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Multiobjective Control of a Four-Link Flexible Manipulator:
A RobustH ,, Approach

Zidong Wang, Hanging Zeng, Daniel W. C. Ho, and H. Unbehauen

Abstract—This paper presents a new approach to robusH, lems. First, the structural flexibility will lead to a high degree of
control of a real multilink flexible manipulator via regional pole  elastic vibration especially during the high-velocity maneuver
assignment. We first show that the manipulator system can be e manipulators. Also, some nonlinear phenomenon such as

approximated by a linear continuous uncertain model with exoge- . . tfricti ill ol . tant role in the d . f
nous disturbance input. The uncertainty occurring in an operating jointincton will play a more important role in the dynamics o

space is assumed to be norm-bounded and enter into both the the lightweight manipulators. For example, the joint friction re-

system and control matrices. Then, a multiobjective simultaneous sults in a very complicated dynamics especially when the light-
realization problem is studied. The purpose of this problem is to weight manipulator is operating at low velocities. Furthermore,
design a state feedback controller such that, for all admissible the dynamic equations of motion are nonlinear and of large di-

parameter uncertainties, the closed-loop system simultaneously - e
satisfies both the prespecifiedd ., norm constraint on the transfer mensions. These problems aggravate the difficulty of the mod-

function from the disturbance input to the system output and the  €ling, identification, and control of lightweight manipulators.
prespecified circular pole constraint on the closed-loop system  Multilink lightweight manipulators present even more com-
matrix. A new algebraic parameterized approach is developed plex problems for control. It is not easy to obtain a high ac-

to characterize the existence conditions as well as the analytical curacy dvnamic model or black-box model of multilink liaht-
expression of the desired controllers. Third, by comparing with y dy g

the traditional linear quadratic regulator (LQR) control method ~ Weight manipulators for the purpose of control design. On the
in the sense of robustness and tracking precision, we provide other hand, the control system of lightweight manipulators be-

both the simulation and experimental results to demonstrate the longs to the class of mechanical systems, where the number of

effectiveness and advantages of the proposed approach. controlled variables is strictly less than the number of mechan-
Index Terms—Flexible structures, H., control, multilink ma-  ical degrees of freedom, since the flexible links are subject to
nipulators, regional pole assignment, robust control. deflection and vibration. Furthermore, the linear effects of flex-

ibility are not separated from typical nonlinear effects of multi-
body rigid dynamics. For a high-performance lightweight ma-
nipulator, the task is to track a smooth trajectory of motion. This
R OBOT manipulators are widely applied in industrial praccan be assigned at the joint level, as if the manipulator were
tice. Conventional rigid manipulators are often built to bggid. Provided that the link deformation is kept limited, satis-
heavy and bulky for high structural stiffness. The advantage gictory results may be obtained also at the end-effector level.
rigid manipulators lies in that 'Fhey can be easily cor_1tr0||ed. But \1otion control of flexible manipulators has recently at-
some drawbacks, such as high power consumption, 10w Mpsqieq 4 great deal of interest from many researchers. With the
tion speed, actuators with high capacity, and low payload ratigy, ances in modern control theories, many control schemes
may appear. To remedy these drawbacks, the manipulator cap g peen successfully proposed to tackle the modeling and
made of lightweight materials. As opposed to the bulky strugq, o) problems of flexible manipulators. For example, the

ture, lightweight structures can improve the performance of Mgy r control approaches, such as linear quadratic regulator
nipulators with typically low payload-to-arm weight ratio anq) oRy and acceleration feedback control methods, have been
enable the manipulators to achieve fast and dexterous motiQB.q ‘tor the controller design in [14], [21]. The nonlinear
These energy efficient manipulators are of special interest il methods, such as those using computed torque, inverse
many application fields such as space robotic systems and ¥gxamics, and feedback linearization, have been proposed in
hicles. However, the lightweight structure will bring new prob[l], [3], and [15], respectively. More recently, the robust control
approaches, such d$., design, robust pole assignment, and

Manuscript received October 9, 2000. Manuscript received in final form Jufy-stability constraints, have received considerable attention
10, 2002. Recommended by Associate Editor E. G. Collins, Jr. The Work%ee, e.q., [5], [16], and [20])' It is noticeable that most of

. INTRODUCTION

Z. Wang was supported in part by the City University of Hong Kong und . .
RGC Grant with CityU 1138/01P, the University of Kaiserslautern, Germaniil€ papers mentioned above have only dealt with the control

and the Alexander von Humboldt Foundation, Germany. The work of H. Zemgroblem of single link flexible manipulators. Thus, the primary

was supported by the German Academic Exchange Service (DAAD). aim of this paper is to develop a new approach to designing
Z. Wang is with the Department of Information Systems and Com- . .

puting, Brunel University, Uxbridge, Middlesex UB8 3PH, U.K. (e-mail:FObUSt H.. feedback controllers, and then show its real-time

Zidong.Wang@brunel.ac.uk). application in the control of enultilink flexible manipulator.

