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Abstract 

Simulation theory (ST) states that people understand others through simulation, which counters 

the probabilistic reasoning view of theory theory (TT). When thinking about traits of a known 

other, people use self-referential thought. It is unclear which theory—ST or TT—best describes 

the method by which self-referential thoughts occur. A combination of event-related potential 

(ERP), event-related spectral perturbation (ERSP), source localization, and hidden semi-Markov 

model multivariate pattern analysis (HSMM-MVPA) techniques are hypothesized to disentangle 

self-vs-other information processing and distinguish competing theory of mind theories during a 

trait judgment task. EEG was recorded for 45 participants (30 females) ages 18-24 (M = 19.4) on 

resting and task measures, in which participants determined whether character and appearance 

words matched characteristics of the self and a close and distant other. Data analysis included 

repeated measures MANOVAs of reaction times, amplitudes and latencies generated from the 

parietal (PCC/precuneus) P300 and latter components of the frontal (mPFC) and parietal LSW. 

Time-frequency analysis included evoked and induced power through 100 Hz. ERP data was 

localized with MNE to verify location and timing assumptions for P300 and LSW. Lastly, 

HSMM-MVPA provided an alternative look at differences in number and duration of processing 

stages. The P300/LSW and source localization showed no differences between self, mother, and 

Fallon, which did not reflect prior BOLD activations. ERP data did not have the specificity to 

detect changes amid highly variable trials. Differences in self and mother were predicted by 

induced gamma ERSP, suggesting involvement of gamma in information integration or 

categorization. HSMM-MVPA models fit TT predictions and showed significant self-other 

differences in duration of processing and magnitude of peaks. Future research should clarify the 

role of the mPFC in self-referential thought and its relation to ST and TT with simultaneous 

fMRI and EEG and populations with impaired self-recognition such as ASD and schizophrenia.
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Chapter 1: Background 

Theory of Mind 

Theory of mind is a well-studied concept stemming from philosophy of the mind during 

Descartes’ era and elaborated upon by research in developmental, personality, and social 

psychology (Clarke, 2005). A person is said to have theory of mind when they understand that 

others have differing thoughts, feelings, and motivations from their own. In the psychology 

literature, this understanding of others is classified into five developmental stages: diverse 

desires, diverse beliefs, knowledge access, false belief, and hidden emotions (Peterson, Wellman, 

& Liu, 2005).  

When a child has diverse desires, it means they have reached an understanding that 

people can have different desires from one’s own. Diverse beliefs are similar, but this stage 

designates the understanding that people can have differing beliefs about the same situation. 

Next is knowledge access, which is the understanding that people may be ignorant about the 

truth. Building upon knowledge access, false belief is the knowledge that someone may believe 

something different from what is true. In the final stage, hidden emotions, a child understands 

that someone may feel a certain way but look as though they feel a different way. An example of 

this is when a person smiles to look happy when they are actually sad. The developmental order 

of these stages differs according to individual differences and cultural norms, although North 

American, Australian (Peterson, Wellman, & Liu, 2005), and German (Kristen, Thoermer, 

Hofer, Aschersleben, & Sodian, 2006) children generally follow the track outlined above 

(Goswami, 2011).  

The relevance lies within the ability to distinguish actions, beliefs, and desires of oneself 

from that of others. The ability to understand other people suggests that humans have a clear-cut 
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separation of thoughts regarding ourselves versus thoughts about others. Thus, theory of mind is 

evidence for a distinction between self and other information and explains why young children 

rapidly change from a lack of understanding about others’ differing thoughts, feelings, and 

desires to having a fully developed ability to mindread. Since most people have a fully developed 

theory of mind by age five, they have developed a distinct sense of self by that stage as well.  

The two major categories of theoretical accounts for why and how people have theory of 

mind are called simulation theories and theory theories. Both have the overlapping idea that 

theory of mind is central to our social understanding.  

Simulation Theory 

The first set of theories to come about were simulation theories, in which people are said 

to understand others by predicting the other’s feelings or reactions through simulation of oneself 

as the other, by simulating the feeling or reaction as if they were the other in the situation. This is 

essentially putting oneself in another’s shoes, where neural activation is theorized to occur with 

pre-existing cognitive mechanisms for self-information processing and decision-making 

(Spaulding, 2012). With simulation theory, it is important to note that humans are not the only 

ones with theory of mind; other primates and even dogs have a rudimentary form of it. What 

makes humans unique is our cognitive ability to recognize that even though others have different 

thoughts, feelings, desires, and emotions, their experiences are comparable to our own (Mitchell, 

Macrae, & Banaji, 2006; Tomasello, 1999). Thus, according to simulation theory, your imagined 

predictions of another’s thoughts, feelings, and behaviors would be comparable to what you 

would experience in the same situation.  

In 2009, Frischen, Loach, and Tipper found evidence for simulation theory by showing 

that people can simulate someone else’s frame of reference (2009). They demonstrated that, in a 
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single-person goal-directed reaching task, inhibition of a distractor corresponded to the salience, 

or closeness, of the distractor to the individual. But in a two-person version of the same task, 

reaction times were longer, and the distractors that were more salient to the agent of action rather 

than the self were inhibited, suggesting a simulated frame of reference of the other. Some 

simulation theorists believe that mirror neurons are evidence of such a primitive simulation 

heuristic, since mirror neurons activate both when observing someone perform a goal-directed 

action and doing the action oneself (Gallese & Goldman, 1998; Vogeley et al., 2001). Within the 

study of mirror neuron function, one of the first proposed theories was the theory of action 

understanding, which asserts that mirror neurons are the neural correlate of intention perception 

that allow us to understand others—to have empathy, a theory of mind, and a sense of morality 

(Rizzolatti & Craighero, 2004).  

However, there is little consistent evidence that monkey mirror neurons are truly used for 

action understanding (Thompson, Bird, & Catmur, 2019), and in humans, mirror neurons are not 

necessarily required to exhibit action understanding (Hickok, 2009). One contributing factor to 

the losing debate over the theory of action understanding is defining what action understanding 

and goal-directed movement entail. A review by Thompson, Bird, and Catmur classifies studies 

of action understanding into three subcategories: action, goal, and intention identification. Their 

consolidated evidence suggests that mirror neurons are involved in action identification but not 

likely in intention or goal identification or perception (2019).  

Moreover, mirror neurons activate for more than just goal-directed actions; upwards of 

73% of them also activate for pantomimed versions of the same actions with no goal or intention 

attached (Kraskov, Dancause, Quallo, Shepherd, & Lemon, 2009) and object-free movement like 

lip smacking and tongue and lip protrusion (Ferrari et al., 2003). Additionally, majority of mirror 
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neurons activate only for specific features of an action. Some respond maximally for movement 

by the self instead of other or vice versa (Caggiano et al., 2011), left- or right-hand movement, 

according to directionality, or vicinity of an object (Caggiano, Fogassi, Rizzolatti, Their, & 

Casile, 2009). As such, mirror neurons are useful for perceiving certain features of movement 

much as visual neurons perceive features like edges and shapes. However, few if any mirror 

neurons have the capacity to generalize all features of an action performed by oneself and 

another, making intention perception unlikely (Thompson, Bird, & Catmur, 2019). As a result, 

action identification does not have the inferential qualities necessary to be the foundation of 

simulation or desire and belief understanding.  

The theory for action understanding is one interpretation of mirror neuron function, and 

under this theory, mirror neurons are physiological evidence for simulation theory. However, as 

new evidence stacks against the role of mirror neurons in action understanding, the suitability for 

mirror neurons as evidence of simulation theory is questionable. Instead of mirror neurons, 

evidence for simulation theory should come from activation characteristics of mentalizing areas 

such as the medial prefrontal cortex. Simulation theory predicts that one’s brain resources for 

self-mentalizing are also used to represent mental states of others (Goldman, 1992). Therefore, if 

regions known to activate for other-related information also activate for self-related information 

to a similar degree of magnitude and timing, then simulation of oneself as the other is a possible 

explanation for the findings. Experiments in auditory (Lima et al., 2015), visual (Kosslyn et al., 

1993; Le Bihan et al., 1993), and motor (Schwoebel, Boronat, & Coslett, 2002; Meister et al., 

2004) response have shown that imagined or simulated performance activates in regions of 

auditory, visual, or motor cortex that overlaps with overt performance with similar findings for 

socially-oriented judgments of faces and emotions (Wicker, Keysers, Plailly, Royet, Gallese, & 
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Rizzolatti, 2003; Singer, Seymour, O’Doherty, Kaube, Dolan, & Frith, 2004; Hesslow, 2012). 

Furthermore, individual differences in the vividness of imagined states can be diagnostic of 

behavioral outcomes and overt neural specificity (Lima et al., 2015).  

The mentalizing-based method of investigation is explored in the present study with a 

cognitive model of simulation theory (Figure 1). In the presented model, the first-person mental 

state, concept of the other, and perception of contextual information drives a simulated third 

person mental state—a shifting egocentric frame (Perner, 1996). Fundamentally, the self is used 

as an analog for the understanding the other, in which the same causal structures are used for self 

and other during simulation (Apperly, 2008). From the simulated mental state representing the 

other, a decision is made, and a simulated state of having made the decision while inhibiting self 

information (Apperly, 2008; Zeng, Zhao, Zhang, Zhao, Zhao, & Lu, 2020) leads to a prediction 

of the other’s response.  

 

 

Figure 1. Proposed model of self-referencing in simulation theory 
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Theory Theory 

The major opposing theory in theory of mind research is theory theory, which came about 

after simulation theory by way of Gopnik and Wellman in 1994. Gopnik and Wellman theorized 

that our understanding of others’ mental states arises not from simulation but from experimental-

like learning of the social environment (Gopnik & Wellman, 1994). This theory takes a more 

experiential approach than simulation theory, in which individuals use folk psychology to 

understand others’ mental states (Gallese & Goldman, 1998). A common description of theory 

theory is that children are like scientists—curious about everything and constantly experimenting 

to uncover truths about the world. Understanding other people is no exception here. The major 

difference between simulation theory and theory theory is that simulation is a first-person 

process in which the simulator draws conclusions based on how he/she would think, feel, or act. 

Theory theory, on the other hand, is a third-person process, where the individual discovers 

empirical laws that govern human interaction and uses these to draw conclusions about how 

another person would respond.  

Experiments such as one by Griffiths, Sobel, Tenenbaum, and Gopnik showed that 

children’s understanding of others improved when provided new evidence (2011). The 

incorporation of information changed the child’s conceptual framework just as theory theory 

would predict. Multiple studies have also shown that children use probabilistic reasoning; they 

combine prior knowledge and new evidence, likelihoods, and probabilities to make inferences 

(Sobel, Tenenbaum, & Gopnik, 2004; Kushnir & Gopnik, 2007; Gopnik & Wellman, 2012). 

Extending that line of reasoning to self and other inferences, children and adults incorporate 

prior knowledge and new evidence to make judgments or predictions about an other. 
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Neural activation during self- and other-related mentalizing would occur in either 

overlapping or distinct brain regions according to theory theory (Mahy, Moses, & Pfeifer, 2014), 

and both self and other would show timing and magnitude differences in the way that 

information is processed. The self would have faster processing than the other, since other-

information would require a greater degree of probabilistic reasoning about the way in which the 

other would feel, behave, or desire compared to the self, and to an increasing degree with 

unfamiliarity, similar to that seen in Moran et al. (2011). When there is too little information 

about an other, the self may be used as a prototype for other-oriented predictions, potentially 

creating an inverted U-shaped curve for timing and reasoning requirements between self, close 

others, distant others, and complete unknowns (Kuiper 1981).  

Sharing activation of precuneus/PCC and mPFC with theory of mind and self-judgment, 

autobiographical episodic memory is a potential mechanism for understanding relationships 

between experiences of the self and others in accordance with theory theory (Saxe, Moran, 

Scholz, & Gabrieli, 2006; Moreau, Viallet, & Champagne-Lavau, 2013; Rosa, Budson, Deason, 

& Gutchess, 2015). Interestingly, theory of mind, self judgment, and autobiographical memory-

based tasks are interrelated to one another, emerge concurrently in development around age 3 

and a half (Saxe, et al., 2006; Perner, Kloo, & Gornik, 2007; Spreng & Grady, 2009), and all 

involve the mPFC, PCC, and precuneus (Rabin & Rosenbaum, 2012). In a subset of patients with 

Alzheimer’s Disease (AD) and frontal-temporal dementia, precuneus/PCC, mPFC, 

autobiographical episodic memory, and aspects of theory of mind and self-attribution are 

impaired, suggesting that these cognitive processes have shared functionality (Moreau, Viallet, & 

Champagne-Lavau, 2013). Additionally, involvement of autobiographical memory in theory of 

mind has been found to depend on familiarity, such that the reliance on shared experiences is 
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greater for close than distant others (Rabin & Rosenbaum, 2012). Personal closeness is the 

driving factor for mPFC differences between self and other rather than similarity or dissimilarity 

to the self. 

A model of theory theory is proposed with the relationship between theory of mind, self, 

and autobiographical episodic memory in mind (Figure 2). Organization of the model was 

loosely adapted from Wickens and Carswell (2006). In the proposed model, the situation or 

stimulus is first perceived and irrelevant information is filtered out by selective attention. To 

initiate the social judgment, information from the internal concept of an other is retrieved and 

indirectly references the self through memories and exemplars. When combined with folk 

psychology, known information about other and what is partially referenced through self is 

appraised through a probabilistic reasoning process that weighs decision alternatives and ends in 

an understanding of the other’s predicted response. Although developed separately, this model 

resembles the theory theory components of a computational model of theory of mind by Belkaid 

& Sabouret (2014).  
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Figure 2. Proposed model of self-referencing in theory theory, where x and y represent 

stored information about the self and other, respectively.  

 

The Self 

Like theory of mind, the self is a long-studied concept dating back to 16th century 

philosophy. One of the major points of debate for this era was the mind-body problem, in which 

researchers sought to determine whether the mind and brain are separate. The dualistic 

explanation of the mind-body problem is that the mind is the brain. Thus, developing an 

understanding of others coincides with development of relevant brain regions. As Descartes 

described throughout his works from The Rules to Meditations, our thoughts and perceptions are 

merely patterns of brain activation (Clarke, 2005). 

Descartes was also interested in the self-concept, as is partially evident by a famous quote 

attributed to his work: “cogito, ergo sum” or “I think, therefore I am” (Descartes, 1641). This 

claim came about through his own doubting—the fact that he could doubt meant he could think, 

and this meant he existed. Although very rudimentary, Descartes’ statement is an 
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acknowledgement of self. As Gallup puts it, “it is our ability to conceive of ourselves in the first 

place that makes thinking and consciousness possible” (1998). That is, having a self is evidence 

for the existence of thought and consciousness—and perhaps thought and consciousness are 

evidence of a self-concept.  

Since Descartes, Freud, Carl Rogers, and other pioneers took an interest in the topic of 

self-concept, the area developed rapidly since the 17th century, forming a modern self-concept 

theory positing that self-concepts are learned, organized, and dynamic (Purkey, 1988). Others 

have taken interest in the distinction between the self-concept and concepts of other people 

(Jenkins & Mitchell, 2011; Mitchell, Macrae, & Banaji, 2006; Moran, Lee, & Gabrieli, 2011). 

This self-other distinction through the lens of simulation and theory theory is the motivation for 

the current study.  

Foundations of Self-Other Research 

Using neuroimaging tools, researchers have investigated the self-other distinction that 

underlies theory of mind and the philosophies of self. The research has predominantly used 

functional magnetic resonance imaging (fMRI). Self-other judgment tasks based in fMRI often 

link self-referential thought to the dorsal and ventromedial prefrontal cortex (dorsal and ventral 

mPFC), the posterior cingulate cortex (PCC), and precuneus, which is a similar network of 

connectivity to both theory of mind and the default mode network (Northoff et al., 2006; 

Legrand & Ruby, 2009; Yerys et al., 2015).  

The theme for many of these fMRI studies involves participants judging personality and 

appearance traits of themselves, someone emotionally connected to them, and someone familiar 

but not well known (Ochsner, et al., 2005; Heatherton et al., 2006; Mitchell et al., 2006; Moran 

et al., 2011). More specifically, the participant will often be sitting alone in an fMRI machine 
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with a computer screen in front of them. On the screen, the participant will be instructed to look 

at a fixation cross. An adjective will then pop up in a designated area below or above the cross, 

and the name of the person to be judged appears on the opposite side. When the adjective 

describes the person, the participant will press a button to indicate that yes, the adjective 

describes the person. When the adjective does not describe the person, the participant presses the 

appropriate “no” button to indicate that the adjective does not match the person.  

The fMRI studies of this nature have indicated that the mPFC and regions such as the 

PCC and precuneus are activated when people make judgments about their own characteristics 

(Heatherton et al., 2006; Mitchell, Macrae, & Benaji, 2006; Moran et al., 2011; Northoff et al., 

2006). The mPFC, PCC, and precuneus are also key regions in the default mode network (DMN) 

with compiling evidence of an association between resting state and self-referential processing 

through internally directed cognition (Molnar-Szakacs, & Uddin, 2013; Leech & Sharp, 2014).  

Interestingly, the DMN and self-referential processing are abnormal in disorders like 

ASD and schizophrenia, which stem from deficits in shared functional connectivity of associated 

DMN and self-referential brain regions (Buckner, Andrews-Hanna, & Schacter, 2008). As an 

example, a study of schizophrenia found exaggerated DMN connectivity at rest and inadequate 

modulation of shared regions during self-referential processing (van Buuren, Vink, & Kahn, 

2012). Studies in ASD have found atypical oscillatory activity in DMN, such as abnormally high 

theta, beta, gamma, and generally decreased alpha (Cornew, Roberts, Blaskey, & Edgar, 2012), 

suggesting a possible directionality of effect in individual differences of DMN activity in 

typically developing populations as well. 

With the involvement of certain brain regions in dedicated self-referential processing, it 

is likely that self-referential information is processed in a fundamentally distinct way than 
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information about others. However, sections of the mPFC, like the dorsal segment, and the PCC 

also activate for other-related thoughts (Moran et al., 2011; Denny, Kober, Wager, & Ochsner, 

2012), suggesting that self and other thought may be better differentiated through differences in 

timing and network connectivity rather than activity of individual brain regions. That being said, 

the ventral mPFC may be one single-region differentiator of self and other, making it a target for 

differentiating self and other networks and for development of biomarkers for self-related 

deficits in disorders like ASD and schizophrenia (Noel, Cascio, Wallace, & Park, 2017).  

As previously mentioned, the uncertainty about the role of the mPFC, PCC, and 

precuneus in the self-concept comes from the fact that these regions also activate for other-

related judgment. In a study by Moran et al., the PCC activated for appearance judgments of the 

self and close and distant others (2011). The close and distant others in the Moran study were the 

mother and President Bush, respectively. The dorsal mPFC activated for character judgments of 

the self, mother, and Bush and the ventral mPFC activated for appearance and character 

judgments for the self (2011). Surprisingly, they also found that the ventral mPFC activated for 

character judgments of the mother—the close other—despite past research suggesting the region 

was limited to self-related thought even for intimate others (Kelley et al., 2002; Heatherton, 

Wyland, Macrae, Demos, Denny & Kelley, 2006).  

Based on behavioral survey data, Moran et al. (2011) concluded that this unanticipated 

activation of the ventral mPFC might occur because the close other’s character traits help shape 

the participant’s self-concept. From the neural data, however, it is unclear whether the ventral 

mPFC is activating for simulated self-thought during close other-character judgments or for 

indirectly referencing self by thinking about internal characteristics of someone close to us. One 

goal of the present study is to show that the ventral mPFC is a contributing part of a self-network 
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(Heatherton, Wyland, Macrae, Demos, Denny, & Kelley, 2006), where close-other information 

processing follows simulation theory or theory theory. 

