12 research outputs found

    Reward prediction errors arising from switches between major and minor modes in music: An fMRI study

    Full text link
    Evidence has accumulated that prediction error processing plays a role in the enjoyment of music listening. The present study examined listeners' neural responses to the signed reward prediction errors (RPEs) arising from switches between major and minor modes in music. We manipulated the final chord of J. S. Bach's keyboard pieces so that each major-mode passage ended with either the major (Major-Major) or minor (Major-Minor) tonic chord, and each minor-mode passage ended with either the minor (Minor-Minor) or major (Minor-Major) tonic chord. In Western music, the major and minor modes have positive and negative connotations, respectively. Therefore, the outcome of the final chord in Major-Minor stimuli was associated with negative RPE, whereas that in Minor-Major was associated with positive RPE. Twenty-three musically experienced adults underwent functional magnetic resonance imaging while listening to Major-Major, Major-Minor, Minor-Minor, and Minor-Major stimuli. We found that activity in the subgenual anterior cingulate cortex (extending into the ventromedial prefrontal cortex) during the final chord for Major-Major was significantly higher than that for Major-Minor. Conversely, a frontoparietal network for Major-Minor exhibited significantly increased activity compared to Major-Major. The contrasts between Minor-Minor and Minor-Major yielded regions implicated in interoception. We discuss our results in relation to executive functions and the emotional connotations of major versus minor mode.Comment: submitted to Psychophysiolog

    Developmental changes in the cortical sources of spontaneous alpha throughout adolescence

    Get PDF
    This study investigated age-, gender-, and puberty-related changes in two cortical sources of spontaneous alpha during eyes-open and eyes-closed conditions in a cohort of adolescents aged 9-23 years. In total, 29 preadolescents (9-12 years, 14 females), 29 mid-adolescents (13-17 years, 14 females), and 33 late adolescents (18-23 years, 17 females) had their resting brain activity measured using electroencephalography (EEG) during eyes-open and eyes-closed conditions. Standardised Low Resolution Brain Electromagnetic Tomography (sLORETA) was used to estimate the cortical sources of spontaneous alpha. Two cortical sources were chosen as regions of interest (ROIs): prefrontal cortex and occipital cortex. Significant age-related changes in the cortical sources of alpha were found, particularly in prefrontal regions; prefrontal alpha power was greater during the eyes-open condition compared to the eyes-closed condition for late adolescents, but equivalent across the eyes-open and eyes-closed conditions for both pre- and mid-adolescents. In addition, more advanced pubertal stage predicted reduced alpha power in male, but not female, adolescents aged 9-17 years. This study provides an important initial step towards understanding developmental changes in the cortical sources of spontaneous alpha in the typically developing brain. Moreover, the results from this study underscore the need to tease out the effects of age, gender, and puberty when examining the cortical sources of alpha during the adolescent period

    Private label brands vs. national brands: the effect of taste on consumers´ emotions, perceived taste and willingness to buy

