690 research outputs found

    A Study of Concurrency Bugs and Advanced Development Support for Actor-based Programs

    Full text link
    The actor model is an attractive foundation for developing concurrent applications because actors are isolated concurrent entities that communicate through asynchronous messages and do not share state. Thereby, they avoid concurrency bugs such as data races, but are not immune to concurrency bugs in general. This study taxonomizes concurrency bugs in actor-based programs reported in literature. Furthermore, it analyzes the bugs to identify the patterns causing them as well as their observable behavior. Based on this taxonomy, we further analyze the literature and find that current approaches to static analysis and testing focus on communication deadlocks and message protocol violations. However, they do not provide solutions to identify livelocks and behavioral deadlocks. The insights obtained in this study can be used to improve debugging support for actor-based programs with new debugging techniques to identify the root cause of complex concurrency bugs.Comment: - Submitted for review - Removed section 6 "Research Roadmap for Debuggers", its content was summarized in the Future Work section - Added references for section 1, section 3, section 4.3 and section 5.1 - Updated citation

    System dependence graphs in sequential Erlang

    Full text link
    The system dependence graph (SDG) is a data structure used in the imperative paradigm for different static analysis, and particularly, for program slicing. Program slicing allows us to determine the part of a program (called slice) that influences a given variable of interest. Thanks to the SDG, we can produce precise slices for interprocedural programs. Unfortunately, the SDG cannot be used in the functional paradigm due to important features that are not considered in this formalism (e.g., pattern matching, higher-order, composite expressions, etc.). In this work we propose the first adaptation of the SDG to a functional language facing these problems. We take Erlang as the host language and we adapt the algorithms used to slice the SDG to produce precise slices of Erlang interprocedural programs. As a proof-of-concept, we have implemented a program slicer for Erlang based on our SDGs.This work has been partially supported by the Spanish Ministerio de Ciencia e Innovaci´on under grant TIN2008-06622-C03-02 and by the Generalitat Valenciana under grant PROMETEO/2011/052. Salvador Tamarit was partially supported by the Spanish MICINN under FPI grant BES-2009-015019Silva Galiana, JF.; Tamarit Muñoz, S.; Tomás Franco, C. (2012). System dependence graphs in sequential Erlang. En Fundamental Approaches to Software Engineering. Springer Verlag (Germany). 486-500. https://doi.org/10.1007/978-3-642-28872-2_33S486500Agrawal, H., Horgan, J.R.: Dynamic program slicing. In: Programming Language Design and Implementation (PLDI), pp. 246–256 (1990)Brown, C.: Tool Support for Refactoring Haskell Programs. PhD thesis, School of Computing, University of Kent, Canterbury, Kent, UK (2008)Cheda, D., Silva, J., Vidal, G.: Static slicing of rewrite systems. Electron. Notes Theor. Comput. Sci. 177, 123–136 (2007)Ferrante, J., Ottenstein, K.J., Warren, J.D.: The Program Dependence Graph and Its Use in Optimization. ACM Transactions on Programming Languages and Systems 9(3), 319–349 (1987)Field, J., Ramalingam, G., Tip, F.: Parametric program slicing. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 1995, pp. 379–392. ACM, New York (1995)Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs. ACM Transactions Programming Languages and Systems 12(1), 26–60 (1990)Korel, B., Laski, J.: Dynamic Program Slicing. Information Processing Letters 29(3), 155–163 (1988)Larsen, L., Harrold, M.J.: Slicing object-oriented software. In: Proceedings of the 18th International Conference on Software Engineering, ICSE 1996, pp. 495–505. IEEE Computer Society, Washington, DC (1996)Liang, D., Harrold, M.J.: Slicing objects using system dependence graphs. In: Proceedings of the International Conference on Software Maintenance, ICSM 1998, pp. 358–367. IEEE Computer Society, Washington, DC (1998)Lindahl, T., Sagonas, K.F.: Typer: a type annotator of erlang code. In: Sagonas, K.F., Armstrong, J. (eds.) Erlang Workshop, pp. 17–25. ACM (2005)Lindahl, T., Sagonas, K.F.: Practical type inference based on success typings. In: Bossi, A., Maher, M.J. (eds.) PPDP, pp. 167–178. ACM (2006)Ochoa, C., Silva, J., Vidal, G.: Dynamic slicing based on redex trails. In: Proceedings of the 2004 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, PEPM 2004, pp. 123–134. ACM, New York (2004)Reps, T., Turnidge, T.: Program Specialization via Program Slicing. In: Danvy, O., Thiemann, P., Glück, R. (eds.) Dagstuhl Seminar 1996. LNCS, vol. 1110, pp. 409–429. Springer, Heidelberg (1996)Rodrigues, N.F., Barbosa, L.S.: Component identification through program slicing. In: Proc. of Formal Aspects of Component Software (FACS 2005). Elsevier ENTCS, pp. 291–304. Elsevier (2005)Tip, F.: A survey of program slicing techniques. Journal of Programming Languages 3(3), 121–189 (1995)Tóth, M., Bozó, I., Horváth, Z., Lövei, L., Tejfel, M., Kozsik, T.: Impact Analysis of Erlang Programs Using Behaviour Dependency Graphs. In: Horváth, Z., Plasmeijer, R., Zsók, V. (eds.) CEFP 2009. LNCS, vol. 6299, pp. 372–390. Springer, Heidelberg (2010)Walkinshaw, N., Roper, M., Wood, M., Roper, N.W.M.: The java system dependence graph. In: Third IEEE International Workshop on Source Code Analysis and Manipulation, p. 5 (2003)Weiser, M.: Program Slicing. In: Proceedings of the 5th International Conference on Software Engineering, pp. 439–449. IEEE Press (1981)Widera, M.: Flow graphs for testing sequential erlang programs. In: Proceedings of the 2004 ACM SIGPLAN Workshop on Erlang, ERLANG 2004, pp. 48–53. ACM, New York (2004)Widera, M., Informatik, F.: Concurrent erlang flow graphs. In: Proceedings of the Erlang/OTP User Conference (2005)Zhao, J.: Slicing aspect-oriented software. In: Proceedings of the 10th International Workshop on Program Comprehension, IWPC 2002, pp. 251–260. IEEE Computer Society, Washington, DC (2002