The P300    

The P300, also called P3, is related to the mediation between perception and response, 

where the decision to categorize or classify a stimulus turns to an action (Verleger, Jaskowski, & 

Wascher, 2005). Since participants categorize character and appearance adjectives by person in 

the self-other judgment task before decision-making, there is an expected difference in P300 

amplitude for self and other categories in relation to each other, resting state, and control 

judgments. Increases in P300 amplitude have also been associated with increases in selective 

attention, meaning that larger P300 amplitudes for one category or another may be associated 

with increased attentional resources toward that stimulus and the degree to which the information 

is processed (Sur & Sinha, 2009; Sowndhararajan, Kim, Deepa, Park, & Kim, 2018). Particular 

attention is paid to self-relevant stimuli over other kinds of information, and self-relevant 

information has previously been tied to increases in P300 amplitude compared to randomly 

generated control stimuli and sporadic red words (Gray, Ambady, Lowenthal, & Deldin, 2004) 

P300 latency is believed to correspond to classification speed (Sur & Sinha, 2009), which 

may function as an indicator of categorization differences for character and appearance words 

related to the self and familiar and unfamiliar others. In other words, the P300 latency reflects 

stimulus-processing time, which may distinguish self- versus other-relevant stimulus processing 

in timing of cognitive mechanisms. If self-related and other-related information is processed 

differently, then we should see differences in the P300 latency for self-stimuli and mother’s 

character, in addition to mother’s appearance and Fallon-stimuli. 
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The P300 component has multiple frontal and parietal generators with the largest activity 

stemming from the centroparietal sources (Knight & Scabini, 1998; Linden, 2005). True 

generators of the P300 are often modality-specific and vary by subcomponent, such as the 

modulation of PFC for P3a but not always P3b (Swick, Kutas, & Neville, 1994; Linden, 2005). 

For instance, the P3a subcomponent occurs earlier in the time window with relation to novelty 

detection or stimulus probability, as is often seen in an oddball task. With limited EEG research 

in self-other judgment tasks, it is difficult to make specific localization predictions. The best 

guess given past fMRI findings during the self-other judgment task is that the PCC and 

precuneus are neural generators of the P300, with likely mPFC activity of the P3a (Esslen, 

Metzler, Pascual-Marqui, Jancke, 2008; Subramaniam et al., 2019), reflecting cognitive 

processing of the stimuli.  

Late Slow Wave 

Late slow waves (LSWs) are <10 Hz oscillations that occur approximately 300-1000 ms 

after a stimulus, with variation according to task structure and stimulus type (Sabbagh, 2013). 

The slow wave has been tied to working memory, where a stimulus is held in memory as the 

participant makes a judgment or decision. In general, the more negative LSW amplitudes are 

associated with increased information load. In the case of self-other, an other would be expected 

to require more information to make a judgment, meaning that LSW for other would be more 

negative than for self (Gray, Ambady, Lowenthal, & Deldin, 2004); more of an information load 

would have correspondingly longer latencies.  

Generators of LSWs have not been thoroughly researched in the case of self-other and 

may vary by cognitive task, but theory of mind studies show LSWs in frontal regions more often 

stemming from medial frontal regions (Sabbagh, 2013). With evidence of LSW differences 
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between self and other judgments (Gray, Ambady, Lowenthal, & Deldin, 2004) and localization 

findings from theory of mind studies of understanding others (Sabbagh, 2013), differences in 

area amplitude and latency of self and other frontal LSWs are expected in the current study. 

ERSP: Evoked and Induced Power 

Although amplitudes and latencies of event-related potentials (ERPs) provide unique 

information about neural activity, there is one pitfall of ERP analysis. ERPs require data 

averaging, because of the otherwise indiscriminately small amplitudes and latencies of event-

related activity amid ongoing background activity (Makeig, 1993). Averaging cancels out 

random activity that is not time- and phase-locked to the stimulus, leaving only event-related 

neural activity with a higher signal-to-noise ratio than before. However, averaging also masks 

trial-by-trial variability in oscillatory activity, which includes important information about 

changes in frequencies over time. Across many single trials, time-frequency measures such as 

total, evoked, and induced event-related spectral perturbation (ERSP) can use variable trial 

information to construct power values in each frequency band. 

Event-related spectral perturbation (ERSP) is a measure that combines qualities of event-

related synchronization and desynchronization to give baseline deviations in log spectral power 

across time and frequency in dB (Grandchamp & Delorme, 2011). Unlike ERP, ERSP does not 

include information about data polarity. Changes in spectral power, then, must be interpreted in 

the context that multiple underlying processes could be modulating the sources of neural activity 

in the positive or negative direction (Makeig, 2004). The benefit of ERSP measures over 

standard power measures like power spectral density (PSD) is the log-transformation that limits 

the influence of outliers in even a small number of trials (Izhikevich, Gao, Peterson, Voytek, 

2018). Various self-other processing studies have demonstrated that self-relevant thought is most 
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saliently associated with evoked frontal and centroparietal alpha band power followed by frontal 

theta and gamma (Dastjerdi et al., 2011; Billeke, Zamorano, Cosmelli, & Aboitiz, 2013; 

Knyazev, 2013). 

Induced power represents the power of event-related but not phase-locked activity. This 

non-phase-locked activity is theorized to reflect top-down processes like attention, memory, and 

decision-making, unlike evoked activity that reflects bottom-up perception and processing 

(Knyazev, 2013). More complex processing beyond stimulus perception such as attention, 

memory retrieval, and decision-making underlie self and other judgments, as proposed in the 

simulation theory and theory theory models. David, Kilner, and Friston (2006) refer to evoked 

and induced power as drivers and modulators, where drivers initiate stimulus response and affect 

neuronal assemblies while modulators engage mechanisms that alter responsiveness according to 

context. David et al. (2006) description of drivers and modulators maps onto the evoked bottom-

up and induced top-down processing described by Knyazev (2013) and Mu and Han (2010).  

Mu and Han incorporated induced power into a self-other judgment task like the task 

used in the current study. They found significant differences in non-phase-locked activity in 

theta, alpha, beta, and gamma oscillatory activity between the self, other, and control conditions. 

Their study was the first of its kind to connect non-phase-locked activity with self-referential 

processing (Mu & Han, 2010) and highlighted the importance of both evoked and induced power 

measures in distinguishing self and other. Such differences include phase-locked and non-phase 

locked magnitude and timing for processing associated with specific frequency bands for 

bottom-up and top-down processes. Averaging wide ranges of variability within-subjects in top-

down processing may obscure differences by condition. Induced and evoked power highlight 

both non-phase-locked and phase-locked activity and avoid the potential obfuscation that can 
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occur when averaging trials for an ERP, although with a lower signal to noise ratio. All event-

related measures together—the ERP and phase-locked and non-phase-locked power—offer rich 

information about the oscillatory dynamics of self-other EEG.  

EEG Source Localization 

 EEG data are produced by clusters of neurons synchronous in geometry, orientation, and 

activity with local field activity summating to produce far-reaching signals that travel through 

bioelectric tissues through volume conduction and diffuse across the scalp (Makeig, 2004). By 

the time the signal reaches the scalp electrodes, there is no definitive way of knowing where in 

the brain the signals originated without simultaneous structural neuroimaging. This is the inverse 

problem. Methods have been developed to overcome the spatial hurdles of EEG, including 

algorithms that predict neural origins using the sensor data (Michel & Brunet, 2019). First, a 

forward solution is estimated from the distribution of scalp potentials brought about from 

underlying distributed source activity (Hallez et al., 2007). From the forward solution, an inverse 

solver can estimate sources of the scalp distributions (Grech et al., 2008; Song et al., 2015). 

The objective of source analysis is to use sensor information from unknown brain sources 

and sometimes a priori knowledge to localize sensor information to the neural sources. However, 

methods requiring a priori assumptions about the number of dipoles may underestimate of the 

number of sources truly underlying the signal and bias source localization to the missing dipoles 

(Michel & Brunet, 2019). Additionally, assuming too many dipoles underlie the signal may 

result in false source readings. Non-parametric distributional source localization does not require 

a priori assumptions about the number of involved dipole sources, which avoids potential 

mislocalization (Pascual-Marqui, 2002). Thus, older algorithms like classical dipole source 

localization have been replaced by less problematic distributed source localization methods, 
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including minimum norm estimation (MNE), LAURA, and LORETA variants (Michel & Brunet, 

2019). One of the most popular source localization methods is MNE, which is the method of 

focus (Gramfort et al., 2014; Wang et al., 1992) 

MNE is an appropriate inverse method for EEG, where signals are generated near the 

surface from post-synaptic pyramidal cells in the cortex (Wang, Williamson, & Kaufman, 1992). 

MNE yields the same source solutions with and without a priori information, highlighting the 

robustness of the method even in the absence of theoretically motivated constraints or noisy data 

with few trials (Hauk, 2004). Although additional depth weights can be added to MNE, source 

output is generally restricted to one or several surfaces, where MNE is the most accurate. As 

comes naturally with the inverse problem, there are many current distributions that can equally 

explain EEG data. To choose a source solution, MNE finds the current distribution with the 

minimum ℓ2-norm, which favors smaller and more distributed current estimates than the ℓ1-norm 

(Lin, Belliveau, Dale, & Hamalainen, 2006). By constraining source estimates from the MNE 

inverse solution to the cerebral cortex, source activity reasonably reflects the resulting primary 

current of the EEG signal.  

HSMM-MVPA 

The simulation theory and theory theory model set up is ideal for a hidden semi-Markov 

model-based multivariate pattern analysis (HSMM-MVPA) approach designed by Anderson, 

Zhang, Borst, and Walsh (2016) and validated with real and simulated datasets. Prior 

applications of the HSMM-MVPA to EEG and fMRI could effectively recover processing stages 

with strong similarity to existing an ACT-R model of associated recognition (Anderson et al., 

2016; Zhang et al., 2018). The underlying assumption of the HSMM-MVPA shared by classical 

and synchronized oscillation theory suggests that cognitive events are marked by a peak across 
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discrete brain regions caused by phasic bursts, phase resetting, or frequency band 

synchronization (Makeig et al., 2002; Shah et al., 2004; Klimesch, Sauseng, & Hanslmayr, 

2007). Both theories share that the EEG signal is comprised of sinusoidal oscillations with 

uncorrelated background noise (Zhang, van Vugt, Borst, & Anderson, 2018).  

From the sinusoidal oscillations, the HSMM-MVPA method identifies “bumps” or peaks 

with finite duration, amplitude, and topographical distribution that represent task-specific 

processing stages (Anderson et al., 2016). The bumps begin to rise at the onset of a significant 

event, and each bump is followed by a “flat” with a mean amplitude of zero representing the end 

of a processing stage. By identifying these patterns of peaks and valleys, the HSMM-MVPA 

model can provide the number, duration, magnitude, and topography of processing stages.  

To be more specific, the MVPA identifies relevant patterns across sensors instead of 

assuming every sensor is contributing relevant information independently (Anderson et al., 

2016). The hidden semi-Markov model then simulates the system with distinct processing stages 

mapped onto every trial with initial bumps and transitions occurring for variable time intervals. 

Mathematically, the HSMM is represented by λ = (a, b, π), where a contains probabilities of a 

state transition given the current state, b is a matrix of probabilities of having a particular gamma 

distribution given a particular state, and π is the initial state distribution matrix with probabilities 

of starting in a given state (Yu, 2010). The semi portion of HSMM means that state transition 

probabilities are dependent on the amount of time elapsed since entering a state, which are 

assumed to be constant in classical HMM decision processes.   

Both HMM and HSMM address three variations of problems (Yu, 2010; Cartella, 

Lemeire, Dimiccoli, & Sahli, 2015; Kang & Zadorozhny, 2016). Given model λ, one can 

determine the likelihood that λ generated a particular sequence of observations O = {o1,…on}, 
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P(O | λ), or which sequence of states is optimal for producing the observed sequence. The 

expectation maximization algorithm (EM) is the final HSMM type that determines which model 

λ maximizes P(O | λ). This is the focus of Anderson et al.’s HSMM-MVPA (2016).  

With a selection of trained models, say ranging from 1-8 bumps, HSMM can determine 

which of the models most likely generated the series of observations under an optimal state 

sequence according to likelihood output as well as an estimated distribution over which state is 

occurring at time t (Cartella, Lemeire, Dimiccoli, & Sahli, 2015). Combining the estimable 

distributions and observed data, we can maximize the probabilities of having an observation 

sequence given the state sequence. By maximizing these probabilities, the model can maximize 

transition probabilities using the distribution of states. From there, with new transition and 

emission probabilities, the model can recursively estimate state probabilities until maximization 

is achieved. Figure 3 is an example of estimated probability distributions from trial 50 of the 

HSMM-MVPA self model. Likelihood output can then used to determine goodness-of-fit 

between models estimating 1-8 bumps, and leave-one-out cross validation can be used to 

determine which model best predicts data from each subject.  
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Figure 3. Example of estimated probability distributions of maximal bump timing from trial 50 

of self. a) Probability that the peaks of processing stages are centered on a time point in a given 

trial. b) Probability that the time points fall within each of the processing stages for a given trial.  

 

This HSMM-MVPA approach bypasses the need for theory that drives standard ERP and 

time frequency approaches in EEG analysis. Rather than pre-determining time windows to 

average across or defining peaks or power bands in an unstandardized field, HSMM-MVPA 

estimates parameters that maximize the probability of having the specified signal without losing 

between-trial variability in an average. The more objective approach is less susceptible to 

researcher bias as well as more likely to find differences that may be inaccurately captured in 

researcher-specified operationalizations. 

The present experiment is an EEG adaptation of Moran et al. (2010), which found that 

character judgments of a close other (e.g., mother) are activated in a self-specific region of the 

brain. Two proposed explanations are given for the activation of mother’s character judgments in 

a self-specific region of the brain based on the theory theories and simulation theories: 1) we 

indirectly reference the self through memories or exemplars when making judgments about 

others or 2) we simulate ourselves as the other. The proposed cognitive models based on each 
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theory differ in expected latencies and number of processing stages. Entering self, mother, and 

Fallon trials separately into the HSMM-MVPA allows for comparison between the number, 

duration, and magnitude of processing stages for each person condition. The HSMM-MVPA 

results will either map onto the simulation theory or theory theory model or will suggest an 

alternative interpretation. 
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Chapter 2: Overview of the Experiment 

Purpose 

Identifying the neural, structural, or biochemical mechanisms by which information about 

the self is treated differently from information about others may not be achievable with this 

experiment, although we progress toward that goal by evaluating results of self and other 

information obtained from two types of functional neuroimaging modalities—fMRI and EEG. 

The purpose of the experiment is multifold: to compare EEG and fMRI methodologies during a 

high-order cognitive task and provide an alternative interpretation of results that may disentangle 

the ventral mPFC’s role in self-referential versus in-group thought through ERP and time-

frequency analyses of the mid-frontal LSW.  

Research Problems 

 The first major problem is that in Moran et al.’s (2011) results, the ventral mPFC 

activates when participants make judgments about their mother’s character, when the region 

otherwise seems to be limited to self-related informational activation. Moran et al. (2011) 

attempted to explain the odd finding of ventral mPFC activation for the mother’s character by 

claiming that the ventral mPFC is a region for processing of self-relevant information, and the 

mother’s character is simply a part of the self-concept. However, the specific nature of self-

relevant activation for a close other is left unclear.  

Second, Moran et al. and other prior studies used fMRI to collect data, while this study 

utilizes EEG. There is uncertainty about EEG data having the spatial resolution necessary to 

distinguish the dorsal and ventral mPFC or precuneus and PCC. The sources are based on 

previous studies that used fMRI to gather data for self-other research (Heatherton, et al., 2006; 

Mitchell, Macrae, & Banaji, 2006; Moran et al., 2011). EEG is known to have lower spatial 
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resolution than fMRI, but fMRI has lower temporal resolution than EEG. Despite their 

differences, studies have shown that fMRI and EEG data are correlated to a relatively high 

degree, enough to reasonably expect similar data patterns. In particular, fMRI BOLD signals 

correlate strongly with EEG alpha and theta (inversely) and gamma power (positively) 

(Scheeringa, Petersson, Oostenveld, Norris, Hagoort, & Bastiaansen, 2009), which coincide with 

reasoning about social interactions (Blume, Lechinger, Guidice, Wislowska, Heib, & Schabus, 

2015), DMN (Scheeringa, Petersson, Kleinschmidt, Jensen, & Bastiaansen, 2012), and self-

referential processing (Knyazev, 2013). Low frequency oscillations like that of the LSW also 

strongly affect BOLD correlations and can influence local processing through modulation of 

gamma (Wang et al., 2012). Thus, certain lower and higher frequency bands of EEG may be 

methodologically parallel indicators of network activity seen in fMRI. In addition, a mouse study 

of oscillatory differences in dorsal and ventral mPFC showed that power levels of slow and fast 

frequencies could differentiate dorsal and ventral subregions, where dorsal regions had increased 

alpha, beta, and gamma power (Gretenkord, Rees, Whittington, Gartside, & LeBeau, 2017). 

Given two major research problems—explaining unusual ventral mPFC activation for 

mother’s character and source localizing to the ventral mPFC with EEG—general questions are 

as follows. Will adding timing data using EEG methodology help determine whether alternative 

or extended explanations are likely for the ventral mPFC’s role in self-referential thought? Will 

EEG data lead us to the same conclusions as fMRI data using the same self-other judgment task?  

Theoretical framework 

Simulation theory can be summarized as a simulation of oneself as another, while theory 

theory is based more on exploration and discovery of self-generated theories that explain the real 

world. For simulation theory, drawing conclusions about what someone else may be thinking, for 
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example, would require the observer to simulate themselves as the observed and determine what 

one would do as an other. With theory theory, the process would be more probabilistic; one 

would take all known information about the observed and determine their most probable 

thoughts, feelings, and future actions.  

Either of these theories may explain the odd findings by Moran et al. (2011). The 

research goal, in addition to replicating the original fMRI study with EEG is to use the 

replication and timing data to help determine which of these theories best applies. If ERPs are 

highly similar in shape, amplitude, and latency for the self and mother conditions, then 

simulation theory best addresses the results. If the mother waveform occurs later and with a 

significantly different magnitude than the self waveform, theory theory may provide the more 

reasonable explanation of underlying neural activity. More specifically, theory theory would 

predict that self information has an advantage in the brain, and that self information will be 

processed much faster and with more initial attentional resources and efficient processing. 

Research Objectives 

The goals of the study are to (1a) introduce novel ERP and (1b) time-frequency power 

measures to help further disentangle the physiological function of the ventral mPFC and address 

alternative explanations to Moran (2011). (2) Source analysis will determine whether 

conclusions made from P300 and LSW ERP components are spatially comparable to those made 

by fMRI data. (3) HSMM-MVPA will determine the number, timing, and duration of processing 

stages between conditions without a priori assumptions or theories.  

The research questions are the following: (1a) Will ERP and (1b) time-frequency findings 

address uncertainties about Moran et al.’s (2011) explanation for why the ventral mPFC 

activated for the mother’s character? (2) Will electroencephalography (EEG) data localize the 
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P300 and LSW with enough spatial resolution to see the differences between the dorsal and 

ventral mPFC, PCC, and precuneus seen in fMRI? (3) Without constraining the data according to 

theory, will HSMM-MVPA find differences in the number, magnitude, or duration of cognitive 

processing stages between conditions? 

According to past research, (1a) The centroparietal P300 amplitudes will be larger for 

appearance conditions, as expected from larger PCC/precuneus BOLD responses in fMRI. LSW 

is predicted to have larger amplitudes for character over appearance judgments, as expected from 

larger dorsal mPFC responses for character judgments. The ventral mPFC has activated 

specifically for the self in many studies (Denny, Kober, Wager, & Ochsner, 2012) but also for 

close others in other studies (Mitchell, Banaji, & Macrae, 2005; Moran et al., 2011). Thus, the 

frontal P300/LSW is expected to be higher amplitude for self than other conditions, with close 

other being more similar to self than distant other. Since it is unclear whether the P300/LSW can 

distinguish between dorsal and ventral mPFC responses in magnitude, the component is 

predicted to represent a combination of dorsal and ventral mPFC activity with the largest 

amplitudes for the self-character condition, followed by self-appearance, mother-character, 

mother-appearance, Fallon-character, and Fallon-appearance. Self conditions are generally 

predicted to have a faster time course and largest amplitude in the P300/LSW time range for 

increased attentional resources and memory consolidation of self-referential information.  