H. Zeng is with Nortel Networks, Lapean, ON K2H 8E9, Canada. . . .
D. W. C. Ho is with the Department of Mathematics, City University of Hong Althoth the robust/., deS|gn 1S mamly related to robust
Kong, Kowloon, Hong Kong. stability and frequency-domain performance specifications, it
H. Unbehauen is with the Control Engineering Laboratory, Department gag|s little with the transient behavior which is also important
Electrical Engineering and Information Science, Ruhr-University Bochum " . . .
D-44780 Bochum, Germany. in the control of multilink flexible manipulators. As is well

Digital Object Identifier 10.1109/TCST.2002.804132 known, the pole location is directly associated with the dy-

1063-6536/02$17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on March 23, 2009 at 08:55 from IEEE Xplore. Restrictions apply.


https://core.ac.uk/display/335759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 6, NOVEMBER 2002 867

/ Strain gauge Flexible segment Payload

Harmonic drive gear DC motor Tachogenerator Angle sensor

Fig. 1. Schematic structure of the multilink flexible manipulator.

namical characteristics of linear time-invariant systems suchThe organization of this paper is as follows. In Section II,
as damping rates, natural, and damped natural frequencies,first give a description of the physical plant, and use a con-
and therefore, the problem of pole assignment in linear systéimuous uncertain model with exogenous disturbance input to
theory has been discussed by many authors and solvedapproximate the manipulator system. The robtdst control
various ways (see [12], [13], and references therein). On theblem is then formulated. Section Il presents the design pro-
other hand, locations of poles vary and cannot be fixed duededure of robusH ., state feedback controllers with d-stability
parameter uncertainties that originate from various sourcesnstraints. In particular, we develop a new algebraic parame-
such as variation of operating points, identification errors ¢érized approach and establish both the existence conditions and
parameters, etc. Hence, placing all poles of the overall systéme analytical expression of desired controllers. Simulation and
in a desired region rather than choosing an exact assignmexperimental results are given in Section IV to demonstrate the
may be satisfactory in the control of multilink flexible manip-effectiveness and advantages of the proposed approach. Finally,
ulators. A well-known desired region for continuous systembe conclusions are included in Section V.

is a discD(—q, r) in the left-half complex plane with the The notation is standard. Throughout this paf®t, and
center at-¢ + j0(¢ > 0) and radius (r < ¢). We say a linear R"*™ denote, respectively, thedimensional Euclidean space
time-invariant system isl-stableif the corresponding systemand the set of alk x m real matrices. The superscripf™

poles are all located inside a disc. denotes matrix transposition and the notatior> Y (respec-

In the past decade, a large amount of interest has been gitiealy, X > Y) whereX andY are symmetric matrices, means
to the problem of controller design for assigning all closed-lodpat X — Y is positive semidefinite (respectively, positive
poles within a desired circular region (see, e.g., [11] and [19]efinite). I,, stands for the:x x n identity matrix.

Furthermore, the robust circular pole-assignment (i.e., robust

d-stabilization) problem for systems with parameter perturba- Il. PROBLEM DESCRIPTION

tions has recently been well studied (see, e.qg., [7], [8], [17], [22&,
and [23], where thd1,, index has unfortunately not been in-
cluded). The plant is a four-link flexible manipulator which was de-

It should be pointed out that, very recently, in [5], the disveloped at the Control Engineering Laboratory, Department of
crete-time robust d-stabilization theory developed in [7] arlectrical Engineering and Information Sciences, Ruhr-Univer-
[8] has been successfully applied in the real-time control ofsity Bochum, Bochum, Germany [6]. Fig. 1 shows the schematic
manipulator. However, in the event of feedback control for astructure of this manipulator.
inherently time-continuous system in terms of a discrete-time The whole robot control system consists of a host computer,
“equivalent,” the question of sampling is not trivial, since théhe transputer network, the real-time measurement system
very small sampling period which is naturally required will re(RTMS) and a planar four-link lightweight manipulator. The
sult in computational difficulties. Moreover, the parameters inost computer serves as the man—machine interface of the plant.
the discrete-time model usually do not correspond to the phys-special software called TROB [6] was developed by using
ical meanings and this brings difficulties in parameter identific++. This software environment can be used for manipulating
cation. Therefore, in this paper, we cope with the problem dfe robot experiments. The transputer network consists of seven
designing robust d-stability controller for a realltilink flex-  transputers and two DSPs. It has been designed to allow the im-
ible manipulator in a continuous-time setting. Different fronplementation of both the decentral and multiinput—multioutput
the existing results, in addition to the robustness and transi¢ktiMO) controller.
behavior, we further enforce the disturbance rejection propertyThe RTMS is a VPORT 50-based data acquisition system.
onto the feedback system so that the better performance of Te operating system of RTMS can coordinate any measure-
controlled manipulator can be achieved. THg, norm of the ment into the transputer network. The program for operating
transfer function from the disturbance input to the system outghe whole plant is object-oriented. The joints are driven by
is guaranteed to be less than an expected upper bound. We ildlsimotors with harmonic drive gears [10]. Two large motors
trate the relevant advantage through both simulation and exp@tbSA20) are used for the first two joints with electromagnetic
iments by comparing with some traditional control methods. break and two small motors (HDSH214) for the other two joints

. Description of the Plant
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TABLE | In this paper, we adopt the dynamic modeling for the multi-
TECHNICAL SPECIFICATIONS OF THEDC MOTORS link lightweight manipulators, which is inherited from that of
Tora 1 Tt 2 ot 3 Soint 4 the rigid manipulators. The difficulty encountered in this mod-
Type HDSA 20 | HDSA 20| HDsH 14| mpsui1z  eling can be traced to the distributed nature of the system, for
Rated voltage 24V 24V 24V 24V example, the structural deformation. The motion of such manip-
Rated power 94 W 94 W 18.5 W 185 W ulators is described by partial differential equations rather than
Rated torque 30 Nm 30 Nm 5.9 Nm 5.9 Nm ordinary differential equations. The search for solutions is even
Rated current 85A 85 A 18 A 18 A further hampered by the fact that the solutions depend strongly
Torque gain 45 Nm/A | 4.5 Nm/A | 5.65 Nm/A | 565 Nm/A  on the boundary conditions. While the boundary conditions vary
Gear reduction 100 100 101 100 rapidly with time due to the varying configuration of the light-
Inertia (mofor-+gear) | 106 kgm® | 1.06 kgm® | 0081 kem” | 0.081 kg weight manipulator, this property makes it nearly impossible to

find closed-form solutions.

TABLE I On the basis of the above discussion, we will follow the
STRUCTURAL SPECIFICATION OF THEMANIPULATOR standard Lagrange formulation for the rigid-link case, to derive
e —— the dynamic equations of motion of a planalink flexible
aterial of the links (1 - 4): | Aluminum alloy manipulator. To constitute a set of generalized coordinates
Length of the links (1 — 4): | 0.6 m oo .
_ ) of the system, it is necessary to introduce not only the
Length of the flexible part of the links (1 — 4): | 0.24 m ioint analesd — (8 917 but also the elastic modes
Width of the flexible part of the links (1 — 4): | 0.017 m ](5 ! 59 _6 [f1, - 6 n] T lr'l] . 1 : d
Height of the flexible part of the links (1 -4): | 0.1 m - [ R nm?] where: 7 ey AN
Density of the links (1 - 4): | 2690 kg/m?® j = 1,..., m;. The following assumption is made on the
Flexural rigidity of the links (1 - 4): | 1050 Nm? flexible links. o _ _
Masses of the joint 1,2: | 9.16 kg Assumption 1:The number of significant modes; is suffi-
Masses of the joint 3,4: | 6.14 kg cient to obtain a good approximation of the elastic deformation
Payload of the manipulator: | 0 till 5 kg of theith link.

Based on Assumption 1, the elastic deformatie(a:, t) of
theith link at a distance; from the joint can be expressed as
without break system respectively. The technical specificatiotige sum of appropriate basis functiopg(z) multiplied by the

of the dc motors are shown in Table I. modal coordinates;;, that is
The link segments are made of aluminum, and the elastic vi- .
brations of the links are measured by strain gauges. Table I wi(, 1) = Z i () 655(¢) )
) i - 1) 1] .

shows the structural specification of the manipulator.

The input signal is the control voltage which is the output of
the controller. The output signals include the angle output of tghe trajectories are assigned at the joint level, the end-effector
joint, the elastic vibration of the link, the signals for the emeiposition of linki can then be approximately described by using
gency brake, and the current in the armature of the dc motorthe pseudojoint angle as

More details concerning the technical description of the plant
and related software are given in [6]. yi(t) = 0i +wie, 1) /1. @)

. . Now we define the generalized coordinates of the system
B. Dynamic Modeling as follows: g yet

The physical modeling of manipulators can be classified
into two categories: kinematic and dynamic modeling. Both q=[01+ Onb11 - Sy~ Snr o um, )T (3)
the kinematic and dynamic modeling rely on an accurate
knowledge of a number of constant parameters characteri
the mechanical structure, such as link lengths, masses,
inertial properties. . . M(q)i+ Clq, §)q + Kag = u 4)
The kinematic modeling of a manipulator concerns the de-
scription of the motion of the manipulator with respect to a fixedthereM (¢) is the positive-definite symmetric inertia matrix of
reference frame by ignoring the forces and moments that catise manipulatorC(q, ¢)¢ includes the coriolis and centrifugal
this motion of its structure. The kinematic method is usuallijmoments K ,q is the effect of structural deformation, ands
considered in terms of forward kinematics, inverse kinematidfie generalized vector of joint moments defined by
and velocity kinematics. On the other hand, the dynamic mod-
eling aims at the derivation of the motion equations of the ma-
nipulator as a function of the forces and moments acting on it.
Many methods are available in the robotics literature (see, for

=1

/i d then the dynamics of-link flexible manipulators can be
g c]jved by using the Lagrangian approach, which leads to

w=[uy - u, 0 0]T. (5)

Defining a new state vectar = [¢” ¢ 7] and differentiating

) ; . , we have
example, [4]). Two kinds of equations are mainly used to de-
rive the dynamic model, namely, the Lagrange’s equation and [q} B [ 0 I } [q} . [ 0 ] "
the Neyvton—EuIer’s equation. B_oth equations I_ead to exactly thé g -M'K, —-M~'C] g M-t
same final answers of the manipulator dynamics. (6)
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and therefore the dynamic model of the multilink flexible mawhereA. = A+ BK,AA, = SF(N;+ Ny K). For the system
nipulator can be described by (12), the closed-loop transfer functidifi(s) from disturbance

inputw(t) to outputy(t) can be written as
i(t) = A(z)z(t) + B(x)u(t) 7)
-1
where the nonlinear system matricééz), B(x) are the func- H(s) = Bl[sI = (Ac + AA) 7D (13)
tion of the state vectar(t).

In this paper, we linearize the nonlinear system (7) ata o
erating point. Then, consider the linearized system with bo
parameter perturbations of system dynamics and additive '8
turbance term as follows:

Consider a circular regio®(—q, r) in the left-half com-

lex plane with the center atq + 50 (¢ > 0) and the radius

r < q) for continuous systems. Now, the major aim of the

bust H..-norm circular pole placement control (RHCPPC)

problem is to design the state feedback gAirsuch thatfor

i(t) = (A + AA)z(t) + (B + AB)u(t) + Dw(t) all admissible uncertainties satisfyir(@), (10), the following
performance criteria are simultaneously achieved

y(t) = Ba(t) ®) C1: The closed-loop poles are constrained to lie within the

wherez(t) € R", u(t) € R™, andw(t) € R~ are the SPecifieddisd)(—g,r),i.e.,0(A.+AA4.) C D(=q, r), where

system state, the control input and the disturbance input, re¢ iS the center on the real axis ands the radius of this disc.

spectively.y(t) € R represents the system output which is C2: The Ho, norm of the disturbance transfer matik(s)

the vector of pseudo joint angles, B, D, andE are constant from w(t) to y(¢) meets the constraintt (s)|| < ~ where

matrices with appropriate dimensions that describe the nomifldf (s)llc = SuP,c Omax[H (jw)] and omax[] denotes the

system, and\ A, AB are real-valued matrix functions repreJargest singular value df]; andy is a given positive constant.

senting the time-invariant parameter uncertainty. For the givenRémark 2: If the requirements C1 and C2 are met, the con-

operating point of an operating space, the parameter uncertdfglled manipulator system will have good robust performance,

tiesAA, AB can be constructed to approximate the major linhat is, good transient behavior and good disturbance rejection

earization errors of the system (6). These parameter uncert&fRPerty in the presence of uncertainties. In next section, we will

ties can then be considered here to be norm-bounded and of@REblish both the existence and the analytical expression of the
form expected controllers.

[AA AB] = SF[N1 Ny 9) lIl. ROBUST H,, CONTROL DESIGN

whereS, N1, No, and(NJ N, > 0) are known real constant  To begin with, we present two lemmas as follows which will
matrices with appropriate dimensions, ahdis an uncertain be essentially needed in the design of the rollistcontroller.

constant matrix satisfying Lemma 1 [22]: Let a positive scalar > 0 and a positive-
. definite matrix@Q > 0 be suchthatS”QS < I. DefineA,, :=
FPF LI (10) A, + ¢I. Then we have

The termw(t) can be.used to despribe the additive disturba}nce, (Aog + AA)TQ(Ary + AAL)
for examples, the noise, the nonlinear terms in the dynamics of - 1 e T
manipulators, the loads varying for different tasks, etc. To guar- S AR+ QST =57 Q)75 QA
antee the admissible disturbance attenuation level in the sequel, + e YNy 4+ No K)T(Ny + N>y K). (14)
the H,, requirements will be considered in this paper.

Remark 1: The parameter uncertainty structure as in (9) and Lemma 2 [23]: Let X € R™*™ andY € R™*? (m < p).
(10) has been widely used in the problems of robust control ahtiere exists a matri¥” which satisfies simultaneously =
robust filtering of uncertain systems (see, e.g., [7], [8], [17KV andVVT = T'ifand only if X X* =YY,
[23], and the references therein). Many practical systems pos¥We now show that, the circular pole aifl,, performance
sess parameter uncertainties which can be either exactly me@nstraints for all admissible parameter uncertainty can be
eled or overbounded by (10). Moreover, unlike the existing r@uaranteed by the existence of a positive-definite solution to a
sults, we use the “disturbance term” in the model to account fatodified algebraic Riccati equation. The corresponding result
the influence from the operating environment, and he re- is stated in the following theorem which plays a key role for
quirement is introduced to reduce the possible affection frod@Iving the problem RHCPPC.

the “disturbance input.” Theorem 1:Let a positive constany > 0 and a circular
regionD(—gq, r) be given. Then the performance requirements
C. Control Problem Formulation C1 and C2 are satisfied if the following matrix inequality has a
Applying the state feedback control law positive-definite solutior®) > 0:
u(t) = Kx(t) (11) (Ae + AA)TQ(Ac + AAL) + (¢ —77)Q

