dt 

Input 

Const. 

Ts 

for h 

ISE 

for h 

Ts 

for α 

ISE 

for α 

Ts 

for β 

ISE 

for β 
ISU 

Actual 

u (deg) 

max. 

Actual 

du/dt 

max. 

1 25 No No 0.6 0.02 0.7 0.02 0.5 0.16 0.14 11.8 2,000 

2 50 No No 0.8 0.03 0.8 0.02 0.6 0.17 0.15 7.9 1,194 

3 25 10 105 0.8 0.03 0.8 0.02 0.7 0.13 0.16 3.9 105 

4 50 10 105 0.8 0.03 0.8 0.02 0.8 0.14 0.16 3.7 105 

 

From Table 5, the performance is in general higher when control cost 𝑅 value 

is less, this result is expected as it comes with higher values for the maximum control 

input and control input rate. The control input rate in trials 1 and 2 is much higher that 

the control input limits (constraints) set in Table 2. 

Moving to trials 3 and 4, it’s clear that in the presence of the controller 

imbedded input constraints, the significance of the control cost R tuning is much less, 

as there is almost no difference in performance between these two trials.  

The plots of Figure 21 and Figure 22 show the simulated states of the three 

degree of freedom displacements and rates of change. Using the parameters of trials 2 

and 4 from Table 5. The system states in both trials were successfully and very quickly 

driven to zero in around 0.8 seconds only after a disturbance of 2° at the pitch angle 

value. Nevertheless, with the unconstrained MPC the state’s amplitudes are higher at 

the beginning. 
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Figure 21: MPC using Laguerre functions - Response to initial disturbance – 

Displacement States 
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Figure 22: MPC using Laguerre functions - Response to initial disturbance – Rate of 

change states 

 

Figure 23: MPC – System’s response to initial disturbance - Unconstrained control 

input and its rate of change 
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Figure 24: MPC – System’s response to initial disturbance - Constrained control input 

and its rate of change 

Figure 23 and Figure 24 present the unconstrained and constrained control 

input and input rate respectively. Where the unconstrained input rate reaches 1,194 

degrees per second, which exceeds the physical limitations of the actuator as 

mentioned earlier. On the other hand, the constrained input rate is way less at 105 

degrees per second only without negative impact on the controller performance. 

Table 6: Quantitative analysis for MPC reference tracking performance 

Trial 

No. 
R 

u(deg) 
Input 

Const. 

du/dt 

Input 

Const. 

ISE  

for β 
Tr P.O. % Ts ISU 

u  

max. 

du/dt 

max. 

1 25 No No 0.04 0.08 21 0.46 0.17 7.6 332 

2 50 No No 0.04 0.08 19 0.47 0.17 7.5 263 

3 25 10 105 0.05 0.09 20 0.47 0.18 7.6 105 

4 50 10 105 0.06 0.09 18 0.48 0.18 7.5 105 

 

The MPC controller with the same choice of parameters and tuning procedure 

shown in Table 6 is next applied to the reference tracking case. Table 6 and Figure 25 
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show that the response is very fast with a settling time of less than 0.5 seconds, and 

overshoot that does not exceed 20%. These results are very satisfactory. 

Similar to the regulator case, Figure 26 and Figure 27 show that the control 

input rate exceeds the physical limitations when there is no constrained applied at the 

controller. While by using the MPC feature of systematically handling physical 

constraints, the input signal remains within the allowable limit without effecting the 

controller’s performance. 

 

Figure 25: MPC– Reference tracking - Input and output simulated signals 

 

Figure 26: MPC– Reference tracking - Unconstrained control input and its rate of 

change 
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Figure 27: MPC– Reference tracking - Constrained control input and its rate of change 

3.4 Controllers Comparison  

The results presented in the previous sections has proofed that both the optimal 

controller LQG and constrained MPC using Laguerre functions are both capable of 

suppressing the wing flutter with satisfactory performance. The designs that showed 

the best performance from the results of both controllers are compared in Table 7 and 

Table 8.  

It is obvious that the constrained MPC using Laguerre functions outperforms 

the LQG in both regulation and reference tracking cases. MPC regulator has achieved 

more than 40% less settling time with much less control energy indicated by the ISU 

value.  

Although the difference in settling time is not significant when comparing the 

reference tracking case, it can be observed from Table 8 that the power consumption, 

associated to the ISU index, and the tracking performance, associated to the ISE index 
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were much smaller for the constrained MPC. This means that MPC is solving the same 

problem more efficiently and using less power to do so. 

Table 7: LQG and constrained MPC - Regulator - Quantitative comparison 

Trial 

No. 
Controller 

Ts 

for h 

ISE 

for h 

Ts 

for α 

ISE 

for α 

Ts 

for β 

ISE 

for β 
ISU 

u  

max. 

du/dt 

max. 

1 LQG 1.4 1.02 1.4 0.47 1.5 3.3 3.82 3.0 126 

2 
Constrained 

MPC 
0.8 0.03 0.8 0.02 0.7 0.13 0.16 3.9 105 

 

Table 8: LQG and constrained MPC – Reference tracking - Quantitative comparison 

Trial 

No. 
Controller 

ISE  

for β 
Tr P.O. % Ts ISU 

u  

max. 

du/dt 

max. 

1 LQG 0.92 0.11 4.11 0.56 2.20 6.7 117 

2 
Constrained 

MPC 
0.05 0.09 20 0.47 0.18 7.6 105 
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Chapter 4 : Conclusions and Future Work 

 

4.1 Conclusions 

This study aimed to investigate the effectiveness of using discrete MPC in 

suppressing the flutter of a two-dimensional wing with a control surface (flap). It 

started with the derivation of the full eight state (ℎ̇, �̇�, �̇�, ℎ, 𝛼, 𝛽, ℓ1, ℓ2) aeroelastic 

system equations of motion using the Lagrange’s energy method and Theodorsen’s 

method for the unsteady aerodynamic forces. The system has then been converted to 

the state space representation. The open loop flutter speed and frequency were 

evaluated using the eigenvalue analysis, which was found to be 23.96 m/s at a 

frequency of 6.12 Hz for the selected system parameters. These results were compared 

in section 3.1 to the previous simulation and experimental work done by Conner et al. 

(1997) for model verification, where a good match was confirmed. 

The open loop responses to initial disturbance, before and after the flutter 

critical speed, were examined through MATLAB® numerical simulation, where the 

disturbance after flutter speed generated an unstable oscillation with diverging 

amplitude that would cause separation of wing or damage if applied to a real physical 

structure. Furthermore, even though the oscillation generated before flutter speed was 

convergent, it dissipated very slowly to the level that may also lead to structural harm 

with repetition. In addition, trying to derive the flap angle of the open loop system to 

a desired position (step response) has also failed, where it started with aggressive 

oscillation and ended with a respectively high steady state error.  

Next, a LQG compensator was designed and simulated to stabilize the system 

in the flutter region and derive the control surface (flap) to any desired angle accurately 
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with zero steady state error. After a tuning process, the numerical simulation results 

demonstrated a very satisfactory results under the selected physical limitations. 

Later, a constrained MPC controller using Laguerre function was designed and 

simulated for the same system. From to the regulator case results, it can be noticed that 

the MPC outperformed the LQG by saving more than 40% of the states settling time 

while driving them to zero after an initial disturbance. In addition, MPC achieved that 

with much less control energy indicated by the ISU index.  

Although settling time required by MPC for tracking the step input was only 

slightly less than the that of LQG, but the tracking goal was accomplished with much 

less power consumption, associated to the ISU index, and better tracking performance, 

associated to the ISE index. In addition, the ability to systematically deal with 

constrains was also investigated, this feature alone gives a strong preference reason to 

predictive control over other approaches. As the designer does not have to worry about 

the performance deterioration due control signal saturation when it run into system 

physical limits. 

4.2 Future Work 

Due to the precautionary measures associated with the spread of COVID-19 

during the study period, experimental work to verify the results could not be 

performed. So future work has to include the experimental verification, with further 

fine-tuning of the Laguerre functions, and MPC parameters to try to find the best 

possible performance. Furthermore, the analysis and comparison between the two 

studied controllers in terms of robustness and adding gain scheduling to cover different 

operational speeds could be done.  
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Although this study focused on a three degree of freedom linear flutter model, 

it revealed the benefits of using active control, and the advantages of the model 

predictive control with an aeroelastic system. To move some more steps in the 

direction of applying active flutter control in aerospace industry, the research efforts 

have to be directed towards more complex mathematical model and controller. There 

are many undiscussed other factors that may make affect the system performance. In 

this study, the mathematical model derivation has been done assuming uncompressible 

flow, this could be valid at low speeds only. The flutter analysis and the predictive 

controller performance at the supersonic and hypersonic regimes can make a good 

subject for future work. In addition to the system nonlinearities which was not 

discussed. Considering these factors in future studies result in more practical 

Aeroservoelasticity system and take the research a few steps forward. 

Furthermore, redundancy must be taken into consideration while designing the 

active flutter suppression system to avoid the catastrophic results in case of system 

failure. Other factors like the effect of the active flutter suppression on the 

aerodynamic forces and the interaction with other systems have also to be considered. 
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Appendices 

 

Appendix A: Theodorsen’s Functions 

These functions are required to include the effect of a control surface on the 

aerodynamics and so the flutter dynamics of the model (Theodorsen, 1935). 