(1b) Evoked and induced power (Mu & Han, 2010) will differ between self and other, 

especially in alpha, theta, gamma (Knyazev, 2013) and beta (Park, Kim, Sohn, Choi, & Kim, 

2018) frequencies according to past findings with self-referential processing in similar judgment 

tasks. Evoked alpha and theta power will be inversely related and gamma and beta will be 

positively correlated to past BOLD findings but patterns of neural oscillations will better 
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differentiate self and other across time, especially in later processing (Scheeringa, Petersson, 

Oostenveld, Norris, Hagoort, & Bastiaansen, 2009). For induced power, both low (theta, alpha) 

and high (beta, gamma) frequency neural oscillations of non-phase-locked activity will 

differentiate self and other, such that the magnitude of non-phase-locked neural activity will 

predict the degree of the self-reference over other-thought (Mu & Han, 2010).  

(3) With the addition of timing information, ERP data will differentiate the self and other 

in source localization in the neural regions of interest with better timing discriminability than 

past fMRI data. Data from source analysis will show statistically significant differences in line 

with ERP expectations such that the centroparietal P300 and LSW will localize to the 

PCC/precuneus and frontal activity to the mPFC, where each component will have significant 

differences between self and other conditions.  

(4) HSMM-MVPA predictions are as follows. In accordance with simulation theory, the 

self, mother, and Fallon models will have the same number of processing stages, will not vary in 

magnitude, and will not vary in duration of bumps. In accordance with theory theory, the self, 

mother, and Fallon models may have the same number of processing stages but will vary in 

duration and magnitude of bumps. The self will generally have faster processing stages than 

other and larger magnitude of bumps in processing through P300 latencies (300 ms) according to 

self-reference effects and potentially smaller magnitudes for self in probabilistic reasoning 

according to the salience of internal concepts of the self and other and degree of difficulty in 

reasoning. 
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Chapter 3: Method 

Method 

 The goal of the experiment is the analysis of mid-frontal ERP amplitudes and latencies of 

the P300 and LSW, time-frequency analysis, spatial localization, and theory-independent 

HSMM-based multivariate pattern analysis to describe spatiotemporal characteristics of self-

versus-other thought. Reaction time, ERP, and time-frequency data was processed using separate 

repeated measures MANOVAs, source statistics were calculated from the Monte Carlo method 

with clustering-based correction, and optimal HSMM-MVPA models were selected using sign 

tests. All results were qualitatively compared to fMRI data from the original Moran et al. (2011) 

study. 

Participants 

 Data was collected from forty-seven college-aged adults from the University of 

Oklahoma participating for course credit. One participant (female, age = 19) had unusable data 

because of an acquisition error, and one dataset had an error during pre-processing. Forty-five 

datasets were included in analyses (15 males, age range 18-24, Mage = 19.3). Participants had to 

be at least 18 and have normal or normal-corrected vision to be included in the study. No other 

exclusion criteria were used.  

Procedures 

 Within-subjects factors were trait (character, appearance) and person conditions (self, 

close other, distant other, uppercase), where the close other was the mother and distant other was 

the politically and morally neutral celebrity, Jimmy Fallon. Dependent variables for the ERP 

analysis included area amplitudes and latencies of frontal and centroparietal electrodes for the 

P300 and LSW. For the time-frequency analysis, dependent variables were evoked and induced 
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event-related spectral perturbation (ERSP) of delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), 

beta (13-30 Hz), and low (30-60 Hz) and high gamma (60-100 Hz) frequencies. Reaction times 

were separately analyzed in a univariate linear model. Afterward, source localization of the P300 

and LSW ERPs and an HSMM-MVPA approach were performed.  

First, each participant’s baseline resting brain activity was measured with a 64-channel 

EGI brand (Electrical Geodesics, Eugene, OR) EEG net to account for individual differences in 

baseline activation. The baseline measurement consisted of 6 minutes of resting activity 

alternating eyes open or closed every minute. After resting data was collected, participants 

judged (‘yes’ or ‘no’) whether a series of descriptions matched characteristics of themselves, the 

close other, the distant other, and our control condition (uppercase) while whole-brain EEG data 

was gathered. Each participant was exposed to all four conditions for each of 90 character and 90 

appearance words. Altogether, there were 720 total trials, 90 each of external and internal self, 

mother, Fallon, and uppercase conditions. Internal and external refer to the word being judged; 

internal is a character trait and external is an appearance trait. Adjectives were presented for 

2000 ms on a black background below a fixation cross with the person to be judged (self, mom, 

Fallon) above the cross (Figure 4). The word display from top of the person word to bottom of 

the adjective word was 4.5 centimeters, center screen on a Dell E178FPb 17-inch LCD flat panel 

monitor with an approximate visual angle of 2.86° (distance from screen ≈ 90 cm).  

In the uppercase blocks, participants judged whether character and appearance adjectives 

were upper or lowercase. The purpose of this was to ensure that participants were not randomly 

pressing buttons while also providing additional baseline data to account for brain activation 

during button pressing and non-social decision making. The person conditions also had 

randomized upper and lowercase adjectives to ensure that the uppercase condition could be used 
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as a button-pressing baseline without confounding case differences between people and case 

conditions. 

To break down the 720 trials, there were 12 blocks of 60 trials with a jittered inter-

stimulus interval of 1000-1500 ms and a self-paced break between blocks. The self, mother, and 

Fallon conditions were randomized prior to the study within each person block, as were the 

uppercase and lowercase adjectives for the uppercase blocks. The three uppercase blocks were 

randomly dispersed between person blocks, and impedance checks occurred at the beginning of 

the experiment and repeated after every four blocks for a total of three impedance checks across 

the duration of the experiment (see Appendix A for an overview of experimental procedures).  

 

 

Figure 4. Example task stimuli. For the person and case conditions, targets (self, mom, Fallon, 

case) were above a fixation cross and traits (character or appearance words) were below. The 

fixation cross functions to minimize eye movement and, consequently, EEG artifact. 
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Data were analyzed using repeated measures general linear models (GLMs) of word 

(character, appearance) and person (self, mother, Fallon, case) conditions for reaction time and 

neuroimaging variables (P300 and LSW amplitude and latency and evoked and induced power). 

P300 and LSW amplitudes were then source localized with MNE. An HSMM-MVPA model for 

self, mother, and Fallon was developed for comparison to the proposed simulation theory (Figure 

1) and theory theory (Figure 2) models. Comparison of the EEG findings to Moran et al.’s (2011) 

fMRI findings are discussed.  

EEG Data 

After the resting and task-related EEG data was collected, files were cut into four 

sections. One contained resting data, and the others included 20 minutes of data from each of 

three blocks separated by an impedance check. Pre-processing was performed according to a 

standardized pipeline utilizing EEGlab 14.1.1 (Delorme & Makeig, 2004), an open source 

toolbox for EEG analysis in Matlab (R2018b; The Mathworks, Natick, MA). Data had a 1000 Hz 

sampling rate for optimal temporal resolution of brain dynamics and were digitally filtered from 

0.5 (12dB/octave slope; zero phase) to 100 Hz (24 dB/octave slope; zero-phase) with a 60 Hz 

notch filter and re-referenced to average reference. No more than 5% of total number of sensors 

were interpolated. Afterward, the data was processed via independent component analysis (ICA) 

using EEGlab 14.1.1 and high amplitude components associated with eye movement, muscle 

movement, heart rate, and other noise were removed from the data. After pre-processing, data 

from the three blocks were merged to create a single file per subject. To reduce dimensionality of 

the data and capture task-specific activity of the dorsal and ventral mPFC, PCC, and precuneus, 

sensors were limited to corresponding frontal [2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 54, 59, 60] and 

centroparietal regions [26, 28, 31, 33, 34, 36, 38, 40, 42, 46], respectively (See Appendix B for 
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subsets on the electrode layout). Data was epoched from 500 ms prior to stimulus onset to 1500 

ms post-stimulus onset for ERP, time-frequency, and source analysis and baseline corrected 

using the 500 ms pre-stimulus period. Descriptive statistics and within-subjects factors are 

reported in Appendix C, Table C1 andTable C2.  

Reaction Time 

 A behavioral response such as reaction time reflects the cumulative duration of cognitive 

processing stages (Gray, Ambady, Lowenthal, & Deldin, 2004), while ERPs provide more 

detailed information regarding latencies of early and late components of cognition. The reaction 

time data was automatically collected at button press for each EEG trial using NetStation 

continuous recording software (Electrical Geodesics, Eugene, OR), and data was pulled from 

saved .txt files into Matlab for analysis. A repeated measures ANOVA was run with reaction 

time as the dependent variable and person and word as within-subjects factors. Post-hoc pairwise 

comparisons based on Sidak-corrected estimated marginal means showed differences in effect 

between each level of person and word. The GLM results were compared to Moran et al.’s 

(2011) reaction time findings (see Appendix D for table output).  

ERP Analysis 

ERP data was down-filtered to 20 Hz to reduce potential high-frequency interference, 

which was of particular concern around 30 Hz where reference noise was spotted during pre-

processing. With the LSW occurring over the course of several hundred milliseconds, area under 

the curve measures were calculated with the open-source Matlab toolbox, ERPlab 7.0.0 (Lopez-

Calderon & Luck, 2014) as an indicator of amplitude as opposed to peak measures. Since there 

was an unclear onset of the LSW and offset of the P300, the P300 and LSW were combined into 

one component, henceforth called P300/LSW. Using grand averages, individual ERPs, and 
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butterfly plots for all conditions as a guide, area amplitudes were calculated with a wide window 

from 200-1000 ms (Liesefeld, 2018). 

The parietal and frontal P300/LSW were calculated separately with area amplitude using 

electrode clusters described above and shown in Appendix B. All conditions except fixation were 

measured with area amplitude, where positive and negative values were zeroed for frontal and 

centroparietal regions, respectively. Other ERPlab options for area calculation included rectified 

area and numerical integration. The ERPlab Wiki characterizes rectified area as the absolute 

value of area amplitudes, which transforms negatives into positives (see also: Luck, 2014). This 

is problematic if an ERP crosses the zero line before the cutoff—amplifying noise. The other 

option, numerical integration, subtracts negatives from positives to penalize ERPs for crossing 

the zero line sooner by shrinking the overall area value. By taking the subtraction approach, the 

difference in peak height is hidden, meaning it is unclear whether differences are due to latency 

or amplitude. Thus, zeroing was chosen as the most appropriate approach. Latencies for the 

P300/LSW were marked by the point under the curve where area is 50% on both sides using 

ERPlab (Lopez-Calderon & Luck, 2014).  

All ERP and time-frequency variables were input as dependent variables in a multivariate 

GLM with person and word as within-subjects factors. The GLM, technically a repeated 

measures MANOVA, reduces the experiment-wise error rate compared to a series of univariate 

models, accounts for intercorrelations by creating a linear combination of the dependent 

variables (Huberty & Morris, 1989; Rencher, 2002) as well as incorporating covariance into the 

multivariate F (Garson, 2015) and having higher power (Rencher, 2002). The four multivariate 

tests (Pillai’s Trace, Wilks’ Lambda, Hotelling’s Trace, and Roy’s Largest Root) answer the 

broad question, “Does any of the neurophysiological data in this set of dependent variables vary 
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by person or word level after controlling for age and gender?” All four tests are reported, 

because they vary in purpose, robustness, and general methodology for testing multivariate 

effects. Pillai’s Trace is the most robust to violations of MANCOVA assumptions, but all except 

Roy’s Largest Root are generally robust (Olson, 1974; Rencher, 2002). Although Roy’s Largest 

Root is at risk of inflated type I error, it provides unique information when compared to 

Hotelling’s Trace (Olson, 1974). For instance, equal values indicate an effect driven primarily by 

a single dependent variable, a strong correlation between dependent variables, or that the effect is 

only minimally contributing to the model. 

Once multivariate tests were run, univariate tests were reviewed only for the independent 

variables found to have significant effects in the multivariate analysis. This stepwise process 

increases power compared to running multiple univariate tests with no multivariate precursor 

(Rencher, 2002). Not only does the multivariate analysis have higher power than the univariate 

version, but by taking all dependent variables as a system or linear combination reduces family-

wise error rate. As a result, first considering multivariate significance and using those p-values to 

inform univariate analysis is a method by which a researcher can include dependent variable 

inter-correlations while maintaining the ability to investigate the complex data on a more 

simplistic level with univariate and post-hoc analyses. The test of univariate within-subjects 

effects provides significance of each independent variable and interaction on each dependent 

variable. 

The multivariate and within-subjects tests answer general questions about the relationship 

between independent variables, interactions, and covariates with the set of dependent variables 

and with each outcome individually. To further elucidate differences, post-hoc comparisons 

using pairwise comparisons from Sidak-corrected marginal means are used to compare the levels 
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of person and word. A deviation or custom contrast would be another option with the added 

ability to compare more than two levels of a factor at a time. However, pairwise comparisons are 

simple and satisfactory in this case. SPSS output including F, p-values, partial eta2, and model R2 

are reported in the text with extended results in Appendix E. Parameter estimates are means of 

the dependent variables in a within-subjects design and are not included; pairwise comparisons 

of estimated marginal means show directionality. 

Time-Frequency Analysis 

Time-frequency variables were calculated using the same sensors as ERP analysis for 

evoked and induced power in the theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and low (30-

60 Hz) and high (60-100 Hz) gamma frequency bands from -500 to 1500 ms. Data was notched 

at 30 Hz and 60 Hz to account for reference noise and electrical artifacts (Libenson, 2010). 

Power was calculated using the newtimef Morlet wavelet transform, with a linearly increasing 

cycle number from 1 cycle at 2 Hz to 30 cycles at 100 Hz. Total power measured via event-

related spectral perturbation (ERSP) includes both evoked and induced activity. Separating 

evoked and induced power from the total allows a distinction to be drawn between phase-locked 

and non-phase-locked activity. The judgment paradigm may induce event-locked but not phase-

locked cognitive processes such as probabilistic reasoning as the participants process properties 

of the self and other stimuli, and these processes may differ between conditions in magnitude 

and/or time course (Mu & Han, 2010; Papo, 2015). As a result, both induced and evoked power 

are included in the analyses to capture group differences in frequency band power of phase-

locked and non-phase-locked activity. To calculate induced power (non-phase-locked activity), 

the power of the baseline-corrected averaged data (evoked or phase-locking activity) is 

subtracted from the un-corrected total ERSP (evoked and induced activity), which requires a 
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power calculation on single trial data. Dependent variables for multivariate GLMs include 

evoked and induced power for frontal and centroparietal electrodes in all frequency bands.  

Evoked and induced power variables are entered into separate multivariate GLMs to 

reduce variable counts. Each multivariate GLM separately considered induced and evoked inter-

correlations among frontal and centroparietal frequency bands. Output includes multivariate 

tests, within-subject effects, and pairwise comparisons (see Appendix F for full ERSP tables).  

Source Analysis 

Source localization was performed with MNE in Fieldtrip, an open source Matlab 

toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011; Donders Institute for Brain, Cognition 

and Behaviour, Radboud University, the Netherlands. See http://fieldtriptoolbox.org) for its 

simplicity, straightforwardness, common usage, and robustness to lack of a-priori information 

(Hauk, 2004). Given the low spatial resolution of EEG and limits of localization methods, 

differential timing of the ERPs in each condition will increase the likelihood of successfully 

separating the dorsal and ventral mPFC areas with source localization over separation at a single 

time point. Localization accuracy is imperative for forming appropriate conclusions, given the 

proximity of regions of interest—dorsal and ventral mPFC, PCC and precuneus. The targets 

were P300 and LSW area amplitude measures. Since the ending of P300 overlaps the beginning 

of LSW, P300 localization included activation at 300 ms, whereas LSW localization included 

300-1000 ms activity to separate the components despite fuzzy boundaries.  

Pre-processing. Data was first loaded into Fieldtrip after pre-processing, baseline 

correction, and epoching in EEGlab 14.1.1. High-amplitude components associated with eye 

movement, muscle movement, heart rate, and other noise were removed during pre-processing to 

avoid biasing localization (Kumar & Bhuvaneswari, 2012). Once loaded, the data was down-

http://fieldtriptoolbox.org/
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filtered to 20 Hz to avoid convolution of artifact with neural signal. 0.5-20 Hz retained ERP 

peaks of interest. Afterward, the data was averaged referenced and averaged from -500 to 1500 

ms post-stimulus with a noise covariance matrix calculated from baseline.  

Forward solution. A 7 mm resolution source model was produced from a standard 3-

layer BEM head model provided by Fieldtrip after ensuring properly aligned electrodes (see 

Appendix G, Figure G1 for electrode alignment). For EEG localization accuracy, the head model 

included realistic boundaries for skull, scalp, and brain, which described a template geometry of 

the head and estimated tissue conductivity at each layer (Michel & Brunet, 2019). EEG data is 

highly sensitive to conductivity of the three layers, considering that electrical fields generated by 

neurons must pass through these surfaces to reach electrodes on the scalp. Using a head model 

that specifies levels of conductivity at each layer improves localization outcomes for EEG, 

although MNE is robust to skull conductivity errors (Matt & Olaf, 2013).  

Electrode positions were determined from standard coordinates provided by EGI. The 

template MRI from which the head model was derived came from Colin 27 data, which consists 

of 27 averaged T1-weighted scans of one individual (Holmes et al., 1998). The source model 

resolution was changed from the 1 mm default to 7 mm. The alteration reduced the number of 

dipoles inside the brain from 1,996,960 at 1 mm to 5,810 at 7 mm to improve computational load 

and remain within the recommended range of 3,000-6,000 solution points (Michel & Brunet, 

2019).  

There is a trade-off to increasing or decreasing the number of dipoles fitted for source 

estimation (Michel & Brunet, 2019). Having more dipoles significantly increases computational 

load, leads to more issues with numerical precision, and increases the risk of having spurious 

sources. Spatial resolution and accuracy are increased; however, there are diminishing returns on 
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spatial accuracy with limits set by the quantity and quality of data from the electrodes. Given that 

64-channel scalp EEG has an estimated spatial resolution of 3 cm or worse (Gevins, Le, Martin, 

Brickett, Desmond, & Reutter, 1994; Burle, Spieser, Roger, Casini, Hasbroucq, & Vidal, 2015) 

and that 3,000-6,000 dipoles are recommended, a 7 mm resolution source model with 5,810 

dipoles should be sufficient for localization. 

From the source model, electrode positions, and head model, a leadfield was computed, 

which provides forward solutions for all dipoles in a channel by source matrix (Nolte, 2003; 

Oostenveld, Fries, Maris, & Schoffelen, 2011; Appendix G, Figure G2). The leadfield, head 

model, and ERP data was used as input into MNE source analysis, which returned a solution to 

the inverse problem in a 3D volume. All plots show activity from the cortical surface level in 

conjunction with MNE recommendations (Hauk, 2004).  

Inverse solution and plotting. For MNE, lambda was set to 3 and data was scaled to 

source covariance and pre-whitened the leadfield using noise covariance. Source output was 

grand averaged for each condition before plotting and statistical analysis. P300 was plotted at 

300 ms, and LSW was plotted in the 300-1000 ms range. Difference plots of source power were 

generated using surface plots interpolated with a sphere average and difference data computed 

using the (x1./x2)-1 operation on source grand averages. For source statistics, the non-parametric 

Monte Carlo method generated a t-map with a cluster-based correction to minimize family-wise 

error rate inflated by multiple comparisons (Maris & Oostenveld, 2007).  

