832 research outputs found

    Flexible Transport Network Expansion via Open WDM Interfaces

    Get PDF

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    Enabling Optical Wired and Wireless Technologies for 5G and Beyond Networks

    Get PDF
    The emerging fifth-generation mobile communications are envisaged to support massive number of deployment scenarios based on the respective use case requirements. The requirements can be efficiently attended with ultradense small-cell cloud radio access network (C-RAN) approach. However, the C-RAN architecture imposes stringent requirements on the transport networks. This book chapter presents high-capacity and low-latency optical wired and wireless networking solutions that are capable of attending to the network demands. Meanwhile, with optical communication evolutions, there has been advent of enhanced photonic integrated circuits (PICs). The PICs are capable of offering advantages such as low-power consumption, high-mechanical stability, low footprint, small dimension, enhanced functionalities, and ease of complex system architectures. Consequently, we exploit the PICs capabilities in designing and developing the physical layer architecture of the second standard of the next-generation passive optical network (NG-PON2) system. Apart from being capable of alleviating the associated losses of the transceiver, the proposed architectures aid in increasing the system power budget. Moreover, its implementation can significantly help in reducing the optical-electrical-optical conversions issue and the required number of optical connections, which are part of the main problems being faced in the miniaturization of network elements. Additionally, we present simulation results for the model validation

    On IP over WDM burst-switched long haul and metropolitan area networks

    Get PDF
    The IP over Wavelength Division Multiplexing (WDM) network is a natural evolution ushered in by the phenomenal advances in networking technologies and technical breakthroughs in optical communications, fueled by the increasing demand in the reduction of operation costs and the network management complexity. The unprecedented bandwidth provisioning capability and the multi-service supportability of the WDM technology, in synergy with the data-oriented internetworking mechanisms, facilitates a common shared infrastructure for the Next Generation Internet (NGJ). While NGI targets to perform packet processing directly on the optical transport layer, a smooth evolution is critical to success. Intense research has been conducted to design the new generation optical networks that retain the advantages of packet-oriented transport prototypes while rendering elastic network resource utilization and graded levels of service. This dissertation is focused on the control architecture, enabling technologies, and performance analysis of the WDM burst-switched long haul and Metropolitan Area Networks (MANs). Theoretical analysis and simulation results are reported to demonstrate the system performance and efficiency of proposed algorithms. A novel transmission mechanism, namely, the Forward Resource Reservation (ERR) mechanism, is proposed to reduce the end-to-end delay for an Optical Burst Switching (OBS)-based IP over WDM system. The ERR scheme adopts a Linear Predictive Filter and an aggressive reservation strategy for data burst length prediction and resource reservation, respectively, and is extended to facilitate Quality of Service (QoS) differentiation at network edges. The ERR scheme improves the real-time communication services for applications with time constraints without deleterious system costs. The aggressive strategy for channel holding time reservations is proposed. Specifically, two algorithms, the success probability-driven (SPD) and the bandwidth usage-driven (BUD) ones, are proposed for resource reservations in the FRRenabled scheme. These algorithms render explicit control on the latency reduction improvement and bandwidth usage efficiency, respectively, both of which are important figures of performance metrics. The optimization issue for the FRR-enabled system is studied based on two disciplines - addressing the static and dynamic models targeting different desired objectives (in terms of algorithm efficiency and system performance), and developing a \u27\u27crank back\u27\u27 based signaling mechanism to provide bandwidth usage efficiency. The proposed mechanisms enable the network nodes to make intelligent usage of the bandwidth resources. In addition, a new control architecture with enhanced address resolution protocol (E-ARP), burst-based transmission, and hop-based wavelength allocation is proposed for Ethernet-supported IP over WDM MANs. It is verified, via theoretical analysis and simulation results, that the E-ARP significantly reduces the call setup latency and the transmission requirements associated with the address probing procedures; the burst-based transport mechanism improves the network throughput and resource utilization; and the hop-based wavelength allocation algorithm provides bandwidth multiplexing with fairness and high scalability. The enhancement of the Ethernet services, in tandem with the innovative mechanisms in the WDM domain, facilitates a flexible and efficient integration, thus making the new generation optical MAN optimized for the scalable, survivable, and IP-dominated network at gigabit speed possible

    Integrated voice/data through a digital PBX

    Get PDF
    The digital voice/data PBX is finally reaching its anticipated potential and becoming a major factor when considering the total communications picture for many businesses today. The digital PBX has always been the choice for voice communications but has lagged behind the LAN industry when it comes to data transfers. The pendulum has begun to swing with the enhanced data capabilities of third and fourth generation PBXs. The battle for the total communication market is quite fierce between the LAN and PBX vendors now. This research thesis looks at the history, evolution, and architecture of voice/data PBXs. It traces development of PBXs through the present fourth generation architectures. From the first manual switches introduced in the late 1800\u27s through the Strowger switch, step-by-step switching, stored program control, common control, digital switches, dual bus architectures, and finally what is anticipated in the future. A detailed description of the new fourth generation dual bus architectures is presented. Lastly, speculations on the future direction PBX architectures will take is explored. A description of the mechanics of a possible Wave Division PBX is presented based on a fiber optic transport system

    Multiplexer Technology in Utility Automation

    Get PDF
    In utility automation systems, data communication links have the essential role to convey real-time system between control centers and substations. Therefore, reliable and flexible communications are vital to run modern utility network in a safe and properly controlled way. In this thesis, possibilities of multiplexer technology in communications for utility automation systems are reviewed. At the beginning of this thesis, theory about multiplexing, especially SDH data transmission technology, and essential utility automation systems are discussed. Thereafter, the thesis concentrates on the characteristics and potential applications of the employer’s multiplexer device. Eventually, the performance requirements for the device are analyzed from the utility automation systems’ perspective and also some performance figures are measured with a build-up test system. Multiplexer technology was found to be well suitable for the underlying communications in utility automation systems. Especially the efficient protection schemes and network manageability makes SDH systems highly available and ensures quick reconfiguration in fault situations. Teleprotection that makes very fast operating times for power line protection possible, came up as the most important application.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Cloud RAN for Mobile Networks - a Technology Overview

    Get PDF
    Cloud Radio Access Network (C-RAN) is a novel mobile network architecture which can address a number of challenges the operators face while trying to support growing end-user’s needs. The main idea behind C-RAN is to pool the Baseband Units (BBUs) from multiple base stations into centralized BBU Pool for statistical multiplexing gain, while shifting the burden to the high-speed wireline transmission of In-phase and Quadrature (IQ) data. C-RAN enables energy efficient network operation and possible cost savings on base- band resources. Furthermore, it improves network capacity by performing load balancing and cooperative processing of signals originating from several base stations. This article surveys the state-of-the-art literature on C-RAN. It can serve as a starting point for anyone willing to understand C-RAN architecture and advance the research on C-RA

    Roadmap of optical communications

    Get PDF
    © 2016 IOP Publishing Ltd. Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications

    Machine Learning for Multi-Layer Open and Disaggregated Optical Networks

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore