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ABSTRACT

Current industrial and space manipulators are required to a~hieve higher spceds in
a lighter structure without sacrificing payload capabilities. Consequently, undesirable
vibration occurs during the motion. By suitable modelling of the manipulator flexibility,
advanced control strategies can be formulated to improve the joint tracking performance

and reduce the residual vibration of the end-point in the presence of payload uncertainties.

Toward this goal, an experimental two-link, 3D, anthropomorphic manipulator with
idexible links was designed and built to be used as a test bed for the verification and

refinement of the proposed modelling and control strategies.

The nonlinear equations of motion for the robot were derived using Lagrangian
dynamics. The model was verified using experimental modal analysis techniques. Based on
experimental results, a simplified nonlinear model, that contains the relevant modes of the

system, was derived and subsequently used in controller designs and state estimation.

A conventional Proportional-plus-Derivative (PD) controller that implements joint
angles feedback was designed to be used as a baseline controller due to its wide

applicability on industrial manipulators.

By measuring the links tip vibration using accelerometers, several adaptive
controllers and state observers were designed and implemented successfully on the
manipulator, namely, a gain-scheduling linear quadratic regulator, a model reference
adaptive cotroller, an adaptive inverse dynamics controller, a least-squares nonlinear state
estimator and a robust sliding observer. The controllers performance and robustness were

tested and experimentally verified against the change of the payload.

The control strategies and identification techniques, developed in this thesis, are

applicable to a wide range of robot manipulators including industrial manipulators.

iti
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- CHAPTER 1 -

GENERAL INTRODUCTION

1.1 Motivation

A manipulator is a mechanical device whose purpose is to enable its end effector to
follow a commanded trajectory in its workspace and then to stay at commanded locations
in order to perform a given task. Mechanical manipulators are widely used in industry
because they can be programmed to execute tedious tasks easily. Robotic manipulators are

also essential in hazardous environments in industry, under water and in space.

A manipulator is generally built as a chain of structurally rigid links articulated by
rotary or sliding joints, each driven by its own actuator. The position accuracy of the robot

end-effector is limited by the links and joints flexibility.

Intuitively, one would expect that moving the manipulator too quickly would excite
its resonances and cause the tip to oscillate. This may limit the robot performance in
handling large payloads and executing fast assembly operations. Consequently, robots with
a large workspace (> 1 m?) are built to be massive in structure and require powerful motors

in order to move p7 yloads that are typically around 5% of their total weight.

With the demand of efficient and large workspace manipulators capable of handling
large payloads, robots will have significant mechanical flexibility. Consequently, it is
required to design a control system to reduce the undesirable vibration. Since the design of

a control system iz based on the model of the actual manipulator, the achievable

1



performance may be limited by the modelling accuracy.

One example of an existing large flexible manipulator is the Shuttle Remote
Manipulator System (SRMS) built for the National Aeronautics and Space Administration
(NASA) by Spar Aerospace Limited of Canada. This manipulator is designed to be light-
weight for easy transportation to space. The SRMS extends 15 meters. When all its links
are extended and locked, its natural resonance frequency is 0.3 Hz without payload, and
0.03 Hz with its largest 16,000 1b payload. In order to minimize the excitation of the elastic
modes, the SRMS is moved very slowly so that the end-point speced remains below 0.6 m/
s for the unloaded configuration. The speed and accuracy of the SRMS is limited by its

control system as it uses a collocated control algorithm [71].

Another example of an existing industrial robot is the Cincinnati-Milicorn T3R3
robot. It weighs about 1800 kgs and its largest payload is 23 kgs. The robot is controlled by
a Proportional-plus-Derivative (PD) control algorithm. For this robot, high speed assembly
operations have to be delayed to allow the elastic vibration of the arm to settle down. The
manipulator servo bandwidth is about one tenth the first cantilevered natural frequency (see

Sunada and Dubowsky [85]).

One way to enhance the performance of the successors of both the SRMS and
Cincinnati-Milicorn is to use non-collocated control algorithms and to implement end-
point position or vibration feedback. However, this requires accurate modelling to design a

robust control system.

1.2 Research Objectives

The objective of this rescarch is to contribute to the understanding of the dynamics
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and control of multi-link flexible manipulators. This research achieves the objective

through the following approaches:

® To design and build a flexible 3D manipulator. While most researchers investigated
planar robots, 3D robots are closer to real manipulators and suffer some problems

that planar robots do not have.

e To develop modelling techniques that permit accurate representation of manipulator
dynamics and to apply model reduction techniques to develop a low order model

without sacrificing the accuracy of the modelling.

o To develop control and state estimation techniques that use non-coilocated sensors

and are applicable to any class of robots provided that a dynamic model is available.

® To experimentally verify the derived dynamic models and control algorithms, and

to study their limitation and disturbance rejection performance.

This research combines both simulation and experimentation. While s‘mulation
helped in verifying the control algorithms, experimental work was more involved. The
experimental work helped in identifying the controllers limitations and gave confidence in

implementing the control algorithms on real manipulators.

1.3 Contributions

The control of the tip vibration of an experimental two-link, three-degree of
freedom manipulator was achieved. The following fundamental contributions have been

made to the fields of robotics, dynamic modelling, and control:

1. An experimental two-link, 3D manipulator with flexible links was designed and



built for the purpose of verifying the developed modelling and control algorithms.

The robot is designed to be modular to allow the study of a variety of configurations.

2. A large order model for the robot was derived using Lagrange's formulation using
a symbolic algebra software package. The assumed modes method was used to
represent the links deflections. These equations were used to characterize the

natural behavior of the system.

3. The linear behavior of the manipulator was characterized. Using experimental
modal analysis, the system natural frequencies, mode shapes and damping at two
nominal configurations were identified. The dominant modes of the robot were

characterized and their variation with the argles was determined.

4. A reduced order model that includes the dominant modes of the robot was derived.
The flexibility of the links was modelled using the Finite Element approach. The
model locked natural frequencies were tuned to the experimental values using a

technique based on gradient search.

5. A collocated controller for the robot was designed and experimentally verified. It
includes a PD joint control, gravity compensation and model-based friction

compensation. The limitations and performance of the controller are discussed.

6. For the purpose of controlling the end-point vibration, a non-collocated controller,
which used the links endG-point acceleration feedback, was designed based on linear
quadratic regulator theory. This included a gain-scheduled optimal regulator and a

nonlinear state estimator. The controller was implemented on the robot.

7. A general nonlinear and robust state estimator that can be implemented easily, in

real-time, for flexible manipulators was designed and simulated on the 1obot.



8. In order to have a controller which is robust to the variation of the payload, an
adaptive controller was designed using the model reference approach. The
reference model was chosen to be the linearized system under LQR control. The
adaptation gains were synthesized to guarantee the system stability using the
Lyapunov theory. The controller was experimentally tested under various loading

conditions.

9. Using the inverse dynamics approach, an adaptive controller was developed based
on the passivity theory. The performance of the controller was enhanced by
implementing a regulator in the outer loop. The composite controller was

implemented in real time and experimentally verified.

10. A comparison between the different controllers was done, in a unified way, using
some defined performance measures. These performance measures may be used to
test any developed controller. They include trajectory tracking measures and

disturbance rejection measures.

Finally, it should be noted that the innovative techniques developed in this thesis
have many generic features which make them useful to many space and industrial robotic
applications. This would permit the use of robots in many new tasks and produce a robotic

manipulator capable of handling larger payloads in a larger workspace at higher speeds.

1.4 Thesis Organization

The dissertation is divided into ten chapters and three appendices. Included in
Chapter 1 is the motivation for this research, a discussion of the research objectives, a list

of contributions and the thesis organization.