Cluster-based permutation tests. The Monte Carlo method first creates a random partition 

of the data for each of two conditions and then calculates the maximum of cluster-level summed 

t-values as the observed test statistic (Maris & Oostenveld, 2007; Popov, Oostenveld, & 

Schoffelen, 2018). The cluster-based test statistics are calculated by generating two-sided t-
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values for every sample pair from the partitioned data, only keeping samples with whose t-value 

is significant at the cluster-alpha threshold (.05), clustering according to spatiotemporal 

adjacency, and setting the statistic to the maximum of cluster-level statistics taken from the sum 

of t-values within clusters (Maris & Oostenveld, 2007). The steps are repeated many times to 

construct a distribution of the statistic from which random draws are used to compute the 

proportion of random partitions with a larger test statistic than the observed value. Steps were set 

to 50,000. If p is smaller than critical alpha of 0.05, then the data from the conditions are said to 

be significantly different. T-values from source statistics were plotted on the standard template 

MRI derived from Colin 27 (Figure 6-7) following procedures outlined in Appendix G, Figure 

G3. These surface t-maps were formed by interpolating the source data onto a surface mesh, in 

which there were 10,920 voxels in functional data on a [20 26 21] grid and 346,499 vertices on 

the cortical surface.   

HSMM-MVPA 

The hidden semi-Markov model-multivariate pattern analysis (HSMM-MVPA) approach 

was adapted from but closely following Matlab code provided by Anderson, Zhang, Borst, and 

Walsh associated with their 2016 publication. In their paper, they assert that processing stages of 

the same type are assumed to be the same length despite condition or subject. This means that 

variation in initial timing of the stage gives information about the response time of a subject to a 

specific condition, and the duration of the stage gives an indication of whether the subjects are 

undergoing the same types of processing in each condition. Considering the proposed models of 

ST and TT, it is possible to determine which model best applies to self-other data processing. 

Self, mother, and Fallon trials were placed into separate models to generate a self, mother, and 
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Fallon HSMM-MVPA that can be compared with respect to quantity, timing, and duration of 

stages. 

Since any data that is not time-locked is hidden by the averaged waveform, single-trial 

data was required for the HSMM-MVPA approach to identify processing stages with variable-

timing (Anderson et al., 2016). Epochs were 1 second in length, which, for most trials, cut off 

response-related processing (Appendix D, Table D1). Although 2 second epochs would ensure 

that all responses from all trials are included in the model, 2 seconds introduced a large amount 

of trial-to-trial variability in post-evoked neural data that was difficult for the HSMM-MVPA to 

filter through and gave many repetitive results. Many responses occurred in under 1.5 seconds, 

which leaves at least 0.5 seconds of unrelated neural activity to disrupt the model output. 1 

second epochs had best fitting models with 3-4 bumps, while 2 second epochs had best fitting 

models of 8-9 bumps. It is unclear whether 8-9 is an overfit or inclusion of unrelated activity that 

muddies the interpretation of output. Models with 1 second and 2 second epochs both had 

duplication of topographies, however 1 second data generally had 1 repeat while 2 second data 

showed numerous repetitions. Thus, 1 second epochs were chosen despite occasionally including 

the tail-end of response processing in a handful of trials. The trials with longer time to response 

do not appear to be condition specific. Self, mother, and Fallon have 2 conditions each (character 

and appearance). 

Hidden semi-Markov models are used to account for the timing variability of stages with 

the added benefit of being less computationally intensive as HMM-MVPA (Yu, 2010; Anderson 

et al., 2016). To reduce computational load, data was downsampled from 1000 Hz to 100 Hz, 

and a spatial PCA reduced the data to 10 components according to a scree plot, which accounted 

for 74.2, 74.6, and 74.4% of signal variance in the self, mother, and Fallon models, respectively. 
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Each component was z-scored for each trial to a mean of zero and standard deviation of 1. 

Instead of having 64 electrodes, the data then consisted of 10 normed PCA components with a 

constant between-trial variability of 1. To perform the same analysis as Anderson, Zhang, Borst, 

and Walsh (2016), bumps were specified to have 50 ms in width (5 10 ms samples), which 

makes a half-sine waveform. Bumps are always followed by flats, meaning that there will be n 

bumps and n + 1 flats in the signal. By specifying a narrow width, the bumps have more 

precision in signal identification, which is advantageous for detecting processing stages of 

variable lengths.  

 Since the bottom-up approach does not require a priori information about the number of 

processing stages, the model started with neutral parameters and re-estimated until convergence 

(Anderson, et al., 2016). Initial variables included 10 ms voltages across all 64 electrodes, start 

and end samples of the trials for specific subjects and conditions, conditions and subjects by trial 

and samples, electrode descriptions, and normed PCA dimensions set up independently of the 

code provided by Anderson and colleagues. These variables were used to run various aspects of 

the HSMM-MVPA script. Log-likelihoods for N-bump models, 10*N PCA values as 

magnitudes, and (N+1)*2 gamma parameter estimates for N+1 flats were output for models with 

1 to 8 bumps.  

As the basis for the HSMM-MVPA estimation, the gamma distribution predicts the 

waiting period before an event of interest in a skewed distribution with shape and scale 

parameters (Thom, 1958). In this application, shape is fixed to 2 and scale is freely estimated by 

the HSMM-MVPA to determine stage durations (Anderson et al., 2016). Stages are assumed to 

occur discretely such that no two stages occur at the same time. Additionally, the log transform 

for likelihood turns the product of densities into a sum, which reduces computational load and 
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avoids numerical issues with machine precision (Taboga, 2017). The model with the best fit is 

the one that maximizes log-likelihood. Log-likelihood in this case reflects the likelihood of the 

bumps being centered at each time point given the gamma parameters used to estimate bump 

locations (Zhang et al., 2018).  

Because of an issue with duplicate topographies appearing in model output, several 

articles were evaluated for an explanation and solution to the inclusion of an extra, identical 

bump in output. After altering the number of PCA components to > 10 and < 10, changing bump 

durations from 50 ms to 100 ms, testing data on individual subjects, and detrending the data, it 

was clear that the duplications were not caused by overfitting, excessive noise, or temporally 

correlated noise. Adjusting code from 50 ms to 100 ms bump widths did improve output but did 

not eliminate the problem. Zhang et al. (2018) mentioned a similar phenomenon in their data, 

explained either by alpha ringing or an extra-long bump that was picked up twice or more in the 

MVPA algorithm. Their solution to constrain adjacent bumps to a maximum correlation of (T-

50/150) resolved the issue, where T is the mean durations of “flats” or time periods between 

bumps. Nearby bumps (< 200 ms) could no longer be correlated, which avoided the problem of a 

long processing stage onset pulling into separate bumps. The likely explanation is that the 

P300/LSW-like peaks in the data were longer than the 50 ms expectation, which caused a “new” 

stage to appear around bumps 3 and 4 in a 5-bump model. With the correlation correction, the 

best bump models shifted from 5 to 3-4, which is further evidence that the repeated bumps were 

not independent stages. 

Once the initial 1-8 bump models were estimated, leave-one-out cross-validation 

(LOOCV) was used to ensure that conclusions are generalizable (Anderson et al., 2016). 

LOOCV removes one subject from the dataset and uses the model to calculate the log-likelihood 
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of the missing subject’s data. This process indicated how well the model predicted data outside 

of model training. LOOCV was repeated for all 45 subjects, giving log-likelihoods for all 

individuals and all 8-bump models. The log-likelihoods were then used to determine the optimal 

model for the greatest number of individuals. The balance between generalizability and 

parsimony is important to consider in conjunction with initial fit findings. Since LOOCV fits to 

data left out of model training, the effects of overfitting are mitigated (Anderson & Fincham, 

2013; Anderson et al., 2016). In other words, log-likelihoods will not simply increase because 

there are more states or parameters in the data. A sign test was used to determine whether the 

initial N-bump model is better than the best fitting LOOCV model (Anderson et al., 2016). Sign 

tests are a non-parametric alternative to t-tests and assess the null hypothesis that the median 

difference between the 3 and 4-bump models is zero, where the 3-bump models have .5 

probability of fitting a subject’s data better than 4 bumps. Difference scores are calculated and 

used to assess the alternative hypothesis that the 4-bump model significantly improves log-

likelihoods over 3 bumps. The final, chosen model predicted the largest proportion of subject 

data without sacrificing parsimony.  

The HSMM-MVPA approach demonstrates how bumps in the signal can be localized to 

specific cognitive stages. However, identifying and classifying the number and duration of stages 

determined by the model is easiest when a cognitive architecture already exists. For Anderson et 

al., the HSMM-MVPA output was compared to an existing ACT-R model (2016). Instead of 

using a pre-existing cognitive model, the self, mother, and Fallon HSMM-MVPA were 

compared to the proposed ST and TT models to determine which theoretical framework best 

describes the data. Since the ST and TT models have not been validated, the interpretation of the 

HSMM-MVPA output will require future experiments to verify interpretation. Simulation theory 
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would assume that neural mechanisms for self would be a special case or subset of theory of 

mind functionality with similar magnitudes across self and other conditions. Otherwise, latencies 

and processing stages would not change across person. Theory theory would assume distinct 

mechanisms and latencies for processing of self and other, with potential similarity in number of 

stages but not magnitude or duration. 
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Chapter 4: Results 

Behavioral results 

 Assumptions were tested prior to conducting the repeated measures (RM) ANOVA. Box 

plots showed no egregious outliers in reaction time by person or word. A Shapiro-Wilk test of 

normality held for all person conditions (p > .05), but not word conditions (p < .05). Sample 

sizes are equal within person conditions (N = 90) and word conditions (N = 180), meaning that 

results will be robust to normality violation (see Table C2 for sample size breakdown). 

According to Mauchly’s test of sphericity, the sphericity assumption was violated for person (p < 

.001) but not for person*word (p = .711) with no data for word. This tests the null hypothesis 

that error covariance matrices of the orthonormal dependent variables is proportional to an 

identity matrix (IBM Corp., 2019). The Mauchly test cannot be violated for variables with only 

two levels, since it is testing for unequal covariances. For person and person*word, this test is 

highly sensitive to mild violations of normality and, combined with being low power, is not 

necessarily reliable (Garson, 2015). Regardless, to account for the violation, the conservative 

Huynh-Feldt correction was reported.  

 The 2 (character, appearance) by 4 (self, Fallon, mother, case) repeated measures 

ANOVA with Huynh-Feldt correction revealed main effects for person (F(1.60, 70.7) = 613.83, 

p < .001, partial η2 = .93), word (F(1, 44) = 59.16, p < .001, partial η2 = .57), and person*word 

(F(3, 132) = 11.31, p < .001, partial η2 = .20; Appendix D, Table D2). Post-hoc pairwise 

comparisons using Sidak correction determined that all person conditions were significantly 

different from one another by at least p = .013 (Table D3). Case had the shortest reaction times 

(Table D1). Self had longer reaction times than mother but not Fallon, and Fallon had the longest 

latencies (Case < Mother < Self < Fallon). Appearance words had shorter latencies than character 
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words (character M = 1034 ± 17 ms; appearance M = 1000 ± 15 ms). Pairwise comparisons of 

person within each level of word and word within person were tested using a Sidak-corrected 

pairwise comparison of estimated marginal means to elaborate on person and word differences 

masked in the overall person*word interaction (Table D4). The Case < Mother < Self < Fallon 

pattern held for all but the comparison between self and Fallon for appearance words, which did 

not reach significance (p = .137). Last of all, case did not significantly differ by word condition 

(p = .855; Figure 5). 

 

 
Figure 5. Mean reaction times by person and word condition.  
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Spearman’s rho correlations showed moderate correlations < 0.9 between dependent 
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account (Appendix E, Table E1Error! Reference source not found.). For the assumption of 

univariate normality, Shapiro-Wilk showed a violation for all word conditions (p < .001) on all 

ERP variables except centroparietal latency (p > .330). Person conditions violated normality for 

all but Fallon in frontal latency (p = .066) and self, mother, Fallon, and case in centroparietal 

latency (p = .969, p = .323, p = .240, p = .986). Since sample sizes are equal within person and 

within word, results are robust to normality violation. Mauchly’s test of sphericity showed that 

the sphericity assumption was violated for person across all ERP variables (p < .002) and for 

person*word across frontal latency (p = .026). Therefore, at least one inter-correlation is non-

zero and the conservative Huynh-Feldt corrected results were reported for the test of within-

subjects effects. In the face of sphericity violations, a repeated measures (RM) MANOVA is 

recommended over multiple univariate RM-ANOVAs and warrants a multivariate approach for 

this data (Garson, 2015).  

MANOVA output provides 4 multivariate tests to determine whether the independent 

variables have a significant effect on the system of dependent variables. Pillai’s Trace takes the 

sum of effect sizes for the discriminant function and is highly robust when assumptions are not 

met (Olson, 1974; Rench, 2002; Grice & Iwasaki, 2007). Thus, Pillai’s Trace is the primary test 

reported here. Multivariate output revealed that at least one ERP variable differed by person 

(F(12, 393) = 5.59, p < .001, Pillai’s Trace = .438, partial η2 = .146) and word (F(4, 41) = 5.11, p 

= .002, Pillai’s Trace = .333, partial η2 = .333) but not person*word (F(12, 393) = 1.43, p = .151, 

Pillai’s Trace = .125, partial η2 = .042; Table E2). According to raw discriminant function 

coefficients of the multivariate output, the best standardized weighted combination of ERP 

variables to discriminate person is frontal area (-.817) + frontal latency (1.12) + centroparietal 

area (.017) + centroparietal latency (-.631) and for person*word is frontal area (.268) + frontal 
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latency (-.302) + centroparietal area (-.907) + centroparietal latency (-.266). No multicollinearity 

was found for area or latency that would bias discriminant function results (VIF ≤ 3.053 for all 

variables; Poulsen & French, 2004). This means that the optimal difference between person 

conditions would show low frontal and nearly zero centroparietal area, faster frontal latencies, 

and slower centroparietal latencies with the greatest differentiation by frontal area and latency, as 

would be expected from ventral mPFC BOLD findings. For person-word conditions, the optimal 

difference would show high frontal area, low centroparietal area, and shorter latencies and is 

likely drawing from differences in self, mother, and Fallon to case, which has shorter latencies, 

more positive frontal, and less positive centroparietal area.  

Although univariate output is automatically provided by SPSS for multivariate GLMs, 

the univariate aspect of analyzing multivariate output is not required (Grice & Iwasaki, 2007) but 

will be briefly reviewed. The univariate within-subjects test with Huynh-Feldt correction showed 

significant differences by person for frontal area (F(2.43, 107.08) = 7.89, p < .001, partial η2 = 

.152), frontal latency (F(1.53, 67.11) = 5.55, p = .011, partial η2 = .112) and centroparietal area 

(F(2.23, 98.24) = 6.16, p = .002, partial η2 = .123). Significant differences by word included 

frontal and centroparietal latency (F(1, 44) = 12.91, p = .001, partial η2 = .227; (F(1, 44) = 13.36, 

p = .001, partial η2 = .233; Table E3).  

Person*word had a significant difference for centroparietal area in the univariate but not 

multivariate model (univariate F(2.79, 122.89) = 4.02, p = .011, partial η2 = .084; Table E3). The 

most likely explanation is that frontal and centroparietal areas are highly and significantly 

correlated, which is incorporated into the multivariate but not univariate analysis (Spearman’s 

rho = .801, p < .001; Appendix E, Table E2). In summary, person*word no longer significantly 

contributed in the context of other dependent variables, namely frontal area, but had univariate 
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influence on centroparietal area. A correlation of .801 is potentially too high for the MANOVA, 

with the variables essentially being treated as a singularity during linear combination. The 

recommendation for dependent variables is a “moderate” correlation with vague and varying 

guidelines about what that entails. Researchers Grice and Iwasaki suggest that correlations up to 

.90 are acceptable for multivariate analyses (2007). Because of the potential for a biased 

multivariate outcome for person*word, the effect on centroparietal area was explored with this 

paragraph as a disclaimer.   

Piecing apart the specific dependent variables that differ by person, word, and 

person*word, post-hoc pairwise comparisons showed that mother (MMother-Case = .239 µV; p = 

.014), and Fallon (MFallon-Case = .281 µV; p = .002) conditions had significantly larger frontal ERP 

areas than case, and self trended in the same direction (MSelf-Case = .189 µV; p = .078) (Table E4). 

For frontal latency, self again trended (MSelf-Case = -43.60 ms; p = .055) in the direction of 

mother, where latencies were shorter for mother than case likely due to the smaller amplitude 

and wider width of the case ERP (Mmother-Case = -45.55 ms; p = .049). Centroparietal area showed 

significant differences by case for mother (MMother-Case = .240 µV; p = .025) and Fallon (MFallon-

Case = .251 µV; p = .009) with near-trend-level differences for self (MSelf-Case = .217 µV; p = .101). 

Areas were generally larger for person (self, mother, Fallon) than case. For word conditions, 

character significantly differed from appearance in frontal and centroparietal latency such that 

character words had shorter 50% area latencies (frontal MCharacter-Appearance = -18.81 ms, p = .001; 

centroparietal MCharacter-Appearance = -20.57 ms; p = .001; Table E5). 

Looking exclusively at centroparietal area, pairwise comparisons of person*word showed 

that differences from case were greater for appearance judgments of mother (MMother-Case = .360 

µV; p = .004), and Fallon (MFallon-Case = .309 µV; p = .008) than character judgments (MMother-Case 
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= .120 µV; p = .088; Fallon (MFallon-Case = .194 µV; p = .089) with a trend in the opposite 

direction for self (p = .081; Table E6). Again, this is only a univariate effect. According to 

pairwise comparisons, no differences between self, mother, and Fallon were significant among 

ERP variables.  

Induced and Evoked Power 

During assumptions testing, spearman’s rho correlations between dependent variables 

showed correlations < .90 for all induced and evoked variables. Induced low and high 

centroparietal gamma had the largest correlation followed by induced centroparietal delta and 

theta (Spearmans rho = .891; Spearman’s rho = .887; Appendix F, Table F1). Both centroparietal 

gamma variables are retained, however it is possible that a split between low and high gamma 

frequencies is unnecessary. Sphericity is less of an issue for multivariate analyses, but the 

assumption was tested out of transparency. Mauchly’s test revealed a violation of the sphericity 

assumption for all induced power variables by person (p < .004) except for frontal theta, alpha, 

beta, and centroparietal alpha (p > .097). For evoked power variables, sphericity was only 

violated for frontal delta (p = .032) and centroparietal delta (p < .001) and beta (p = .014). 

Sphericity held all of person*word (induced: p > 110; evoked: p > .056). With the presence of 

sphericity violation, all univariate results are reported with the Huynh-Feldt correction.  

Induced Power. All four multivariate tests for induced power were significant by p < .001 

for person (F(36, 369) = 2.48, p < .001, Pillai’s Trace = .584, partial η2 = .195) and person*word 

(F(36, 369) = 1.47, p = .045, Pillai’s Trace = .375, partial η2 = .125) but not word (F(12, 33) = 

.818, p = .631, Pillai’s Trace = .229, partial η2 = .229; Table F2). This suggests that at least one 

dependent variable varies across levels of the independent variable person and the interaction 

between person and word conditions. Expanding upon the multivariate within-person test results, 
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univariate tests show significant effects of person on frontal and centroparietal delta (pf = .033, 

partial η2 =.074; pcp < .001, partial η2 = .159), low gamma (pf = .010, partial η2 =.097; pcp < .001, 

partial η2 =.185) and high gamma (pf = .013, partial η2 =.096; pcp < .001, partial η2 =.233). The 

interaction showed significant differential effects of different levels of person*word on frontal 

high gamma (p = .005, partial η2 = .092; Table F3).  

One pattern for person-level effects included self, mother, and Fallon having greater low 

and high centroparietal gamma than case with an additional significance in delta frequencies for 

self and Fallon but not mother. Additionally, mother had less centroparietal and frontal delta and 

frontal low and high gamma than Fallon but only differed from self in low gamma. Therefore, 

low frontal gamma implied a pattern of Mother < Fallon = Self (Table F4). 

Post-hoc person*word comparisons are summarized in the table below (Table 1 and more 

extensively displayed in Appendix F, Table F5). General patterns showed that significant 

differences were limited to delta and both ranges of gamma (30–60 Hz and 60–100 Hz). 