T
to the system (8), we can obtain the resulting closed-loop system +a [(4 42' AAC)T @+ Q(‘ic +AA)
as follows: +y*QDD"Q + EE"] <0. (15)

2(t) = (Ac+ AA)z(t) + Dw(t), y(t) = Ex(t) (12) Proof: See the Appendix. [
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Remark 3: Theorem 1 implies that thé/, disturbance at- (18), or (17), can be also rewritten as
tenuation and the circular pole constraints are automatically en- . , AT Ay \1/2
forced when a positive-definite solution to (15) is known toTK (B 2B +e N NQ)

exist. Next, in Theorem 2, we will show that the uncertainties + ((A+q)" QB + e~ 'N{ Ns)
AA, ingin (15 b d with the help of L -
: appearing in (15) can be removed wi e help of Lemma . (BTQB n E_INZTNQ) 1/2}
Theorem 2: Let the desired dislf)(—q./ r), the cqnstan’fy > ) |:KT (BTQB n E_lNzTNQ) 1/2
0 and the state feedback gdinbe given. If there exist a positive
scalare > 0 and a positive-definite matri@ > 0 satisfying + (A+q)"QB+"'N['N,)
T —1 T -1/217
eSTQS < 1 (16) (BYQB +e7 Ny N,) }
= —r2Q +q(vy2QDDTQ + ETE) + (A+qI)TQ
QA + e AN + N2K)' (N1 + NoK) + qETE (A+ql)+e "N N1+ [(A+ ¢)TQB+e 'N{N,|
= (2 — ¢7"2QDDT)Q (17) (BTQB+e ' NI No) " '[(A+ qI)"QB+e ' NTN,) .

whereQ) := Q + QS(e~ I — STQS)~1ST(Q, then the eigen- (19)
values of the uncertain closed-loop system mattix+ AA. ~ Observe that the left-hand side of (19) is nonnegative and
are located within the desired digt(—q, ) and theH,, norm K € R™*"=_ It is not difficult to find that there exists a feed-
of the disturbance transfer matiX(s) fromw(t) toy(t) meets back gain matrix¥s” such that (19) holds if and onlydp satisfies
the constraint| H(s)||o < 7. the following matrix inequality:
Proof: See the Appendix. _ N By = 2Q4q(v2QDDTQ+ETE)+(A+qI)TQ(A+qI)
Remark 4: Theorem 1 provides the sufficient conditions 1T T 1 AT
) . . +e N N1+[(A+q[) QB+e "N Ng]
under which the expected robult,, circular pole constraints 1 ) 1 .
are achieved. It should be pointed out that, these sufficient - (B"QB+c7'Ny Na)  [(A+ql)" QB+ NI N,]
conditions may be conservative which are produced primarily
T >0 (20)
due to the utilization of (14). Fortunately, we can reduce the . o ) o
conservativeness in a matrix-norm sense by properly selectfffl>- iS of rank which is not more thanin (n., n..). This gives
the parameter (see [25] for details). the assignabilityconditions. o n
Now, we are in a position to discuss the design procedure of_urthermTore, let matri” € R"*"+ be the square root of
robust .., controllers. We shall derive the conditions undet: € TT" = % (by Lemma 2, the square root satisfying
which there exists a state feedback controller gainsuch 1 = 3 is notunique, and we can just choose o'ne). If (20)
that the robust circular pole anfl.. norm constraints can be 1°lds, then (19) can be again expressed as follows:
achieved and the general expression of the desired feedback [KT (BTQB + 5*1N2TN2)1/2
controller gainK. T -
Assume that (16) holds for a positive scadas 0 and a posi- + ((A +ql)" QB+ Ny N2)
tive-definite matrix > 0. After some algebraic manipulations, . (BTQB n 5’1N2TN2) —1/2}
the (17) can be rearranged as follows:

KT (BB + 7' NIN,)

A+¢gDTOB + e 'NTN,| K
[(4+aD) 1 N + ((A+qD)TQB + e NI Ny)

KT [(A+qD)TQB + e 'NTN,| " _1nT
+ K [(A+aD)T QB + TN N (BTOB+ e NTN,) T = TTT )
T T —1 7T
+K (B QB +e7 Ny N2) K or equivalently (by Lemma 2)
2 -2 T T
+7°Q —q(y"QDDTQ + ET E) KT(BTQB+e""NIN,) >+ ((A+qD) QB+ NT )
T —1 7T _ _
_(A—|—qI) Q(A—I—q[)—&f Nl N1—0 (18) (BTQB_I_E—lNéI‘NQ) 1/2:TV (22)
Based on (18), our design problem can be converted into tgereV € R™ "« is an arbitrary orthogonal matrix. It follows
following equivalentQ-matrix assignment problem immediately from (22) that the corresponding state feedback
« Find the necessary and sufficient conditionas&ignability 9&in /& can be obtained by
conditions) for a positive-definite matrix?) under which K = [TV (BTQB + €_1N2TN2)—1/2
there exists a controller gail§ satisfying (18). r i
« If the controller gaink exists (i.e., the matrix) > 0 is — ((A+¢D)" QB +e7"N{ N)

“assignabl®), give the characterization of all expected con-

troller gains in terms of the positive-definite matkix and

some other free parameters. Note that (23) provides a set of the desired controller gains in

We now focus on th&)-matrix assignment problem. Sinceterms of the parametet3, ¢, V, where the parameté} enters
NI Ny > 0, the matrixBTQB + ' NJ Ny is invertible, and (23) indirectly viaZ and(2.