    Building dependency graph for slicing erlang programs

    Get PDF
    Program slicing is a well-known technique that utilizes dependency graphs and static program analysis. Our goal is to perform impact analysis of Erlang programs based on the resulted program slices, that is we want to measure the impact of any change made on the source code: especially we want to select a subset of test cases which must be rerun after the modification. However impact analyzer tools exist for object oriented languages, the used dependency graphs heavily depend on the syntax and semantics of the used programming language, thus we introduce dependency graphs for a dynamically typed functional programming language, Erlang

    Adat és kiértékelési függőségi elemzés funkcionális nyelvekre-Erlang programok statikus elemzése

    Get PDF
    A szoftverfejlesztést támogató eszközök jelentősége rohamosan nő az utóbbi évtizedekben. A forráskódok mérete akkorára nő, hogy humán erővel átlátni szinte lehetetlen, de legalábbis nehézkes és időigényes folyamat. Így egyre inkább elterjednek azok az eszközök, melyek a kód megértést, karbantartást, hibakeresést támogatnak vagy éppen lehetőséget nyújtanak a forráskód különböző szempontok szerinti refaktorálására. Ez a támogatás történhet dinamikusan, azaz futási időben, illetve statikusan, azaz fordı́tási időben. Előbbi esetben a már futó szoftver monitorozásával, esetlegesen a kód instrumentálásával nyerhetünk ki információt és segı́thetjük ezzel a fejlesztőket. Utóbbi esetben viszont nincs szükség a szoftver futtatására, csupán a forráskód alapján gyűjtünk információt és használjuk fel különböző célokra. Dolgozatomban ez utóbbi módszerrel, a forráskódok statikus elemzésével foglalkoztam, Erlang nyelvhez. Definiáltam Erlang programok elsőrendű adatfolyam-gráfját, és az ezen a gráfon értelmezett elsőrendű adatfolyam relációt. A RefactorErl keretrendszer alap eszközkészletéhez igazı́tva megadtam az ehhez tartozó algoritmusokat. Erlang programok adatfolyam-gráfját ı́gy inkrementálisan fel tudjuk épı́teni a forráskódok változásának figyelembe vételével. A adatfolyam reláció segı́tségével pedig választ kaphatunk olyan kérdésekre, hogy mi lehet a program egy adott pontján lévő kifejezésének az értéke, illetve hogy egy adott érték milyen programpontokra juthat el. A reláció interprocedurálisan számı́tható és figyelembe veszi a hı́vási kontextust. Az adatfolyam relációt felhasználásával megadtam, hogyan számı́tható ki az aszinkron üzenetküldések és -fogadások közötti közvetlen adatfolyam. Definiáltam Erlang programokon értelmezett adatfüggőség relációt, mely az adatfolyam-gráf kiterjesztésén a viselkedésfüggőség gráfon számı́tható ki. A függőségi reláció megadja, hogy két Erlang programbeli kifejezés között van-e függés, azaz kiértékelésük függ-e egymástól. A RefactorErl keretrendszerhez kidolgozott algoritmusok felhasználásra kerültek olyan problémák megoldásában mint a releváns tesztesek kiválasztása, vagy párhuzamosı́tható komponensek függőségi kapcsolatainak az ellenőrzése. Az adatfolyam, adatfüggőség és egyéb statikus elemzések felhasználásával kidolgoztam különböző jól párhuzamosı́tható számı́tási modellek viselkedésének leı́rását, mint például az elemenkénti feldolgozás. A megadott szabályok alapján a RefactorErl keretrendszerben megadhatók azok a mintafelismerési algoritmusok, melyek segı́tségével azonosı́thatóak azok a szekvenciális kódrészletek, melyek lecserélhetőek egy ekvivalens párhuzamos végrehajtásra

