5,385 research outputs found

    Modelling And Experimental Vibration Control Of A Two-link Three-dimensional Manipulator With Flexible Links

    Get PDF
    Current industrial and space manipulators are required to achieve higher speeds in a lighter structure without sacrificing payload capabilities. Consequently, undesirable vibration occurs during the motion. By suitable modelling of the manipulator flexibility, advanced control strategies can be formulated to improve the joint tracking performance and reduce the residual vibration of the end-point in the presence of payload uncertainties.;Toward this goal, an experimental two-link, 3D, anthropomorphic manipulator with flexible links was designed and built to be used as a test bed for the verification and refinement of the proposed modelling and control strategies.;The nonlinear equations of motion for the robot were derived using Lagrangian dynamics. The model was verified using experimental modal analysis techniques. Based on experimental results, a simplified nonlinear model, that contains the relevant modes of the system, was derived and subsequently used in controller designs and state estimation.;A conventional Proportional-plus-Derivative (PD) controller that implements joint angles feedback was designed to be used as a baseline controller due to its wide applicability on industrial manipulators.;By measuring the links tip vibration using accelerometers, several adaptive controllers and state observers were designed and implemented successfully on the manipulator, namely, a gain-scheduling linear quadratic regulator, a model reference adaptive controller, an adaptive inverse dynamics controller, a least-squares nonlinear state estimator and a robust sliding observer. The controllers performance and robustness were tested and experimentally verified against the change of the payload.;The control strategies and identification techniques, developed in this thesis, are applicable to a wide range of robot manipulators including industrial manipulators

    Modeling and Control of the Automated Radiator Inspection Device

    Get PDF
    Many of the operations performed at the Kennedy Space Center (KSC) are dangerous and repetitive tasks which make them ideal candidates for robotic applications. For one specific application, KSC is currently in the process of designing and constructing a robot called the Automated Radiator Inspection Device (ARID), to inspect the radiator panels on the orbiter. The following aspects of the ARID project are discussed: modeling of the ARID; design of control algorithms; and nonlinear based simulation of the ARID. Recommendations to assist KSC personnel in the successful completion of the ARID project are given

    Dynamic Modeling and Simulation of a Rotating Single Link Flexible Robotic Manipulator Subject to Quick Stops

    Get PDF
    Single link robotic manipulators are extensively used in industry and research operations. The main design requirement of such manipulators is to minimize link dynamic deflection and its active end vibrations, and obtain high position accuracy during its high speed motion. To achieve these requirements, accurate mathematical modeling and simulation of the initial design, to increase system stability and precision and to obtain very small amplitudes of vibration, should be considered. In this paper the modeling of such robotic arm with a rigid guide and a flexible extensible link subject to quick stops after each complete revolution is considered and its dynamical behavior analyzed. The extensible link which rotates with constant angular velocity has one end constrained to a predefined trajectory. The constrained trajectory allows trajectory control and obstacle avoidance for the active end of the robotic arm. The dynamic evolution of the system is investigated and the flexural response of the flexible link analyzed under the combined effect of clearance and flexibility.

    Dynamic modeling, property investigation, and adaptive controller design of serial robotic manipulators modeled with structural compliance

    Get PDF
    Research results on general serial robotic manipulators modeled with structural compliances are presented. Two compliant manipulator modeling approaches, distributed and lumped parameter models, are used in this study. System dynamic equations for both compliant models are derived by using the first and second order influence coefficients. Also, the properties of compliant manipulator system dynamics are investigated. One of the properties, which is defined as inaccessibility of vibratory modes, is shown to display a distinct character associated with compliant manipulators. This property indicates the impact of robot geometry on the control of structural oscillations. Example studies are provided to illustrate the physical interpretation of inaccessibility of vibratory modes. Two types of controllers are designed for compliant manipulators modeled by either lumped or distributed parameter techniques. In order to maintain the generality of the results, neither linearization is introduced. Example simulations are given to demonstrate the controller performance. The second type controller is also built for general serial robot arms and is adaptive in nature which can estimate uncertain payload parameters on-line and simultaneously maintain trajectory tracking properties. The relation between manipulator motion tracking capability and convergence of parameter estimation properties is discussed through example case studies. The effect of control input update delays on adaptive controller performance is also studied
    corecore