 

𝑇1 = −
1

3
√1 − 𝑐2(2 + 𝑐2) + 𝑐 cos−1(𝑐) (A.01) 

𝑇2 = 𝑐(1 − 𝑐2) − √1 − 𝑐2(1 + 𝑐2) cos−1(𝑐) + 𝑐[cos−1(𝑐)]2 (A.02) 

𝑇3 = −(
1

8
+ 𝑐2) [cos−1(𝑐)]2 +

1

4
𝑐√1 − 𝑐2 cos−1(𝑐)(7 + 2𝑐2) −

1

8
(1 − 𝑐2)(5𝑐2 + 4) (A.03) 

𝑇4 = −cos−1(𝑐) + 𝑐√1 − 𝑐2 (A.04) 

𝑇5 = −(1 − 𝑐2) − [cos−1(𝑐)]2 + 2𝑐√1 − 𝑐2 cos−1(𝑐) (A.05) 

𝑇6 = 𝑇2 (A.06) 

𝑇7 = −(
1

8
+ 𝑐2) cos−1(𝑐) + 

1

8
𝑐√1 − 𝑐2 (7 + 2𝑐2) (A.07) 

𝑇8 = −
1

3
√1 − 𝑐2(2𝑐2 + 1) + 𝑐 cos−1(𝑐)  (A.08) 

𝑇9 =
1

2
[
1

3
(1 − 𝑐2)

3
2 + 𝑎𝑇4] (A.09) 

𝑇10 = √1 − 𝑐2 + cos−1(𝑐) (A.10) 

𝑇11 = cos−1(𝑐)(1 − 2𝑐) + √1 − 𝑐2 (2 − 𝑐) (A.11) 

𝑇12 = √1 − 𝑐2(2 + 𝑐) − cos−1(𝑐)(1 + 2𝑐) (A.12) 

𝑇13 =
1

2
[−𝑇7 − (𝑐 − 𝑎)𝑇1] (A.13) 

𝑇14 =
1

16
+

1

2
𝑎𝑐 (A.14) 
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Appendix B: MATLAB® Codes 

The MATLAB codes used in the analysis and simulation of this study results 

are listed in this appendix, a summary and brief description about each code is in the 

table below  

No. File Name Description 

01 Main_LQG.m The main code for the open loop system analysis 

in addition to the LQG closed loop controller 

design and analysis 

02 Main_UCLMPC.m The main code for discrete MPC using Laguerre 

functions without constraints controller design and 

simulation 

03 Main_CLMPC.m The main code for discrete MPC using Laguerre 

functions with input constraints controller design 

and simulation 

04 Airfoil.m The airfoil parameters used in the simulation are 

saved here 

05 Modal_Data.m A function that calculates and sorts the open loop 

eigenvalues then finds the open loop flutter 

frequency and speed 

06 SS_Matrices.m A function to find the state space matrices for the 

system at a specific air speed and density 

07 Flutter_LQI.m 

 

A function to find the gain matrices for the LQR 

controller, the Kalman filter, and the integral 

action. 

08 dmpc.m 

 

A function for generating the data matrices used in 

the design of the discrete MPC using Laguerre 

functions controller 

09 lagd.m A function to generates the initial condition of the 

Laguerre function, and the state space system 

matrix Al 

 

10 simuucob.m A function for MIMO closed loop MPC 

simulation, using Kalman filter, without 

constraints. 

11 simucob.m A function for MIMO closed loop MPC 

simulation, using Kalman filter, with constraints 

on the control input and its rate of change. 

12 ISEPerformance.m A function to calculate The Integral of Square of 

the Error ISE Performance index  
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%-------------------------------------------------------------------------% 

%------------------------------ Main_LQG.m -------------------------------% 

%-------------------------------------------------------------------------% 

% Open Loop system analysis and LQG system design 

close all 

clear 

clc 

%------------------------------ Input Data -------------------------------% 

  

rho = 1.225; % Ambient air density [kg/m^3] 

U = linspace(0, 28, 56), % Airspeed range to analyses [m/s] 

  

%---------------------- Find Open loop flutter speed ---------------------% 

  

Airfoil; 

load('Airfoil'), 

  

[U_f, f_f, f_h, f_a, f_B, g_h, g_a, g_B,l] = Modal_Data(U, rho), 

  

 disp('Open loop flutter speed is (m/s):') 

 disp(U_f) 

 disp('Open loop flutter frequency is (Hz):') 

 disp(f_f) 

  

%-------------------------- Plots of Flutter speed ------------------------% 

  

% Plot the open loop Modal damping (real part) against the Air speed range 

  

figure (1) 

plot(U,g_h,'k',U,g_a,'b',U,g_B,'--',U_f,0,'O','LineWidth',1.2) 

txt = ' \leftarrow Flutter Point'; 

text(U_f,0,txt) 

grid on 

title('Finding The Open loop Flutter Speed', 'FontSize', 11) 

xlabel('Air Speed m/s') 

ylabel('Modal Damping Hz') 

legend('Modal Damping of Plunge Motion h','Modal Damping of Pitching Motion 

\alpha','Modal Damping of The Flap Angle \beta', ['Flutter Velocity (', 

num2str(U_f, '%.2f'), ' \itm/s\rm)'], 'FontSize', 11,'Location','southwest') 

  

% Plot the open loop oscillation frequencies (imaginary part) against the 

Air speed range 

  

figure (2) 

plot(U,f_h,'k',U,f_a,'b',U,f_B,'--',U_f,f_f,'O','LineWidth',1.2), 

grid on 

title('Finding The Open-loop Flutter Frequency', 'FontSize', 11) 

xlabel('Air Speed m/s') 

ylabel('Frequency Hz') 

  

legend('Frequency of Plunge Motion f_{h}','Frequency of Pitching Motion 

f_{\alpha}','Frequency of The Flap Motion f_{\beta}', ['Flutter Frequency 

(', num2str(f_f, '%.2f'), ' Hz)'], 'FontSize', 11) 

%-------------------- Open loop system Analysis -------------------------% 

  

% Initial conditions for open loop system response 

  

X_0 = [0; % Initial plunge rate 

0; % Initial pitch rate 

0; % Initial control surface rate 

0; % Initial plunge displacement 

2*pi/180; % Initial pitch displacement [rad.] 

0; % Initial control surface angle [rad.] 

0; % Initial aerodynamic lag (1st state) 

0]; % Initial aerodynamic lag (2nd state) 

  

states = {'h_dot' 'Alpha_dot' 'Beta_dot' 'h' 'Alpha' 'Beta' 'l1' 'l2'}; 
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inputs = {'Aileron'}; 

outputs = {'\beta'}; 

  

tau = 0:0.1:300; % set the dimensionless time range 

t=tau./w_na; % transform the dimensionless time to real time to use in plots 

r =ones(size(tau))*0; % define the input matrix 

  

% the state space matrices before flutter speed  

BF_U = U_f*0.99; % The air speed before flutter is set at 99% of the flutter 

speed 

[A_b,B_b,C_b,D_b]= SS_Matrices (BF_U,rho), 

BF_sys = ss(A_b,B_b,C_b,D_b, 'statename', states, ... 

    'inputname', inputs, 'outputname', outputs), 

  

% I.C. open loop system response before flutter 

[y_BF,tau,x_BF]=lsim(BF_sys,r,tau,X_0), 

  

% The state space matrices after flutter speed  

  

AF_U=U_f*1.01; % The air speed after flutter is set at10% higher than 

flutter speed 

[A_f,B_f,C_f,D_f]= SS_Matrices (AF_U,rho), 

AF_sys = ss(A_f,B_f,C_f,D_f, 'statename', states, ... 

    'inputname', inputs, 'outputname', outputs), 

  

[y_AF,tau,x_AF]=lsim(AF_sys,r,tau,X_0), 

  

%----------------- Open loop I.C response Beta = 2 deg --------------------%  

figure (3) 

subplot (311) 

plot(t,x_BF(:,4)*b*1000, t,x_AF(:,4)*b*1000,'LineWidth',1.2) 

grid 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('Plunge h (mm)', 'FontSize', 14) 

legend(strcat('Response before flutter U (m/s) = ',num2str(round 

(BF_U,2))),strcat('Response after flutter U (m/s) = ',num2str(round 

(AF_U,2))), 'FontSize', 14 ,'Location' ,'northwest') 

title('Open loop system response to IC Pitch Angle \alpha = 2 deg', 

'FontSize', 11) 

subplot (312)  

plot(t,x_BF(:,5)*180/pi, t,x_AF(:,5)*180/pi,'LineWidth',1.2) 

grid 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('Pitch angle \alpha (deg)', 'FontSize', 14) 

subplot (313) 

plot(t,x_BF(:,6)*180/pi, t,x_AF(:,6)*180/pi,'LineWidth',1.2) 

grid 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('Flab angle \beta (deg)', 'FontSize', 14) 

  

%---------------Open loop Step-response Beta = 2 deg ----------------------% 

  

X_00 = [0; % Initial plunge rate 

0; % Initial pitch rate 

0; % Initial control surface rate 

0; % Initial plunge displacement [m] 

0; % Initial pitch displacement [rad.] 

0; % Initial control surface angle [rad.] 