(B"QB + 7' NI N. )’1}T (23)
2 V2 :
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Summing up, we conclude the above results in the following IV. SIMULATION AND EXPERIMENTAL RESULTS
main theorem.

Theorem 3: Consider the uncertain linear continuous systep}
(8). Given the desired circular pole regid —gq, r) and the
H,, norm bound constraint > 0 on the disturbance rejec-
tion attenuation. Let the notiof? be defined as in Theorem 2,
and X be defined by (20). If there exist positive scatar- 0
and a positive-definite matrigp > 0 satisfying (16), (20), then
with the state-feedback gain determined by (23), the expected —30 (deg) < ¢; < 30 (deg), fori=1, 2, 3, 4.

performance requirements C1 and C2 can be achieved, i.e., fo{/\/e now consider the nonlinear dynamic model (7). Denote
all admissible parameter uncertainties, the closed-loop poles are [ un]T, and itfollows from (5) thats = [T 0y ,]7
- 1" Un] — 1Xn] -

placed within the disd(—g¢, r) and theH,, norm of the dis- : . -
turbance transfer matrid (s) from w(t) to y(#) meets the con- ?ﬁgﬁﬁl;\)glcsgnps;u:gcﬁgg ;SB(x) = [Bri(z) Bra(@)).
straint|| H(s)||oo < 7.
Remark 5: Theorem 3 presents sufficient conditions for de-
signing state feedback controllers which satisfy both the robust
d-stability constraint and the robuBt,, constraint, in terms of
a simple linear matrix inequality (16) and a Riccati-like matrix As discussed in Section II, the nonlinear dynamic model (25)
inequality (20). When the uncertainties are absent (l&.= IS linearized at the initial operating point, and the system pa-
N = 0) and there are no constraints on tHe, norm of the rameters of (8), wher® is replaced by p1, can be derived as
disturbance transfer function (i.e.,= co, D = 0), the condi- follows:
tion in Theorem 1 will be both sufficient and necessary, and thus
Theorem 3 actually parameterizes all state-feedback controllerg — [08x8 I8x8] Bp: — [08x4} D= [ Ogx4 ]
i it r i A A ’ P1 By |’ 0.1B
which place the closed-loop poles within a specified disk for 21 22 2 2

To study the performance of the proposed control algo-
hms, a simulation environment based on the software
MATLAB/SIMULINK has been developed. For applying the
developed robusl,, control approach, the dynamic model (8)
parameter uncertainties is used. It is assumed that the desired
trajectories are unknown, but bounded by

i(t) = A(2)a(t) + Bpi(w)i(t). (25)

continuous-time systems. This means, Theorem 3 generalizes Osxs  Osxs

partial results of [11]. E =Ix16, S =0.1I15x16, N1 =10 { 5 5 }
Remark 6:In practical applications, it is very desirable 1 12

to directly solve the quadratic matrix inequality (QMI) (20) Og x4

subject to the constraint (16), and then obtain the expecté\é2 =10 [ Vy }

observer gain readily from (23). When working with the QMI,
the local numerical searching algorithms suggested in [2], [Qhere
are very effective for a relatively low-order model. A related
discussion of the solving algorithms for QMIs can also bﬁ
found in [18].

21 =

Remark 7: It can be seen from Theorem 3 that, unlike the al 0000 1280 0 -1 0
A . . . 0 0 0 O 1364 11 276 41

gebraic Riccati equation method developed in [7], [8], [17], and 00 0 —219 33 9269275 4
[23], the present parameterized approach provides much expli¢i 00 0 —153 65 16088 59036
freedom in the design of state-feedback controllers because [0 00 0 —622 94 597 94
the nonuniqueness in choosing the paramépees V. This de- 00 0 0 15 —108 _176 _489
sign freedom can be used to achieve other performance requi & 0 0 0 208 —100 —64963 5100
ments, such as reliability against sensor failures, implementa- - - -
. . . . . ; . O O 0O O 7 —56 1050 —79852 |
tion accuracies and gain reduction, etc., which still require fur-
ther investigation. Note that in Theorem 3, the addressed feed- =152 77 0 0 0 0 0 07
back control problem is converted into the solvability problem =77 =277 3 -1 0000
for a positive-definite matrixQ > 0 to satisfy two matrix in- 0 111 -45 -20 0 0 0 O
equalities. Therefore, in principle, if other system pen‘orman%22 _ 0 -33 =20 -61 0 0 0 O
requirements can also be expressed in terms of linear/quadratic 993 631 -2 -2 0 0 0 O
matrix inequalities, they can then be enforced into the current 0 3 0 00 0 00
developed framework. 0 45 97 59 0 0 0 O