    Get PDF
    Private Label Brands (PLB), which are sold under a retailers’ brand, demonstrate increasingly levels of quality and acceptance. National Brands (NB) are owned and advertised by a specific brand. Taste is one the most important factors of decision for consumers’ regarding food products. However, most research on this subject falls under the domain of traditional methods relying many times on inaccurate results, as it is not possible to fully measure and understand what consumers’ truly feel. The experience conducted for this dissertation (N=19) in an adequate laboratory with the use of Consumers Neuroscience methods, more specifically Electrodermal Activity, evaluated through blind and non-blind taste tests, the actual effect of taste on consumers’ Emotions (Arousal), Perceived Taste and Willingness to Buy. Valence was also measured through the Self-Assessment Manikin. Findings demonstrate that even though national brands are still perceived by consumers as superior, consumers’ willingness to buy will not necessarily be higher for national brands. The finding that consumers’ decision will not always be in favour for the product which is perceived of highest quality (i.e. NB), leads to the conclusion that the “quality gap” is fading and the two are increasingly equitable and is now crucial to tackle the “branding gap”.Private Label Brands (PLB), vendidas sob marca dos retalhistas, demonstram cada vez melhores níveis de qualidade e aceitação. Por outro lado, National Brands (NB) são marcas de detidas e publicitadas por uma entidade específica. O sabor é o factor de decisão mais importante para os consumidores em relação aos produtos alimentares. No entanto, a maioria das pesquisas neste assunto enquadra-se no domínio dos métodos tradicionais dependendo muitas vezes de resultados imprecisos, uma vez que não é possível medir e perceber a nível fisiológico, o que os consumidores realmente sentem. A experiência conduzida para esta dissertação (N = 19) em laboratório adequado, LAPSO, com o uso de métodos de Consumer Neuroscience, mais especificamente Electrodermal Activity, avaliando através de testes de sabor em cenário cego e não cego, o efeito real do sabor nas Emoções dos consumidores (Excitação), Perceived Taste e Willigness to Buy (WTB). Valência também foi medida através do Self-Assessment Manikin (SAM). Os resultados demonstram que NB ainda são considerados pelos consumidores como superiores a nível de qualidade, porém o WTB dos consumidores não será necessariamente maior para NB. O resultado de que a intenção de compra dos consumidores nem sempre é favorável ao produto considerado de melhor qualidade (NB) leva à conclusão de que a "desigualdade da qualidade" está desaparecendo e que os dois são cada vez mais comparáveis, sendo agora crucial enfrentar a "desigualdade da marca"

    Neurophysiological mechanisms of longer-lasting experimental pain in humans

    Get PDF
    Pain serves the protection of the body. Consequently, noxious stimuli or, more precisely, the thereby induced neurophysiological processes commonly lead to pain perception. Identical noxious stimuli, however, do not always translate into the same pain experience depending on multiple factors. To acknowledge this variability, the distinction between nociception as the neural process elicited by noxious stimuli and pain as subjective multifactorial experience is essential. During longer-lasting experimental pain and chronic pain, nociception and pain can substantially dissociate. Moreover, longer-lasting experimental pain resembles chronic pain regarding certain perceptual features such as prolonged pain duration and intensity fluctuations. Thus, longer-lasting experimental pain offers the opportunity to gain new insights into both the differential neural representation of noxious stimuli and pain and the neuronal mechanisms associated with the state of longer- lasting pain. We applied 10 minutes of painful heat stimulation to the left and right hand of 39 healthy participants while we recorded continuous pain ratings, electroencephalography (EEG), and autonomic responses. Data were analyzed in three distinct projects aiming at different aspects of neuronal mechanisms underlying longer-lasting pain. Project 1 assessed whether stimulus intensity as proxy of nociception and pain intensity relate to distinct patterns of oscillatory brain activity. EEG recordings revealed that increases in stimulus intensity were reflected by suppressions of alpha and beta oscillations in sensorimotor areas contralateral to the stimulated hand. In contrast, increases in pain intensity were associated with enhanced gamma oscillations in the medial prefrontal cortex. More importantly, the encoding of stimulus intensity by alpha and beta oscillations in the sensorimotor areas was spatially specific, i.e. depended on the stimulus location, whereas the encoding of pain intensity by gamma oscillations in the medial prefrontal cortex was independent of stimulus location. Thus, prefrontal gamma oscillations might reflect higher- order aspects of noxious stimuli, such as salience, valence, and motivational aspects rather than precise sensory features. Project 2 investigated the relationship between stimulus intensity, pain intensity, autonomic responses, and brain activity. Skin conductance measures, as markers of sympathetic activity, co-varied more closely with stimulus intensity than with pain intensity. Correspondingly, skin conductance measures were related to suppressions of alpha and beta oscillations in the sensorimotor area contralateral to the stimulated hand. These finding suggest that skin conductance measures are in part directly elicited by nociceptive processes and, thus, at least partially independent of perceptual processes during longer-lasting pain. Hence, these observations corroborate concepts of pain in which sensory, motivational, and autonomic processes partially independently contribute to the experience of pain. Finally, project 3 incorporated the systematic and comprehensive assessment of oscillatory brain activity, functional connectivity, and graph- theory based network measures during the state of longer-lasting pain. Longer-lasting pain was associated with suppressions of oscillatory brain activity at alpha frequencies in addition to stronger connectivity at alpha and beta frequencies in sensorimotor areas. Furthermore, sensorimotor areas contralateral to stimulation showed increased connectivity to a common area in the medial prefrontal cortex at alpha frequencies and built a sensorimotor-prefrontal network during longer-lasting pain. This network might be involved in the integration of sensory, cognitive, and motivational-affective information and, consequently, in the translation of a noxious stimulus into a subjective pain experience. All three projects contribute to a better understanding of neuronal mechanisms underlying longer-lasting experimental pain, which serves as an experimental model for chronic pain. Since the treatment of chronic pain has remained insufficient and unsatisfactory, the current results might provide EEG-based targets for urgently needed new treatment approaches, such as non-invasive brain stimulation and neurofeedback