0; % Initial aerodynamic lag (1st state) 

0]; % Initial aerodynamic lag (2nd state) 

  

tau = 0:0.1:200; % the dimensionless time 

t=tau/w_na; 

r =ones(size(tau))*(5*pi/180), 

  

% Open loop step system response before flutter 

[y_BF,tau,x_BF]=lsim(BF_sys,r,tau,X_00), 
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figure (4) 

plot(t,x_BF(:,6)*180/pi,t,r*180/pi, 'k','LineWidth',1.5) 

grid 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('Flab angle \beta (deg)', 'FontSize', 14) 

legend(strcat('Open loop Step Response Before flutter speed at U (m/s) = 

',num2str(round (BF_U,2))),'Step Input' , 'Location' ,'southeast', 

'FontSize',14) 

  

% Create a pole-zero plot of the Flutter system 

figure (5) 

pzmap(AF_sys), 

title('Pole-Zero Map after flutter speed (Open-loop system)') 

  

  

%------------------ Closed Loop - LQG Controller Design -------------------% 

  

%controllability and Observability 

  

disp('Checking Controllability:') 

unco=length (A_f)-rank(ctrb(AF_sys)), 

if (unco==0) 

    disp('System is controllable!') 

else 

    disp(['Number of uncontrollable states are:',unco]) 

end 

  

disp('Checking Observability:') 

unobsv=length (A_f)-rank(obsv(AF_sys)), 

if (unobsv==0) 

    disp('System is Observable!') 

else 

    disp(['Number of unobservable states are:',unobsv]) 

end 

  

  

%------------------------- LQG closed loop ------------------------------% 

  

U = linspace(0, 50, 200), % Airspeed range for closed loop analysis [m/s] 

  

% the state space matrices after flutter speed  

  

% prompt = 'Enter the Air Speed (m/s):  '; 

% AF_U = input(prompt), 

  

AF_U=U_f*1.1; % The air speed after flutter is set at10% higher than flutter 

speed 

  

[A,B,C,D]= SS_Matrices (AF_U,rho), 

AF_sys = ss(A,B,C,D, 'statename', states, ... 

    'inputname', inputs, 'outputname', outputs), 

% choose Q and R for LQR controller 

     

    Q = zeros (9,9), 

    Q (4,4)=250; %weight for h state (plunging) 

    Q (5,5)=50; %weight for alpha state (pitching) 

    Q (6,6)=50;   %weight for beta state(flap angle) 

    

    Q (9,9)=50;   %weight for the input integral action gain 

     

    R =250;      %weight for control effort 

  

[Ki, Kx, L]= Flutter_LQI (AF_sys, A,C,Q,R),% finding the closed loop gain 

matrices 

  

% The LQG with integrator closed loop matrices  
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Ac = [A -B*Kx -B*Ki; L*C A-B*Kx-L*C -B*Ki; -C 0 0 0 0 0 0 0 0 0]; 

Bc = [0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1]; 

Cc = [C 0 0 0 0 0 0 0 0 0]; 

Dc = [D]; 

sys_cl = ss(Ac,Bc,Cc,Dc), 

  

% --------------------- Stability (Eigen value Map) ----------------------% 

figure (6) 

pzmap(sys_cl), 

title('Pole-Zero Map after flutter speed (closed-loop system)', 'FontSize', 

11) 

  

%------------ Response to initial condition (Regulator case) -------------% 

  

% set the I.C with pitch displacement disturbance 

  

X_0_cl = [0; % Initial plunge rate 

0; % Initial pitch rate 

0; % Initial control surface rate 

0; % Initial plunge displacement  

2/(180/pi), % Initial pitch displacement [rad.] 

0; % Initial control surface angle [rad.] 

0; % Initial aerodynamic lag (1st state) 

0; % Initial aerodynamic lag (2nd state) 

0;0;0;0;0;0;0;0;0]; % zero initials for Kalman filter and integrator states 

  

tau = 0:0.01:150;  % Setting the dimensionless time range 

t=tau/w_na; % Transforming the dimensionless time to real time (sec) 

r =ones(size(tau))*0;% Define the input matrix (zeros) for regulator case 

  

%simulate the closed loop system 

[y,tau,x]=lsim(sys_cl,r,tau, X_0_cl), 

  

% plot the actual vs observer states for regulator case 

  

figure (7)% Plots of The Displacement states h, Alpha, Beta  

subplot (3,1,1), plot(t,x(:,12)*b*1000, t,x(:,4)*b*1000,'LineWidth',1.5) 

grid 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('Plunge h (mm)', 'FontSize', 14) 

legend('Kalman Estimate', 'Simulated Response', 'Location' ,'southeast', 

'FontSize',14) 

title('LQG Closed loop system response to I.C. Pitch Angle \alpha = 2 

deg',strcat('Air Speed U (m/s) = ',num2str(round (AF_U,2))), 'FontSize',14) 

subplot (3,1,2), plot(t,x(:,13)*180/pi, t,x(:,5)*180/pi,'LineWidth',1.5) 

grid 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('Pitch angle \alpha (deg)', 'FontSize', 14) 

subplot (3,1,3), plot(t,x(:,14)*180/pi, t,x(:,6)*180/pi,'LineWidth',1.5) 

grid 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('Flab angle \beta (deg)', 'FontSize', 14) 

  

%Finding ISE Performance indices for the displacement states 

StepData_h=stepinfo(x(:,4)*b*1000, t, 0), 

T_h=StepData_h.SettlingTime; 

ISE_h = ISEPerformance(x(:,4),r,t,T_h),% plunge state regulation ISE 

performance index 

  

StepData_alpha=stepinfo(x(:,5)*180/pi, t, 0), 

T_alpha=StepData_alpha.SettlingTime 

ISE_alpha = ISEPerformance(x(:,5),r,t,T_alpha),% pitch state regulation ISE 

performance index 

  

StepData_beta=stepinfo(x(:,6)*180/pi, t, 0), 

T_beta=StepData_beta.SettlingTime; 
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ISE_beta = ISEPerformance(x(:,6),r,t,T_beta),% Flap angle state regulation 

ISE performance index 

  

  

figure (8) % Plots of The Rate states h_dot, Alpha_dot and Beta_dot 

subplot (3,1,1), plot(t,x(:,9)*b*1000*w_na,'LineWidth',1.5) 

grid 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('Plunge rate (mm/s)', 'FontSize', 14) 

legend('Kalman Estimate', 'Location' ,'southeast', 'FontSize',14) 

title('LQG Closed loop system response to I.C. Pitch Angle \alpha = 2 

deg',strcat('Air Speed U (m/s) = ',num2str(round (AF_U,2))), 'FontSize',14) 

subplot (3,1,2), plot(t,x(:,10)*(180/pi)*w_na,'LineWidth',1.5) 

grid 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('Pitch angle rate (deg/s)', 'FontSize', 14) 

subplot (3,1,3), plot(t,x(:,11)*(180/pi)*w_na,'LineWidth',1.5) 

grid 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('Flab angle rate (deg/s)', 'FontSize', 14) 

  

% Finding the control signal u and control signal rate of change 

u=-Kx(1)*(x(:,9))-Kx(2)*x(:,10)-Kx(3)*x(:,11)-Kx(4)*(x(:,12))-Kx(5)*x(:,13)-

Kx(6)*x(:,14)-Kx(7)*x(:,15)-Kx(8)*x(:,16)-Ki*x(:,17), 

  

du=gradient(u(:))./gradient(tau(:)), % Finding the rate of change of control 

signal 

  

u_max_reg=max(abs(u))*180/pi; 

du_max_reg=max(abs(du))*(180/pi)*w_na; 

  

figure (9)% Plot of the control signal u and control signal rate of change 

subplot (211) 

plot(t,u*180/pi, 'k','LineWidth',1.5) 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('u(t) (deg)', 'FontSize', 14) 

title('LQG closed loop system response to Initial Condition I.C. \alpha = 2 

deg' ,strcat('Air Speed U (m/s) = ',num2str(round (AF_U,2))), 'FontSize',14) 

legend('Control Input u(t) (deg)', 'FontSize', 14) 

grid 

subplot(212) 

plot(t,du*(180/pi)*w_na,'LineWidth',1.2) 

xlabel('Time (Sec)', 'FontSize', 14) 

ylabel('du/dt (deg/sec)', 'FontSize', 14) 

legend('Rate of change of control Input (deg/sec)', 'Location' ,'southeast', 

'FontSize',14) 

grid 

  

StepData_u_reg=stepinfo(u*180/pi, t, 0), 

T_u_reg=StepData_u_reg.SettlingTime 

ISU_Reg = ISEPerformance(u,r,t,T_u_reg)% regulation input ISU performance 

index 

  

  

%--------------------------Step Response-----------------------------% 

  

% Define zero initial condition matrix for reference tracking case 

X_0_cl = [0; % Initial plunge rate 

0; % Initial pitch rate 

0; % Initial control surface rate 

0; % Initial plunge displacement  

0; % Initial pitch displacement [rad.] 

0; % Initial control surface angle [rad.] 