Mother’s character only differed significantly by self character such that self responses had 

higher gamma power than mother responses. Self and mother had less high frontal gamma and 

centroparietal delta than Fallon for appearance, and self alone had less frontal delta than Fallon. 

Mother had consistently lower power than Fallon in frontal delta and low gamma with marginal 

significance for character and full significance for appearance. All conditions varied from case 

such that case had greater centroparietal delta for character and less centroparietal gamma for 

character and appearance, primarily in high gamma. 

The discriminant function coefficients suggested an optimal linear combination of 

induced variables for person*word, with standardized coefficients fDelta(-.280) + fTheta(.180) + 

fAlpha(.157) + fBeta (-.173) + fGammaL(.056) + fGammaH(-.912) + cDelta (-.017) + cTheta (-
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.061) + cAlpha(-.009) + cBeta(-.413) + cGammaL(-.343) + cGammaH(.458). Data showed 

potential multicollinearity for all induced power variables except frontal and centroparietal delta, 

which means there may not be a unique discriminant solution with inclusion of all variables and 

variables may be poorly estimated (VIFdelta ≤ 8.338 and 11.803 ≤ VIFall ≤ 18.155; Poulsen & 

French, 2001). With that caveat in mind, weights may suggest that low frontal theta and 

centroparietal delta and gamma best separates self, mother, Fallon, and case. Again, the 

combination is most likely driven by differences in case from self, mother, and Fallon. 

Interestingly but in line with pairwise results, the gammas seem to contribute more to the 

person*word differences than other frequencies with opposite sign in frontal and centroparietal 

regions.  

Table 1. Induced power patterns of significance 

Induced Power Character Appearance 

 Frontal Centroparietal Frontal Centroparietal 

Self = Mother < Fallon   *High γ *δ 

Self > Mother  Low γ    

 *High γ    

Self < Fallon   δ  

Mother < Fallon δ  *δ  

 Low γ  *Low γ  

Fallon > Case   Low γ *δ 

   *High γ β 

Self = Mother > Case  *Low γ   

Self = Mother = Fallon < Case  *δ   

Self = Mother = Fallon > Case  *High γ  *Low γ 

    *High γ 

Sidak corrected, includes marginally significant (p < .10) and significant (p < .05) differences 

with p < .05 denoted by *. δ = delta, β = beta, low γ = low gamma, high γ = high gamma. 

 

 

Evoked Power. Multivariate output revealed significant differences for person (F(36, 369) 

= 1.51, p = .034, Pillai’s Trace = .385, partial η2 = .128) but not word (F(12, 33) = .556, p = .861, 

Pillai’s Trace = .168, partial η2 = .168) or person*word (F(36, 369) = 1.31, p = .113, Pillai’s 
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Trace = .341, partial η2 = .114; Table F2). Since at least one dependent variable varies at levels 

of person, univariate within-subjects tests were investigated.  

Using a Huynh-Feldt correction, univariate analyses revealed a significant difference for 

centroparietal delta (p = .010, partial η2 = .091). No other significant univariate differences were 

found for person, but there were marginally significant findings for frontal delta (p = .058, partial 

η2 = .057), theta (p = .096, partial η2 = .047), and low gamma (p = .081, partial η2 = .050; Table 

F3).  

Post-hoc pairwise comparisons showed more specifically that mother had more frontal 

delta (p = .016), centroparietal delta (p = .010), and marginally higher frontal low gamma (p = 

.053) than Fallon. No significant differences were found for self or case (Table F4). 

Discriminant function coefficients suggested that evoked power best discriminates person 

by fDelta(.039) + fTheta(.073) + fAlpha(.430) + fBeta (.308) + fGammaL(.239) + 

fGammaH(.233) + cDelta (.651) + cTheta (-.915) + cAlpha(.426) + cBeta(-.790) + cGammaL(-

.223) + cGammaH(-.035). Tests of multicollinearity indicated no violation (VIF ≤ 3.845). 

Centroparietal theta, beta, and frontal and centroparietal alpha had the largest contribution to 

differences in person*word, which is informative considering that theta, alpha, and beta were 

found to differentiate self and other in EEG studies by Mu and Han (2010) and Park et al. (2018).   

Source Localization 

In source space, the cluster-based permutation test revealed significant (α = .05) two-

tailed differences at 300 ms, the P300 latency, and 300-1000 ms, the LSW range, between the 

following conditions: Fallon and case character (P300 only), case character and appearance, self 

and case appearance, mother and case appearance, and Fallon and case appearance (p < .025 on 

each tail). Raising alpha to .10 for a significance level of .05 at the tails revealed an additional 
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difference between Fallon character and appearance LSW and new trend-level source activity in 

the aforementioned pairings. T-maps are plotted in Figure 6 and Figure 7 without masking for 

significance; significant regions were darkened using an overlay of images masked by p < .025 

and marked with an asterisk. Image layering was done in GIMP 2.10.0 x64 for Windows. Since 

atlases cannot be used in conjunction with surface plots in Fieldtrip, conclusions about region-

specific variation among conditions are cautiously considered. Sample statistics were chosen for 

clustering when less than critical alpha = .05. Every pairwise comparison had clusters, but few 

were significant at the cluster level. 

 

 



55 

           

Figure 6. Plots of t-values in positive and negative clusters using Fieldtrip’s ft_sourcestatistics 

with cluster-based permutation. The frontal lobe points downwards. Significant differences are 

denoted with an asterisk and a black overlay from images masked by p < .025, which were 

always in the positive two-tailed t direction. 

 

* * 

*

* 

* 

* 

*
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Figure 7. Unmasked t-maps for self, mother, Fallon, case, with character-appearance activity. 

Case P300 and LSW was significantly different between character and case in the positive t 

direction denoted with an asterisk and darkened overlay. Fallon had a marginally significant (p < 

.10) LSW difference for character-appearance in the right temporal lobe in the negative t 

direction. 

 

HSMM-MVPA 

 Initial HSMM-MVPA log-likelihoods were highest for the 3-bump self and mother 

model and the 4 bump Fallon model. LOOCV showed optimal fit for the 4-bump Fallon model 

for 16 subjects and the 3-bump self and mother model for 12 and 23 subjects over all 1-8 bump 

alternatives (Figure 8). Log-likelihoods were similar for 3 and 4 bumps in each condition, 

therefore a sign test determined whether the 3 or 4 bump model had the best proportion of fit by 

subject for each person condition. For the MVPA application, the value change of the sign test 

determined whether a larger number of bumps was a logical choice over a more parsimonious 

model. The smallest positive or negative value was used for the test statistic to determine the 

probability of finding a value equally or more extreme. According to results for self and mother, 

3 bumps had larger log-likelihoods than 4 bumps for 30 (p = .018) and 33 subjects (p = .001) out 

of 45, whereas 4 bumps had larger log-likelihoods for 28 subjects in the Fallon condition but did 

* 

* * 
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not reach significance (p = .068). The sign test suggested that self, mother, and Fallon data did 

not have significant log-likelihood improvement with 4 bumps; the data is best explained by a 3-

bump model.

 

Figure 8. Mean log-likelihood gain of self, mother, and Fallon models using LOOCV 

 

Duration of Stages. Using a repeated measures ANOVA with post-hoc comparisons, 

Fallon significantly differed from self and mother in mean duration of stages 1, 2, and 4 using 

times from character and appearance and all stages, subjects, and electrodes (Person*Stage F(6, 

264) = 160.92, p < .001, partial η2 = .785; Appendix H, Table H1; Figure 10). Self and mother 

had longer character and appearance latencies than Fallon for stage 1 (p < .001) during pre-

cortical processing and shorter latencies thereafter (p’s < .022). For stage 3, around the P300 

latency, Fallon significantly differed from mother but not self such that character and appearance 

latencies were shorter for mother (p < .047). Additionally, self differed from mother in stages 2 

and 3 for character but not at all for appearance.  
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Figure 9. Bump topographies and stage durations for the 3-bump self, mother, and Fallon 

models collapsed across character and appearance.  

 

 

Figure 10. Mean duration of stages for 3-bump models of self, mother, and Fallon  

 

Magnitude of Peaks. Using bump magnitudes averaged across the 10 PCA components, 

differences between person (self, mother, Fallon) and bump were assessed with a repeated 

measures Sidak-corrected ANOVA. Within-subjects effects of person, bump, and person*bump 

were significant at p < .001. The pairwise comparisons of person*bump showed that all 
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combinations of self, mother, and Fallon differed in bump magnitudes across all three bumps (p 

< .001; see Appendix H, Table H2). Estimated marginal means of self were significantly greater 

for mother and Fallon for bumps 1 and 2 and smaller for 3. Mother generally had smaller 

magnitudes than self but greater magnitudes than Fallon for bumps 1, 2, and 3. Fallon had the 

smallest bumps for 1 and 2 and the largest for 3. Bumps 1 and 2 suggested a Fallon < mother < 

self pattern of magnitudes, while bump 3 indicated self < mother < Fallon.  

Electrode-Specific Activity. Using a single electrode from frontal and parietal areas (FZ 

and PZ, respectively) revealed that self and mother had more similar EEG activity than Fallon at 

FZ given the large positive frontal spike for Fallon around 150 ms (Figure 11). The first bump 

for parietal self around 250 ms broke a pattern from the others as well, but no test was used for 

statistical comparison.  

 

 

Figure 11. Character and appearance data for self, mother, and Fallon from frontal electrode FZ 

and parietal electrode PZ after adjusting to the average maximized likelihood bump locations 

across trials  
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Chapter 5: Discussion 

Mother judgments had faster RTs than self, Fallon judgments 

Compared to Moran et al. (2011), behavioral results show the same main effects for word 

and person and person*word interaction. Consistent with past findings, appearance words had 

shorter latencies than character words and the reaction time for distant other (Bush before, Fallon 

now) was significantly different from the close other (mother), where Fallon > mother. Moran et 

al. (2011) also found a difference between Bush and self (Bush > self), which held true for the 

current data (Fallon > self). Unlike Moran et al., there was an additional difference between self 

and mother such that mother had shorter latencies for character (Mself = 1146.03 ms; Mmother = 

1120.25 ms) and appearance (Mself = 1099.50 ms; Mmother = 1080.06 ms) words than self, 

although Moran’s et al.’s data trended in the same direction (Mself,char = 1305.15 ms, Mself,appear = 

1267.24 ms; Mmother,char = 1299.51 ms, Mmother,appear = 1259.01 ms; 2011). Case was not present in 

the original study, but the significant difference between case and all other person conditions 

(self, Fallon, mother) was expected. Inclusion of the case condition thwarts concerns that person 

effects are simply due to differences in word length or concreteness between appearance and 

character words (Binder, Desai, Graves, & Conant, 2009; Moran et al., 2011).  

ERP results in the next section address determine whether differences in reaction time are 

due to variation in processing in the 300-1000ms window. Interpretation concerning simulation 

and theory theory are discussed. 

ERPs Did Not Distinguish Person Conditions beyond Case 

Results showed that self had smaller frontal area than both mother and Fallon and an 

overall mean closest to the case condition. Additionally, mother and Fallon significantly differed 

from case with mother having a more similar mean to case than Fallon. Taken together, the 
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means of frontal area suggested a case < self < mother < Fallon pattern. The same pattern of 

means applied to centroparietal area, where case < self < mother < Fallon. However, self did not 

reach significance in the self-case comparisons, unlike mother-case and Fallon-case (Appendix 

E, Table E4).  

For latencies, significance was only found in the frontal region for mother-case, with a 

trend for frontal self-case, suggesting that behavioral reaction time differences across person 

conditions were not due to timing of frontal or centroparietal activity. In summary, case ERPs 

had smaller area amplitudes than self, mother, and Fallon, which was expected (Figure 12). Both 

frontal and centroparietal regions had a trend of area means that suggested case < self < mother < 

Fallon, although significance was not reached for self-case, self-mother, self-Fallon, or mother-

Fallon comparisons.  

For word, character and appearance had an interesting dynamic, where character 

judgements had shorter latencies than appearance judgments in frontal and centroparietal regions 

(Table E5). It is likely that the narrower shape of the character ERP pulled the 50% area line 

earlier in time than the wider appearance ERP. This points to greater trial-by-trial variation in 

response to appearance judgments than character judgments. In other words, character judgments 

were more difficult overall—judging by their longer reaction times—but were more consistent in 

the degree of difficulty per judgment. Some appearance judgments were likely very 

straightforward (e.g., is Fallon brown-eyed?), while others were more challenging (e.g., is Fallon 

drab?). It is also possible but less likely that shifts in latency for character and appearance 

occurred outside of the specified regions or later in time post-LSW. 

Although initial glances at the ERP results seem to suggest a simulation interpretation 

given the non-significance between self, mother, and Fallon in latency and area, it is important to 
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address other possibilities. The first issue is that area amplitude and area latency measures as 

defined may not have the specificity to pick up on group differences found in previous studies, 

which include differences in BOLD activity between self, mother, and Fallon. Variations that 

may exist are obscured by taking the overall area and disregarding other aspects of ERP shape. 

Additionally, it is possible that the largest group differences occur in the tail through 1500 ms 

(Figure 12). The pitfall of extending the range that wide is that it may capture unwanted activity 

beyond the LSW.  

 

Figure 12. Frontal and centroparietal ERPs by person and word condition. Zero marks stimulus 

onset. Fixation is included for comparison of inter-stimulus activity with a visual cue to activity 

during the judgment task. 
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Beyond issues with ERP operationalization, an alternative explanation to the findings is 

that there were simply few, if any, real significant differences by person and word condition in 

the dataset. Past studies suggest otherwise (Heatherton, Wyland, Macrae, Demos, Denny & 

Kelley, 2006; Mitchell, Neil, & Mahzarin, 2006; Moran et al., 2011), although this particular 

sample of college-aged individuals may be an exception. Box plots did show outliers in the data, 

which are known to skew results of multivariate GLMs (Peña & Prieto, 2001). However, the 

outliers were not extreme enough to warrant removing and potentially ignoring real and 

important individual differences in cognitive processing and associated effects on neural activity.  

Lastly, like power data, ERP variables were corrected for multiple comparisons using 

Sidak corrections, which are less conservative than Bonferonni corrections but still very 

conservative when tests are not independent (Abdi, 2007). The correction may be too penalizing 

for the EEG data, considering that tests are within-subjects and multivariate. A correction such as 

the Benjamini-Hochberg procedure may be a more reasonable approach to correct false 

discovery rate over the more traditional Bonferonni or Sidak-based corrections, where p-values 

less than the critical value (i/m)Q with i as rank, m as number of tests, and Q as false discovery 

rate (McDonald, 2014). As a final check to determine whether differences may exist in different 

electrode subsets, a multiplot figure was created to view grand average ERPs for each condition 

(person*word) across all 64 channels (Appendix E, Figure E1-Figure E2). After thorough 

investigation, differences in reaction time cannot be explained by timing or degree of cognitive 

processing between person conditions using ERP data. 

Since ERPs were not significantly different by person aside from the control condition, 

ERP results appear to follow simulation theory over theory theory. This suggests that all person 

conditions are undergoing the processing steps through identical neural structures on similar 
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timescales. However, this also suggests that case, self, mother, and Fallon judgments had similar 

ERP area amplitudes and latencies in the frontal and centroparietal regions that showed group 

differences with fMRI. Overall BOLD concentrations differed by person condition across entire 

trials and in more precisely defined regions than EEG, while the electroencephalographic activity 

did not reliably differ across time. Information from frequency data, source space, and 

multivariate pattern analysis must be evaluated to determine whether simulation theory is 

plausible and consistent with all avenues of analysis in the study. In short, other avenues do not 

suggest simulation.  

Instead, the lack of findings between self, mother, and Fallon and inconsistency with 

fMRI findings suggest a large degree of variability across trials and individuals. High variation is 

problematic for the ERP approach. By taking averages across epochs, differences between trials 

are masked in wideset ERPs that limit detection of change by condition. Essentially, there was 

too much trial-to-trial and person-to-person variability for ERPs to be effective at identifying 

significant differences across conditions to the same degree as fMRI BOLD concentrations. A 

technique that relies on single-trial data and preserves between trial variation such as HSMM-

MVPA is more suitable for this trait judgment task and for other EEG tasks requiring higher-

order cognitive processing with a variable timescale. 

Induced and Evoked Power in Delta, Gamma Differentiated Person Conditions 

 Induced power. With regard to induced power, self, mother, and Fallon had significantly 

higher centroparietal delta power than case in character responses as well as less centroparietal 

gamma for character and appearance. Low frequency non-phase-locked oscillations such as delta 

arise from coherent activity between populations of neurons with an essential role in global 

processing and integration across neural regions (Mu & Han, 2010; Knyazev, 2012). Data 
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supports a related integration account, in which the self-relevance of information is evaluated by 

a subregion of the mPFC, which is functionally connected to and communicating with task-

relevant regions like the PCC/precuneus (Cooper, Bassett, & Falk, 2017).  

Higher frequencies such as gamma, on the other hand, correspond to optimization and 

global processing on a shorter timescale, allowing for a dynamic system of fast and slow 

oscillations constraining one another to coordinate activity across regions for required task 

processing. Delta modulates gamma in the hierarchy and has an essential function for slower, 

more complex computation such as required by character judgments or with increased memory 

load (Knyazev, 2012). Additionally, delta is associated with the P300 component, which 

suggests that delta activity may be related to attention, memory, and complex integration of 

information. The increase in centroparietal delta and corresponding decrease in centroparietal 

gamma comparing case to self, mother, and Fallon suggests that both frequency bands are part of 

a modulatory system for integrating social information that is absent or lessened in basic word 

processing. Frontal delta, high gamma, and centroparietal low and high gamma were chosen by 

the discriminant function. This suggests that these dependent variables maximally contribute to 

person distinctions. 

Beyond case, self had enhanced induced power over mother in gamma bands (30-60 Hz 

and 60-100 Hz), in agreement with Mu and Han (2010). Self and mother both had less frontal 

high gamma and centroparietal delta than Fallon for appearance, which may suggest that Fallon 

appearance required a larger degree of information integration or complex processing than self 

and mother, considering that there is less information about Fallon on which to judge. In general, 

self and mother required less delta and gamma than Fallon for appearance and marginally for 

character judgment, but with self having higher gamma than mother for character judgments. 
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Researchers have proposed a developmental advantage of having an earlier recognition of 

mother over self which may explain the strong overlaps between mother and self concepts 

(Damon & Hart, 1982; Knyazev, 2013). Perhaps the concept of mother is a robust, relatively 

unchanging mental model, while the concept of self is ever-changing and, therefore, more 

complex to judge.  

Evoked power. Mother was shown to have more frontal and centroparietal delta power 

than Fallon. Neither self or case differed from mother or Fallon in any evoked frequency bands. 

Considering that evoked power is more often related to stimulus processing (Knyazev, 2013), 

mother may have required more initial processing than Fallon. Although not used in the 

univariate or post-hoc comparisons, the discriminant function coefficients reflected past findings; 

frontal alpha and centroparietal delta, theta, alpha, and beta had the highest weights in the linear 

combination. Each of these frequency bands was expected to significantly distinguish self and 

other. This was not the case for significance, but the weights suggest an inherent importance of 

these frequencies, primarily in centroparietal theta. For instance, theta is tied to memory such 

that self has enhanced encoding and retrieval of episodic memory and an increase in memory 

load compared to self-irrelevant information (Doppelmayr, Klimesch, Schwaiger, Stadler, & 

Rohm, 1999). Although self did not differ from other in evoked power, the relative importance of 

theta and memory in differentiating person conditions in the centroparietal region is highlighted.   

Summary. Overall, there were 12 induced and 12 evoked power variables (frontal and 

centroparietal; delta to high gamma) with several significant pairwise differences between person 

and word groups (see Appendix F, Figure F1 for induced and evoked power by person, word, 

and region; Table F4 and Table F5 for comparison tables). Ideally, the case condition would 

narrow down the most relevant relationships; if each person condition (self, mother, Fallon) 
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significantly differed from case, then differences between people would more likely be due to 

cognitive processing of person rather than spurious or person-irrelevant differences among 

groups. Consistent differences from case occurred for induced power of centroparietal delta for 

character judgments and centroparietal gamma for character and appearance judgments. No 

differences from case were found for evoked power. Timing of power provided a single new 

insight into the self character and mother character differentiation; self had higher induced 

gamma power than mother.   