    Neurophysiological mechanisms of longer-lasting experimental pain in humans

    Get PDF
    Pain serves the protection of the body. Consequently, noxious stimuli or, more precisely, the thereby induced neurophysiological processes commonly lead to pain perception. Identical noxious stimuli, however, do not always translate into the same pain experience depending on multiple factors. To acknowledge this variability, the distinction between nociception as the neural process elicited by noxious stimuli and pain as subjective multifactorial experience is essential. During longer-lasting experimental pain and chronic pain, nociception and pain can substantially dissociate. Moreover, longer-lasting experimental pain resembles chronic pain regarding certain perceptual features such as prolonged pain duration and intensity fluctuations. Thus, longer-lasting experimental pain offers the opportunity to gain new insights into both the differential neural representation of noxious stimuli and pain and the neuronal mechanisms associated with the state of longer- lasting pain. We applied 10 minutes of painful heat stimulation to the left and right hand of 39 healthy participants while we recorded continuous pain ratings, electroencephalography (EEG), and autonomic responses. Data were analyzed in three distinct projects aiming at different aspects of neuronal mechanisms underlying longer-lasting pain. Project 1 assessed whether stimulus intensity as proxy of nociception and pain intensity relate to distinct patterns of oscillatory brain activity. EEG recordings revealed that increases in stimulus intensity were reflected by suppressions of alpha and beta oscillations in sensorimotor areas contralateral to the stimulated hand. In contrast, increases in pain intensity were associated with enhanced gamma oscillations in the medial prefrontal cortex. More importantly, the encoding of stimulus intensity by alpha and beta oscillations in the sensorimotor areas was spatially specific, i.e. depended on the stimulus location, whereas the encoding of pain intensity by gamma oscillations in the medial prefrontal cortex was independent of stimulus location. Thus, prefrontal gamma oscillations might reflect higher- order aspects of noxious stimuli, such as salience, valence, and motivational aspects rather than precise sensory features. Project 2 investigated the relationship between stimulus intensity, pain intensity, autonomic responses, and brain activity. Skin conductance measures, as markers of sympathetic activity, co-varied more closely with stimulus intensity than with pain intensity. Correspondingly, skin conductance measures were related to suppressions of alpha and beta oscillations in the sensorimotor area contralateral to the stimulated hand. These finding suggest that skin conductance measures are in part directly elicited by nociceptive processes and, thus, at least partially independent of perceptual processes during longer-lasting pain. Hence, these observations corroborate concepts of pain in which sensory, motivational, and autonomic processes partially independently contribute to the experience of pain. Finally, project 3 incorporated the systematic and comprehensive assessment of oscillatory brain activity, functional connectivity, and graph- theory based network measures during the state of longer-lasting pain. Longer-lasting pain was associated with suppressions of oscillatory brain activity at alpha frequencies in addition to stronger connectivity at alpha and beta frequencies in sensorimotor areas. Furthermore, sensorimotor areas contralateral to stimulation showed increased connectivity to a common area in the medial prefrontal cortex at alpha frequencies and built a sensorimotor-prefrontal network during longer-lasting pain. This network might be involved in the integration of sensory, cognitive, and motivational-affective information and, consequently, in the translation of a noxious stimulus into a subjective pain experience. All three projects contribute to a better understanding of neuronal mechanisms underlying longer-lasting experimental pain, which serves as an experimental model for chronic pain. Since the treatment of chronic pain has remained insufficient and unsatisfactory, the current results might provide EEG-based targets for urgently needed new treatment approaches, such as non-invasive brain stimulation and neurofeedback