0; % Initial aerodynamic lag (1st state) 

0; % Initial aerodynamic lag (2nd state) 

0;0;0;0;0;0;0;0;0]; 
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tau = 0:0.01:50; % the dimensionless time (50 is 1 sec) 

r =ones(size(tau))*(5*pi/180),% define the step input matrix for Tracking 

case 

  

% Simulate the closed loop tracking case 

[y_t,tau,x]=lsim(sys_cl,r,tau, X_0_cl), 

t=tau./w_na; % transform the dimensionless time to real time to use in plots 

  

% Finding the control signal u and control signal rate of change 

u_t=-Kx(1)*(x(:,9))-Kx(2)*x(:,10)-Kx(3)*x(:,11)-Kx(4)*(x(:,12))-

Kx(5)*x(:,13)-Kx(6)*x(:,14)-Kx(7)*x(:,15)-Kx(8)*x(:,16)-Ki*x(:,17), 

du_t=gradient(u_t(:))./gradient(tau(:)), 

  

u_max_t=max(abs(u_t))*180/pi; 

du_max_t=max(abs(du_t))*(180/pi)*w_na; 

  

figure (10)% Plots of Step response output, input signal, and input rate 

signal 

subplot (3,1,1), plot(t,y_t*180/pi,t,r*180/pi, 'k','LineWidth',1.5) 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('\ity(t)= \beta(t) (deg)', 'FontSize', 14) 

title('Step Response with Integral Action and LQG Control', 'FontSize', 14) 

legend('Flab angle \beta ','Step Input', 'FontSize', 14,'Location' 

,'southeast') 

grid 

subplot (3,1,2), plot(t,u_t*180/pi, 'b','LineWidth',1.5) 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('\itu(t) (deg)', 'FontSize', 14) 

legend('Control input \itu(t)', 'FontSize', 14,'Location' ,'southeast') 

grid 

subplot (3,1,3), plot(t,du_t*(180/pi)*w_na, 'r','LineWidth',1.5) 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('\itdu/dt (deg/sec)', 'FontSize', 14) 

legend('Control input rate \itdu/dt', 'FontSize', 14,'Location' 

,'northeast') 

grid 

  

StepData_t=stepinfo(y_t*180/pi, t, 5), 

T_t=StepData_t.SettlingTime; 

ISE_t = ISEPerformance(y_t,r,t,T_t)% tracking ISE performance index 

  

StepData_u_t=stepinfo(u_t*180/pi, t), 

T_u_t=StepData_u_t.SettlingTime; 

ISU_t = ISEPerformance(u_t,r,t,T_u_t),% Tracking input ISU performance index 

 

 
%========================== The End of the Code ==========================% 
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%-------------------------------------------------------------------------% 

%------------------------------ Main_UCLMPC.m -----------------------------% 

%-------------------------------------------------------------------------% 

% 2D wing with control Flap Flutter suppression using Discreate MPC with 

% Laguerre functions and Kalman filter - No constraints 

close all 

clear 

clc 

%------------------------------- Input Data -------------------------------% 

  

rho = 1.225; % Ambient air density [kg/m^3] 

U = linspace(0, 25, 50), % Airspeed range to analyses [m/s] 

  

%----------------------- Find Open loop flutter speed ---------------------% 

  

Airfoil; 

load('Airfoil'), 

  

[U_f, f_f, f_h, f_a, f_B, g_h, g_a, g_B,l] = Modal_Data(U, rho), 

  

disp('Open loop flutter speed is (m/s):') 

disp(U_f) 

disp('Open loop flutter frequncy is (Hz):') 

disp(f_f) 

  

%----------- Set the Air speed and the state space Matrices -----------% 

  

% prompt = 'Enter the Air Speed (m/s):  '; 

% AF_U = input(prompt), 

  

AF_U =U_f*1.1;% 10% higher than flutter speed 

  

states = {'h_dot' 'Alpha_dot' 'Beta_dot' 'h' 'Alpha' 'Beta' 'l1' 'l2'}; 

inputs = {'Aileron'}; 

outputs = {'\beta'}; 

  

[Ac,Bc,Cc,Dc]= SS_Matrices (AF_U,rho), 

  

%--------------------- Discretize the system ---------------------------% 

  

Delta_t = 0.1; 

[Ad, Bd, Cd, Dd]=c2dm(Ac,Bc,Cc,Dc,Delta_t), 

  

%find the integrator augmented matrices 

[m1,n1]=size(Cd), %m1 is number of outputs and n1 is number of states 

[n1,n_in]=size(Bd), % n_in is number of inputs 

  

A=eye(n1+m1, n1+m1), 

A(1:n1,1:n1)=Ad; 

A(n1+1:n1+m1,1:n1)=Cd*Ad; 

B=zeros(n1+m1,n_in), 

B(1:n1,:)=Bd; 

B(n1+1:n1+m1,:)=Cd*Bd; 

C=zeros(m1,n1+m1), 

C(:,n1+1:n1+m1)=eye(m1,m1), 

  

[n, n_in]=size(B), 

  

%---------------------- Set the MPC parameters --------------------------% 

  

Np=500; %prediction horizon was 200 

a=0.3; 

N=16; 

Q=C'*C; 

R=50*eye(n_in,n_in),%tunning matrix for control effort 

  

N_sim=500;%number of simulation points 
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%------------------------ Find Omega and Psi ----------------------------% 

  

[Omega, Psi]=dmpc(A,B,a,N,Np,Q,R), 

  

%Laguerre matrix 

[Al,L0]=lagd(a,N), 

Lzerot=L0'; 

  

K_mpc=L0'*(Omega\Psi), 

  

% ----------------- Stability (Eigen value comparison) ------------------% 

  

Acl=A-B*K_mpc; 

[X,Y,Z]=dlqr(A,B,Q,R), 

  

figure (1) 

viscircles([0 0],1, 'Color','k', 'LineWidth', 0.5 ),% unit circle 

hold on 

plot(eig(A),'k+','LineWidth', 1.0)% open loop Eigenvalues 

plot(Z,'ro','LineWidth', 1.0)% LQR Eigenvalues A-B*K_lqr 

plot(eig(Acl),'b*','LineWidth', 1.0)% MPC Eigenvalues 

grid 

xlabel('Real axis', 'FontSize', 14) 

ylabel('Imaginry axis', 'FontSize', 14) 

legend ('Open-loop Eigenvalues','LQR Eigenvalues','MPC using Laguerre 

Functions Eigenvalues', 'FontSize',14) 

title('Eigenvalues',strcat('Air speed U (m/s) = ',num2str(round (AF_U,2))), 

'FontSize',14), 

  

%------------- Response to initial condition (Regulator case) -------------% 

up=0.0; 

y=zeros(m1,1), 

u=zeros(n_in,1), 

  

% Initial conditions  

xm = [0; % Initial plunge rate 

0; % Initial pitch rate 

0; % Initial control surface rate 

0; % Initial plunge displacement  

2*pi/180; % Initial pitch displacement [rad.] 

0; % Initial control surface angle [rad.] 

0; % Initial aerodynamic lag (1st state) 

0]; % Initial aerodynamic lag (2nd state) 

  

r1=zeros(1,N_sim+10), % zero input (regulator) 

  

% Closed loop MPC using Laguerre functions simulation without constraints  

  

% Select the covariance Q for the process noise w, and the covariance R for  

% The measurement noise v for Kalman filter 

  

Q_obs=0.001*eye(n1+m1, n1+m1), % Process noise covariance 

R_obs=0.01*eye(m1,m1), % measurement noise covariance 

  

[u1, y1,xm1, k]=simuucob(xm, up,u, y, r1, Ad, Bd,Cd, A, B, C, N_sim, Omega, 

Psi, Lzerot, Q_obs, R_obs), 

  

tau=k*Delta_t; 

t=tau/w_na; % Transforming the discrete sample instant to time in sec to use 

in plots 

  

% MPC with Laguerre functions closed loop system response to Initial 

Condition I.C. alpha = 2 deg 

  

figure (2) % Plots of The Displacement states h, Alpha, Beta 

subplot (311)  
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plot(t,xm1(4,:)*b*1000,'LineWidth',1.2) 

grid 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('Plunge h (mm)', 'FontSize', 14) 

title('MPC without constraints closed loop system response to Initial 

Condition I.C. \alpha = 2 deg',strcat('Air Speed U (m/s) = ',num2str(round 

(AF_U,2))), 'FontSize',14) 

subplot (312) 

plot(t,xm1(5,:)*180/pi,'LineWidth',1.2) 

grid 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('Pitch Angle \alpha (deg)', 'FontSize', 14) 

subplot (313) 

plot(t,y1*180/pi,'LineWidth',1.2) 

grid 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('Flab angle \beta (deg)', 'FontSize', 14) 

legend('Simulated Response', 'Location' ,'southeast', 'FontSize',14) 

  

%Finding ISE Performance index for the displacement states 

StepData_h=stepinfo(xm1(4,:)*b*1000, t, 0), 

T_h=StepData_h.SettlingTime; 

ISE_h = ISEPerformance(xm1(4,:),r1,t,T_h),% plunge state regulation ISE 

performance index 

  

StepData_alpha=stepinfo(xm1(5,:)*180/pi, t, 0), 

T_alpha=StepData_alpha.SettlingTime; 

ISE_alpha = ISEPerformance(xm1(5,:),r1,t,T_alpha),% pitch state regulation 

ISE performance index 

  

StepData_beta=stepinfo(y1*180/pi, t, 0), 

T_beta=StepData_beta.SettlingTime; 

ISE_beta = ISEPerformance(y1,r1,t,T_beta),% Flap angle state regulation ISE 

performance index 

 

%MPC with Laguerre functions closed loop system response to Initial 

Condition I.C. alpha = 2 deg 

  

figure (3) % Plots of The Rate states h_dot, Alpha_dot and Beta_dot 

subplot(311) 

plot(t,xm1(1,:)*b*1000*w_na,'LineWidth',1.2) 

grid 

xlabel('Time (Sec)', 'FontSize', 14) 

ylabel('Plunge rate h (mm/s)', 'FontSize', 14) 

title('MPC witout constraints closed loop system response to Initial 

Condition I.C. \alpha = 2 deg',strcat('Air Speed U (m/s) = ',num2str(round 

(AF_U,2))), 'FontSize',14) 

subplot(312) 

plot(t,xm1(2,:)*(180/pi)*w_na,'LineWidth',1.2) 

grid 

xlabel('Time (Sec)', 'FontSize', 14) 

ylabel('Pitch Angle rate (deg/s)', 'FontSize', 14) 

subplot(313) 

plot(t,xm1(3,:)*(180/pi)*w_na,'LineWidth',1.2) 

grid 

xlabel('Time (Sec)', 'FontSize', 14) 

ylabel('Flap Angle rate (deg/s)', 'FontSize', 14) 

legend('Simulated Response', 'Location' ,'southeast', 'FontSize',14) 