Chapter 2 contains a brief literature review that includes a review of the existing
experimental flexible manipulators, dynamic modelling strategies, flexible manipulator

control techniques, the use of passive and active damping and coulomb friction effect.

Chapter 3 contains a description of the experimental manipulator system. Included
are the design criteria for the robot, design considerations, design parameters, the

mechanical design and the computer systems used for simulation and control.

In Chapter 4, a high order model was derived for the robot. Included arc the
modelling assumptions, the description of the assumed modes method, the development of
the equations of motion, the inclusion of the joint dynamics, and the calculation of system

natural frequencies.

In Chapter 5, the parameters of the robot are experimentally identified. Included are
the modal parameters identification using experimental modal analysis, torque constant

estimation, damping estimation, and the identification of the robot joints inertia.

Chapter 6 includes the development of a reduced order model for the robot, a
technique for model tuning by matching the locked natural frequencies of the model to the

experimental data is applied.

Chapter 7 includes a discussion of PD control and its limitations, and experimental

results which shows the effect of increasing the controller gains.

Chapter 8 contains the development of a control strategy based on optimal regulator
theory. Included are the controllability and observability of the robot, the regulator and
estimator design, enhancement of the controller performance using gain scheduling, the
experimental implementation of the control algorithm, and the design of a nonlinear state

estimator for flexible manipulators.



In Chapter 9, an adaptive controller is designed using the model reference approach.
Included are the controller structure, the derivation of the adaptation technique, the

enhancement of the reference model and the simulation and experimental results.

Chapter 10 contains the design of an adaptive controller based on the inverse
dynamics method. Included are the properties of the equations of motion, the passivity
structure of the flexible manipulator, discussion of the joint based inverse dynamics
m-=thod, the passive controller design, the effect of the flexible dynamics, the development

of a composite controller, and the experimental implementation of the controller.

Chapter 11 contains a summary of the designed controllers and addresses the

comparison of the developed controllers in a unified way.

Finally, in chapter 12, the conclusions and a summary of the thesis research are

illustrated. Also, recommendations for future research areas are presented.

Three appendices are attached to the end of the thesis. Appendix A contains a
detailed description of the manipulator construction and the specifications for the actuators,

transmission, and brakes.

Appendix B contains the listing of some important software that includes
MACSYMA macros to generate the manipulator dynamic model, and a MATRIXx user

defined function to calculate the equivalent discrete gains and solve the Lyapunov equation.

Appendix C contains a description of the real-time controller boards, the operator
control sequences to start and stop the robot, the graphical interface program and the
inverse kinematic equations for the robot. Finally, a bibliography which lists all the

references that were researched for this thesis is included in the end.



- CHAPTER 2 -

LITERATURE SURVEY

The fundamental issues in the study of flexible manipulators are the modelling and
control. Several subjects that are applicable for rigid manipulators can be addressed once
the modelling and control problems are solved, e.g. path planning, obstacle avoidance,
force control, and teleoperation. The literature review for this thesis is divided into five
sections, namely: existing flexible manipulators, dynamic modelling, flexible manipulator

control, passive and active damping, and finally the effect of coulomb friction.

2.1 Existing Flexible Manipulators

Experimental rigs have been constructed in many universities and research centres
to investigate the modelling and control of flexible structures. The logical and historical
evolution for the discussion of flexible manipulators is shown in Figure (2.1). However,
flexible joint research was done nearly parallel to flexible links research. Since the
emphasis of this dissertation is on the vibration control of manipulators with flexible links,

the literature review will focus on this issue.

2 1,1 Single Link Manipulators

It was logical to study the single link manipulator as a starting point for research on

flexible manipulators. The primary advantages of the single link configuration are that the
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modelling can be done easily and the manipulator is simple to build. The main criterion for
designing this manipulator is to have the lowest vertical bending and torsional modes occur
at much higher frequencies than the lowest bending mode in the horizontal plane. The

model developed for this system is linear and can be experimentally identified casily.

Perhaps the most relevant research was done by Cannon and Schmitz [8]. They
identified the non-minimum phase behavior of the flexible link and designed an optimal
controller that uses strain gauges at the hub and an end-point position sensor to control the

tip of the link.

Hastings [29] used strain measurements to estimate the states of a single link and
discussed the minimum number of modes and sensors needed to reconstruct the model.

Rovner and Cannon [67] discussed the control of a single link with unknown payload.

A new concept was developed by adding a mini-manipulator at the end of the arm.
This changes the nature of the arm by getting the large, light weight, link to carry out the
gross motion and the small manipulator for the fine motion. The mini-manipulator can
generate additional inertia forces that act to reduce the vibration and compensate for the
relatively slow vibration of the large arm while keeping the end-point stationary. Some of
these strategies as well as the modelling and control of the single link we.e discussed by

Kraft [42], Book [6] and Wang and Vidyasagar [96].

2.1.2 Two-Link Manipulators

The two-link configuration provides a more complicated behavior than the single
link since it involves the additional fundamental issues of high order control, a multi-

actuator, multi-sensor plant and the nonlinear dynamics of the plant.
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Oakley and Cannon [61,63] developed a low order mcdel and implemented a
regulator to control the end-point using a vision sensor. Carusone and d’Eleuterio [11]
implemented strain gauges to estimate the flexible degrees of freedom and used a gain

scheduling regulator to design a robust controller for the plant.

However, keeping the arm vibration in a plane (by suspending the arm on air
bearing), eliminated other problems that flexible robots tend to have such as the coupling
between the vibration in the horizontal and vertical planes, torsional flexibility and the
gravity effect due to the payload change. An additional advantage of planar manipulators

is that the end-point position can be tracked easily with an overhead camera.

Similar 2D setups are available in many universities including The Ohio State

University, Rensselar Polytechnic Institute and Sandia Research Laboratories.

2.1.3 Two-link 3D Manipulators

Research in the design and control of non planar robots was done by fewer
researchers due to its more complex nature. These manipulators are similar to real industrial
robots and suffer from some problems that planar manipulators do not have, such as
sagging, vibration in the vertical and horizontal direction, torsional vibration, and the

complex change of the vibration frequencies with the change of the robot angles.

Pfeiffer and Gebler [66] designed a two-link 3D robot with flexible links. The links
were rectangular in cross-section and stiff in the direction of gravity. They used strain
gauges to measure the links deformation. Henerichfreise [31] designed a similar setup and
used fast DSP hardware to implement the controller. Christian [16] designed a two-link 3D

manipulator with flexible links and joints. The links had circular cross-sections to exhibit



symmetry in the vibration. He used an open-loop criterion to suppress the tip vibration.

2.1.4 Flexible Joints Manipulators

Flexible joints manipulators are attractive since 80% of the flexibility of industrial
robots comes from the drive mechanism. Hollars [34] and Uhlik [93] designed a two-link
SCARA type manipulator with flexible cables to simulate the joint flexibility. This design
had encoders attached at the motors and at the links to calculate the end-point accurately
without a need for an overhead camera. Similar configurations were discussed by Massoud

and ElMaraghy [S1] and Spong et al. [79].

2.1.5 Other Configurations

Besides the above configuration, several other configurations have been studied. A
popular configuration is a parallel drive mechanism with a flexible forearm (see Sakawa et
al.[70], Wang et al. [94]). This configuration has the advantage of keeping the actuators at

the base and hence reducing the weight of the robot.

Yuan {100}, and Tsujisawa and Book [91] have considered a very large two-link
flexible manipulator with a parallel drive configuration. The robot moves in the vertical

plane and both links are driven by hydraulic actuators.