Remark 8: The state feedback control design problem is con- L 0 1 0 45 0 0 0 0J
sidered for linear uncertain systems with both circular pole and - 392.993 16.557  —0.003  —0.0021
H_,-norm constraints. A parameterization approach is devel- 16.557 59482  —92.040 0.604
oped, which enables us to obtain the set of state-feedback con- —0.036 _93.791 36.405 16.376
trollers in terms of some free parameters. It would be interesting —0.023 7.042 16.376 49589
to extend the present results to the output feedback case. Unféz-= 21927.403 —135.716 1.864 1.303
tunately, the parameterization method developed in this section 0.002 _0.650 —0.174 —0.339
cannot apply to the output feedback case in a straightforward 0.0319 _9595 —78957 —47.917
way, which leaves us an important issue for future research. i 0.001 —0.293 0.002 —36.200
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Ny = TABLE Il
00 0 0 —0.058 0.083 0.033 0.5097 DESIRED TRAJECTORIES FORSIMULATION
00 0 0 -23.029 56.282 76.303 235.236 Joint 1 (deg) | Joint 2 (deg) | Joint 3 (deg) | Joint 4 (deg)
0 0 0 0 26469 -36.220 —2.563 —273.340 Trajectory A | 15sin(0.2t) | 15sin(0.2t) | 20sin(0.4f) | 20sin(0.4¢)
0 0 0 O 1.921 58.151 144.609 125.741 Trajectory B | 20sin(0.2t) | 20sin(0.2t) | 30sin(0.5t) | 30sin(0.5t)
0 0 0 0 37.869 —53.998 —21.080 —330.640
0 0 0 0 -=33.142 —2.832 —136.734 320.840
0 0 0 0 =7360 —=77.784 —211.548 —138.259 5 R TAB'—& v c
—0 0 0 0 —23767 37576 —28464 356041_ MULATION RESULTS OFMULTIVARIABLE CONTROL
N _ LQR control | Robust Hy, control
12 — . " "
~ _ Trajectory A | Figs. 2 and 3 Figs. 4 and 5
0 0.016  —0.001 00000 Trajectory B Unstable Figs. 6 and 7
0.016 3.363 —-0.173 —-0.172 0 0 O O
—0.019 —7.609 0.193 —-0.019 0 0 0 O
—-0.001  -7.506 —-0.019 -0.363 0 0 0 0 Our goal is to design the state feedback control law Kz
—-0.027 -10.661 0279  0.020 0 0 0 0 such that all closed-loop poles are assigned inside the prespec-
0.024 15992 -0.235 0378 0 0 0 0 ified circular regionD(—70.1, 70), and theH, norm of the
0.005  12.334 —0.009 0534 0 0 0 0 transfer function from the disturbance input to the system output
0.017 7.828 —-0.207  0.096 0 0 0 O satisfies||H (s)||l« < 0.9. The corresponding state feedback
- 0 —0.004 0.001 07 gain K can be obtained as
—-0.004 -0.723 0.140 0.138
0.004  1.1636 —0.156  0.015 K=[Knu K]
N, = 0.001 1.614 0.015 0.293
27| 0006 2292 —0.226 —0.016
- - where we havd(;; and K., shown at the bottom of the page.
—0.005 —3.438 0.190 —-0.305 L
0001 —2.651 0.008 —0.431 For the closed-loop system, the performance objectives are
| _0.004 —1.683 0.168 —0.077 ] well achieved, that is, the closed-loop poles are constrained to

lie within the specified disd(—70.1, 70), and for all admis-
As stated in the problem description, the matrichg, N,, Sible parameter uncertainties, the maximiéhg, norm of the
and S, which reflect the uncertainty intensity, are constructedisturbance transfer matrik (s) from w(t) to y(t) satisfies
to approximate the major linearization errors of the system (8) (s)|lc = 0.5211 < 0.9.
while the matrixD accounts for the disturbance input which re- To make a comparison, a traditional LQR controller is de-
sults primarily from the actuator noises in implementation. THdgned where the weighting matrices are selected t@) be

pole set of the open-loop system with no uncertainty is given 8§17 and 2 = 0.11. _ S _
follows: In the simulation, the desired trajectories are selected as in

Table lll. The simulation results are shown in Table IV and from
which we observe the following:

e Trajectory A is bounded in a relative small operating space
including the initial point. Both simulated multivariable con-
trollers are stable. The robuAt,, controller performs better in
tracking precision over the traditional LQR controller when the
control energy is maintained at the same level.

We can see from the last pole that the open-loop uncertainty-free Trajectory B is bounded in a relative larger operating space.
system is unstable. We also notice that the distribution of thethis operating space, the LQR control is unstable. It is verified
open-loop poles is quite scattered. Therefore, we consider that the robusti,, controller performs better with respect to
circular regionD(—70.1, 70) in the left-half complex plane. stability.