  

du=gradient(u1(:))./gradient(tau(:)), % Finding the rate of change of input 

signal 

  

u_max_reg=max(abs(u1))*180/pi; 

du_max_reg=max(abs(du))*(180/pi)*w_na; 

  

figure (4) % Plot of the control signal u and control signal rate of change 

subplot (211) 
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plot(t,u1*180/pi, 'k','LineWidth',1.5) 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('u(t) (deg)', 'FontSize', 14) 

title('MPC without constraints closed loop system response to Initial 

Condition I.C. \alpha = 2 deg',strcat('Air Speed U (m/s) = ',num2str(round 

(AF_U,2))), 'FontSize',14) 

legend('Unconstrained Control Input u(t) (deg)', 'FontSize', 14) 

grid 

subplot(212) 

plot(t,du*(180/pi)*w_na,'LineWidth',1.2) 

xlabel('Time (Sec)', 'FontSize', 14) 

ylabel('du/dt (deg/sec)', 'FontSize', 14) 

legend('Unconstrained Rate of change of control Input (deg/sec)', 'Location' 

,'southeast', 'FontSize',14) 

grid 

  

StepData_u_reg=stepinfo(u1*180/pi, t, 0), 

T_u_reg=StepData_u_reg.SettlingTime; 

ISU_Reg = ISEPerformance(u1,r1,t,T_u_reg),% regulation input ISU performance 

index 

%----------------------------- Step Response -----------------------------% 

y=zeros(m1,1), 

u=zeros(n_in,1), 

  

r1=ones(1,N_sim+10)*5*pi/180; % Step input beta = 5 deg 

  

xm=zeros(n1,1),% zero initial conditions 

  

%Closed loop MPC with Laguerre functions simulation without constraints  

[u_t,y_t,xm1,k]=simuucob(xm, up,u, y, r1, Ad, Bd,Cd, A, B, C, N_sim, Omega, 

Psi, Lzerot, Q_obs, R_obs), 

  

t=k.*(Delta_t/w_na), % Transforming the discrete sample instant to time in 

sec 

du_t=gradient(u_t(:))./gradient(tau(:)), % Finding the rate of change of 

input signal 

  

u_max_t=max(abs(u_t))*180/pi; 

du_max_t=max(abs(du_t))*(180/pi)*w_na; 

  

figure (5) % Plots of Step response output, input signal, and input rate 

signal 

subplot(311) 

plot(t,y_t*180/pi,'r', t,r1 (1,1:N_sim)*180/pi, 'k','LineWidth',1.2) 

grid 

xlabel('Time (Sec)', 'FontSize', 14) 

ylabel('y(t)= \beta(t) (deg)', 'FontSize', 14) 

legend ('Output: Flab angle \beta (deg)', 'Step Input ', 'Location' 

,'southeast', 'FontSize',14), 

title('MPC without constraints system response to step input \beta = 5 

deg',strcat('Air Speed U (m/s) = ',num2str(round (AF_U,2))), 'FontSize',14) 

subplot(312) 

plot(t,u_t*180/pi,'k','LineWidth',1.2) 

grid 

xlabel('Time (Sec)', 'FontSize', 14) 

ylabel('u(t) (deg)', 'FontSize', 14) 

legend('Unconstrained Control Input u(t) (deg)', 'Location' ,'southeast', 

'FontSize',14) 

subplot(313) 

plot(t,du_t*(180/pi)*w_na,'LineWidth',1.2) 

grid 

xlabel('Time (Sec)', 'FontSize', 14) 

ylabel('du/dt (deg/sec)', 'FontSize', 14) 

legend('Unconstrained Rate of change of control Input (deg/sec)', 'Location' 

,'southeast', 'FontSize',14) 

  

StepData_t=stepinfo(y_t*180/pi, t, 5), 
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T_t=StepData_t.SettlingTime; 

ISE_t = ISEPerformance(y_t,r1,t,T_t),% tracking ISE performance index 

  

StepData_u_t=stepinfo(u_t*180/pi, t), 

T_u_t=StepData_u_t.SettlingTime; 

ISU_t = ISEPerformance(u_t,r1,t,T_u_t),% tracking input ISU performance 

index 

  

%========================== The End of the Code ==========================% 
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%-------------------------------------------------------------------------% 

%------------------------------ Main_CLMPC.m -----------------------------% 

%-------------------------------------------------------------------------% 

 

%  This is the main code 2D wing with control Flap Active Flutter  
% Suppression by discrete MPC using Laguerre functions with constraint/  

% With Kalman filter controller design and simulation 

close all 

clear 

clc 

%------------------------------- Input Data ------------------------------% 

  

rho = 1.225; % Ambient air density [kg/m^3] 

U = linspace(0, 25, 50), % Airspeed range to analyses [m/s] 

  

%----------------------- Find Open loop flutter speed --------------------% 

  

Airfoil; 

load('Airfoil'), 

  

[U_f, f_f, f_h, f_a, f_B, g_h, g_a, g_B,l] = Modal_Data(U, rho), 

  

disp('Open loop flutter speed is (m/s):') 

disp(U_f) 

disp('Open loop flutter frequncy is (Hz):') 

disp(f_f) 

  

%----------- Set the Air speed and the state space Matrices -----------% 

  

% prompt = 'Enter the Air Speed (m/s):  '; 

% AF_U = input(prompt), 

  

AF_U = U_f*1.1;% 10% higher than flutter speed 

  

states = {'h_dot' 'Alpha_dot' 'Beta_dot' 'h' 'Alpha' 'Beta' 'l1' 'l2'}; 

inputs = {'Aileron'}; 

outputs = {'\beta'}; 

  

[Ac,Bc,Cc,Dc]= SS_Matrices (AF_U,rho), 

  

%--------------------- Discretize the system ---------------------------% 

  

Delta_t = 0.1; 

[Ad, Bd, Cd, Dd]=c2dm(Ac,Bc,Cc,Dc,Delta_t), 

  

%Find the integrator augmented matrices 

[m1,n1]=size(Cd), %m1 is number of outputs and n1 is number of states 

[n1,n_in]=size(Bd), % n_in is number of inputs 

  

A=eye(n1+m1, n1+m1), 

A(1:n1,1:n1)=Ad; 

A(n1+1:n1+m1,1:n1)=Cd*Ad; 

B=zeros(n1+m1,n_in), 

B(1:n1,:)=Bd; 

B(n1+1:n1+m1,:)=Cd*Bd; 

C=zeros(m1,n1+m1), 

C(:,n1+1:n1+m1)=eye(m1,m1), 

  

[n, n_in]=size(B), 

  

%---------------------- Set the MPC parameters --------------------------% 

  

Np=500; %prediction horizon 

a=0.3; 

N=16; 

Q=C'*C; 

R=50*eye(n_in,n_in),%tunning matrix for control effort 
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N_sim=500; %number of simulation points 

  

% --------------------- Set the input Constraints ------------------------% 

  

% The control input constraints 

u_min=-10*pi/180; %by radian 

u_max=10*pi/180; %by radian 

  

% The control input rate constraint 

du_dt_min=-105*pi/180; % by radian/sec 

du_dt_max= 105*pi/180; % by radian/sec 

  

%------------------------ Find Omega and Psi -----------------------------% 

  

[Omega, Psi]=dmpc(A,B,a,N,Np,Q,R), 

  

%Laguerre matrix 

[Al,L0]=lagd(a,N), 

Lzerot=L0'; 

  

K_mpc=L0'*(Omega\Psi), 

  

% ----------------- Stability (Eigen value comparison) ------------------% 

  

Acl=A-B*K_mpc; 

[X,Y,Z]=dlqr(A,B,Q,R), 

  

figure (1) 

viscircles([0 0],1, 'Color','k', 'LineWidth', 0.5 ),% unit circle 

hold on 

plot(eig(A),'k+','LineWidth', 1.0)% open loop Eigenvalues 

plot(Z,'ro','LineWidth', 1.0)% LQR Eigenvalues A-B*K_lqr 

plot(eig(Acl),'b*','LineWidth', 1.0)% MPC Eigenvalues 

grid 

xlabel('Real axis', 'FontSize', 14) 

ylabel('Imaginry axis', 'FontSize', 14) 

legend ('Open-loop Eigenvalues','LQR Eigenvalues','MPC using Laguerre 

Functions Eigenvalues', 'FontSize',14) 

title('Eigenvalues',strcat('Air speed U (m/s) = ',num2str(round (AF_U,2))), 

'FontSize',14), 

  

%------------- Response to initial condition (Regulator case) -------------% 

up=0.0; 

y=zeros(m1,1), 

u=zeros(n_in,1), 

  

% Initial conditions  

xm = [0; % Initial plunge rate 

0; % Initial pitch rate 

0; % Initial control surface rate 

0; % Initial plunge displacement 

2*pi/180; % Initial pitch displacement [rad.] 