    Psychophysiological correlates induced by visual food stimuli during hunger and satiety

    Get PDF
    Obesity and its increasing prevalence contribute to the development of diseases of affluence, including type 2 diabetes, metabolic syndrome, and several cardiovascular, oncological and neuropsychiatric diseases. Therefore, it is important to understand the mechanism of food intake at the behavioural level, including the influence of maladaptive factors, such as the frequent exposure to visual high-calorie food stimuli in modern society. In this work, changes in visual attention and selected psychopphysiological correlates (electrodermal activity and salivary biomarkers alpha-amylase and cortisol) in response to visual food stimuli were investigated in healthy, adult non-obese (BMI < 25) volunteers of both sexes. We investigated changes of psychophysiological correlates like visual attention, electrodermal activity and salivary biomarkers (alpha-amylase and cortisol) in response to visual food stimuli in healthy, adult, non-obese (BMI < 25) volunteers of both sexes. Experiment started with questionnaire for self measuring hunger and satiety, saliva sampling and then subject were instructed for presentation of visual food cues of three categories - high-calorie, low-calorie and non-food - they were presented to the subjects on a computer screen. Visual attention to the stimuli was determined using...Obezita a její narůstající prevalence přispívá k rozvoji řady závažných civilizačních problémů, včetně cukrovky druhého typu, metabolického syndromu, a řady kardiovaskulárních, onkologických i neuropsychiatrických onemocnění. Je proto důležité porozumět řízení příjmu potravy člověka na behaviorální úrovni včetně vlivu maladaptivních faktorů, jakým je například časté vystavení moderního člověka vizuálním vysokokalorickým potravinovým podnětům. V této práci byly zkoumány změny zrakové pozornosti a vybrané psychofyziologické koreláty (elektrodermální odpověď a slinné biomarkery alfa-amylázu a kortizol) v odpovědi na vizuální potravinové podněty u zdravých, dospělých neobézních (BMI <25) dobrovolníků obou pohlaví. Po úvodním dotazníku na sebehodnocení stavu nasycení, odběru vzorku slin a instruktáži byly subjektům prezentovány na monitoru počítače vizuální podněty třech kategorií - vysokokalorické, nízkokalorické a nepotravinové. Vizuální pozornost k podnětům byla zjišťována pomocí sledování očních pohybů metodou eye-tracking a na závěr sezení byla testována pomocí modifikovaného Stroopova testu (tzv. Food Stroop test). V průběhu sezení byla měřena elektrodermální aktivita a na závěr sezení byl odebrán druhý vzorek slin a vyplněn závěrečný dotazník o vnímaném stavu nasycení. Ve studii se nenašly...Department of PhysiologyKatedra fyziologiePřírodovědecká fakultaFaculty of Scienc

    Exploring the electrophysiological responses to sudden sensory events

    Get PDF
    Living in rapidly changing and potentially dangerous environments has shaped animal nervous systems toward high sensitivity to sudden and intense sensory events - often signalling threats or affordances requiring swift motor reactions. Unsurprisingly, such events can elicit both rapid behavioural responses (e.g. the defensive eye-blink) and one of the largest electrocortical responses recordable from the scalp of several animals: the widespread Vertex Potential (VP). While generally assumed to reflect sensory-specific processing, growing evidence suggests that the VP instead largely reflects supramodal neural activity, sensitive to the behavioural-relevance of the eliciting stimulus. In this thesis, I investigate the relationship between sudden events and the brain responses and behaviours they elicit. In Chapters 1-3, I give a general introduction to the topic. In Chapter 4, I dissect the sensitivity of the VP to stimulus intensity - showing that its amplitude is sensitive only to the relative increase of intensity, and not the absolute intensity. In Chapter 5, I show that both increases and decreases of auditory and somatosensory stimulus intensity elicit the same supramodal VP, demonstrating that the VP is sensitive to any sufficiently abrupt sensory change, regardless of its direction or sensory modality. In Chapter 6, I observe strong correlations between the magnitudes of the VP and the eye-blink elicited by somatosensory stimuli (hand-blink reflex; HBR), demonstrating a tight relationship between cortical activity and behaviour elicited by sudden stimuli. In Chapter 7, I explore this relationship further, showing that the HBR is sensitive to high-level environmental dynamics. In Chapter 8, I propose an account of the underlying neural substrate of the VP, consistent with my results and the literature, which elucidates the relationship between the VP and behaviour. I also detail future experiments using fMRI and intracranial recordings to test this hypothesis, using the knowledge gained from this thesis