2.2 Dynamic Modelling

Dynamic models are used for simulation, analysis and synthesis. In robotics,
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models may be used either directly in a control algorithm like the computed torque method,
or to derive the controller gains, e.g. in optimal control strategies. This section is divided
into five subsections. The first is a summary of the commonly used methods to model the
flexible behavior, the second discusses the nonlinear effects of large motion, the third
discusses how to reduce the model order, the fourth addresses the equation development
and the symbolic derivation, and the fifth section discusses the use of existing multibody

codes.

2.2.1 Modelling the Flexible Behavior

Book [6] showed that it is possible to assess the modelling requirement of the

system by examining the energy storage characteristics of its components.

Rigid arms store kinetic energy by virtue of their moving inertia and store potential
energy by virtue of their position change in the gravitational field. Flexible arms also store

potential energy by virtue of the elastic deflections of their links, joints or drive systems.

Many methods exist for modelling the flexibility of structures. A brief discussion of

some of the common methods is presented.
Partial Differential Equations

The flexible link is a distributed parameter system. Theoretically, it is an infinite
order system with an infinite number of modes and corresponding natural frequencies.
Partial differential equations (PDE’s) with time and independent spatial variables can be
used to represent this problem. Slender link dynamics can be represented by the Bernoulli-

Euler Equation, which ignores the shearing and rotary inertia of the beam section. For short
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beams, the shearing effect can be included using the Timoshinko's beam model.

This was confirmed with Bayo's work [5] in which he showed that for short beams
under high speed rotation, Timoshinko’s beam model wi'. give better results. However,

such short “stubby” links are usually treated as rigid.

The PDE'’s representation of the problem nas the advantage that no information due
to truncation is lost, but the exact analytical solution is available only for constant cross-
section links. In addition, the inclusion of body forces due to translation and rotation is very
complex and the boundary conditions for multilinks are hard to derive. The solution is only

available for simple cases (see Schmitz [71]).

In general PDE’s can be discretized to a set of ordinary differential cquations
(ODE’s) using approximate methods such as the finite element method, the modal

expansion method and the lumped parameters technique.
The Finite Element Method

The finite element method describes the shape of the flexible link as a chain of small
link segments. Each one satisfies the internal boundary conditions. Variable cross section

and changing material properties can be easily modelled.

Naganthan and Soni [60] proposed a general finite element for modelling flexible
arms and confirmed their results experimentally on a single link. Sunada and Dubowsky
[85] presented a method to analyze complex flexible links of arbitrary shape using FEM
implemented on NASTRAN. They applied their method to a real industrial robot (the

Cincinnati-Milicron) and obtained good agreement with experimental results.

FEM is accurate for predicting the system modal parameters but the model order is
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usually high and hence would impose limitations on designing a control system that uses

this modelling strategy.
The Modal Expansion Method

The modal expansion method (called the assumed modes method) assumes that the
links deformation can be represented by a finite summation of weighted functions or mode
shapes that are a function of space multiplied by time dependent generalized coordinates.
As a result, the order of the model is determined by the number of mode shapes used to
describe the deformation of each link (component modes). Hughes [36] applied this method

to analyze the SRMS.

There is no common rule followed to select the shape functions to obtain an
accurate low order model. However, the best results come from the shapes that allow the

natural deformation shape of the link to be accurately described in the total system.

To follow this idea, system modes representation can be used as opposed to
component modes. Modi et al [56] compared both approaches for a two-beam example and
found that component mode solutions are error prone, especially with equal rigidity beams.
Oakley and Cannon [62] used this technique to obtain an accurate low order model for a
two-link flexible manipulator. They showed that using shape functions taken from a
cantilevered beam with end-point mass will give better results than using cantilevered

mode shapes.

Hastings _29] compared using clamped-mass mode shapes versus pinned-mass
mode shapes for a single link and concluded that the clamped-mass mode shapes yield

better results in estimating the single link natural frequencies for a large hub inertia.

Book [6] demonstrated that a clamped boundary condition leads to a physically
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measurable joint variable, a simpler coefficient for the torques and better results for large
hub inertia, whereas pinned boundary conditions lead to case in specifying the location of
the link tip. Schmitz [71] used the assumed modes to accurately fit the transter function tor
a single link (link tip to input torque at the joint) to experimental data and compared the

constrained and unconstrained modal expansion methods.
Lumped Parameter Approach

With the lumped parameter approach, the links are discretized as a series of rigid

masses to represent the beam inertia and springs to represent the beam flexibility.

The deflection shape function for the links does not have to be assumed a priori,
however, the values of the springs stiffness have to be appropriately selected to represent a
realistic model (see Zaki and ElMaraghy [102]). More accurate representation of the

flexibility can be obtained by increasing the number of beam segments.

2.2.2 Large Deflection Equations

The main assumption in modelling the flexiole behavior of the links lies in the small
linear excursion from the nominal position. However, if the link length is very long and the
rotation speed is very high, this assumption may be violated assuming the material behavior
still remains within the elastic limit. Two main effects have to be considered in case of large

motion: The link foreshortening and centiifugal stiffening.

Kane et al. [39] showed that by assuming that the projected length of the
inextensible flexible bear on its rotational axis be equal to its length will lead to errors

under reasonable conditions of rotation. Kane et al. {39] showed also that if the high order
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terms in the system equations of motion are discarded inconsistently (due to linearization),

the simulation will predict unstable motion during high speed rotation.

Oakley and Cannon [62], in their modelling of a flexible two-link manipulator, took
these effects into consideration and found that the effect of link foreshortening and
centrifugal stiffening on the end-point position of the robot is very small and can be
ncglected for most cases. This is mainly because the rotation speed of most of present day

fiexible robots is not high enough to include these effects.

2.2.3 Model Order Reduction

Discretizing an infinite dimensional model and excluding higher modes may cause
instability due to the spill-over effect (the effect of high frequency unmodelled modes).
Deriving an appronriate reduced order model is very important for designing the controller.
In theory, as indicated by Morris and Vidyasagar [S8], a distributed system described by an
undamped Euler-Bernoulli equation cannot be stabilized by any finite dimensiona!
controller. In practice, the contribution of the high frequency modes to the system response

is very small. In addition, all the system modes must have certain structural damping.

Several techniques exist to reduce the order of the system in state space form, e.g.
the Hankle-Norm approach, the g-covariance approximation and the modal cost analysis.
Tsujisawa and Book [91] applied the modal cost analysis for a large two-link manipulator

and found that one or two m Jes per each flexible link were adequate for their case.

However, there is no guarantee that a model which includes the right degrees of
freedom exists. In this dissertation, the order of the model was established by determining

the number of dominant modes using experimental modal analysis.
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2.2.4 Symbolic Development of the Equations of Motion

Deriving the equations of motion for flexible manipulators by hand is a very tedious
task due to the exponential growth of the size of the equations with the number of modes

included.

With the evolution of symbolic algebra systems, several authors addressed the
systematic approach of deriving the equations of motion. They tailored the approaches to
be used under symbolic algebra packages using either L agrange’s or Kane’s formulation.

Kane’s formulation has some distinctions but Lagrange’s formulation can be applied easily.

Book [7] developed a recursive formulation for the equations of motion for a class
of flexible manipulators composed of a set flexible links connected by rotary joints. The
kinematics of the joints and the deformed links were described by 4X4 transformation

matrices using the assumed modes method.

Centinkunt and Book [14] extended this recursive formulation and developed an
explicit non-recursive symbolic formulation for the same class of flexible manipulators.
The final form of the equations is organized in a form similar to rigid manipulator equations
which makes it easier to identify ihe difference between rigid and flexible manipulators.
Centinkunt and Ittoop [12] showed the implementation of this algorithm on the symbolic

algebra package (REDUCE).