Source Differences Did Not Reliably Differ Between Self, Mother, and Fallon  

Because of unknowns with localization accuracy and multiple comparisons, despite 

corrections, it is not appropriate to claim that a specific region significantly differs from group A 

to group B using cluster-based permutation (Hauk, 2004). The inverse problem suggests that 

there are infinite localization solutions, and although MNE is an inverse solver, the true 

underlying source activity may not be accurately captured. Therefore, results are described 

according to overall significant differences between groups and trends of difference in certain 

broad source regions. 

Character-Appearance. Character activity had more nuanced differences than appearance 

across person conditions. In general, self, mother, and Fallon showed appearance differences 

from case, but only Fallon showed differences from case with character judgments. It is likely 

that the ERP data underlying the source activity does not have enough power to separate self and 

mother from case. That is, Fallon is differing from case more than self and mother but does not 

clarify whether self and mother have the same magnitude of activity. Additionally, case and 

Fallon are the only conditions to have differences across character and appearance. Case showed 

differences for P300 in the right centroparietal region, where character had increased source 
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activity opposite of the character-appearance findings for self, mother, and Bush in Moran et al. 

(2011). For LSW, case showed differences around the left temporal lobe, while the Fallon LSW 

trended toward less source activity in the right temporo-parietal region for character compared to 

appearance, as expected from prior BOLD findings. 

Case. Generally, case had less source power than the other conditions judging by the 

source plots of t-values (Figure 6). Significant differences were primarily in appearance, where 

all person-responses (self, mother, and Fallon) differed from case, and only Fallon differed in 

character. Self character judgments appeared to have less activity in the centroparietal region for 

the LSW than case, although no overall differences were identified between self and case 

character at the cluster-level.  

Examining source movies that show source power across time, positive frontal activity 

was very low in source power compared to other regions and often appeared in short bursts. 

Since source localization was computed on EEG data with known limitations in source 

resolution, it is possible that dorsal and ventral mPFC activity requires greater source power 

resolution to capture self and other differences. One reason that EEG in particular is limited in 

this sense is that the electrical signal underlying EEG is distorted as it passes through tissues to 

the electrode. Even with source localization of the EEG data, activity from the ventral and dorsal 

mPFC measured at the scalp surface could easily be overshadowed or misinterpreted after 

smearing. To take advantage of the superior timing of EEG with the required source specificity 

of fMRI, a simultaneous EEG-fMRI recording may be required to capture the intricacies of self-

other differences in a judgment task.  
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HSMM-MVPA Distinguished Self and Other by Stage Durations and Bump Magnitudes 

For the final phase of analysis, a sign test between 3- and 4-bump HSMM-MVPA models 

chose an optimal 3 bumps for self, mother, and Fallon conditions. Testing for timing and 

magnitude differences between the three models revealed significant differences between self, 

mother, and Fallon that were not found in other analyses of this data. Given differences between 

self, mother, and Fallon in timing and magnitude, the results are interpreted in terms of the 

proposed theory theory model (Figure 2).  

Duration of stages. Self and mother differed from Fallon, such that self and mother had 

later character and appearance latencies than Fallon for stage 1 (Mself,character = 248 ms; 

Mself,appearance = 255 ms; Mmother,character = 256 ms; Mmother,appearance = 261 ms; MFallon,character = 148 

ms; MFallon,appearance = 149 ms), which coincides with what was seen between mother and Fallon in 

evoked delta power. Considering that Fallon has a nearly 100 ms difference from self and mother 

in stage 1 and a very different topographical distribution, the Fallon model is likely selecting an 

entirely different processing stage than self and mother. Since stage 1 represents the time for the 

signal to reach the brain and undergo pre-cortical processing (Anderson et al., 2016), the Fallon 

model is likely picking up a visual N1-like sensory processing stage around 150 ms, while self 

and mother models are first picking up a P200 or P300-like stage beginning around 250 ms.  

Although the stage 2 window for self and mother could correspond to either a P200 or 

P300-like peak, the specific nature of the stage is unknown. Both P200 and P300 have been tied 

to selective attention to stimulus features, information categorization, and sensitivity to self-

referencing or self-relevance (Gray, Ambady, Lowenthal, & Deldin, 2004; Polich, 2007; Yu, Tu, 

Wang, & Qiu, 2010). The components are similar in theorized function, but the P200 is thought 

to reflect pre-perceptual processing, whereas the P300 reflects post-perceptual processing with 
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strong ties to both attention and working memory load (Gray, Ambady, Lowenthal, & Deldin, 

2004; Wongupparaj, Sumich, Wickens, Kumari, & Morris, 2018).  

With the function of P200 and P300 in mind, it is possible that as attention and self-

relevance increase, the P200-like bump is augmented. In the case of self and mother information, 

attention and self-relevance would lead to a much larger peak for self and mother than for Fallon. 

It is possible that the modulation of the peak may be overshadowing the importance of an earlier 

stimulus processing bump for self and mother. For Fallon, the P200-like bump would be 

dampened by the degree of self-relevance lacking for a distant other, according to theory theory. 

In such a case, the Fallon model would have a small peak that may be overshadowed by stimulus 

processing peaks and explain the differences between the Fallon model and self, mother models. 

Therefore, stage 2 of the self and mother models may be described as an attention allocation or 

information categorization stage for which self had later latencies than mother. For Fallon, stage 

2 is classified as early stimulus processing for the N1-like topography and latency. 

When allowing a 4-bump model, self, mother, and Fallon topographies become more 

consistent (Figure 13). The first bump for self and mother models shifts to a topography and 

latency resembling the visual N1, introducing a standalone stimulus processing stage for self and 

mother. This would suggest that in a 3-bump model, the N1-like bump representing early 

stimulus processing is more salient than memory retrieval or probabilistic reasoning for the 

Fallon model, while the P200 or P300-like bump is more representative for self and mother. 

Additionally, all models gain a bump around 500 ms with 4 bumps, splitting stage 3 into stages 3 

and 4. If the 4-bump model were accepted, the additional bump would suggest that the theory 

theory model is missing a stage. The probabilistic reasoning stage may be best described by 

separate reasoning and binary decision making processes (Johnson-Laird & Shafir, 1993). 
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Figure 13. Topographies of self, mother, and Fallon for 3 and 4-bump HSMM-MVPA models. 

See Appendix H, Figure H2 for the 5-bump model topographies. The 3, 4, and 5-bump models 

have considerable similarity to the topoplots in Figure H1. 

 

Beyond early sensory processing, self and mother had shorter latencies than Fallon for 

information retrieval (mother-Fallon only) and probabilistic reasoning stages by character and 

appearance, corresponding to time ranges 450-750 ms and 750-1000 ms, respectively. 

Information retrieval was best described by the pattern mother < self < Fallon, where mother 

differed from self and Fallon but self and Fallon did not differ from one another. The retrieval 
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stage may reflect LSW processing, which has been associated with episodic memory and 

extended working memory processes (Gray et al., 2004; Voss & Paller, 2017). Self also had later 

character latencies than mother for stages 2 and 3, which correspond to attention and 

categorization-based processing and memory retrieval stages around 250-450 ms for stage 2 and 

450-750 ms for stage 3.  

Differences in character response between self and mother but not Fallon could be 

explained by not having enough information about Fallon to make a reasonable probabilistic 

judgment. Consistent with theory theory, autobiographical memory may be engaged during 

judgment of mother but not Fallon or it may be engaged to a lesser degree for Fallon. This 

follows Rabin and Rosenbaum’s study, in which they found evidence of self-referential activity 

in the mPFC during a mentalizing task of a personally close but not distant other (2012). In 

distant other situations, it is possible that self is used as a prototype or exemplar but processed in 

a probabilistic fashion (Kuiper, 1981; Karylowski, Konarzewski, & Motes, 2000). Essentially, in 

line with reaction time data, there is a U-shaped curve for using self as prototype in distant-other 

judgment. However, instead of faster reactions for self, the fastest reactions were for mother. By 

using self as a prototype or other schema in general, Fallon judgments are based less in 

autobiographical memory as self and personally close others and more on semantic and 

schematic memory that would explain differences between self and mother vs. Fallon (Oschner 

et al., 2005). 

 

Character    Appearance 

Stage 1 Fallon < Self = Mother Stage 1 Fallon < Self = Mother 

Stage 2 Mother < Self < Fallon Stage 2 Mother = Self < Fallon 

Stage 3 Mother < Self < Fallon  Stage 3 Mother = Self < Fallon 

Stage 4 Self = Mother < Fallon  Stage 4 Mother = Self < Fallon 
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Magnitudes of Peaks. Bump magnitudes were averaged across all 10 PCA components 

and compared across person (self, mother, Fallon) and bump, collapsed across character and 

appearance. The within-subjects results showed that person, bump, and person*bump all had 

significant differences. All pairwise comparisons of self, mother, and Fallon at bumps 1, 2, and 3 

were significant. Bumps 1 (information gathering and early processing) and 2 (memory retrieval) 

had a pattern of Fallon < mother < self, while bump 3 (probabilistic reasoning) indicated self < 

mother < Fallon as hypothesized.  

 

In summary, differences in timing and magnitude for Fallon may be rooted in a greater 

reliance on semantic and schematic memory as opposed to autobiographical memory for 

personally close others and self (Rabin & Rosenbaum, 2012). For an unfamiliar other with little 

to no shared information with self, schema and common knowledge, or folk psychology are 

central to understanding. Having more shared experiences or episodic memories with a more 

familiar other will drive mentalizing about that other more so than semantic or schematic 

memory.  

Given the number of stages and differences between self and other that were identified in 

the HSMM-MVPA approach, it is apparent that the theory theory model is more fitting for the 

data than the simulation model (Figure 1; Figure 2). For bump 3, approximately in the 

probabilistic reasoning stage of the theory theory model, self, mother, and Fallon significantly 

differed in peak magnitudes in the hypothesized pattern of ventral mPFC character activation: 

Self < Mother < Fallon. Durations of stage 4 associated with bump 3 also differed such that 

character showed a Self = Mother < Fallon pattern and appearance showed Mother = Self < 

Bump 1 Fallon < Mother < Self 

Bump 2 Fallon < Mother < Self 

Bump 3 Self < Mother < Fallon 
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Fallon. The fluctuations of timing and magnitude across bumps and stages may explain why 

mother had faster reaction times than self, as well as how influential time windows are on the 

ability to distinguish self and mother latencies or activations. 

Limitations and Assumptions 

  Source Localization with Low-Density Nets. Several limitations and assumptions were 

encountered in this research and should be carefully considered. For example, the number of 

electrodes and quality of data both influence source localization. Although the optimal 128- and 

256-channel EEG nets give higher spatial resolution and more accurate localization solutions 

than lower density nets, data from 64-channels have the advantage of demanding less memory 

and computational power from an already computationally intensive process. Compared to 

clinical nets that are often <32 channels, 64-channel nets also provide a reasonable compromise 

between precision and time. However, the 64-channel net available for this study had an unequal 

distribution of electrodes across the scalp surface, which partially violates best practice via 

inadequate spatial sampling and thus may have distorted source solutions. Slight variations in 

electrode positions from subject to subject could also contribute to the problem as well as 

differences in scalp thickness and geometry, which could only be modeled with individual MRI 

head models (Song et al., 2015).  

 Data quality is always important when artifact has potential to overshadow or bias results. 

To improve the quality of solutions, data must be thoroughly pre-processed, including 

appropriate filtering, referencing, resampling, ICA, and artifact removal. Data in this study was 

cleaned with both automatic and manual artifact detection and ICA labeling using a standardized 

Matlab pipeline, which ensures a large degree of consistency and thoroughness of pre-processing 



75 

between datasets (see EEG Analysis). However, 30 Hz noise was prevalent in the dataset, and 

although filtered out with a 30 and 60 Hz notch filter, may have left remnants of noise. 

 Lack of sensitivity. There are clear limitations in source analysis with using a template 

head model and MRI from Fieldtrip rather than individualized scans. Additionally, source 

analysis can be very computationally demanding, and the source model was restricted to a 7 mm 

source grid to reduce load. EEG data may have poor source accuracy, but the more data 

simplification, the more likely the source output will be less representative of reality (Cohen & 

Cuffin, 1991; Liu, Dale, & Belliveau, 2002).  

Defining Time Windows. In traditional ERP and time-frequency approaches, there are 

limitations for knowing when a person is thinking about themselves or others during the 

character-appearance judgment task. Thus, the accuracy of traditional EEG approaches hinges on 

having appropriate time windows for capturing self- or other-related thoughts. Judgments may 

occur outside a window that is too narrow, but wide windows may bias results toward unrelated 

neural activity. However, individual differences in timing of late cognitive processes like P300 

and LSW vary as cognitive events unfold, and subject-specific peaks are ill-defined. Therefore, 

ERP, time-frequency, and source analysis relied on grand averages to determine the optimal time 

window for minimizing extraneous data and maximizing the likelihood of capturing the P300 

and LSW in every individual. A plot of superimposed individual ERPs verified that no subjects 

have ERPs occurring outside of the grand average time window.  

With the HSMM-MVPA approach, subjective and theory-driven issues like defining time 

windows are surpassed. Instead of relying on theory, the HSMM-MVPA algorithm used pre-

processed EEG data to find bumps that mark new stages of cognitive processing while 

minimizing potential researcher bias. 
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Information Processing. One critique of trait judgment tasks is that self, mother, and 

Fallon information could be processed differently simply because trait judgments of Fallon have 

not occurred before, requiring more or different reasoning and decision formulation than mother 

and self information. As a result, a future study should level the differences by requiring 

judgments about the self, a familiar, and an unfamiliar other in scenarios that have not been 

directly observed and cannot be easily predicted. In such a case, one cannot rely entirely on 

memories of oneself or another person to make judgments or predictions in a given situation. 

Moral dilemmas are an example of such scenarios, since it is impossible to know how someone, 

including oneself, would respond in situations they have never been in. 

Conclusion 

Although several measures were ineffective at distinguishing person or word conditions 

as expected, the present study addressed alternative explanations to Moran’s finding that the 

ventral mPFC is activated for the mother’s character in addition to self (2011). (1a) the P300 and 

LSW amplitudes did not match BOLD findings. The frontal and centroparietal P300/LSW did 

not show larger amplitudes for character over appearance and did not differ between self, 

mother, and Fallon in amplitude or latency. However, differences from case in frontal and 

centroparietal area amplitude suggested a case < self < mother < Fallon trend. The ERP data 

alone was not enough to suggest one theory of mind theory over another given methodological 

concerns, data trends, and mismatched EEG to fMRI findings. 

(1b) Frequency band power has been highly correlated with BOLD responses, which 

implies that BOLD and EEG frequency band power should be similar and that differences 

between self and other may be explained by changes in frequency band power and timing of the 

EEG. In induced or non-phase-locked power, significant differences occurred primarily in delta 
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and low and high gamma, such that self had higher frontal gamma power than mother responses, 

self and mother had less frontal high gamma and centroparietal delta than Fallon in appearance, 

and self additionally had less frontal delta than Fallon. Although delta was not reported in past 

studies, gamma has been commonly found to be a differentiator of self and other (Mu & Han, 

2010; Dastjerdi et al., 2011; Knyazev, 2013). These findings do not necessarily rule out 

simulation theory but do suggest that self, mother, and Fallon processing is differing, perhaps in 

integration or complex processing of information. 

(2) P300 and LSW amplitudes did not reliably differentiate the self and other in source 

localization in the PCC, precuneus, and dorsal and ventral mPFC. The idea that timing 

discriminability would benefit source localization was impeded by the fact that P300 and LSW 

could not be easily differentiated in time. A time bin approach would solve this problem. T-maps 

of the source data did show significant differences between self, mother, and Fallon P3 and LSW 

and case in appearance. Further source specificity would require changes to the EEG set-up, 

study design, or use of a supercomputer. The self-other distinction is so nuanced in source space 

and probably sensor space that EEG generally may not be viable for the study of self-other 

thought in healthy populations. Neurocognitive disorders like autism spectrum disorder and 

schizophrenia have been associated with impaired self-recognition and may show more distinct 

differences between self and other than typically developing individuals in areas tied to 

impairment (Hobson & Meyer, 2005; Lyons & Fitzgerald, 2013). The ability to use EEG 

separate from fMRI and attain accurate but low-resolution source localization would be a cost-

effective solution for labs with existing EEG setups or lower budgets to study intact and 

impaired self-referential thought. It is unlikely but possible that an upgrade to a 128 or 256-
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channel net may be all that is needed to achieve self-other differences seen in prior research and 

in the HSMM-MVPA method described below. 

(3) The HSMM-MVPA model independently selected 3-bump models for processing 

self, mother, and Fallon judgments during the self-other trait judgment task. Timing and 

magnitude findings of the self, mother, and Fallon HSMM-MVPA models fit with the theory 

theory model of mentalizing. Theory theory predicts that self information would be processed 

faster and with more initial attentional resources, in line with findings for the early processing 

and information gathering stages of processing. Theory theory would also predict that self would 

have less probabilistic reasoning load than other-based processing related to the degree of 

information available to reason about the self and other, which varies as a function of familiarity 

and indeed matches findings for the probabilistic reasoning stage of the model.  

Topographies of the bumps were reasonably linked to topoplots of ERP data across time 

(Figure H1). Three distinct patterns appear in the topoplots that are associated with early 

stimulus processing, information gathering and memory retrieval, and probabilistic reasoning as 

chosen by the 3-bump self, mother, and Fallon HSMM-MVPA models with slight topographical 

variation between self, mother, and Fallon models. This final phase of EEG analysis was 

successful at identifying reliable self-other differences in both time and magnitude, with the 

added benefit of remaining objective. If mentalizing about others occurs through the probabilistic 

reasoning process following theory theory, then the odd activation of mother’s character in 

Moran et al. (2011) can be explained by indirect self-referencing through episodic memory 

retrieval.  

Although the decision to settle on simulation or probabilistic reasoning was not obvious 

across ERP, time-frequency, source analysis, and MVPA methods, the data does suggest that 
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simulation is not a likely explanation. Across all socio-cognitive processing, it is most probable 

that both simulation and theory theory are used in some capacity or combination for specific 

tasks. For example, the trait judgment task used in this study likely initiated direct judgments of 

self and other based on episodic and schematic knowledge as opposed to reflective judgments 

drawn from beliefs about how others may perceive us. These first and third person reflections are 

thought to stem from different underlying processes but with shared activation of the mPFC and 

PCC/precuneus (Oschner et al., 2005). Simulation may be more likely to occur in the reflective 

judgment, where judgments are based more on imaginative situations like, “If I were someone 

else, would I think I was kind?” Addressing that possibility is beyond the scope of this data. 

Additionally, a proposed combination simulation-theory-theory perspective suggested 

that implicit simulation could be a default, fast model of understanding others, while folk 

psychology provides slower but more complex understanding when there is information about 

others to work from (Gallagher, 2007). If that were so, distant other judgments would have 

shorter reaction and processing times, which was not the case. 

Future Research. Since participants were healthy and conditions were highly similar, 

varying only in person and word type, neural differences were small but biologically relevant. To 

ensure that there is enough power to assess these minute changes with respect to condition, 

measures must be precise in time, robust to noise, and otherwise properly defined. Using 

traditional EEG analyses, data could be re-analyzed with a more focused subset of electrodes 

around the medial prefrontal cortex and PCC/precuneus to address concerns over capturing 

nearby but irrelevant activity in an overly spread electrode subset. Even without data smearing 

that happens as pyramidal cell activity travels to the scalp, the selection of electrodes has a great 

influence on what is defined as frontal activity. The subset chosen here may be misrepresenting 
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the dorsal and ventral mPFC or PCC/precuneus. Although a single frontal subset was chosen, as 

opposed to separate dorsal and ventral selection, the P300 and LSW were hypothesized to 

distinguish ventral and dorsal according to their neural generators and differences in timing. 