    Erlang programok statikus elemzése és szeletelése

    Get PDF
    A funkcionális programozási nyelvek terjedésének velejárója, hogy felmerül az igény olyan eszközökre, amelyek a fejlesztési folyamatot támogatják. Ezek lehetnek futási idejű eszközök, vagy olyanok, melyek csupán a forráskód elemzésével kı́nálnak hasznos információkat a fejlesztők számára. Az Erlang ipari környezetben is gyakran használt funkcionális programozási nyelv. A RefactorErl egy statikus elemző és refaktoráló eszköz Erlanghoz, mely számos transzformációt biztosı́t a forráskód jelentésmegőrző átalakı́tására, másrészről kiterjedt statikus elemzőkészlettel segı́ti a fejlesztőket a mindennapos tevékenységükben. Kutatásomban olyan elemzési módszerekkel foglalkoztam, amelyek segı́tségével az Erlang programok forráskódjában rejlő összetett összefüggések nyerhetők ki. Ezek az eredmények pedig további magasabb szintű elemzések alapját képzik. Az ismertetett eredményeim a vezérlés és az Erlang folyamatok közötti kapcsolatok elemzéséhez kapcsolódnak. A dolgozatomban Erlang programok vezérlésfolyam-gráfját adtam meg, amely tartalmazza a programok végrehajtása során előálló lehetséges végrehajtási utakat. A gráfot a nyelv szintaktikus kategóriáihoz rendelt formális szabályok segı́tségével definiáltam, amelyek a nyelv szemantikájának megfelelően adják meg a vezérlésfolyam-gráf éleit. A vezérlésfolyam-gráf felhasználásra került további elemzésekhez is, mint például a párhuzamosı́tható komponensek azonosı́tása. A vezérlésfolyam-gráf, illetve a benne foglalt információk felhasználhatóak a forráskódban történő változások hatáselemzéséhez. A vezérlésfüggőségi gráf egy kompaktabb reprezentáció, amely a vezérlési utakban lévő szekvenciák eliminálásával már csak a kifejezések közötti közvetlen függőségeket tartalmazza. Megadtam Erlang programokra a vezérlésfüggőségi gráfot, amelyet adatfüggőségi információkkal egészı́tettem ki. Az ı́gy definiált Erlang függőségi gráf felhasználható gráf alapú statikus programszeleteléshez. A definiált infrastruktúrára épı́tve megadtam egy hatáselemzés alapú teszteset szelekciós módszert. A módszer azon tesztesetek halmazát adja meg, amelyek érintettek lehetnek a változtatás/transzformáció kapcsán. Azaz a változtatás hatása elterjedhet a tesztelt funkcionalitásba. Az elemzés nem csak a transzformációk hatásának elemzésére, hanem tetszőleges változás elemzésére is használható. Dolgozatomban bemutattam Erlang programok egy statikus kommunikációs modelljét. Megadtam azokat az algoritmusokat, melyek segı́tségével felderı́thetőek az elindı́tott Erlang folyamatok és a köztük aszinkron üzenetküldésekkel lebonyolı́tott kommunikáció. A modellbe felvettem olyan rejtett kommunikációs elemeket is, mint a közös osztott memóriának tekinthető Erlang Term Storage (ets) táblák használata. Megadtam azokat a statikus elemzési algoritmusokat, melyek felhasználásával kiegészı́thető a kommunikációs gráf speciális Erlang folyamatokkal (például generikus szerverek) és az interfészeiken keresztül történő rejtett kommunikációval. A kommunikációs gráf kiválóan használható a kódban rejlő összefüggések megjelenı́tésére, kódmegértés, konkurenciából fakadó hibakeresés támogatásához. Ugyanakkor felhasználható konkurens programok változásához köthető hatáselemzés pontosı́tásához is

    A semantics comparison workbench for a concurrent, asynchronous, distributed programming language