King [41] developed a fast and accurate algorithm for general flexible manipulators
using the assumed modes method. Toogood et al. [89] developed a computer package that
assists in the development of the equations symbolically. Oakley and Cannon [62]
presented the development of the equations of a two-link planar manipulator using Kane’s

method in a very concise and systematic approach.
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2.2.5 Existing Multibody Codes

General purpose multibody codes are well known in simulation of multibody
systems. Some packages are available to generate codes for multi-body system dynamics
(MBSD) using Kane's approach e.g. (SDExact and SDFast [87]). Flexibility modelling can

be accomplished, to date, using only the lumped mass stiffness approach.

Other packages such as (DADS [17]) are capable of handling large multi-body
systems with flexible components. They generally accept the flexible component assumed
shape data of the directly from finite element modal analysis results. Tuey usually have
interfaces to most FE packages e.g. (ANSYS [86]). They are also capable of generating a
simplified linear model for control design. However, they are generally slow and do not

have a direct link to the control systems packagcsl.

Another elegant approach that is used for modelling general dynamic systems in a
unified way is the Bondgraph approach. Packages that use this technique usually act as
preprocessors to generate the code for simulation packages like ACSL [55]. However, it is
difficult to model flexible members with this approach and it is still under development (see

He [30], Zaki and ElMaraghy [109)).

2.3 Control of Flexible Manipulators

The control problem for flexible manipulators can be broken into trajectory
planning and traieciory tracking. Trajectory planning for the joints and the end-point of a

flexible arm are not equivalent problems as they are for rigid arms. The joints for the

1. Establishing a link between DADS & MATRIX, is under development.
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flexible arm have to be controlled to account for the rigid link motion, the static deflection
and the end-point residual vibration. Several authors such as Bayo and Moulin [4]. Kwon

and Book [44] and Tsujio [90] addressed this problem and the inverse dynamics problem.

This dissertation focuses on trajectory tracking i.e. given the joint trajectories. the
robot joints are required to follow this trajectory with minimum tip vibration especially at

the end of the motion.

This section is divided into four subsections: The first discusses the difference
between collocated and non-collocated sensing, the second addresses some control
algorithms used for robots with flexible links, the third and fourth subsections presents
some important physical properties that affect the performance of the robot mainly, passive

damping and coulomb friction.

2.3.1 Collocated and Non-collocated Sensing

Sensor selection is very important for the design of control systems since it places

limitations on the system performance.
Collocated Sensing

Collocated sensors such as encoders, tachometers for revolute joints and linear
variable differential transformers (LVDT’s) for prismatic joints are located directly at the

actuators.

Although collocated sensors are sufficient for the control of rigid robots, they limit
the bandwidth to half the first cantilevered natural frequency for flexible manipulators due

to excessive vibration at the tip [13].
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Non-Collocated Sensing

In order to increase the robot bandwidth beyond its first cantilevered natural
frequency, non-collocated sensors have to be used. Examples of non-collocated sensors are

end-point position sensors, strain gauges, accelerometers and piezoelectric materials.

Schmitz [71] was able to increase the bandwidth of a flexible link by 30% over its

first cantilevered natural frequency using direct end-point feedback and joint rate control.

However, measurement: involving link flexure introduce non-minimum phase
behavior, as in measuring the tip position of a single flexible link (see Schmitz [71]). The
tip initially moves in the opposite direction of the applied torque which limits the controller

gains due to instabilities.

2.3.2 Feedback Control Design

A typical modern control system for flexible robots may be represented by Figure
(2.2). The observer is used to estimate the robot states. The feedback and feedforward

controllers bring the robot to its desired trajectory.

Although several control algorithms exist for rigid robots, their application on

multi-link flexible manipulators is questionable and must be modified for this purpose.

In this section, a discussion is presented on some control and state estimation

algorithms that can be applied to flexible robots.

PD Control

The proportional-plus-derivative control strategy is very common for industrial
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Figure (2.2): The control system structure.

manipulators control due to its simplicity and guaranteed stability (see Slotine and Li [77]).
It is achieved by comparing the desired joint angles and rates to the actual values measured
by the collocated sensors around each joint. The control action can be viewed as adding a

spring and dashpot at each joint to guide it to its desired location.

The bandwidth of this controller is limited to half the first cantilevered (joint
locked) natural frequency of the robot. This limitation is posed to avoid the interaction with
the plant lowest poles and to achieve good damping of the rigid body motion (see
Centinkunt and Book [13], Luh [48]). In other words, the robot has to move slowly to avoid

excessive vibration at the tip.

Centinkunt and Book [13) showed that if the coriolis and centrifugal forces have
comparable magnitude with the gravitational and inertia forces the bandwidth is further

restricted to 1/4 of the cantilevered natural frequency.
Optimal Control

Optimal control techiniques are widely used for the control of flexible manipulators.
An optimal controller consists of a full state regulator and a state estimator. The optimal

regulator and estimator gains are based on the minimization of a quadratic performance
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index. Optimal control has the advantage of the integration of multi-sensor and muiti-

actuator, especially for flexible manipulators, where the states cannot be measured directly.

Schmitz [71] demonstrated the use of Linear Quadratic Gaussian (LQG) controller
for a one link flexible manipulator. He reconstructed the states using an end-point position
sensor as well as strain measurements. The bandwidth of the system was increased up to

twice the first cantilevered natural frequency.

Hollars [34] used an LQG controller along with an extended Kalman filter for the
case of a two-link robot with flexible joints. The equations of motion are integrated on-line
using Runge-Kutta fourth order algorithm to construct the flexible states. The controller
was successfully implemented and the bandwidth was increased up to twice the

cantilevered natural frequency.

Oakley and Cannon [61] implemented an optimal controller and a mostly linear
estimator for a two-link flexible manipulator using end-point position sensing. Similar
implementation was done by Carusone and d’Eleuterio [11] where they used strain

feedback to estimate the flexible parameters of a similar system.

Yoshikawa et al. [99] implemented an optimal controller for the vibration control of
a two-link 3D manipulator with flexible links. Simulation results showed significant

improvement over the PD controller.
State Estimation

In general, observers are required to estimate the states which are not directly
measured [24]. Designing a state observer for a single link is simple since the system is
linear [71]. For nonlinear systems, which is the case with multi-link manipulators, the

estimator has to be nonlinear. A comprehensive review of nonlinear observers was
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presented by Misawa and Hedrick [S4]. Designing observers for manipulators with flexible
links was attempted by few authors due to the complex nature of the problem and its

inherent nonlinear character.

Grossman et al. [27] designed a reduced order observer with a iinearizable error
dynamics. The observer form was obtained after some coordinate transformations and
output injection. However, finding the transformation matrices poses a problem in

implementing this estimator for the general multi-link flexible manipulators case.

An extended Kalman filter [34] is very difficult to implement in real-time, for the
flexible links case, due to the heavy computations involved in integrating the equations of

motion as well as inverting the inertia matrix.

Panzieri and Ulivi [65] designed a nonlinear observer for a two-link flexible
manipulator by extracting the equations subset that describes the flexible dynamics, and
compensating for the nonlinear interaction between the rigid and flexible variables. This

procedure finally yielded an observer with lincar dynamics which is casy to design.

The notion of sliding surfaces [77] has been implemented recently for estimating
the states of nonlinear systems [76,54). For rigid manipulators, sliding observers were used
to estimate the joints velocity from position measurements in [10]. In this thesis, a general
observer, based on the sliding modes approach, is derived and used to estimate the flexible

states and joint velocities for flexible manipulators.
Adaptive Control

Since the characteristics of the multi-link flexible manipulators change significantly
with the configuration and payload, adaptive control may have to be implemented to

maintain the desired performance of the manipulator.
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Authors who implemented adaptive control for flexible manipulators addressed

gain scheduling, end-point mass estimation and model reference adaptive control.