Because the P300 and LSW were indistinguishable in the waveform, the ability to then 

distinguish areas of the mPFC using that approach was severely limited.  

The most ideal solution for addressing both source and timing aspects of self and other 

differences would be simultaneous EEG and fMRI or a more suitable EEG setup for localization 

such as higher density nets and precise electrode positions. Having a 128-channel or higher 

density net would allow for a more selective and precise grouping of electrodes with EEG, and a 

greater benefit from fitting a larger number of dipoles (Michel & Brunet, 2019). Without 

collecting new data, the dataset could be investigated as a time series with 10 ms bins of activity 

across averaged and single trials. Since the original hypotheses involved a curiosity about timing 

differences between self and other, the time bins may be better suited to address timing changes 

across the ERP and better able to separate contributions of the P300 and LSW without specifying 

onset and offset in large time windows.  

Differences may also be more apparent in self or other-relevant trials, where the subject 

answered “yes” that the trait adjective describes the person, as evidenced by (Mu and Han, 

2010). Future research could consider the neurophysiological effects of relevance on self-other 

responses taking familiarity into account. Additionally, the task itself could be adapted into a 

more traditional theory of mind task, in which participants make judgments regarding an other’s 

expected mental state or predicted response in a scenario. These adjustments would address any 

concerns over the word judgment task being an oversimplification or limited aspect of 
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mentalizing in theory of mind. For instance, considering only direct, first-person judgments of 

self and other and not reflective, third-person judgments. 

Neurological Disorders. Having a more comprehensive understanding of the dorsal and 

ventral mPFC better in a healthy population is an important stepping-stone for understanding 

abnormalities in these regions associated with self or theory of mind deficits in ASD or 

schizophrenia such as trouble referencing self when understanding others (Sass and parnas, 

2003; Veluw & Chance, 2014). As an example application, ASD involves deficits in 

autobiographical episodic but not semantic memory that could potentially determine whether 

unfamiliar others are being differentially judged with semantic as opposed to episodic memory 

and to what degree that differs for personally familiar others compared to self (Lind & Bowler, 

2009). On the contrary, if the degree of semantic and episodic memory contribution in a typically 

developing population was known for self-other judgment across familiarity, then it would be 

possible to determine whether individuals with ASD use compensatory processes for impaired 

episodic memory that may explain difficulty but not complete absence of ability to distinguish 

self and other or undergo probabilistic theory of mind reasoning.  
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Appendix A: Timetable of Task Design 

Table A1. Timetable of Task Design 
Task Information Method 

Approximate 

Length of Time 

Informed Consent Paper 3 minutes 

Demographic Questionnaire Paper 2 minutes 

EEG Net Application Person 5 minutes 

Impedance Check Person 5 minutes 

Resting EEG Computer 10 minutes 

Blocks 1-4 Computer 15 minutes 

Impedance Check Person 5 minutes 

Blocks 4-8 Computer 15 minutes 

Impedance Check Person 5 minutes 

Blocks 8-12 Computer 15 minutes 

EEG Net Removal Person 5 minutes 

Debriefing Form Paper 5 minutes 

 Total 90 minutes 
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Appendix B: 64-Channel Montage and Electrode Selection 

 

Figure B1. 64-Channel EEG montage. (a) frontal subset, (b) centroparietal subset. 
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Appendix C: Descriptive statistics and breakdown of within-subjects factors 

Table C1. Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

Age 360 17 24 19.33 1.384 

Gender 360 0 1 .67 .472 

fArea 360 .02 4.05 1.07 .76 

fLatency 360 271.31 949.33 511.37 82.27 

cArea 360 .04 4.49 1.27 .82 

cLatency 360 275.70 779.30 526.04 79.67 

Inducedf_delta 360 52.79 68.31 60.94 3.01 

Inducedf_theta 360 48.80 65.82 59.05 3.44 

Inducedf_alpha 360 46.84 67.89 56.73 3.76 

Inducedf_beta 360 42.49 58.22 50.33 3.05 

Inducedf_lowgamma 360 38.77 49.78 44.30 2.48 

Inducedf_highgamma 360 35.72 48.66 42.64 2.59 

Inducedc_delta 360 -6.32 -.46 -2.41 1.04 

Inducedc_theta 360 -8.48 -1.28 -4.40 1.53 

Inducedc_alpha 360 -11.29 -1.06 -4.54 1.91 

Inducedc_beta 360 -7.97 -1.15 -2.86 .91 

Inducedc_lowgamma 360 -3.86 -1.31 -2.24 .38 

Inducedc_highgamma 360 -3.27 -1.50 -2.20 .29 

Evokedf_delta 360 48.59 68.46 61.05 3.23 

Evokedf_theta 360 43.50 67.83 58.84 4.15 

Evokedf_alpha 360 40.44 72.24 57.31 4.67 

Evokedf_beta 360 37.64 60.44 50.15 3.28 

Evokedf_lowgamma 360 34.57 49.75 43.70 2.40 

Evokedf_highgamma 360 34.19 47.65 42.24 2.62 

Evokedc_delta 360 -8.28 -.57 -2.49 1.25 

Evokedc_theta 360 -10.42 -1.16 -4.25 1.88 

Evokedc_alpha 360 -11.24 -.42 -4.35 2.14 

Evokedc_beta 360 -6.87 -1.37 -2.87 .92 

Evokedc_lowgamma 360 -3.92 -1.34 -2.25 .38 

Evokedc_highgamma 360 -3.62 -1.56 -2.23 .32 

F = frontal, c = centroparietal 

 

 

 

 

  



99 

Table C2. Within-Subjects Factors 

 Value Label N 

Group 0 Character Self 45 

1 Character Fallon 45 

2 Character Mother 45 

3 Character Case 45 

4  Appearance Self 45 

5  Appearance Fallon 45 

6 Appearance Mother 45 

7 Appearance Case 45 

Person 0 Self 90 

1 Fallon 90 

2 Mother 90 

3 Case 90 

Word 0 Character 180 

1 Appearance 180 
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Appendix D: Reaction Time Output 

Table D1. Mean reaction times by person and word condition 

 Self Mother Fallon Case 

Character 1146.03(16) 1120.25(16) 1173.75(17) 697.43(15) 

Appearance 1099.50(15) 1080.06(15) 1122.02(15) 696.73(14) 

Note: Mean (standard error of the mean). 
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Table D2. Tests of within-subjects effects for reaction time 

Source Type III SS df Mean Square F Sig. Partial η2 

Person 12382189.39 1.60 7708133.58 613.828 .000 .933 

Error  887572.01 70.68 12557.49    

Word 108917.54 1.00 108917.54 59.160 .000 .573 

Error 81006.48 44.00 1841.06    

Person*Word 36352.00 3.00 12117.33 11.311 .000 .204 

Error 141410.55 132.00 1071.29    

Data is Huynh-Feldt corrected 
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Table D3. Post-hoc pairwise person and word comparisons for reaction time 

 

(I) Person (J) Person 

Mean 

Difference (I-J) Std. Error Sig.b 

95% CI for Differenceb 

Lower Bound Upper Bound 

Self Mother 22.610* 5.950 .003 6.218 39.001 

Fallon -25.119* 7.742 .013 -46.445 -3.792 

Case 425.684* 15.485 .000 383.029 468.340 

Mother Self -22.610* 5.950 .003 -39.001 -6.218 

Fallon -47.728* 7.484 .000 -68.344 -27.112 

Case 403.075* 14.816 .000 362.261 443.888 

Fallon Self 25.119* 7.742 .013 3.792 46.445 

Mother 47.728* 7.484 .000 27.112 68.344 

Case 450.803* 16.908 .000 404.228 497.378 

Case Self -425.684* 15.485 .000 -468.340 -383.029 

Mother -403.075* 14.816 .000 -443.888 -362.261 

Fallon -450.803* 16.908 .000 -497.378 -404.228 

(I) Word (J) Word    

 

  

Character Appearance 34.788* 4.523 .000 25.673 43.903 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Sidak. 
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Table D4. Post-hoc pairwise person*word comparisons for reaction time 

Word (I) Person (J) Person 

Mean 

Difference (I-J) Std. Error Sig.b 

95% CI for Differenceb 

Lower Bound Upper Bound 

Character Self Mother 25.781* 7.994 .014 3.761 47.802 

Fallon -27.719* 9.011 .021 -52.540 -2.898 

Case 448.596* 17.744 .000 399.716 497.476 

Mother Self -25.781* 7.994 .014 -47.802 -3.761 

Fallon -53.501* 10.446 .000 -82.275 -24.726 

Case 422.815* 16.579 .000 377.145 468.484 

Fallon Self 27.719* 9.011 .021 2.898 52.540 

Mother 53.501* 10.446 .000 24.726 82.275 

Case 476.315* 19.091 .000 423.728 528.903 

Case Self -448.596* 17.744 .000 -497.476 -399.716 

Mother -422.815* 16.579 .000 -468.484 -377.145 

Fallon -476.315* 19.091 .000 -528.903 -423.728 

Appearance Self Mother 19.438* 6.842 .040 .591 38.284 

Fallon -22.518 9.646 .137 -49.088 4.052 

Case 402.772* 14.328 .000 363.303 442.241 

Mother Self -19.438* 6.842 .040 -38.284 -.591 

Fallon -41.956* 7.781 .000 -63.389 -20.522 

Case 383.335* 14.537 .000 343.290 423.379 

Fallon Self 22.518 9.646 .137 -4.052 49.088 

Mother 41.956* 7.781 .000 20.522 63.389 

Case 425.290* 15.917 .000 381.445 469.136 

Case Self -402.772* 14.328 .000 -442.241 -363.303 

Mother -383.335* 14.537 .000 -423.379 -343.290 

Fallon -425.290* 15.917 .000 -469.136 -381.445 

Person (I) Word (J) Word    

 

  

Self Character Appearance 46.529* 8.800 .000 28.794 64.265 

Mother Character Appearance 40.186* 7.807 .000 24.452 55.919 

Fallon Character Appearance 51.731* 8.454 .000 34.693 68.768 

Case Character Appearance .706 3.847 .855 -7.048 8.460 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Sidak. 
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Appendix E: ERP Output 

Table E1. Spearman Correlations between ERP DVs 

 fArea fLatency cArea cLatency 

Spearman's rho fArea 1.000 .205** .801** .214** 

fLatency .205** 1.000 .145** .502** 

cArea .801** .145** 1.000 .227** 

cLatency .214* .502** .227** 1.000 

*. Correlation significance at .05 level 

**. Significance at the .001 level 
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Table E2. Multivariate within-subjects effects for ERP amplitude and latency 

Within Subjects Effect Value F Hypothesis df Error df Sig. Partial η2 

Person 

 

Pillai's Trace .438 5.592 12.000 393.000 .000 .146 

Wilks' Lambda .569 6.758 12.000 341.593 .000 .171 

Hotelling's Trace .745 7.930 12.000 383.000 .000 .199 

Roy's Largest Root .729 23.885 4.000 131.000 .000 .422 

Word 

 

Pillai's Trace .333 5.113 4.000 41.000 .002 .333 

Wilks' Lambda .667 5.113 4.000 41.000 .002 .333 

Hotelling's Trace .499 5.113 4.000 41.000 .002 .333 

Roy's Largest Root .499 5.113 4.000 41.000 .002 .333 

Person * Word 

 

Pillai's Trace .125 1.426 12.000 393.000 .151 .042 

Wilks' Lambda .877 1.444 12.000 341.593 .144 .043 

Hotelling's Trace .137 1.457 12.000 383.000 .138 .044 

Roy's Largest Root .112 3.657 4.000 131.000 .007 .100 

Design: Intercept  

Within Subjects Design: Person + Word + Person * Word 

The statistic is an upper bound on F that yields a lower bound on the significance level. 

 

 

 

 

 

  



106 

Table E3. Univariate tests of within-subjects effects for ERP amplitude and latency 

Source Measure Type III SS df 

Mean 

Square F Sig. Partial η2 

Person fArea 4.159 2.434 1.709 7.887 .000 .152 

fLatency 125443.921 1.525 82241.174 5.552 .011 .112 

cArea 3.823 2.233 1.712 6.161 .002 .123 

cLatency 30331.819 2.304 13162.836 1.975 .137 .043 

Word fArea .543 1.000 .543 3.311 .076 .070 

fLatency 31836.152 1.000 31836.152 12.906 .001 .227 

cArea .128 1.000 .128 .997 .323 .022 

cLatency 38079.772 1.000 38079.772 13.359 .001 .233 

Person * 

Word 

fArea .296 2.864 .103 1.146 .332 .025 

fLatency 4656.660 2.615 1780.965 .695 .538 .016 

cArea 1.023 2.793 .366 4.019 .011 .084 

cLatency 9940.223 3.000 3313.408 1.594 .194 .035 

Data is Huynh-Feldt corrected. 
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Table E4. Post-hoc pairwise person comparisons for ERP amplitude and latency 

Measure (I) Person (J) Person Mean Difference (I-J) Std. Error Sig. Lower CI Upper CI 

fArea Self Mother -.050 .051 .912 -.191 .091 

Fallon -.092 .043 .206 -.210 .026 

Case .189 .074 .078 -.013 .392 

Mother Self .050 .051 .912 -.091 .191 

Fallon -.042 .053 .966 -.188 .104 

Case .239 .074 .014 .034 .444 

Fallon Self .092 .043 .206 -.026 .210 

Mother .042 .053 .966 -.104 .188 

Case .281 .072 .002 .082 .481 

Case Self -.189 .074 .078 -.392 .013 

Mother -.239 .074 .014 -.444 -.034 

Fallon -.281 .072 .002 -.481 -.082 

fLatency Self Mother 1.945 6.337 1.000 -15.511 19.401 

Fallon -4.411 8.062 .995 -26.618 17.795 

Case -43.602 16.043 .055 -87.794 .589 

Mother Self -1.945 6.337 1.000 -19.401 15.511 

Fallon -6.357 6.790 .928 -25.059 12.346 

Case -45.547 16.507 .049 -91.019 -.076 

Fallon Self 4.411 8.062 .995 -17.795 26.618 

Mother 6.357 6.790 .928 -12.346 25.059 

Case -39.191 17.975 .191 -88.706 10.324 

Case Self 43.602 16.043 .055 -.589 87.794 

Mother 45.547 16.507 .049 .076 91.019 

Fallon 39.191 17.975 .191 -10.324 88.706 

cArea Self Mother -.023 .055 .999 -.173 .128 

Fallon -.034 .055 .990 -.184 .117 

Case .217 .088 .101 -.025 .460 

Mother Self .023 .055 .999 -.128 .173 

Fallon -.011 .045 1.000 -.135 .112 

Case .240 .080 .025 .021 .459 

Fallon Self .034 .055 .990 -.117 .184 

Mother .011 .045 1.000 -.112 .135 

Case .251 .074 .009 .048 .455 

Case Self -.217 .088 .101 -.460 .025 

Mother -.240 .080 .025 -.459 -.021 

Fallon -.251 .074 .009 -.455 -.048 

cLatency Self Mother -.384 8.376 1.000 -23.458 22.690 

Fallon 1.116 7.450 1.000 -19.407 21.639 

Case 21.404 12.865 .480 -14.035 56.843 

Mother Self .384 8.376 1.000 -22.690 23.458 

Fallon 1.501 8.942 1.000 -23.131 26.132 

Case 21.788 11.639 .344 -10.274 53.850 

Fallon Self -1.116 7.450 1.000 -21.639 19.407 

Mother -1.501 8.942 1.000 -26.132 23.131 

Case 20.288 13.268 .576 -16.262 56.837 

Case Self -21.404 12.865 .480 -56.843 14.035 

Mother -21.788 11.639 .344 -53.850 10.274 

Fallon -20.288 13.268 .576 -56.837 16.262 
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Table E5. Post-hoc pairwise word comparisons for ERP amplitude and latency 

Measure (I) Word (J) Word 

Mean Difference  

(I-J) Std. Error Sig.a 

95% CI for Differencea 

Lower Bound Upper Bound 

fArea Character Appearance -.078 .043 .076 -.164 .008 

fLatency Character Appearance -18.808 5.235 .001 -29.359 -8.257 

cArea Character Appearance -.038 .038 .323 -.114 .038 

cLatency Character Appearance -20.570 5.628 .001 -31.912 -9.228 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Sidak. 
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Table E6. Post-hoc pairwise person*word comparisons for ERP amplitude and latency 

  Person fArea fLatency cArea cLatency 

Character 

Self Mother 0.022 9.961 0.113 10.459 

Fallon -0.033 -0.459 0.038 2.698 

Case .255* -44.727 0.232 18.077 

Mother Self -0.022 -9.961 -0.113 -10.459 

Fallon -0.054 -10.420 -0.074 -7.761 

Case 0.233 -54.688 0.120 7.618 

Fallon Self 0.033 0.459 -0.038 -2.698 

Mother 0.054 10.420 0.074 7.761 

Case .287* -44.267 0.194 15.379 

Case 

  

  

Self -.255* 44.727 -0.232 -18.077 

Mother -0.233 54.688 -0.120 -7.618 

Fallon -.287* 44.267 -0.194 -15.379 

Appearance 

Self 

  

  

Mother -0.122 -6.071 -0.158 -11.227 

Fallon -0.151 -8.364 -0.106 -0.466 

Case 0.124 -42.478 0.203 24.730 

Mother 

  

  

Self 0.122 6.071 0.158 11.227 

Fallon -0.030 -2.293 0.052 10.762 

Case .246* -36.407 .360* 35.958* 

Fallon 

  

  

Self 0.151 8.364 0.106 0.466 

Mother 0.030 2.293 -0.052 -10.762 

Case .275* -34.114 .309* 25.196 

Case 

  

  

Self -0.124 42.478 -0.203 -24.730 

Mother -.246* 36.407 -.360* -35.958* 

Fallon -.275* 34.114 -.309* -25.196 

        

Measure Person (I) Word (J) Word 

Mean 

Difference (I-J) 

Std. 

