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Chapter 1

Introduction

The main goal of my thesis was to define data flow and dependence relations
for the functional programming language, Erlang, and to make possible the
various forms of static analyses to build upon the data related information.

Static analysis is the technique to gather information about the source
code without executing it, thus it is often called compile-time analysis. Sev-
eral kinds of static program analysers exist. Tools may support program
comprehension and provide functionality to help in debugging or detecting the
impact of certain changes. Other tools provide source code metrics to measure
the complexity, maintainability, or quality of the software. Besides the anal-
yses, lots of tools provide meaning preserving source code transformations,
refactorings. In my thesis I have focused on the data related static analysis
techniques, and the usage of these analyses in parallel pattern recognition.
The presented data flow analysis is useful in code comprehension task, but
several further thorough semantic analyses can be built on the top of it.

RefactorErl is a well-know static source code analysis and transformation
tool for Erlang. Therefore, my goal was to extend the framework of RefactorErl
with data related analyses.

In my thesis, I have defined the data related static analyses formally, using
syntax driven, semantic aware, compositional rules and relations. I have
developed the algorithms according to these definitions in the RefactorErl
framework. Thus make the defined analysis usable on real-life projects as
well.
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Chapter 2

Results

The main contributions of the thesis:

• Thesis 1. I have defined the first-order context aware data flow graph
and data flow relation for Erlang programs based on the semantics of
the language. Using this relations I have defined the message sending
based data flow as well. I have provided the algorithms in RefactorErl
according to the definitions.

• Thesis 2. I have defined the behaviour dependence graphs for Erlang
programs and the dependence relation on the graph. I have provided
the dependence calculation algorithm in RefactorErl.

• Thesis 3. I have provided the rules to discover parallel pattern can-
didates in sequential Erlang programs based on the relations defined
in Thesis 1, Thesis 2 and other static analysis techniques. The corre-
sponding algorithms can be used in RefactorErl to identify candidates
that are amenable for parallelisation.

We have defined and implemented the algorithms related to the previ-
ous theses is RefactorErl. We have used specification based testing to test
them [TTB+12]. On the other hand, we have also built different applications
using the data related analyses. These applications satisfied the requirements
during testing and large-scale usage as well.

2.1 Data Flow Analysis
Data flow analysis is a technique for gathering information about how a
program manipulates its data, and what are the possible sets of values
calculated at various points in a program. The goals of my research were to
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define the data flow relation in Erlang, and to use this information in various
other static analyses. The data flow analysis has two phases. The first one is
to build the Data Flow Graph (DFG), and the second one is to calculate the
data flow reaching. The Data Flow Graph is a labelled, directed graph built
from the expressions of the Erlang code. The DFG represents the direct data
flow among the expressions. The data flow reaching is defined as a relation
on the DFG and expresses both the direct and the indirect flow among the
expressions. Depending on the context the analysis takes into account we can
define zeroth-order, first-order or even higher-order data flow analyses.

The definition of the DFG is based on compositional graph building rules.
Each rule assigns data flow edges to expressions based on the semantics of
Erlang. The algorithm to build the DFG can be expressed in the incremental
semantic analyser framework of RefactorErl. Thus, there is no need to
rebuild the DFG when the source code is changed. I have defined both the
zeroth-order and the first-order graphs according to the calling context of the
functions.

The data flow reaching is defined as a relation on the DFG satisfying
certain conditions. The reaching relation determines the indirect data flow
between two arbitrary elements of the data flow graph. The first-order data
flow reaching extends the zeroth-order relation with calling context awareness.
The n1

1f
; n2 relation means that the value of n2 is a copy of the value of n1.

In other words, the value of n1 may flow to n2.
Using the first-order data flow reaching I have defined data flow among

concurrent send and receive expressions.
The defined data flow reaching relation was built into the query language

of RefactorErl. Thus, developers can ask information about the possible
values of certain variables, find suspicious code in the debugging process, etc.

2.1.1 Related publications

Main publications of this thesis: [TB12b, TBHT10].
Other publications related to this thesis: [LTB18, LT18, BST18, BKT18,
BT16, IM14, TB14, TB12a, TBK17, BFH+15, BFH+14, KTBH16, KTB18,
TB11, TBH+10b, HBT14, BT11, TBH13, BTT+11a, BTT+11b, TTB+12,
FBT17, TBH10a, HBKT11, HBTE10, TBHE11].