0; % Initial control surface angle [rad.] 

0; % Initial aerodynamic lag (1st state) 

0]; % Initial aerodynamic lag (2nd state) 

  

  

r1=zeros(1,N_sim+10), % zero input (regulator) 

  

% Closed loop MPC using Laguerre functions simulation with constraints on u 

and delta u. 

  

deltau_min=(du_dt_min/w_na)*Delta_t; 

deltau_max=(du_dt_max/w_na)*Delta_t; 

  

% Select the covariance Q for the process noise w, and the covariance R for  

% the Measurement noise v for Kalman filter 
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Q_obs=0.001*eye(n1+m1, n1+m1), % Process noise covariance 

R_obs=0.01*eye(m1,m1), % measured noise covariance 

  

[u1, y1,xm1, k]=simucob(xm, up,u, y, r1, Ad, Bd,Cd, A, B, C, N_sim, Omega, 

Psi, Lzerot, deltau_min, deltau_max, u_min, u_max, Q_obs, R_obs), 

  

tau=k*Delta_t; 

t=tau/w_na; % Transforming the discrete sample instant to time in sec to use 

in plots 

  

% MPC with Laguerre functions closed loop system response to Initial 

Condition I.C. alpha = 2 deg 

  

figure (2) % Plots of The Displacement states h, Alpha, Beta 

subplot (311)  

plot(t,xm1(4,:)*b*1000,'LineWidth',1.2) 

grid 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('Plunge h (mm)', 'FontSize', 14) 

title('MPC with Input constraints closed loop system response to Initial 

Condition I.C. \alpha = 2 deg',strcat('Air Speed U (m/s) = ',num2str(round 

(AF_U,2))), 'FontSize',14) 

subplot (312) 

plot(t,xm1(5,:)*180/pi,'LineWidth',1.2) 

grid 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('Pitch Angle \alpha (deg)', 'FontSize', 14) 

subplot (313) 

plot(t,y1*180/pi,'LineWidth',1.2) 

grid 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('Flab angle \beta (deg)', 'FontSize', 14) 

legend('Simulated Response', 'Location' ,'southeast', 'FontSize',14) 

  

%Finding ISE Performance index for the displacement states 

StepData_h=stepinfo(xm1(4,:)*b*1000, t, 0), 

T_h=StepData_h.SettlingTime 

ISE_h = ISEPerformance(xm1(4,:),r1,t,T_h)% plunge state regulation ISE 

performance index 

  

StepData_alpha=stepinfo(xm1(5,:)*180/pi, t, 0), 

T_alpha=StepData_alpha.SettlingTime 

ISE_alpha = ISEPerformance(xm1(5,:),r1,t,T_alpha)% pitch state regulation 

ISE performance index 

  

StepData_beta=stepinfo(y1*180/pi, t, 0), 

T_beta=StepData_beta.SettlingTime 

ISE_beta = ISEPerformance(y1,r1,t,T_beta)% Flap angle state regulation ISE 

performance index 

  

%MPC with Laguerre functions closed loop system response to Initial 

Condition I.C. alpha = 2 deg 

  

figure (3) % Plots of The Rate states h_dot, Alpha_dot and Beta_dot 

subplot(311) 

plot(t,xm1(1,:)*b*1000*w_na,'LineWidth',1.2) 

grid 

xlabel('Time (Sec)', 'FontSize', 14) 

ylabel('Plunge rate h (mm/s)', 'FontSize', 14) 

title('MPC with Input constraints closed loop system response to Initial 

Condition I.C. \alpha = 2 deg',strcat('Air Speed U (m/s) = ',num2str(round 

(AF_U,2))), 'FontSize',14) 

subplot(312) 

plot(t,xm1(2,:)*(180/pi)*w_na,'LineWidth',1.2) 

grid 

xlabel('Time (Sec)', 'FontSize', 14) 

ylabel('Pitch Angle rate (deg/s)', 'FontSize', 14) 
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subplot(313) 

plot(t,xm1(3,:)*(180/pi)*w_na,'LineWidth',1.2) 

grid 

xlabel('Time (Sec)', 'FontSize', 14) 

ylabel('Flap Angle rate (deg/s)', 'FontSize', 14) 

legend('Simulated Response', 'Location' ,'southeast', 'FontSize',14) 

  

du=gradient(u1(:))./gradient(tau(:)), % Finding the rate of change of input 

signal 

  

u_max_reg=max(abs(u1))*180/pi; 

du_max_reg=max(abs(du))*(180/pi)*w_na; 

  

figure (4) % Plot of the control signal u and control signal rate of change 

subplot (211) 

plot(t,u1*180/pi, 'k','LineWidth',1.5) 

xlabel('Time(sec)', 'FontSize', 14) 

ylabel('u(t) (deg)', 'FontSize', 14) 

title('MPC with Input constraints closed loop system response to Initial 

Condition I.C. \alpha = 2 deg',strcat('Air Speed U (m/s) = ',num2str(round 

(AF_U,2))), 'FontSize',14) 

legend('Constrained Control Input u(t) (deg)', 'FontSize', 14) 

grid 

subplot(212) 

plot(t,du*(180/pi)*w_na,'LineWidth',1.2) 

xlabel('Time (Sec)', 'FontSize', 14) 

ylabel('du/dt (deg/sec)', 'FontSize', 14) 

legend('Constrained Rate of change of control Input (deg/sec)', 'Location' 

,'southeast', 'FontSize',14) 

grid 

  

StepData_u_reg=stepinfo(u1*180/pi, t, 0), 

T_u_reg=StepData_u_reg.SettlingTime 

ISU_Reg = ISEPerformance(u1,r1,t,T_u_reg)% regulation input ISU performance 

index 

%--------------------------Step Response-----------------------------% 

y=zeros(m1,1), 

u=zeros(n_in,1), 

  

r1=ones(1,N_sim+10)*5*pi/180; % Step input beta = 5 deg 

  

xm=zeros(n1,1),% zero initial conditions 

  

%Closed loop MPC with Laguerre functions simulation with constraints on u 

and delta u. 

[u_t,y_t,xm1,k]=simucob(xm, up,u, y, r1, Ad, Bd,Cd, A, B, C, N_sim, Omega, 

Psi, Lzerot, deltau_min, deltau_max, u_min, u_max, Q_obs, R_obs), 

  

t=k.*(Delta_t/w_na), % Transforming the discrete sample instant to time in 

sec 

  

du_t=gradient(u_t(:))./gradient(tau(:)), % Finding the rate of change of 

input signal 

  

u_max_t=max(abs(u_t))*180/pi; 

du_max_t=max(abs(du_t))*(180/pi)*w_na; 

  

figure (5) % Plots of Step response output, input signal, and input rate 

signal 

subplot(311) 

plot(t,y_t*180/pi,'r', t,r1 (1,1:N_sim)*180/pi, 'k','LineWidth',1.2) 

grid 

xlabel('Time (Sec)', 'FontSize', 14) 

ylabel('y(t)= \beta(t) (deg)', 'FontSize', 14) 

legend ('Output: Flab angle \beta (deg)', 'Step Input ', 'Location' 

,'southeast', 'FontSize',14), 
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title('MPC with input constraints system response to step input \beta = 5 

deg',strcat('Air Speed U (m/s) = ',num2str(round (AF_U,2))), 'FontSize',14) 

subplot(312) 

plot(t,u_t*180/pi,'k','LineWidth',1.2) 

grid 

xlabel('Time (Sec)', 'FontSize', 14) 

ylabel('u(t) (deg)', 'FontSize', 14) 

legend('Constrained Control Input u(t) (deg)', 'Location' ,'southeast', 

'FontSize',14) 

subplot(313) 

plot(t,du_t*(180/pi)*w_na,'LineWidth',1.2) 

grid 

xlabel('Time (Sec)', 'FontSize', 14) 

ylabel('du/dt (deg/sec)', 'FontSize', 14) 

legend('Constrained Rate of change of control Input (deg/sec)', 'Location' 

,'southeast', 'FontSize',14) 

  

StepData_t=stepinfo(y_t*180/pi, t, 5) 

T_t=StepData_t.SettlingTime; 

ISE_t = ISEPerformance(y_t,r1,t,T_t)% tracking ISE performance index 

  

StepData_u_t=stepinfo(u_t*180/pi, t), 

T_u_t=StepData_u_t.SettlingTime; 

ISU_t = ISEPerformance(u_t,r1,t,T_u_t)% tracking input ISU performance index 

 

%========================== The End of the Code ==========================% 
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%-------------------------------------------------------------------------% 

%------------------------------- Airfoil.m -------------------------------% 

%-------------------------------------------------------------------------% 

 

function Airfoil 

span = 0.520;                    % Wingspan [m] 

a = -0.5;                        % Distance between mid-chord and ea in 

semi-chords 

b = 0.127;                       % Reference semi-chord [m] 

c = 0.5;                         % Flap position in semichords 

m_B = 0.18597;                   % mass of the aileron [kg] 

m = (0.62868+ m_B)/span;         % Mass/length of wing-aileron [kg/m] 

x_a = 0.434;                     % Distance between airfoil ea and cg in 

                                 % semi-chords 

x_B = 0.01996;                   % Distance between control surface hinge 

axis and 

                                 % cg in semi-chords 

I_a = 13.47e-3;             % Mass inertia of wing about ea [kgm^2] 

I_B = 326.4e-6;             % Mass inertia of flap about hinge axis [kgm^2] 

  