Zaki and ElMaraghy [102] demonstrated the significant improvement in the
performance by implementing the gain scheduling regulator over the constant gain
regulator for a two-link flexible manipulator. Uhlik [93] showed that by implementing gain
scheduling, the two-link flexible joint manipulator was able to preserve the same closed

loop damping characteristic over its operation range.

End-point mass capture was discussed by several authors but the implementation
was limited to flexible single link manipulators. The basic idea is that after identifying the
paylnad mass, the controller gains are adjusted to compensate for the mass value. Early
successful experiments were done by Rovner and Cannon [67] where the transfer function
parameters for a single link was identified on line using recursive least squares technique.

The identified parameters were used for on-line control design.

A comparison between different payload estimation techniques is presented by
Chen and Mengq [15]. They investigated the effects of high frequency unmodelled dynamics
and noise on the estimator performance. They concluded that gradient search method

performs the best in the presence of both effects.

Experimental and analytical evaluation of end-point mass estimation techniques for
a two-link manipulator with flexible joints was done by Uhlik [93]. He demonstrated an
improvement of the tracking errors using the adaptive controller over the fixed design.
However, the approach of mass capture has some limitations e.g. the trajectory has to be
persistently exciting, the signal to noise ratio should be high, and an accurate model for the

system is needed for the identification.
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MRAC was demonstrated for a single link manipulator by Sciliano et al. [74]. The
robustness of the controller was tested by varying the payload. However, his algorithm was

limited to the single link case.
Feedback Linearization

Feedback linearization or computed-torque control is very popular for the control
of rigid robots [77]. In this method, the plant is linearized by feeding back the nonlinear
dynamics to compose a linear, second-order, ordinary differential equation of the error. A
tutorial in the different versions of this method including the passivity based approaches is

presented in a unified approach by Ortega and Spong [64].

The control algorithms using this method are derived in the continuous-time
domain. Consequently, they have to be implemented experimentally at a high sampling rate

as demonstrated by Khosla and Kanade [40].

A problem that flexible manipulator dynamic models have, as opposed to rigid
robot models, is that they do not have actuators for each degree of freedom. For a flexible
joint two-link manipulator Uhlik [93] showed that the error equation will be of the fourth
order and have to be implemented at a sampling rate which is high enough to avoid

instability. He was unable to implement it experimentally due to hardware limitation.

Early application of the inverse dynamics method on a flexible link manipulator
was discussed by De Luca and Siciliano [20]. They showed that this technique leads to a
critically stable behavior for systems with distributed flexibility (a single link manipulator)
due to the unobservability of the flexible modes. The system asymptotic stability is
attributed only to the presence of structural damping in the links. Modi et al. [57]

implemented this approach for the space station mobile manipulator. Other authors
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discussed feedback linearization for a special class of robots with one flexible link e.g.

Wang [94], Wang and Vidysagar [95], Yigit and Ulsoy [98].

The approach implemented in this dissertation is based on the passivity property for
flexible manipulators which allowed the design and implementation of a robust controller

for general manipulators with distributed flexibility.
Singular Perturbation Control

Since the elastic vibration is small compared to the gross rigid body motion, the
complex nonlinear flexible problem can be separated into two simpler problems: the gross

nonlinear (slow) rigid motion and the linear flexible (fast) motion.

By exploiting the time scale separation of both motions with singular perturbation
analysis, a composite controller can be designed so that the rigid motion can be treated by
any of the developed nonlinear feedback linearization algorithms (see Slotine [76]),
whereas the flexible motion is handled by another loop that includes an optimal regulator

designed by linearizing the system along the trajectory of the gross motion.

Siciliano and Book [73] implemented this technique on a flexible single link
manipulator and demonstrated the superiority of this technique over the linear regulator

approach. Ghorbel et al. {25] used the same approach for a link with a flexible joint.

If the first cantilevered natural frequency of the manipulator is close to zero, the first
mode then has to be included in the slow system. This enables the dominant dynamics to

remain in the slow system which makes the problem more difficult to control.



2.4 Passive and Active Damping

Passive damping is achieved by adding energy absorbing materials to the surtace of
the structure. While passive damping helps in reducing the vibration, it facilitates the
implementation of the control algorithm as well as reducing the contribution of the spill-

over of the high frequency unmodelled modes (see Alberts et al [1,2]).

Composite materials typically have more domping than metals. Alberts et al. [1,2]
used constraint layer damping treatment for a single link and achieved an improvement in

the damping by a factor of 10.

Manufacturing the arm from composite materials is very attractive because of their
light weight, high strength and high damping. Liao et al. [47] presented schemes to
optimize the geometry and material fabrication parameters for choosing the damping
characteristics. Simulation results showed significant improvement of the arm dynamics.

The work ongoing at the DAMRL includes designing of composite material links [53).

Active damping is widely used for flexible structural control. !t consists of covering
the beam with a layer of piezoelectric film. These materials respond by applying a force on
the link once excited by external voltage. They also can measure the link strain. Hence, by
closing the loop between the strain and voltage they can be used to suppress *:2 link
vibration (see Tzou et al. [92]). The disadvantage of using these materials is that they

require high voltage to respond (in the range of 200-600 volts).

2.5 Coulomb Friction Effect

Coulomb friction constitutes the main source of nonlinearity which makes the time
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response of the system extremely dependent on the reference amplitude level.

For flexible arms with high ratio speed reducers, the coulomb friction level is high
enough to result in lack of back driving the actuators for relatively small command angles
and small vibration. With greater stiction torque, larger amplitude vibration will exist with

only structural damping reducing slowly their amplitude.

Several authors discussed friction modelling and compensation techniques.
Armstrong [3] derived a model based on experimental analysis for a robot joint with a
harmonic reducer and found out that in spite of the complex nature of friction, it is very
repeatable. Kubo et al. [43] suggested an open loop scheme for friction compensation

which is further improved by Gomes and Chretien {26].

Luh et al. [49] and Labinaz et al. [45] used strain feedback for the design of an inner
torque control loop to compensate for the friction and eliminate the backlash for an
industrial robot joint. This technique was implemented by Henerichfreise [31] for a flexible

robot.

Adaptive friction compensation is very attractive due to the dependence of friction
on many variables (e.g. temperature, load etc.). Canudas De Wit et al. [9] suggested and
implemented several adaptive compensation techniques for friction compensation. The
idea was to identify friction using for example recursive least squares and compensate for
it through model based feedforward compensation. However, these techniques are difficult
to implement for even rigid industrial manipulators due to the magnitude of the

identification problem.



- CHAPTER 3 -

THE EXPERIMENTAL MANIPULATOR

The experimental manipulator serves as a test bed for verifying the modelling and
control algorithms developed in this dissertation. Described in this chapter are the design
criteria for the robot, design considerations, design parameters, actuator sizing, hardware
design and performance, and the computer systems used. Further information about the

specifications for the hardware can be found in Appendix A and Appendix C.

3.1 Design Criteria for the Robot

The idea was to design for one of the most difficult flexible manipulators problems,
i.e. a two-link 3D manipulator with exaggerated flexibility at the links. If we are able to
model and control it, we can apply the same modelling and control algorithms to solve
industrial robots vibration control problems. The following is a summary of the design

criteria for the robot and the reason for their choice:

¢ Anthropomerphic, 3 degree of freedom, 2 link robot: This configuration is

chosen because it is geometrically similar to many industrial and space robots.

