105,741 research outputs found

    Introducing spatial information into predictive NF-kappa B modelling - an agent-based approach

    Get PDF
    Nature is governed by local interactions among lower-level sub-units, whether at the cell, organ, organism, or colony level. Adaptive system behaviour emerges via these interactions, which integrate the activity of the sub-units. To understand the system level it is necessary to understand the underlying local interactions. Successful models of local interactions at different levels of biological organisation, including epithelial tissue and ant colonies, have demonstrated the benefits of such 'agent-based' modelling [1-4]. Here we present an agent-based approach to modelling a crucial biological system the intracellular NF-kappa B signalling pathway. The pathway is vital to immune response regulation, and is fundamental to basic survival in a range of species [5-7]. Alterations in pathway regulation underlie a variety of diseases, including atherosclerosis and arthritis. Our modelling of individual molecules, receptors and genes provides a more comprehensive outline of regulatory network mechanisms than previously possible with equation-based approaches [8]. The method also permits consideration of structural parameters in pathway regulation; here we predict that inhibition of NF-kappa B is directly affected by actin filaments of the cytoskeleton sequestering excess inhibitors, therefore regulating steady-state and feedback behaviour

    Improving the adaptability of simulated evolutionary swarm robots in dynamically changing environments

    Get PDF
    One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store 'good behaviour' and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment

    Extend Commitment Protocols with Temporal Regulations: Why and How

    Full text link
    The proposal of Elisa Marengo's thesis is to extend commitment protocols to explicitly account for temporal regulations. This extension will satisfy two needs: (1) it will allow representing, in a flexible and modular way, temporal regulations with a normative force, posed on the interaction, so as to represent conventions, laws and suchlike; (2) it will allow committing to complex conditions, which describe not only what will be achieved but to some extent also how. These two aspects will be deeply investigated in the proposal of a unified framework, which is part of the ongoing work and will be included in the thesis.Comment: Proceedings of the Doctoral Consortium and Poster Session of the 5th International Symposium on Rules (RuleML 2011@IJCAI), pages 1-8 (arXiv:1107.1686

    Designing Normative Theories for Ethical and Legal Reasoning: LogiKEy Framework, Methodology, and Tool Support

    Full text link
    A framework and methodology---termed LogiKEy---for the design and engineering of ethical reasoners, normative theories and deontic logics is presented. The overall motivation is the development of suitable means for the control and governance of intelligent autonomous systems. LogiKEy's unifying formal framework is based on semantical embeddings of deontic logics, logic combinations and ethico-legal domain theories in expressive classic higher-order logic (HOL). This meta-logical approach enables the provision of powerful tool support in LogiKEy: off-the-shelf theorem provers and model finders for HOL are assisting the LogiKEy designer of ethical intelligent agents to flexibly experiment with underlying logics and their combinations, with ethico-legal domain theories, and with concrete examples---all at the same time. Continuous improvements of these off-the-shelf provers, without further ado, leverage the reasoning performance in LogiKEy. Case studies, in which the LogiKEy framework and methodology has been applied and tested, give evidence that HOL's undecidability often does not hinder efficient experimentation.Comment: 50 pages; 10 figure

    Affect and believability in game characters:a review of the use of affective computing in games

    Get PDF
    Virtual agents are important in many digital environments. Designing a character that highly engages users in terms of interaction is an intricate task constrained by many requirements. One aspect that has gained more attention recently is the effective dimension of the agent. Several studies have addressed the possibility of developing an affect-aware system for a better user experience. Particularly in games, including emotional and social features in NPCs adds depth to the characters, enriches interaction possibilities, and combined with the basic level of competence, creates a more appealing game. Design requirements for emotionally intelligent NPCs differ from general autonomous agents with the main goal being a stronger player-agent relationship as opposed to problem solving and goal assessment. Nevertheless, deploying an affective module into NPCs adds to the complexity of the architecture and constraints. In addition, using such composite NPC in games seems beyond current technology, despite some brave attempts. However, a MARPO-type modular architecture would seem a useful starting point for adding emotions

    Interacting Unities: An Agent-Based System

    Get PDF
    Recently architects have been inspired by Thompsonis Cartesian deformations and Waddingtonis flexible topological surface to work within a dynamic field characterized by forces. In this more active space of interactions, movement is the medium through which form evolves. This paper explores the interaction between pedestrians and their environment by regarding it as a process occurring between the two. It is hypothesized that the recurrent interaction between pedestrians and environment can lead to a structural coupling between those elements. Every time a change occurs in each one of them, as an expression of its own structural dynamics, it triggers changes to the other one. An agent-based system has been developed in order to explore that interaction, where the two interacting elements, agents (pedestrians) and environment, are autonomous units with a set of internal rules. The result is a landscape where each agent locally modifies its environment that in turn affects its movement, while the other agents respond to the new environment at a later time, indicating that the phenomenon of stigmergy is possible to take place among interactions with human analogy. It is found that it is the environmentis internal rules that determine the nature and extent of change

    The vocational ID : connecting life design counselling and personality systems interaction theory

    Get PDF
    We introduce the Vocational ID that integrates linguistic and visual representations of a career counselling client’s self. Based upon findings from the Life Design paradigm and the Personality Systems Interaction theory, the Vocational ID facilitates working on clients' vocational identity. In this article, we present the theoretical framework, its practical applications, and a case study

    Prospects for large-scale financial systems simulation

    No full text
    As the 21st century unfolds, we find ourselves having to control, support, manage or otherwise cope with large-scale complex adaptive systems to an extent that is unprecedented in human history. Whether we are concerned with issues of food security, infrastructural resilience, climate change, health care, web science, security, or financial stability, we face problems that combine scale, connectivity, adaptive dynamics, and criticality. Complex systems simulation is emerging as the key scientific tool for dealing with such complex adaptive systems. Although a relatively new paradigm, it is one that has already established a track record in fields as varied as ecology (Grimm and Railsback, 2005), transport (Nagel et al., 1999), neuroscience (Markram, 2006), and ICT (Bullock and Cliff, 2004). In this report, we consider the application of simulation methodologies to financial systems, assessing the prospects for continued progress in this line of research
    • …
    corecore