The publications listed here have a total of 35 independent citations, of
which there are 8 independent citations for the main publications of this
thesis (based on MTMT).
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2.2 Data Dependence Analysis
The data flow relation identifies a value copying between expressions, thus
it also represents a kind of dependence between them: changing the value
of n1 has effect on n2. However, the data flow is not enough when we want
to express dependence among various expressions. For example, changing a
value in a guard expression may have impact on the behaviour/evaluation of
the function and the expressions of the function. Therefore, we need to extend
the DFG with information about the dependence and behaviour dependence
among the expressions and its related subexpressions as well, and define a
dependence relation. I have defined the Behaviour Dependence Graph (BDG)
for Erlang programs by extending the compositional data flow rules. The
BDG contains the direct dependence information among expressions.

I have defined the n1 ; n2 dependence relation on the BDG. This relation
holds when the evaluation/behaviour of the expression n2 depends on the
data represented by n1.

The dependence information can be used in change impact analysis to
select the dependent expressions. An other form of the usage is to check
the independence of expressions. The latter can be used in parallelisable
component detection.

2.2.1 Related publications

Main publications of this thesis: [TBH+10b, TB12b].
Other publications related to this thesis: [TBK17, BFH+15, BFH+14, KTB18,
KTBH16, HBT14, BT11, TBH13, BTT+11a, BTT+11b, HBTE10, TBHE11,
TB11, FBT17].

The publications listed here have a total of 31 independent citations, of
which there are 10 independent citations for the main publications of this
thesis (based on MTMT).

2.3 Pattern Discovery
It is common to refactor the source code to adopt it to the changed hardware
resources. An example is the parallelisation of the source code to utilise multi-
core resources. This process can be done manually or (semi)automatically
with assistance of a transformation tool.

The parallelisation has two phases. The first step is to identify the code
fragments that are amenable for parallelisation, and the second one is to
perform the appropriate transformation. None of the above is trivial. By
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considering the increasing size of the source codes it is almost impossible to
find the candidates manually. Therefore, I have provided methodologies in
my thesis to help the developers to identify the source code fragments to
parallelise.

I have defined rules to identify source code fragments that are good
candidates to introduce well-know algorithmic skeletons provided by the
skel and skel_hlp Erlang libraries. These rules are using the defined data
related relations, but also build on other static analyses such as control flow
analysis or syntax driven traversing. Based on the defined rules the discovery
algorithms can be defined in the RefactorErl static analyser framework.

I have divided the possible candidates into two groups. Candidates
belonging to the first group are library calls and iterative expressions (e.g.
list comprehensions) expressing the semantics of the algorithmic skeletons.
The discovery rules for this group are mainly syntax driven with built in
knowledge about the semantics.

Candidates in the second group are recursive functions expressing the same
semantics as the skeleton. The rules specifying the conditions are expressing
special requirements about the execution paths of the function, and expressing
special flow of data, independence and dependence as well.

2.3.1 Related publications

Main publications of this thesis: [TBK17, BFH+15, BFH+14, KTBH16].
Other publications related to this thesis: [KTB18, TBH+10b, TB12b, TBHT10]

The publications listed here have a total of 28 independent citations, of
which there are 14 independent citations for the main publications of this
thesis (based on MTMT).

5



Chapter 3

Summary

The importance of the tools to support software development is increasing.
The size of the software products makes manual scanning for certain informa-
tion almost impossible, or time consuming. Therefore tools to support code
comprehension, development, maintenance, debugging, or even automatic
source code transformation are really desired. We can distinguish dynamic
and static tools. The former analyses the software at runtime by monitoring,
instrumenting the code. The latter analyses the source code itself without
executing the program. In my thesis I have developed new static analyses
methods for the Erlang programming language to support code comprehension
and further static analyses.

I have defined the first order data flow graph for Erlang programs, and
the data flow relation among the nodes of the graph, the first order data
flow reaching. The reaching relation itself is able to identify the possible
values of an expression at some point in the program. It also identifies the
expressions where a certain value may flow. Based on the definitions I have
introduced the data flow graph building and reaching calculation algorithms
using the RefactorErl framework. The data flow graph building algorithm
is incremental, therefore the changes of the source code can be handled
without reanalysing the whole software. The data flow reaching algorithm is
interprocedural and aware of function call context. Using data flow reaching
I have defined the direct data flow among asynchronous message sending and
receiving expressions.

I have defined a data dependence relation among Erlang expressions based
on the behaviour dependence graph that is an extension of the data flow graph.
The dependence relation defines whether two expressions from the Erlang
source code depends on each other. The corresponding algorithms have been
defined in the framework of RefactorErl, and have been used in further static
analyses, namely in change impact analysis and pattern discovery.
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I have defined the behaviour of parallelisable computations, such as the
elementwise processing. The definitions use the studied data flow, data
dependence relations and other static analysis methods, such as control flow
graphs and execution paths. Using the definitions we can identify sequential
code fragments that can be replaced with parallel equivalents. The pattern
discovery algorithms have been defined in the RefactorErl framework.
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