® Lowest possible vibrational frequencies: With flexible links only, it is desired to
have the first cantilevered natural frequency below 3 Hz. However, if the joint

design is modified to be flexible the vibration frequency will go lower.

e Symmetry of the vibrational modes and frequencies: This configuration has bezen

30
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chosen to get similar response in both planes of motion.

¢ Interchangeable links: The robot is designed so that the links can be changed

easily to study various link materials and geometries.

® Modularity: The robot has been designed so that it would be easy to use in either

one or two axes.

® Size: Due to workspace limitations, the robot is designed to stretch up .0 170 cm

(full length). Since the links are interchangeable, it can be modified.

® Speed and power: The robot is designed to have 5 g nominal acceleration at the tip

with nominal payload.

o Static deflection: The static deflection of the tip was restricted to 5 cm (max) when

the arm is fully extended and horizontal.

3.2 Design Considerations

In order to meet the required design criteria for the roboi, the following design

considerations were taken into account:

3.2.1 Sagging and Static Deflection

Flexible earth based robots suffer from sagging under gravity loading. The standard
way to get around sagging is to make the robot links asymmetric so that they would have
higher stiffness vertically than horizontally. However, this will eliminate the symmetry in

the vibration frequencies and increase the stiffness in the vertical direction.
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The deflection at the end-point was limited to 5 cm when the robot stretches. This
can be achieved by proper choice of material, links length and cross-section. In order to
have an estimate for the static deflection at the tip and fundamental natural frequency, the

system was represented by a two-cantilevered beams as shown in Figure (3.1).

L
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6 1 "] 1 m,
é E\I E,l,
7 5, F, 8, F,

Figure (3.1): Representation of the robot as
cantilevered beams.

The masses of the beams are lumped at the both ends. The beams behave in bending
as Bernoulli- Euler beam. Hence, the flexibility matrix of the system is [28]
8 _ |m1 21| |Fy .
8y 921 929)|F2 .1
where, 8, and 8, are the deflections at m; and m, from the forces F| and F,. Uncer gravity

loading, F, = mg and Fy = myg. a;; can be found to be

2

I( 3Lj 3Lj) (32
a, = — |1+ +—= 3.2)
Ik 2Ly 42
: 3Lj ]
a12= 021 = k— |+-4—L—+——2'(LI+Lj) (L2+Lj) ( .3)
1 1 2L
3(Ly+L.) 3(L,+L.)2
I 275 275 )
Gan = —+— |1+ + (3.4)
2 K "1( L L2
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and & =—L,k = 22
1 3 2 3
L Ly

The deflection at the tip can be found to be

=8, = a;ym g +a,mg (3.5)
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3.2.2 Vibration Frequency

The desired fundamental natural frequency was below 3 Hz when the robot is fully
stretched and the payload is attached without including the joint flexibility. This choice of
vibration frequency was based on having visible flexibility at the robot end (5 cm peak to
peak). Lower vibrational frequency can be achieved by implementing springs at the joints.
Using the model explained earlier, and using the standard assumption of harmonic motion,

F,and F,can be replaced by the inertia forces

F.=-m$, = -—mzmiSi (3.6)

The vibrational frequencies can be found by calculating the determinant and solving

for ® from
1
(ayymy - 3) 2122
det L E 0.0 (3.7)
4™ (agymy=—3)
®
@
which can be solved explicitly for f; = 7 (Hz) as shown 1
I 1.2
2 2

fi = o (a”ml +agmy+ ((aym + ayym,) 2_4 (ajjaymymy - a%2m]m2) ) ] 3.8)

.2.3 Strength Considerations

Because of the large vibration amplitude at the end of the robot, the links have to be
designed based on fatigue criteria. This can be achieved roughly by limiting the stress at
the root of each link to half the yield strength of the material. Some other limitations were

imposed by assuming the links to be round and hollow tubes with equal length and

assuming equal stresses at the root of both links.
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Using the available tables of pipe standards [72], the bending stress equation is

o= 3.9
do
where, y = 5 and d,) is the outer diameter. M, in general, is given by
M= m(a+g)L (3.10)
where « is the acceleration during the robot motion, m is the moving mass and L is the

length assuming cantilevered model for each link. Hence,

dgmgl a, ! .
Gmax = -—'——21 (1 + g) = -2'0y (3 )
The first link diameter was calculated based on a nominal acceleration of 5g at the

tip, and the second link diameter on a tip motion of Sg relative to the elbow joint.

3.2.4 Joint Flexibility

The joint flexibility appears to the system as springs in series with the links. The
two-link model described earlier can be modified by adding a torsional spring of value ,
at the shovlder joint, and , at the elbow joint. The coefficients a i of the flexibility matrix

can be modified to take into account the torsional springs as follows [28]:

(L) +05L)
a'll =ap+ kl——— (3.12)
(Ly +05L)
@y =ay = u12+—k—— (3.13)
1
(Ly+Ly+L) (Ly+05L)
b J 2 J

The mechanical design for the joints can be easily modified to implement the

springs, consequently. lower vibration frequencies can be achieved.



3.2.5 Size and Weight

The robot was limited by the laboratory space to be 180 cm max. The payload was
limited to 1.5kg. The robot has the motors located at the joints to maximize its reach. The

elbow joint mass was limited to 6 kg (max.).

3.3 Design Parameters

Several iterations were done to pick proper values for the robot parameters that will
meet the design considerations stated earlier. The parameters and design constraints are

shown in Table (3.1) and Table (3.2) respectively.
Table 3.1: Robot design parameters.

35

Element Length (m) Material Specifications Weight (kg)

First Link 0.75 Al 6061-T6 | Pipe std. 0.75" DiaSch. 40 |  0.46

Second link 0.75 Al 6061-T6 | Pipe std 0.25” Dia Sch. 80 0.27

Elbow joint 0.1 Al 6061-T6 Al plates 0.5” thick 55

Payload 0.075 Steel Solid steel cylinder 1.5

Table 3.2: Design constraint values.

Design Constraint Values
The static deﬂectiorm—-:== 35cm
The fundamental natural frequency 2.66 Hz
Stress at the first link under gravity 57 N/mm?
Stress at the second link under gravity 52 N/mm?
Stress at the first link with § g motion of the tip 239 N/mm?
Stress at the second link with 7.5 g motion of the tip 250 N/mm?




3.4 Hardware Design and Performance

The hardware c.esign includes the selection of the actuators and the design of the

robot joints. The performance includes the robot parameters and workspace.

3.4.1 Actuators Sizing

A basic requirement in any practical control mechanism is that adequate torque be
available to control the load in some well defined manner. Selecting the actuators was done

to provide enough power for future use. The specifications for selecting the actuators are as
shown in Table (3.3)

Table 3.3: Specificatiors for selecting the actuators.

Specifications Values
Maximum payload, including the gripper and force sensor 2kg
Static force at the tip 100N
Maximum acceleration at the tip 5g
Maximum velocity at the tip 5 m/s
Maximum radius of the gripper from the mounting surface 1.8 m

It was decided to use DC servo motors for driving the robot. DC servos are used in
many robotic applications. The decision for using DC servos and gear heads instead of

direct-drive motors was based on weight consideration for the elbow joint and cost.

For gear heads, it was decided to use Harmonic Drives. Harmonic Drives are
attractive for robotic applications because they are compact, can provide high reduction

ratio with no backlash and have an exceptional torque to weight ratio.

le
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However, Harmonic Drives have several drawbacks: they tend to be more flexible
than corresponding gear systems, the spring constant of the drive is not linear but decreases
with the load which tends to complicate the performance of the control system [45].
Another major drawback is that the output motion is not perfectly smooth, rather it has a

small ripple corresponding to the drive frequency.