    Get PDF
    A number of high-level languages and libraries have been proposed that offer novel and simple to use abstractions for concurrent, asynchronous, and distributed programming. The execution models that realise them, however, often change over time---whether to improve performance, or to extend them to new language features---potentially affecting behavioural and safety properties of existing programs. This is exemplified by SCOOP, a message-passing approach to concurrent object-oriented programming that has seen multiple changes proposed and implemented, with demonstrable consequences for an idiomatic usage of its core abstraction. We propose a semantics comparison workbench for SCOOP with fully and semi-automatic tools for analysing and comparing the state spaces of programs with respect to different execution models or semantics. We demonstrate its use in checking the consistency of properties across semantics by applying it to a set of representative programs, and highlighting a deadlock-related discrepancy between the principal execution models of SCOOP. Furthermore, we demonstrate the extensibility of the workbench by generalising the formalisation of an execution model to support recently proposed extensions for distributed programming. Our workbench is based on a modular and parameterisable graph transformation semantics implemented in the GROOVE tool. We discuss how graph transformations are leveraged to atomically model intricate language abstractions, how the visual yet algebraic nature of the model can be used to ascertain soundness, and highlight how the approach could be applied to similar languages.Comment: Accepted by Formal Aspects of Computin

    Static Detection of Race Conditions in Erlang

    Get PDF
    We address the problem of detecting some commonly occurring kinds of race conditions in Erlang programs using static analysis. Our analysis is completely automatic, fast and scalable, and avoids false alarms by taking language characteristics into account. We have integrated our analysis in dialyzer, a commonly used tool for detecting software defects in Erlang programs which is part of Erlang/OTP, and evaluate its effectiveness and performance on a suite of widely used industrial and open source programs of considerable size. The analysis has detected a significant number of previously unknown race conditions

    Mailbox Abstractions for Static Analysis of Actor Programs

    Get PDF
    Properties such as the absence of errors or bounds on mailbox sizes are hard to deduce statically for actor-based programs. This is because actor-based programs exhibit several sources of unboundedness, in addition to the non-determinism that is inherent to the concurrent execution of actors. We developed a static technique based on abstract interpretation to soundly reason in a finite amount of time about the possible executions of an actor-based program. We use our technique to statically verify the absence of errors in actor-based programs, and to compute upper bounds on the actors\u27 mailboxes. Sound abstraction of these mailboxes is crucial to the precision of any such technique. We provide several mailbox abstractions and categorize them according to the extent to which they preserve message ordering and multiplicity of messages in a mailbox. We formally prove the soundness of each mailbox abstraction, and empirically evaluate their precision and performance trade-offs on a corpus of benchmark programs. The results show that our technique can statically verify the absence of errors for more benchmark programs than the state-of-the-art analysis

    A Graph-Based Semantics Workbench for Concurrent Asynchronous Programs

    Get PDF
    A number of novel programming languages and libraries have been proposed that offer simpler-to-use models of concurrency than threads. It is challenging, however, to devise execution models that successfully realise their abstractions without forfeiting performance or introducing unintended behaviours. This is exemplified by SCOOP---a concurrent object-oriented message-passing language---which has seen multiple semantics proposed and implemented over its evolution. We propose a "semantics workbench" with fully and semi-automatic tools for SCOOP, that can be used to analyse and compare programs with respect to different execution models. We demonstrate its use in checking the consistency of semantics by applying it to a set of representative programs, and highlighting a deadlock-related discrepancy between the principal execution models of the language. Our workbench is based on a modular and parameterisable graph transformation semantics implemented in the GROOVE tool. We discuss how graph transformations are leveraged to atomically model intricate language abstractions, and how the visual yet algebraic nature of the model can be used to ascertain soundness.Comment: Accepted for publication in the proceedings of FASE 2016 (to appear

    The role of concurrency in an evolutionary view of programming abstractions

    Full text link
    In this paper we examine how concurrency has been embodied in mainstream programming languages. In particular, we rely on the evolutionary talking borrowed from biology to discuss major historical landmarks and crucial concepts that shaped the development of programming languages. We examine the general development process, occasionally deepening into some language, trying to uncover evolutionary lineages related to specific programming traits. We mainly focus on concurrency, discussing the different abstraction levels involved in present-day concurrent programming and emphasizing the fact that they correspond to different levels of explanation. We then comment on the role of theoretical research on the quest for suitable programming abstractions, recalling the importance of changing the working framework and the way of looking every so often. This paper is not meant to be a survey of modern mainstream programming languages: it would be very incomplete in that sense. It aims instead at pointing out a number of remarks and connect them under an evolutionary perspective, in order to grasp a unifying, but not simplistic, view of the programming languages development process
    corecore