Error Sig.b 

95% CI for Differenceb 

Lower Bound Upper Bound 

fArea Self Character Appearance .020 .052 .693 -.084 .125 

Mother Character Appearance -.123 .066 .069 -.256 .010 

Fallon Character Appearance -.098 .080 .229 -.260 .064 

Case Character Appearance -.110 .073 .137 -.257 .037 

fLatency Self Character Appearance -13.386 12.166 .277 -37.906 11.134 

Mother Character Appearance -29.418 9.757 .004 -49.082 -9.753 

Fallon Character Appearance -21.290 7.054 .004 -35.506 -7.075 

Case Character Appearance -11.137 10.707 .304 -32.716 10.442 

cArea Self Character Appearance .073 .050 .148 -.027 .174 

Mother Character Appearance -.197 .065 .004 -.329 -.065 

Fallon Character Appearance -.071 .079 .372 -.230 .088 

Case Character Appearance .044 .064 .495 -.084 .172 

cLatency Self Character Appearance -16.020 11.189 .159 -38.571 6.530 

Mother Character Appearance -37.707 11.042 .001 -59.961 -15.453 

Fallon Character Appearance -19.184 8.550 .030 -36.416 -1.952 

Case Character Appearance -9.367 9.142 .311 -27.792 9.058 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Sidak. 
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Figure E1. Multiplot of all grand average ERPs for Self, Mother, and Fallon character responses 
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Figure E2. Multiplot of all grand average ERPs for Self, Mother, and Fallon appearance 

responses 

  

 



112 

Appendix F: Evoked and Induced Power Output 

Table F1. Spearman correlations for induced and evoked power 

  Frontal Centroparietal 
Induced Power  Delta Theta Alpha Beta Lowγ Highγ Delta Theta Alpha Beta Lowγ Highγ 

Frontal  Delta 1.000 .855** .710** .791** .565** .374** .827** .766** .653** .724** .297** 0.069 

Theta .855** 1.000 .828** .786** .399** .167** .800** .881** .756** .757** .185** -0.050 

Alpha .710** .828** 1.000 .831** .355** .164** .682** .760** .856** .778** .163** -0.065 

Beta .791** .786** .831** 1.000 .597** .383** .695** .704** .711** .861** .325** .098* 

LowGamma .565** .399** .355** .597** 1.000 .872** .435** .356** .314** .449** .670** .549** 

HighGamma .374** .167** .164** .383** .872** 1.000 .240** .146** .132** .246** .639** .678** 

Centroparietal Delta .827** .800** .682** .695** .435** .240** 1.000 .887** .742** .780** .356** .106* 

Theta .766** .881** .760** .704** .356** .146** .887** 1.000 .839** .783** .293** 0.043 

Alpha .653** .756** .856** .711** .314** .132** .742** .839** 1.000 .825** .251** 0.005 

Beta .724** .757** .778** .861** .449** .246** .780** .783** .825** 1.000 .420** .166** 

LowGamma .297** .185** .163** .325** .670** .639** .356** .293** .251** .420** 1.000 .891** 

HighGamma 0.069 -0.050 -0.065 .098* .549** .678** .106* 0.043 0.005 .166** .891** 1.000 

 

Evoked Power              

Frontal  Delta 1.000 .498** .127** .157** 0.050 0.024 .565** .404** .153** .150** 0.037 0.049 

Theta .498** 1.000 .488** .226** -0.038 -0.052 .408** .629** .409** .302** 0.001 0.054 

Alpha .127** .488** 1.000 .502** -0.043 -0.057 .166** .379** .710** .411** 0.018 0.033 

Beta .157** .226** .502** 1.000 0.017 -0.079 .127** .242** .408** .590** -0.016 -0.003 

LowGamma 0.050 -0.038 -0.043 0.017 1.000 .161** 0.075 0.072 0.017 -0.078 .195** -0.005 

HighGamma 0.024 -0.052 -0.057 -0.079 .161** 1.000 0.066 0.008 -0.044 -0.013 0.065 .261** 

Centroparietal Delta .565** .408** .166** .127** 0.075 0.066 1.000 .618** .255** .172** -0.001 -0.011 

Theta .404** .629** .379** .242** 0.072 0.008 .618** 1.000 .577** .342** -0.012 0.013 

Alpha .153** .409** .710** .408** 0.017 -0.044 .255** .577** 1.000 .525** -0.018 0.058 

Beta .150** .302** .411** .590** -0.078 -0.013 .172** .342** .525** 1.000 -0.074 -0.023 

LowGamma 0.037 0.001 0.018 -0.016 .195** 0.065 -0.001 -0.012 -0.018 -0.074 1.000 0.078 

HighGamma 0.049 0.054 0.033 -0.003 -0.005 .261** -0.011 0.013 0.058 -0.023 0.078 1.000 

*p < .05; **p < .001 
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Table F2. Multivariate within-subjects tests for evoked and induced power 

 
Induced Power: Within Subjects Effects Value F Hypothesis df Error df Sig. Partial η2 

Person Pillai's Trace .584 2.479 36.000 369.000 .000 .195 

Wilks' Lambda .505 2.586 36.000 358.236 .000 .204 

Hotelling's Trace .809 2.689 36.000 359.000 .000 .212 

Roy's Largest Root .525 5.382 12.000 123.000 .000 .344 

Word Pillai's Trace .229 .818 12.000 33.000 .631 .229 

Wilks' Lambda .771 .818 12.000 33.000 .631 .229 

Hotelling's Trace .297 .818 12.000 33.000 .631 .229 

Roy's Largest Root .297 .818 12.000 33.000 .631 .229 

Person * Word Pillai's Trace .375 1.466 36.000 369.000 .045 .125 

Wilks' Lambda .668 1.456 36.000 358.236 .048 .126 

Hotelling's Trace .435 1.445 36.000 359.000 .052 .127 

Roy's Largest Root .192 1.968 12.000 123.000 .033 .161 

 

Evoked Power: Within Subjects Effects Value F Hypothesis df Error df Sig. Partial η2 

Person Pillai's Trace .385 1.510 36.000 369.000 .034 .128 

Wilks' Lambda .656 1.527 36.000 358.236 .030 .131 

Hotelling's Trace .463 1.541 36.000 359.000 .028 .134 

Roy's Largest Root .254 2.603 12.000 123.000 .004 .203 

Word Pillai's Trace .168 .556 12.000 33.000 .861 .168 

Wilks' Lambda .832 .556 12.000 33.000 .861 .168 

Hotelling's Trace .202 .556 12.000 33.000 .861 .168 

Roy's Largest Root .202 .556 12.000 33.000 .861 .168 

Person * Word Pillai's Trace .341 1.314 36.000 369.000 .113 .114 

Wilks' Lambda .694 1.307 36.000 358.236 .117 .114 

Hotelling's Trace .391 1.300 36.000 359.000 .122 .115 

Roy's Largest Root .195 1.998 12.000 123.000 .030 .163 

a. Design: Intercept  

 Within Subjects Design: Person + Word + Person * Word 

b. Tests are based on averaged variables. 

c. The statistic is an upper bound on F that yields a lower bound on the significance level. 

d. Exact statistic 
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Table F3.  Univariate within-subjects tests for induced and evoked power  

Source Induced Power Measure Type III SS df Mean Square F Sig. Partial η2 

Person fDelta  13.975 2.047 6.828 3.510 .033 .074 

fTheta  5.728 2.816 2.034 1.607 .194 .035 

fAlpha  6.657 3.000 2.219 1.240 .298 .027 

fBeta  1.342 2.808 .478 .825 .476 .018 

fLowGamma  5.534 2.086 2.653 4.743 .010 .097 

fHighGamma  6.362 1.927 3.301 4.689 .013 .096 

cDelta  38.589 2.149 17.960 8.310 .000 .159 

cTheta  11.884 2.560 4.643 2.153 .107 .047 

cAlpha  1.596 2.941 .543 .303 .819 .007 

cBeta  1.711 2.436 .702 1.230 .300 .027 

cLowGamma  17.386 1.943 8.947 9.982 .000 .185 

cHighGamma  16.637 1.846 9.012 13.390 .000 .233 

Person * 

Word 

fDelta  1.821 2.888 .630 .781 .503 .017 

fTheta  4.161 2.984 1.394 1.180 .320 .026 

fAlpha  9.959 3.000 3.320 2.124 .100 .046 

fBeta  1.700 3.000 .567 1.219 .305 .027 

fLowGamma  .417 2.877 .145 .614 .601 .014 

fHighGamma  2.598 3.000 .866 4.450 .005 .092 

cDelta  5.344 2.997 1.783 1.853 .141 .040 

cTheta  1.874 3.000 .625 .568 .637 .013 

cAlpha  4.249 3.000 1.416 .921 .433 .021 

cBeta  3.788 3.000 1.263 2.065 .108 .045 

cLowGamma  1.063 2.827 .376 1.272 .287 .028 

cHighGamma  .161 2.794 .058 .240 .626 .005 

 

Source Evoked Power Measure 

 

Type III SS df Mean Square F Sig. Partial η2 

Person fDelta  7.379 2.718 2.715 2.638 0.058 0.057 

fTheta  7.790 2.881 2.704 2.177 0.096 0.047 

fAlpha  1.861 3.000 0.620 0.341 0.796 0.008 

fBeta  2.271 2.801 0.811 1.531 0.212 0.034 

fLowGamma  0.919 2.852 0.322 2.331 0.081 0.050 

fHighGamma  0.294 3.000 0.098 1.138 0.336 0.025 

cDelta  13.941 2.350 5.932 4.426    0.010   0.091 

cTheta  1.632 2.892 0.564 0.369 0.768 0.008 

cAlpha  5.359 3.000 1.786 0.979 0.405 0.022 

cBeta  2.032 2.589 0.785 1.776 0.163 0.039 

cLowGamma  0.807 3.000 0.269 1.811 0.148 0.040 

cHighGamma  0.370 3.000 0.123 1.075 0.362 0.024 

Data is Huynh-Feldt corrected. 
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Table F4. Post-hoc person comparisons for evoked and induced power 

Induced Power 
fDelta fTheta fAlpha fBeta 

fLow 

Gamma 

fHigh 

Gamma 
cDelta cTheta cAlpha cBeta 

cLow 

Gamma 

cHigh 

Gamma 

Self 

Mother 0.170 0.029 -0.057 -0.108 .193* 0.150 0.205 -0.043 0.066 -0.109 0.001 0.099 

Fallon -0.330 -0.230 -0.017 -0.168 -0.073 -0.103 -0.221 -0.147 0.006 -0.190 0.024 -0.032 

Case 0.134 0.110 -0.335 -0.117 0.217 0.241 .666* 0.337 -0.118 -0.064 .515* .506* 

Mother 

Self -0.170 -0.029 0.057 0.108 -.193* -0.150 -0.205 0.043 -0.066 0.109 -0.001 -0.099 

Fallon -.499* -0.259 0.040 -0.059 -.266* -.253* -.427* -0.104 -0.060 -0.081 0.023 -0.131 

Case -0.035 0.081 -0.278 -0.009 0.024 0.091 0.460 0.381 -0.184 0.044 .514* .407* 

Fallon 

Self 0.330 0.230 0.017 0.168 0.073 0.103 0.221 0.147 -0.006 0.190 -0.024 0.032 

Mother .499* 0.259 -0.040 0.059 .266* .253* .427* 0.104 0.060 0.081 -0.023 0.131 

Case 0.464 0.340 -0.318 0.050 0.290 0.345 .887* 0.485 -0.123 0.125 .491* .538* 

Case 

  

  

Self -0.134 -0.110 0.335 0.117 -0.217 -0.241 -.666* -0.337 0.118 0.064 -.515* -.506* 

Mother 0.035 -0.081 0.278 0.009 -0.024 -0.091 -0.460 -0.381 0.184 -0.044 -.514* -.407* 

Fallon -0.464 -0.340 0.318 -0.050 -0.290 -0.345 -.887* -0.485 0.123 -0.125 -.491* -.538* 

 

Evoked Power 
fDelta fTheta fAlpha fBeta 

fLow 

Gamma 

fHigh 

Gamma 
cDelta cTheta cAlpha cBeta 

cLow 

Gamma 

cHigh 

Gamma 

Self 

Mother -0.184 -0.096 -0.008 0.083 -0.089 -0.043 -0.194 -0.029 -0.169 0.098 0.112 -0.016 

Fallon 0.211 0.094 -0.155 0.017 0.050 0.036 0.187 -0.043 -0.208 0.078 0.027 0.037 

Case -0.063 -0.303 -0.139 -0.135 -0.036 -0.016 -0.334 -0.175 -0.342 -0.093 -0.006 -0.052 

Mother 

Self 0.184 0.096 0.008 -0.083 0.089 0.043 0.194 0.029 0.169 -0.098 -0.112 0.016 

Fallon .395* 0.190 -0.147 -0.066 0.138 0.079 .381* -0.013 -0.040 -0.020 -0.085 0.053 

Case 0.121 -0.207 -0.131 -0.219 0.052 0.027 -0.140 -0.146 -0.173 -0.191 -0.119 -0.036 

Fallon 

Self -0.211 -0.094 0.155 -0.017 -0.050 -0.036 -0.187 0.043 0.208 -0.078 -0.027 -0.037 

Mother -.395* -0.190 0.147 0.066 -0.138 -0.079 -.381* 0.013 0.040 0.020 0.085 -0.053 

Case -0.274 -0.397 0.016 -0.152 -0.086 -0.052 -0.521 -0.133 -0.133 -0.171 -0.033 -0.089 

Case 

  

  

Self 0.063 0.303 0.139 0.135 0.036 0.016 0.334 0.175 0.342 0.093 0.006 0.052 

Mother -0.121 0.207 0.131 0.219 -0.052 -0.027 0.140 0.146 0.173 0.191 0.119 0.036 

Fallon 0.274 0.397 -0.016 0.152 0.086 0.052 0.521 0.133 0.133 0.171 0.033 0.089 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Sidak. 
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Table F5. Post-hoc pairwise person*word comparisons for induced power 

   Frontal  Centroparietal 

Induced Power (I) (J) Delta Theta Alpha Beta 

Low 

Gamma 

High 

Gamma 

 

Delta Theta Alpha Beta 

Low 

Gamma 

High 

Gamma 

Character  Self  Mother 0.260 0.017 0.336 0.026 0.259 .289*  0.296 -0.122 0.371 -0.157 0.016 0.094 

Fallon -0.171 -0.351 -0.022 -0.003 0.019 0.102  0.077 -0.034 0.123 -0.067 0.143 0.009 

Case 0.117 -0.158 -0.296 -0.085 0.255 0.260  .924* 0.297 0.034 -0.228 .494* .492* 

Mother  Self -0.260 -0.017 -0.336 -0.026 -0.259 -.289*  -0.296 0.122 -0.371 0.157 -0.016 -0.094 

Fallon -0.431 -0.368 -0.359 -0.029 -0.241 -0.187  -0.219 0.089 -0.247 0.090 0.128 -0.085 

Case -0.143 -0.175 -0.633 -0.112 -0.004 -0.029  0.629 0.420 -0.337 -0.071 .478* 0.399 

Fallon  Self 0.171 0.351 0.022 0.003 -0.019 -0.102  -0.077 0.034 -0.123 0.067 -0.143 -0.009 

Mother 0.431 0.368 0.359 0.029 0.241 0.187  0.219 -0.089 0.247 -0.090 -0.128 0.085 

Case 0.288 0.194 -0.274 -0.083 0.236 0.158  .847* 0.331 -0.090 -0.161 0.350 .483* 

Case 

 

Self -0.117 0.158 0.296 0.085 -0.255 -0.260  -.924* -0.297 -0.034 0.228 -.494* -.492* 

Mother 0.143 0.175 0.633 0.112 0.004 0.029  -0.629 -0.420 0.337 0.071 -.478* -0.399 

Fallon -0.288 -0.194 0.274 0.083 -0.236 -0.158  -.847* -0.331 0.090 0.161 -0.350 -.483* 

Appearance  Self  Mother 0.079 0.041 -0.450 -0.243 0.128 0.011  0.115 0.036 -0.238 -0.060 -0.014 0.105 

Fallon -0.488 -0.108 -0.012 -0.332 -0.165 -.309*  -.520* -0.261 -0.112 -0.312 -0.096 -0.073 

Case 0.151 0.377 -0.374 -0.149 0.180 0.222  0.407 0.378 -0.269 0.099 .537* .520* 

Mother  Self -0.079 -0.041 0.450 0.243 -0.128 -0.011  -0.115 -0.036 0.238 0.060 0.014 -0.105 

Fallon -.568* -0.149 0.438 -0.090 -.292* -.319*  -.635* -0.297 0.126 -0.252 -0.082 -0.178 

Case 0.072 0.336 0.076 0.094 0.052 0.212  0.292 0.342 -0.031 0.159 .550* .415* 

Fallon  Self 0.488 0.108 0.012 0.332 0.165 .309*  .520* 0.261 0.112 0.312 0.096 0.073 

Mother .568* 0.149 -0.438 0.090 .292* .319*  .635* 0.297 -0.126 0.252 0.082 0.178 

Case 0.640 0.486 -0.362 0.184 0.345 .531*  .927* 0.639 -0.157 0.411 .633* .593* 

Case 

 

Self -0.151 -0.377 0.374 0.149 -0.180 -0.222  -0.407 -0.378 0.269 -0.099 -.537* -.520* 

Mother -0.072 -0.336 -0.076 -0.094 -0.052 -0.212  -0.292 -0.342 0.031 -0.159 -.550* -.415* 

Fallon -0.640 -0.486 0.362 -0.184 -0.345 -.531*  -.927* -0.639 0.157 -0.411 -.633* -.593* 

               

Self                Character-Appearance -0.005 -0.214 0.027 0.142 0.017 0.115  0.115 -0.197 0.093 -0.045 0.037 -0.054 

Mother           Character-Appearance -0.186 -0.190 -.760* -0.127 -0.114 -.164*  -0.065 -0.039 -.516* 0.052 0.008 -0.043 

Fallon             Character-Appearance -0.322 0.029 0.037 -0.188 -0.166 -.296*  -.482* -0.425 -0.143 -0.290 -0.202 -0.137 

Case               Character-Appearance 0.029 0.321 -0.051 0.079 -0.057 0.077  -0.403 -0.117 -0.210 0.282 0.080 -0.027 

Values are differences (I-J) between estimated marginal means. 

*. The mean difference is significant at the .05 level. 

Adjustment for multiple comparisons: Sidak. 
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Figure F1. Evoked and induced power (µV2) by person, word, and region 
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Appendix G: Source Analysis Output 

 

Figure G1. Electrode alignment to the standard BEM head model 
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Figure G2. Leadfield alignment with the standard BEM head model 
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Figure G3. Source plot procedure pipeline 
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Appendix H: HSMM-MVPA Output 

Table H1. Pairwise comparisons of stage durations for all subjects in 3-bump HSMM-MVPA 

models of self, mother, and Fallon for character and appearance 

Character      

Stage (I) Person (J) Person Mean Difference (I-J) Std. Error Sig. 

1 Self Mother -8.44 4.82 .238 

Fallon 99.98* 6.53 .000 

Mother Self 8.44 4.82 .238 

Fallon 108.42* 7.77 .000 

2 Self Mother 5.29* 1.59 .005 

Fallon -74.68* 4.08 .000 

Mother Self -5.29* 1.59 .005 

Fallon -79.97* 4.26 .000 

3 Self Mother 11.63* 3.87 .013 

Fallon -2.59 3.64 .859 

Mother Self -11.63* 3.87 .013 

Fallon -14.22* 4.78 .014 

4 Self Mother -8.48 3.83 .093 

Fallon -22.71* 3.79 .000 

Mother Self 8.48 3.83 .093 

Fallon -14.23* 5.07 .022 

Appearance      

Stage (I) Person (J) Person Mean Difference (I-J) Std. Error Sig. 

1 Self Mother -6.381 4.269 .369 

Fallon 106.149 6.444 .000 

Mother Self 6.381 4.269 .369 

Fallon 112.530 6.736 .000 

2 Self Mother -.114 2.102 1.000 

Fallon -79.730 4.145 .000 

Mother Self .114 2.102 1.000 

Fallon -79.616 4.503 .000 

3 Self Mother 4.691 3.216 .390 

Fallon -4.351 3.162 .440 

Mother Self -4.691 3.216 .390 

Fallon -9.042 3.605 .047 

4 Self Mother 1.804 4.226 .965 

Fallon -22.068 3.600 .000 

Mother Self -1.804 4.226 .965 

Fallon -23.872 4.904 .000 

Sidak corrected estimated marginal means. Extra Fallon rows excluded to save space. No information was 

lost. 
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Table H2. Pairwise comparisons of bump magnitudes for all subjects in 3-bump HSMM-MVPA 

models of self, mother, and Fallon collapsed across character and appearance 

Bump (I) Person (J) Person Mean Difference (I-J) Std. Error Sig.b 

1 Self Mother .093* .001 .000 

Fallon .266* .001 .000 

Mother Self -.093* .001 .000 

Fallon .173* .001 .000 

Fallon Self -.266* .001 .000 

Mother -.173* .001 .000 

2 Self Mother .040* .001 .000 

Fallon .098* .001 .000 

Mother Self -.040* .001 .000 

Fallon .058* .001 .000 

Fallon Self -.098* .001 .000 

Mother -.058* .001 .000 

3 Self Mother -.027* .000 .000 

Fallon -.195* .001 .000 

Mother Self .027* .000 .000 

Fallon -.168* .001 .000 

Fallon Self .195* .001 .000 

Mother .168* .001 .000 

Sidak corrected estimated marginal means. 

  



123 

 

Figure H1. Topoplots of averaged ERP data from the self-character condition from 0 to 1.5 

seconds using Fieldtrip. All other conditions showed similar topographies but on slightly 

different timescales, especially for case.  
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Figure H2. Topographies of self, mother, and Fallon for 4 and 5-bump HSMM-MVPA models. 

Like the 3-bump model, these model has considerable similarity to the topoplots in Figure H1. 
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