The reduction ratio was chosen to be 1:100 for all the joints. The specification of

the selected actuators and drives are shown in Appendix A.

3.4.2 Components Design

This design includes the base, shoulder and elbow joints. The elbow components
are the same as the shoulder but smaller in size. SDRC I-DEAS [84] was used to perform

the solid modelling and to develop the drawings for the robot.

An interesting point to note for the design of the elbow and shoulder is the use of a
fail-safe brake attached to the back of each motor. Without the brakes, gravity will cause

the robot to collapse when power is removed.

The construction drawings for the robot are shown in Figure (3.2). The drawings for

the different joints and the transmission are shown in Appendix A.

3.4.3 Robot Parameters

The specifications for the robot are shown in Table (3.4). The specifications for the

robot joints are shown in Table (3.5). Note that the joints inertia were estimated using I-
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Figure (3.2): The experimental manipulator.



DEAS and the manufacturers’ catalogues. They were verified experimentally.

The shoulder and base drive and motor were the same. The acceleration data for the
base assumes that the arm is fully extended. It should be noted that the robot will never run

at an acceleration higher than 5g as the links may yield.

The manipulator workspace is defined to be the set of locations achievable by the
manipulator end-point. This space is limited by the combination of actuators, and physical
space. The joint limits are shown in Table (3.5). The home position for the encoders

resetting is when the robot is fuily horizontal and extended.

The robot behaves as designed. The fundamental vibration frequency when the

links are fully extended is 2.56 Hz. The static deflection is 3.5 cm.

Table 3.4: Robot parameters.

length base to elbow 0.85m
elbow to tip 0.75m
overall 1.60 m
first link 0.635m
second link 0.635m
elbow joint 0.14m
base to ground 0.47m
weight elbow 5.35kg
elbow joint1 6.775 kg
payload 1.54 kg
first link 0.46 kg
second link 0.27 kg
Inertia base joint 1.836 kg.m2
shoulder joint 1.638 lcg.m2
elbow joint 1.01 kg.m?
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Table 3.4: Robot parameters.

Bending stiffness first link 1108.31 N.m?
second link 202.35 N.m?
Torsional stiffness first link 874.16 N.m?
second link 159.5 N.m?2
Torsional flexibility Base drive 5.82E4 N.m/rad
of the drive. shoulder drive 5.82E4 N.m/rad
elbow drive 2.64E4 N.m/rad

1. The weights of the attachment plates are added to the elbow joint

Table 3.5: Robot joints parameters.

Elbow joint peak torque 210. N.m
continuous torque 25.0 N.m
maximum speed 45.0 N.m
encoder resolution 3.6E-4 degrees
Elbow motion max. tip acceleration 15g
max tip speed 3.5m/s
Elbow joint limit 1 90 degrees
Base joint peak torque 542. N.m
continuous torque 62. N.m
max. speed 45. N.m
encoder resolution 3.6E-4 degrees
Base motion max. tip acceleration 115¢g
max. tip speed 7.5 m/s
Base joint limit + 135 degrees
Shoulder motion ! shoulder joint limit +90 deg. -30 deg

1. The shoulder joint parameters is the same as the base
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3.5 Computer Systems

Described in this section are the analysis software and the real-time hardware.

3.5.1 Analysis Software

The software tools used for the analysis and simulation are based on a UNIX
environment on a network of SPARC stations available at the DAMRL. The following
packages were used during the course of work: ISI MATRIX, [37], a matrix manipulation
and dynamic simulation package, was used to carry out the control design and simulation.
MACSYMA {88], a symbolic algebra package was used to carry out the derivation of the

equations of motion.

Since flexible systems are typically large order systeins, they can be easily modelled
with this particular combination of software. Further information about the symbolic

generation of the code will be presented in Section 4.4.5.

3.5.2 Real-Time Hardware

One of the major problems that faced this project is selecting computer hardware
that is fast enough to run the high order nonlinear controllers. DSP technology seemed to

be very attractive for control purposes due to its powerful computational speed.

Henrichfreise [31] used a TMS32010 processor to control a two-link 3DOF robot.
However, using fixed DSP boards posed problems in the divisions and in calculating

trigonometric functions. This led us to use floating point DSP hardware.
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A system that was very attractive to use was developed by dSPACE Inc., called the
DSP-CIT. As illustrated in Figure (3.3), the system has a TMS320C30 floating point digital
signal processor, with a computation speed of 33 MFLOPS (Million Floating-point
Operation per Second). Interfacing between the DSP and the rob~t "5 achieved by the
dSPACE DS2002 Analog to Digital Converter (A/D) board, DS3001 Incremental Encoder
board and DS2101 Digital to Analog (D/A) converter board. The system boards
communicate with each other and with the host PC through a proprietary 32 bit wide

peripheral high speed bus (PHS-bus).

§ DS1002 DSP board
: | Dual-Port .
: TMS320C30 Primary memory
<—|g— (2";2\';‘,338) <@ Floating-point DSP [<@—® (64 KWords)
] '
L R SOOI UOTUSUUUROUOE
— (A
=la-»{ DS2002ADboard | { Amplifiers
Joint angles
@ DS3001 encoder board g : T 1 Accelerometers
<@ DS2101 D/A board |—

Motor
signals

g \
Motor voltages

Figure (3.3): Real-time hardware configuration.
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The control programs were either written in standard C language or generated using
MATRIXx SystemBuild C code generator {37]. The source is combined with hardware-
specific interface routines and compiled on the PC. The compiled code is then downloaded

to the DSP to run in real-time.

While the control algorithm is downloaded and run on the DSP, its inputs, measured
and calculated output data are linked to the PC interface through the dual-port memory. The
dual-port memory is a two-KWords of memory that can be shared between the PC and the
DSP chip hence achieving data transfer while the DSP is running (called on the fly). Note
that the PC does not have an access to the DSP while it is running except through the dual-
port memory. Consequently, an interface program was written, on the PC side, to handle the

robot commanded-movement in a user-friendly environment.

Further description of the boards of the dSPACE system and the robot interface

program is presented in Appendix C.

In order to drive the robot, special custom-made power circuits are manufactured to
do the following: provide the operator with an interface to safely start and stop the robot,
interface the motors drive signals to the D/A output, prevent the robot from collapsing
using a brake-release circuit (synchronized with the motors). In addition, a tele-operation
circuit was designed to drive the robot independent of the controller, and a special watch-
dog circuit was built to disable individual joints from running if a computer system failure

is detected.

The information about the wiring diagran.s for the power electronics are available
in[106]. In Appendix C, further description of the operator interface program and hardware

specifications are presented.



- CHAPTER 4 -

DYNAMIC MODELLING

The design of a control system for flexible manipulators depends on how accurately
the actual system is modelled. As a result, the achievable performance of the controller is

intimately related to the modelling accuracy.

In this chapter, the equations of motion are derived using Lagrange’s formulation.
The assumed modes method is used to represent the links flexibility. The joint flexibility is
introduced to the dynamic model afterward. This relatively high order model was used to
predict the dominant flexible behavior of the manipulator as a first step toward deriving a

reduced order model.

This chapter is divided into five sections. The robot is described in section one.
Section two addresses the assumptions used in the derivation. Section 'hree demonstrates
the assumed modes method. In section four, the derivation for the equations of motion and
the introduction of the joint flexibility are accomplished. Finally, in section five, the natural

frequencies for the robot are calculated for the locked and unlocked configurations.

4.1 Description of the Plant

Figure (4.1) contains a schematic diagram of the two-link, three-degree of freedom
flexible manipulator. The links undergo horizontal and vertical deflection as well as

torsional motion. Ideal pin joints are located at the base, shoulder, and elbow joints. The

44



clbow motor and payload are assumed to be rigid masses with center of gravity acts at the

end of the links.