%------------------------------------------------ 

  

k_h=2818.8;                       %the plunge structural stiffness (per 

span) 

k_a=37.34;                        %the pitch structural stiffness (per span) 

k_B=3.9;                          %the control surface structural stiffness 

(per span) 

  

w_nh = sqrt(k_h/m) ;               % Uncoupled plunge frequency [rad/s] 

w_na = sqrt(k_a/I_a),              % Uncoupled pitch frequency [rad/s] 

w_nB = sqrt(k_B/I_B),              % Uncoupled control surface frequency 

[rad/s] 

  

  

% c_h = 0.025;                % Plunge damping coefficient [Ns/m] 

% c_a = 0.05;                 % Pitch damping coefficient [Ns/m] 

% c_B = 0.05;                 % Control surface damping coefficient [Ns/m] 

  

%--------------------------------------------------- 

  

S_a = 0.08587;                    %the static mass moment of wing-aileron 

about wing elastic axis [kg m] 

S_B = 0.00395;                    %the static mass moment of aileron about 

about aileron hinge [kg m] 

  

r_a = 0.7321;                      %the dimentionless radius of gyration of 

the wing about the elastic axis 

r_B = 0.11397;                     %the dimentionless radius of gyration of 

the control surface about the hinge point 

k = 0.03984;                       %kapa ,  

  

Z_h=0.0113;                 %the plunge damping ratio 

Z_a=0.01626;                %the pitch damping ratio 

Z_B=0.0115;                 %the control surface damping ratio 

  

save ('Airfoil') 

 

%========================== The End of the Code ==========================% 
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%-------------------------------------------------------------------------% 

%----------------------------- Modal_Data.m ------------------------------% 

%-------------------------------------------------------------------------% 

 

function [U_f, f_f, f_h, f_a, f_B, g_h, g_a, g_B] = Modal_Data(U, rho)  

%--------------- Calculating open loop eigenvalues --------------% 

 

load('Airfoil'), 

lambda = zeros(8,length(U)),   % To store each speed-related eigenvalues in 

a column 

sorted_lambda=lambda; 

sorted_real=lambda; 

  

% A loop to calculate the eigenvalues at each step of the speed analysis 

range 

for i=1:length(U)  

A= SS_Matrices (U(i),rho),  

lambda(:,i) = eig(A), 

 end 

%----------------- Sorting of the open loop eigenvalues -------------------% 

 

[sorted_imag,idx]=sort(imag(lambda)),   % ascending order sorting of the 

eigenvalues based on imaginary part 

for j=1:8 

    for i=1:length(U) 

sorted_lambda(j,i)=lambda(idx(j,i),i),   % a new matrix contains the sorted 

eigenvalues 

sorted_real(j,i)=real(sorted_lambda(j,i)), % the real part of the sorted 

eigenvalues (dimensionless damping frequency) 

    end 

end 

  

w_h=sorted_imag(6,:), % the imaginary part of eigenvalue (oscillation 

dimensionless angular frequency) of h 

w_a=sorted_imag(7,:), % the imaginary part of eigenvalue (oscillation 

dimensionless angular frequency) of alpha  

w_B=sorted_imag(8,:), % the imaginary part of eigenvalue (oscillation 

dimensionless angular frequency) of beta 

f_h=(w_h*w_na)/(2*pi), % multiplied by w_na to get frequency by Hz 

f_a=(w_a*w_na)/(2*pi),  

f_B=(w_B*w_na)/(2*pi),  

g_h=(sorted_real(6,:)*w_na)/(2*pi), % the real part of eigenvalue (damping 

frequency) related to h 

g_a=(sorted_real(7,:)*w_na)/(2*pi), % the real part of eigenvalue (damping 

frequency) related to alpha 

g_B=(sorted_real(8,:)*w_na)/(2*pi), % the real part of eigenvalue (damping 

frequency) related to beta 

  

%------------ finding open loop flutter speed and frequency ---------------% 

  

% Interpolation loop to find the flutter frequencies and speed 

 for r=1:length(U)-1 

    if g_h(r) <=0 andand g_h(r+1) >0     % when the eigenvalues real part 

(related to h) movies from LH to RH plane 

        g_i= [g_h(r) g_h(r+1)]; 

        f_i= [f_h(r) f_h(r+1)]; 

        U_i=[U(r) U(r+1)]; 

        U_f=interp1(g_i,U_i,0),      % interpolate to find the flutter speed 

        f_f=interp1(U_i,f_i,U_f),    % interpolate to find the flutter 

oscillation frequency 

         

    end 

 end 

%========================== The End of the Code ==========================% 
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%-------------------------------------------------------------------------% 

%----------------------------- SS_Matrices.m -----------------------------% 

%-------------------------------------------------------------------------% 

 

function [A,B,C,D] = SS_Matrices(U,rho) 

% Calculates the State Space Matrices A B C and D for a specific Air speed U 

and density 

 

load ('Airfoil'),  

  

%------------------------ Theodorsen's Coefficients ----------------------% 

p = -(1/3)*(sqrt(1 - c^2)^3), 

T_1 = -(1/3)*sqrt(1 - c^2)*(2 + c^2)+c*acos(c), 

T_2 = c*(1 - c^2) - sqrt(1 - c^2)*(1 + c^2)*acos(c) + c*(acos(c))^2; 

T_3 = -((1/8) + c^2)*(acos(c))^2 + (1/4)*c*sqrt(1 - c^2)*acos(c)*(7 + 2*c^2) 

- (1/8)*(1 - c^2)*(5*c^2 + 4), 

T_4 = -acos(c) + c*sqrt(1 - c^2), 

T_5 = -(1 - c^2) - (acos(c))^2 + 2*c*sqrt(1 - c^2)*acos(c), 

T_6 = T_2; 

T_7 = -((1/8) + c^2)*acos(c) + (1/8)*c*sqrt(1 - c^2)*(7 + 2*c^2), 

T_8 = -(1/3)*sqrt(1 - c^2)*(2*c^2 + 1) + c*acos(c), 

T_9 = (1/2)*(-p + a*T_4), 

T_10 = sqrt(1 - c^2) + acos(c), 

T_11 = acos(c)*(1 - 2*c) + sqrt(1 - c^2)*(2 - c), 

T_12 = sqrt(1 - c^2)*(2 + c) - acos(c)*(1+2*c), 

T_13 = (1/2)*(-T_7 - (c - a)*T_1), 

T_14 = (1/16) + (1/2)*a*c; 

T = [T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_9 T_10 T_11 T_12 T_13 T_14]; 

  

%------------------------ W.P. Jones' Approximation ----------------------% 

delta_1 = 0.165; 

delta_2 = 0.335; 

lambda_1 = 0.041; 

lambda_2 = 0.320; 

  

%------------------------ Dimensionless parameters -----------------------% 

meu=m/(pi*rho*b^2),       %the mass ratio of the wing mass to the mass of 

the air affected by the wing 

segma=w_nh/w_na;        %the ratio of uncoupled plunge and pitch frequencies 

V=U./(b*w_na),       %the dimensionless freestream speed of the air (reduced 

velocity) 

  

%-------------------------- Structural Matrices --------------------------% 

M_s=meu*[2.1658              x_a                            x_B; 

         x_a            (r_a)^2                         ((c-a)*x_B+(r_B)^2), 

        x_B     ((c-a)*x_B+(r_B)^2)     (r_B)^2]; 

  

D_s=2*meu*[segma*Z_h        0           0; 

            0           (r_a)^2*Z_a     0; 

            0               0           (w_nB/w_na)*(r_B)^2*Z_B]; 

         

     

K_s=meu*[segma^2        0               0 

         0              (r_a)^2         0 

         0              0               (w_nB/w_na)^2*(r_B)^2]; 

      

%-------------------------- Aerodynamic Matrices -------------------------% 

i_end = length(V), 

  

for i = 1: i_end 

  

M_a=[-1         a                T(1)/pi; 

     a          -((1/8)+a^2)     -2*T(13)/pi; 

     T(1)/pi     -2*T(13)/pi       T(3)/pi^2]; 

  

D_a=V(i)*[-2            -2*(1-a)                                      (T(4)-

T(11))/pi; 
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          1+2*a          a*(1-2*a)                                    

(1/pi)*(T(8)-T(1)+(c-a)*T(4)+a*T(11)), 

          -T(12)/pi     (1/pi)*(2*T(9)+T(1)+(T(12)-T(4))*(a-1/2))     

(T(11)/(2*pi^2))*(T(4)-T(12))]; 

    

K_a=V(i)^2*[0        -2        -2*T(10)/pi; 

            0        1+2*a     (1/pi)*(2*a*T(10)-T(4)), 

            0        -T(12)/pi  (-1/pi^2)*(T(5)-T(10)*(T(4)-T(12)))]; 

  

L_delta=2*V(i)*[delta_1                    delta_2; 

             -((1/2)+a)*delta_1         -((1/2)+a)*delta_2; 

             (T(12)*delta_1)/(2*pi)       (T(12)*delta_2)/(2*pi)]; 

          

%------------------------ Aerodynamic Lag Matrices -----------------------% 

L_lambda = V(i)*[-lambda_1    0;  

              0           -lambda_2]; 

           

Q_a = [1        (1/2)-a        T(11)/(2*pi)]; 

Q_v = V(i)*[0        1            T(10)/pi]; 

  

%----------------------------- System Matrix -----------------------------% 

A_11 = -inv(M_s - M_a)*(D_s - D_a), 

A_12 = -inv(M_s - M_a)*(K_s - K_a), 

A_13 = inv(M_s - M_a)*L_delta; 