{0, 0,0, 0, —299.62, —11.71 + 280.15i, —11.71 — 280.154,
—32.65 + 253.814, —32.65 — 253.81i, —99.34,
—20.11 + 10.60i, —20.11 — 10.604, —0.14 + 10.30i,
—0.14 — 10.30i, —7.28, 0.44}.

r46.1 —-22.5 259 =256 -—1.1 3.2 =33.7 174.7
Kij = —-174 33.6 —22.7 3.4 15.6 —-0.9 509 —152.6
—8.6 5.6 28.0 9.7 10.0 0.8 691.0 —1070.6
L —3.0 2.1 6.7 188 —2.2 1.6 1.8 1710.9
r 5.4 3.5 3.4 0.3 1.6 0.6 1.6 —-0.7
Ky = -13 -32 -13 0.2 01 00 -0.6 1.1
0.0 1.2 1.1 09 02 01 0.9 3.8
L 0.6 0.8 09 —-0.1 02 01 0.8 —4.3
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Desired trajectory (dashed) and simulated trajectory (solid)
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Fig. 2 Simulation results of LQR control. Tracking of trajectory A for joint 1Fig. 4. Simulation results of robugf .. control. Tracking of trajectory A for
and joint 2. joint 1 and joint 2.
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Fig. 3. Simulation results of LQR control. Tracking of trajectory A for joint 3Hg. . Simulation results of robugf.. control. Tracking of trajectory A for
and joint 4 joint 3 and joint 4.

) ) ) o system, for all admissible parameter uncertainties in the
It is apparent that the simulation results found in Figs. 2-yperating space, simultaneously satisfies both the prespecified
verify theoretical analysis. o H.,, norm constraint on the transfer function from disturbance
The experimental results are shown in Figs. 8 and 9 for enflpyts to system outputs, and the prespecified circular pole
effector tracking of a trajectory with 2.5-kg payload, respegpnstraint on the closed-loop system matrix. Simulation and
tively. Both LQR and robusH.,, controller are used, respec-experimental results have verified the theoretical analysis

tively. The experimental results show that the roldilist control  yesyits and demonstrated the usefulness and applicability of the
performs better in tracking precision over the traditional LQByoposed approach.

control.
APPENDIX

Proof of Theorem 1:Define ¥ := (1/r)(A. + AA. + qI).
The problem of robusti,, control for a multilink flexible It is clear that the specified circular pole constraitd. +
manipulator has been addressed in this paper. A new approach.) C D(—gq, r) is equivalent to the Schur stability of ma-
to robustH., control of multilink flexible manipulators has trix VU, i.e., the eigenvalues df are all located inside the unit
been presented using regional pole assignment. A multiatircle D(0, 1). We know from the discrete-time Lyapunov sta-
jective simultaneous realization problem has been introduckiity theory that¥ is Schur matrix if and only if there exists a

to the controller design such that the controlled manipulatpositive-definite matrixQ meetingQ — ¥7Q¥ > 0.

V. CONCLUSION
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Fig. 7. Simulation results of robugf .. control. Tracking of trajectory B for
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Fig. 8. LQR control. Endeffector tracking of a trajectory.
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Fig. 9. Robust{ ., control. End-effector tracking of a trajectory.

Since (15) holds, we can assume that there exists a matrix
P > 0 (P may be dependent on the uncertain matrixsuch
that

(Ac+AA)TQ(AAAA)+(? —r)Q+q [(Ac + AA)TQ
+Q(Ac + AA.) +772QDDTQ + EET + P] =0. (26)

It is not difficult to rewrite (26) as follows:
Q-UTQU = (¢/r*)(v2QDDTQ+E"E+P) >0  (27)

which indicates that the circular pole requirement C1 will be
met.
Next, we can also rearrange (26) as follows:

(AAAA)TQ+Q(AAAA)+Y 2 QDD Q+ETE+S = 0
(28)
where

Y =q" [(Ac+ AA)TQ(A + AA) + (¢ —7)Q] + P.
(29)
SinceX > 0, the proof of||H(s)||« < 7 can be completed
by a standard manipulation of equation (28); for detail see [24,
Lemma 1]. This completes the proof of Theorem 1.
Proof of Theorem 2:It follows from Lemma 1 that

© = AL QA + e (N1 + N2 K)' (Ny + N2 K)
—(Aeg + AANTQ(AL, + AAL) > 0. (30)

Then, by means of (30), we can rewrite (17) as follows:

(Aeg + AA)TQ(A, + AAL)
=7r?Q —q(v?QDDYQ + E'E +¢7'0). (31)

Furthermore, by defining® := ¢~'® > 0 and noting that
Aqq = Ac + qI, we can continue to transform (31) as

Q(Ac+AAc)TQ+QQ(Ac+AAC)+(AC+AAc)TQ(Ac+AAC)
+(? = r)Q + q(v2QDDTQ+ ETE+ P)=0 (32)
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which has the same form as (26), then the proof of this theoren2o] R. S. Smith, C. C. Chu, and J. L. Fanson, “The desigrHof con-
follows from Theorem 1 directly.
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