    The Self versus Others: Spatial Localization and Timing of Trait Judgments in the mPFC and PCC/Precuneus

    Get PDF
    Simulation theory (ST) states that people understand others through simulation, which counters the probabilistic reasoning view of theory theory (TT). When thinking about traits of a known other, people use self-referential thought. It is unclear which theory—ST or TT—best describes the method by which self-referential thoughts occur. A combination of event-related potential (ERP), event-related spectral perturbation (ERSP), source localization, and hidden semi-Markov model multivariate pattern analysis (HSMM-MVPA) techniques are hypothesized to disentangle self-vs-other information processing and distinguish competing theory of mind theories during a trait judgment task. EEG was recorded for 45 participants (30 females) ages 18-24 (M = 19.4) on resting and task measures, in which participants determined whether character and appearance words matched characteristics of the self and a close and distant other. Data analysis included repeated measures MANOVAs of reaction times, amplitudes and latencies generated from the parietal (PCC/precuneus) P300 and latter components of the frontal (mPFC) and parietal LSW. Time-frequency analysis included evoked and induced power through 100 Hz. ERP data was localized with MNE to verify location and timing assumptions for P300 and LSW. Lastly, HSMM-MVPA provided an alternative look at differences in number and duration of processing stages. The P300/LSW and source localization showed no differences between self, mother, and Fallon, which did not reflect prior BOLD activations. ERP data did not have the specificity to detect changes amid highly variable trials. Differences in self and mother were predicted by induced gamma ERSP, suggesting involvement of gamma in information integration or categorization. HSMM-MVPA models fit TT predictions and showed significant self-other differences in duration of processing and magnitude of peaks. Future research should clarify the role of the mPFC in self-referential thought and its relation to ST and TT with simultaneous fMRI and EEG and populations with impaired self-recognition such as ASD and schizophrenia

    Inmunologlobulina M y respuesta galvánica de la piel asociadas a variables psicológicas en víctima de violencia por parte del compañero (a) íntimo (a)

    Get PDF
    La violencia en la pareja afecta gran parte de la sociedad desde lo biopsicosocial. El propósito de esta investigación fue revisar la asociación entre la Inmunoglobulina M, la Respuesta Galvánica de la Piel y variables psicológicas en víctimas de violencia por parte de la pareja, de Medellín Colombia. Método: enfoque cuantitativo, alcance descriptivo, correlacional explicativo, diseño de una investigación aplicada ex post facto retrospectivo con un grupo cuasi-control. Se hizo un muestreo no probabilístico. La muestra fue de 100 personas, 50 sin maltrato de pareja y 50 con maltrato de pareja. La muestra estuvo constituida por mujeres en un 86% para ambos grupos y un 14% hombres, edad promedio de 32 y 37 años y desviación de 11 y 10 años respectivamente. La Inmunoglobulina M fue evaluada en suero, la respuesta galvánica de la piel se evaluó con el DataLab-2000; las variables psicológicas se evaluaron a través de cuestionarios especializados. Los datos fueron procesados con el SPSS versión 18, se realizaron análisis de frecuencias, bivariados y multivariados (P=0,05). Resultados: existen diferencias estadísticamente significativas entre los grupos objeto de estudio en relación con las variables estudiadas. Los menores niveles de asociación se dieron entre la Inmunoglobulina M y la Respuesta Galvánica de la Piel con las variables psicológicas. Las asociaciones más fuertes se dieron entre Estrés Postraumático, Inadaptación y Depresión. Conclusiones: la investigación tiene aplicaciones para el estudio del fenómeno de la violencia de pareja en tanto se aborde el mismo desde un modelo biopsicosocial