A_21 = eye(3, 3), 

A_22 = zeros(3, 3), 

A_23 = zeros(3, 2), 

A_31 = [Q_a*A_11 + Q_v; Q_a*A_11 + Q_v]; 

A_32 = [Q_a*A_12; Q_a*A_12]; 

A_33 = [Q_a*A_13; Q_a*A_13] + L_lambda; 

A = [A_11 A_12 A_13; A_21 A_22 A_23; A_31 A_32 A_33]; 

  

%------------------------------ Input Matrix -----------------------------% 

B_11= inv(M_s - M_a)*[0;0;meu*(w_nB/w_na)^2*(r_B)^2]; 

B_21= [0;0;0]; 

B_31= [Q_a*B_11; Q_a*B_11]; 

  

B=[B_11;B_21;B_31]; 

 

%------------------------------ Output Matrix ----------------------------% 

 

C = [0 0 0 0 0 1 0 0]; 

D = [0]; 

 

end 

  

%========================== The End of the Code ==========================% 
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%-------------------------------------------------------------------------% 

%----------------------------- Flutter_LQI.m -----------------------------% 

%-------------------------------------------------------------------------% 

 

function [Ki, Kx, L]= Flutter_LQI (sys,A, C,Q,R) 

  

%find the Tracking controller gain K using lqi function 

  

K = lqi(sys, Q, R), 

  

% extract integrator gain for Beata tracking 

Ki=K(1,9), 

  

% extract LQR Gain 

  

Kx= zeros(1,8), 

for m=1:8  

     

Kx (1,m)= K (1,m), 

  

end 

  

%------------------------------ Kalman Filter ----------------------------% 

  

% the process noise matrix G in x = Ax + Bu + Gw {State equation} is 

% selected as 

  

G_Kalman = eye(8), 

  

% select the covariance Q for the process noise w, and the covariance R for 

the 

% mesurement noise v 

  

Q_Kalman = [0.001 0 0 0 0 0 0 0; 

0 0.001 0 0 0 0 0 0; 

0 0 0.001 0 0 0 0 0; 

0 0 0 0.001 0 0 0 0; 

0 0 0 0 0.001 0 0 0; 

0 0 0 0 0 0.001 0 0; 

0 0 0 0 0 0 0.001 0; 

0 0 0 0 0 0 0 0.001]; 

  

R_Kalman = (C*C')*0.01; 

  

%the observer gain matrix L 

  

L = lqe(A, G_Kalman, C, Q_Kalman, R_Kalman), 

 

%========================== The End of the Code ==========================% 
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%-------------------------------------------------------------------------% 

%------------------------------- mpcgain.m -------------------------------% 

%-------------------------------------------------------------------------% 

 

function [Phi_Phi, Phi_F, Phi_R, A_e, B_e, C_e]= mpcgain (Ad, Bd, Cd, Nc, 

Np) 

 

%A function to calculate phiT_phi, phiT_F, PhiT_R  

%Create the augmented model for MPC 

%Determine the dimensions of the system matrices 

[m1,n1]=size(Cd), %m1 is number of outputs and n1 is number of states 

[n1,n_in]=size(Bd), % n_in is number of inputs 

  

%Produce the augmented state variable model for the design of predictive 

control 

A_e=eye(n1+m1, n1+m1), 

A_e(1:n1,1:n1)=Ad; 

A_e(n1+1:n1+m1,1:n1)=Cd*Ad; 

B_e=zeros(n1+m1,n_in), 

B_e(1:n1,:)=Bd; 

B_e(n1+1:n1+m1,:)=Cd*Bd; 

C_e=zeros(m1,n1+m1), 

C_e(:,n1+1:n1+m1)=eye(m1,m1), 

  

h(1,:)=C_e; 

F(1,:)=C_e*A_e; 

for kk=2:Np 

    h(kk,:)=h(kk-1,:)*A_e; 

    F(kk,:)=F(kk-1,:)*A_e; 

end 

v=h*B_e; 

Phi=zeros (Np, Nc), %declare the dimension of Phi 

Phi(:,1)=v; %first column of Phi 

for i=2:Nc 

    Phi(:,i)=[zeros(i-1,1),v(1:Np-i+1,1)]; %Toeplitz matrix 

end 

BarRs=ones(Np,1), 

Phi_Phi=Phi'*Phi; 

Phi_F=Phi'*F; 

Phi_R=Phi'*BarRs; 

  

end 

 

%========================== The End of the Code ==========================% 
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%-------------------------------------------------------------------------% 

%--------------------------------- lagd.m --------------------------------% 

%-------------------------------------------------------------------------% 

 

%Generates the initial condition of the Laguerre function L(0) and the state 

space system matrix Al 

  

function [A,L0]=lagd(a,N) 

v(1,1)=a; 

L0(1,1)=1; 

for k=2:N 

    v(k,1)=(-a).^(k-2)*(1-a*a), 

    L0(k,1)=(-a).^(k-1), 

end 

L0=sqrt((1-a*a))*L0; 

A(:,1)=v; 

for i=2:N 

    A(:,i)=[zeros(i-1,1),v(1:N-i+1,1)]; 

end 

end 

 

%========================== The End of the Code ==========================% 
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%-------------------------------------------------------------------------% 

%------------------------------- simuucob.m -------------------------------% 

%-------------------------------------------------------------------------% 

 

% MIMO closed loop MPC simulation without constraints. With observer 

% sp is the setpoint signal 

function [u1, y1,xm1, k]=simuucob(xm, up,u, y, sp, Ap, Bp,Cp, A, B, C, 

N_sim, Omega, Psi, Lzerot, Q_obs, R_obs) 

  

[m1,n1]=size(Cp), 

[n1, n_in]=size (Bp), 

xm_obs=zeros(n1,1), 

  

K_obs=dlqr( A', C', Q_obs, R_obs)'; 

  

[ny,n]=size(C), 

[n,nu]=size(B), 

  

X_hat=zeros(n,1), 

  

for kk=1:N_sim 

    Xsp=[zeros(n-ny,1),sp(:,kk)]; 

    eta=-(Omega\Psi)*(X_hat-Xsp), 

    deltau=Lzerot*eta; 

     

    u=u+deltau; %update u 

        

    deltau1(:,kk)=deltau; 

    u1(1:nu,kk)=u; 

    y1(1:ny, kk)=y; 

    xm1(1:n1,kk)=xm; 

    

    %u and y to generate X_hat(k+1) 

    

    xm=Ap*xm+Bp*u; %find xm(k+1) 

     

    X_hat=A*X_hat+K_obs*(y-C*X_hat)+B*deltau; 

     

    y=Cp*xm; %find y(k=1) 

    up=u; 

     

end 

  

k=0:(N_sim-1), 

   

end 

%========================== The End of the Code ==========================% 
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%-------------------------------------------------------------------------% 

%------------------------------- simucob.m -------------------------------% 

%-------------------------------------------------------------------------% 

 

%MIMO closed loop MPC simulation with constraints on u and delta u. with 

observer 

%sp is the setpoint signal 

function [u1, y1,xm1, k]=simucob(xm, up,u, y, sp, Ap, Bp,Cp, A, B, C, N_sim, 

Omega, Psi, Lzerot, deltau_min, deltau_max, u_min, u_max, Q_obs, R_obs) 

  

[m1,n1]=size(Cp), 

[n1, n_in]=size (Bp), 

xm_obs=zeros(n1,1), 

  

K_obs=dlqr( A', C', Q_obs, R_obs)'; 

  

[ny,n]=size(C), 

[n,nu]=size(B), 

  

X_hat=zeros(n,1), 

  

for kk=1:N_sim 

    Xsp=[zeros(n-ny,1),sp(:,kk)]; 

    eta=-(Omega\Psi)*(X_hat-Xsp), 

    deltau=Lzerot*eta; 

    if (deltau>deltau_max)  

        deltau=deltau_max;  

    end 

    if (deltau<deltau_min)  

        deltau=deltau_min;  

    end    

    u=u+deltau; %update u 

     

    if (u>u_max) 

        deltau=u_max-up; 

        u=u_max; 

    end 

    if (u<u_min) 

        deltau=u_min-up; 

        u=u_min; 

    end  

     

    deltau1(:,kk)=deltau; 

    u1(1:nu,kk)=u; 

    y1(1:ny, kk)=y; 

    xm1(1:n1,kk)=xm; 

     

    %u and y to generate X_hat(k+1) 

    

    xm=Ap*xm+Bp*u; %find xm(k+1) 

     

    X_hat=A*X_hat+K_obs*(y-C*X_hat)+B*deltau; 

     

    y=Cp*xm; %find y(k=1) 

    up=u; 

     

end 

  

k=0:(N_sim-1), 

   

end 

 

%========================== The End of the Code ==========================% 
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%-------------------------------------------------------------------------% 

%---------------------------- ISEPerformance.m ---------------------------% 

%-------------------------------------------------------------------------% 

 

function [ISE] = ISEPerformance(y,r,t) 

%A function to calculate The Integral of Square of the Error ISE Performance 

index  

%y is the output vector 

%r is the input vector 

%t is the time vector 

  

error=zeros(length (t),1), 

error_sq=error; 

  

for ii=1:length(t) 

    error(ii)=y(ii)-r(ii), 

    error_sq(ii)=error(ii).^2; 

end 

  

ISE=trapz(t,error_sq), 

  

  

end 

  

 

%========================== The End of the Code ==========================% 
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