    Untersuchung der grundlegenden neurophysiologischen Prozesse der Verarbeitung einfacher und komplexer akustischer Reize durch Integration elektrophysiologischer und elektrotomographischer Methoden

    Get PDF
    Jeden Tag sind wir in unserem Umfeld fortlaufend vielfältigen Geräuschquellen (bspw. Stimmen, Melodien, Klingeltöne unserer Smartphones und vielem mehr) ausgesetzt, welche in erster Instanz von unseren Ohren aufgenommen werden und anschließend in unserem Gehirn weiterverarbeitet werden. Auf dieser Basis sind wir beispielsweise in der Lage für uns wichtige oder abweichende (sogenannte deviante) Reize zu identifizieren. Dieser Prozess ist außerordentlich wichtig, um effizient und adäquat mit unserem (akustischen) Umfeld interagieren zu können. Experiment 1. Bereits zahlreiche elektrophysiologische und funktionell bildgebende Studien haben durch den Einsatz von ereigniskorrelierten Potentialen (EKPs) sowie der funktionellen Magnetresonanztomographie (fMRT) die grundlegenden neuronalen Korrelate der auditiven Devianz- und Zielreizdetektion während passiver und/oder aktiver Experimetalbedingungen untersucht. Eine detailierte Beschreibung der räumlich-zeitlichen Zusammenhänge wie bspw. der involvierten Netzwerke, welche der passiven und aktiven Devianz- sowie Zielreizdetektion zugrunde liegen, sind jedoch bis heute trotz einiger aussagekräftiger Studien noch nicht hinreichend geklärt. Daher wurde in Experiment 1 sowohl die passive als auch die aktive Devianz- und Zieldetektion durch Analyse der Amplitudenmodulationen von frühen und späten evozierten EKP-Komponenten sowie darauf aufbauend die grundlegenden Generatorquellen mittels standardized low resolution brain electromagnetic tomography (sLORETA) näher untersucht. Hierbei wurden EKPs mithilfe eines 64-Kanal-EEGs aufgezeichnet, während Versuchspersonen (VPn, N = 12) im Zuge eines passiven und aktiven Oddball-Paradigmas über Kopfhörer Sinustöne dargeboten wurden. Jedes der beiden Oddball-Paradigmen bestand aus zwei unterschiedlichen akustischen Reizen: (1) einem Sinuston mit niedriger Frequenz (500 Hz) als sehr häufig dargebotenen ‚Standard‘-Reiz sowie (2) einem Sinuston mit hoher Frequenz (1000 Hz) als sehr selten dargebotenen ‚Deviant‘-Reiz. Die Auftretenswahrscheinlichkeit der ‚Deviant‘-Reize betrug p = 0.1875 (respektive p = 0.8125 für ‚Standard‘-Reize). Während der passiven Oddball-Bedingung mussten sich VPn die dargebotenen Töne lediglich anhören. Während der aktiven Oddball-Bedingung wurden sie instruiert, auf die dargebotenen Töne zu achten und so schnell und so akkurat wie möglich auf per Tastendruck auf sehr selten dargebotene ‚Deviant‘-Reize zu reagieren. Während beider Experimetalbedingungen wurden eine frühe N1-, späte P3-Komponente sowie als Differenzpotential eine frühe Mismatch Negativität (MMN, teilweise überlappend mit der N1-Komponente) evoziert. Einerseits waren die Amplituden der evozierten P3-Komponenten in Reaktion auf sehr selten dargebotene ‚Deviant‘-Reize während beider Experimentalbedingungen unterschiedlich stark ausgeprägt (P3 passive Oddball-Bedingung Standards) während des N1/MMN-Zeitfensters im rechten Gyrus temporalis superior (STG) und in beiden Gyri lingualis (bilateral) sowie während des P3-Zeitfensters in der rechten und linken Insula. Während der aktiven Oddball-Bedingung zeigten sich signifikante Unterschiede (Kontrast: Deviants > Standards) der hirnelektrischen Aktivität im N1/MMN-Zeitfenster im rechten inferioren Parietallappen (IPL) sowie im P3-Zeitfenster in mehreren räumlich voneinander getrennten Hirnregionen (z.B. Praecuneus). Die gewonnenen Resultate untermauern die Hypothese, dass sowohl der passiven als auch der aktiven Devianz- und Zielreizdetektion kortikale Aktivierungen in räumlich voneinander getrennten Hirnregionen und Netzwerken einschließlich des ventralen Aufmerksamkeitsnetzwerkes (VAN), des dorsalen Aufmerksamkeitsnetzwerkes (DAN) sowie des Salienznetzwerks (SN) zugrunde liegen. Basierend auf den ERP- und sLORETA-Befunden wird ein theoretisches Modell der passiven und aktiven Devianz- und Zielreizdetektion vorgeschlagen, das in zukünftigen Studien validiert werden kann. Experiment 2. Tagtäglich nehmen wir nicht nur die unterschiedlichsten Geräusche in unserer Umwelt wahr, sondern können diese auch einer eindeutigen Geräuschquelle zuordnen. Dabei stellen wir oft selbst eine zentrale Geräuschquelle dar. Wie diese von uns (selbst) erzeugten auditiven Informationen von unserem Gehirn verarbeitet werden, ist bis heute noch nicht hinreichend geklärt. In Experiment 2 wurde daher untersucht, ob selbst- im Gegensatz zu fremderzeugte Fingerschnippgeräusche auf kortikaler Ebene unterschiedlich verarbeitet werden. Hierbei wurden EKPs erneut mithilfe eines 64-Kanal-EEGs aufgezeichnet, während VPn (N = 12) über Kopfhörer zuvor aufgenommene selbst- und fremderzeugte Fingerschnippgeräusche während eines passiven Oddball-Paradigmas bestehend aus zwei Experimentalblöcken („Selbst“ als ‚Standard‘- und „Fremd“ als ‚Deviant‘-Reiz und umgekehrt) dargeboten wurden. Um Reihungseffekte zu vermeiden, wurden beide Blöcke pro VPn in einer randomisierten Reihenfolge präsentiert. Den VPn wurde im Vorfeld zur Kontrolle ein passives Ton-Oddball-Paradigma mit zwei unterschiedlichen Sinustönen (500 & 1000 Hz) dargeboten (vgl. Experiment 1). Während des passiven Ton-Oddball-Paradigmas konnten signifikante EKP-Befunde im frühen N1/MMN- sowie P3-Zeitfenster gefunden werden (vgl. Experiment 1), während sich diese während des „Selbst-Fremd“-Oddball-Paradigmas im Zeitfenster der N2a/MMN- sowie der darauffolgenden P3-Komponenten zeigten. Im Gegensatz zum passiven Ton-Oddball-Paradigma mit Sinustönen konnte eine frühe N1-Komponete während des „Selbst-Fremd“-Oddball-Paradigmas nicht beobachtet werden. Mithilfe einer anschließenden sLORETA-Analyse konnte insbesondere während der Verarbeitung von selbst- im Gegensatz zu fremderzeugten Fingerschnippgeräuschen im N2a/MMN-Zeitfenster eine erhöhte hirnelektrische Aktivität im rechten anterioren/posterioren cingulären Cortex (ACC/PCC) sowie während des P3-Zeitfensters zusätzlich im rechten Lobulus parietalis inferior (IPL) lokalisiert werden. Ebenfalls zeigte sich während des „Selbst-Fremd“-Oddball-Paradigmas in beiden Zeitfenstern eine erhöhte hirnelektrische Aktivierung in Teilen des primären motorischen Cortex (M1) sowie des supplementär-motorischen Areals (SMA). Keine dieser Hirnregionen zeigte erhöhte hirnelektrische Aktivität während des Ton-Oddball-Paradigma mit Sinustönen (vgl. Experiment 1). Die gewonnenen Ergebnisse von Experiment 2 zeigen deutlich, dass in besonderem Maße motorische Areale während der Verarbeitung bewegungsbezogener Geräusche involviert sind (unabhängig davon, ob diese selbst- oder fremderzeugt sind) und die kortikale Verarbeitung selbst- im Gegensatz zu fremderzeugten Fingerschnippgeräuschen zusätzlich in räumlich voneinander getrennten Hirnregionen stattfinde
    corecore