Elbow

Shoulder Payload

Figure (4.1): Schematic diagram for the robot.

The robot parameters, taken from Chapter 3, are calculated based on the
manufacturer’s catalogue and the solid modelling package I-DEAS. Note that, the links
effective flexible lengths are celculated so that the elbow and shor:'der joints offset are

subtracted from the center to center distance.

The techniques used for developing the equations of motion can be applied to
manipulator systems with difterent confipurations. For this reason the notational
conventions were devised so tha the links are numbered sequentially as shown in Figure

(4.1). Note that the first link has a length of zero.

4.2 Modelling Assumptions

Deriving a detailed model for the robot is a very difficult task. See Zaki et al. [108]

for a detailed model using DADS [17]) and ANSYS [8Z). However, since the objective of
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this model is to identify the flexible behavior of the manipulator, the following assumptions

were made based on the physical observation of the plant.

4.2.1 Bernoulli-Euler Beam Model

The flexible dynamics of the link itself can be represented by either the Bernoulli-

Euler (B-E) model or Timoshinko model. The Bernouili-Euler beam equa:tion is [52]

4 2
El%%+ug% = f(x,1) .1
X

where y is the deflection, p is the mass per unit length, and ET is the flexural rigidity of the
beam. In this model, the shear and rotary inc+tia are neglected, whereas in Timoshinko’s
model, both effects are included which starts to have an influence on the response if the

beam length is short relative to the diameter.

Since flexible manipulators usually have slender links, the B-E model will be used.
The eigen-solution for the PDE (equation (4.1)) will give a shape function which depends
on the boundary conditions of the beam. This shape function can be used in the derivation

of the equations of motion for the robot using the assumed modes method.

4.2.2 Small Elastic Deflection

The flexible links are assunied to be nominally straight and of a uniform cross-
section, hence the flexaral rigidity is assumed to be uniform. The links are assumed to be
inextinsible and the deflection is assumed to be due to the bending in the horizontal and

vertical planes as well as the torsional deformation.
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The links axial deformation due to bending is neglected. This assumption overlooks
the centrifugal stiffening effects of the links. The centrifugal stiffening effect can be
explained as follows: a straight beam of length L projects a distance L on its neutral axis.
When the beam undergoes bending, the projected distance must be less than L assuming
no axial deformation. This effect is usually neglected, however, it usually starts to have an

influence if the links are very flexible, long, and the rotation speed is high.

Consequently, for many robotic manipulator configurations and operating speeds,

the effect of centrifugal stiffening is insignificant [6].

4.2.3 Simplified Actuator Dynamics

The experimental manipulator is driven by a DC servo motor. The motor model is
shown schematically in Figure (4.2). Neglecting coulomb friction and joint flexibility for

now, the equations of motion for the motor are as follows

R

L
O /m\ \VAVAV/]

u(tr)
i(1)

O

Figure (4.2): Schematic of the motor dynamics.

Ri+Lg-it = u(n) -E, (42)
, do
By = Ky (43)
T =K, (4.4)



Im§+Bmé =1, -1 4.5)
where R and L are the armature resistance and inductance respectively, £, and K, are the
back E.M.F and its coefficient, K, is the torque sensitivity, I, is the motor inertia, B,, is
the motor viscous friction, u is the applied voltage, i is the current, t, is the load torque

and T, is the motor torque.

Substituting from equation (4.3) to equation (4.2) and dividing by R

Ldi . 1 de

T L N
The electrical time constant R can be neglected since it is very small (around 2 ms)

compared to the time constant of the system. Hence

o1 de
i (u—l(ba—r

= ) (4.7)
Substituting from equation (4.7) to equations (4.4), the torque equation becomes

K do
v = K,i= F’(u—xba-t) (4.8)
Equating equation (4.8) and ¢ ,ation (4.5)
K. K
R .. bt .
u = ?t(lme+(3m+—k—)9+rl) (4.9)

K, K
By combining / mé and (8, + —{’R—f) 8 with the I sad torque (i.c transfer them to the

robot side), equation (4.9) can be reduced to

T, = Kqu (4.10)
where u is the input voltage and t, is the output torque at the robot joint taking the motor
mechanical dynamics to be on the robot side. Consequently, the motors dynamics can be

represented by gains or torque sources at the joints.
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4.2.4 Simplified Joint Dynamics

The robot has DC motor-driven revolute joints. The elastic mechanical coupling
between the joint and link is modelled as a torsional spring. Due to the drive high gear
reduction ratio (1:100), the rotational energy of each joint about its own center of mass is
only due to its own rotation. The contribution to rotational energy from the rotation of the

previous joints and links is neglected.

The rotor/gear assembly inertia is assumed to be symmetric about the rotor axis of
rotation such that the velocity of the joint center of mass is independent of the rotor

position. This assumption is generally satisfied in most industrial robots applications.

4.2.5 Linear Damping Models

The joints coulomb fricton is neglected in the modelling since it is being
compensated for as will shown in Section 7.5.2. The joint damping is assumed to be linear
and proportional to the joint velocity. The coefficients of the joints damping are determined

experimentally.

The links structural damping is very small since they are made of Aluminum tubes.
It is assumed that the links structural damping is, for now, proportional to the stiffness of

the links as follows

C =vK (4.11)
where ¥ is assumed to be 2%. An experimental esiimation of the damping mairix is

presented in Section £.3.1 where the damping matrix is assumed to be linear [52].
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4.3 The Assumed Modes Method

The assumed modes method was used to superimpose the linear elastic deflection

over the rigid body motion [52]. This section describes how this method is implemented.

4.3.1 Definition and Limitations

The motion of the manipulator is described by the rigid body rotation angles of the
base, shoulder and elbow (9], 92, 03 respectively), the links deflections in the horizontal
and vertical directions (Wzy, w,, for the second link and Wi, W3, for the third link), and
the torsional deflection of the links (9,, for the second link and ¢, _for the third link). The
rigid body rotations are functions of time whereas the links deflections are functic:ns of time

and the distance along the undeformed axis of the link.

The Assumed Modes method can be considered as a subset for Rayleigh-Ritz
approximation for the solution of partial differential equations [52]. To solve for the
deflections, the system can be approximated by a set of ordinary differential equations. This
can be achieved by approximating the links deflection as a finite sum of spatially dependent
mode shapes multiplied by time-dependent generalized coordinates as follows:

n
wixn = Y v, (x)p;(1) (4.12)
i=1
where v, (called the shape function) is the function expressing the spatial displacement of

mode i, p, is the time-varying amplitude of mode #, and n is the number of modes used to

describe the deflection of the link.

The mode shapes will satisfy the geometric boundary conditions. However, using

this method, the solution is limited to a finite set of modes and the infinite modcs solution
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that results from the PDEs is lost. Consequently, n should be at least equal to the number
of dominant modes for each link otherwise we get spill-over from the unmodelled modes.
The spill-over effect may result in unstable system if the controller is designed neglecting

some of the dominant modes.

However, if the unmodelled modes occur at relatively high frequency and have
minor contribution to the response, the spill-over effect will be minimal and the system will

be stable.

4.3.2 Choice of the Shape Functions

As explained previously, the shape functions have to satisfy the geometric boundary
conditions. There is no rule to select the shape functions so that a combination of model
simplicity and accuracy is achieved. Popular choices for the shape functions are: simple
polynomials, splines, shape functions from the eigen-solution of a beam, eigen-vector
solution from finite elements problem, and modal test results performed on the actual

system or its components individually [6].

If the slope of the shape functions at the link root is zero, it will lead t.» a physically
measured joint variable and simpler coefficients for the joint torques. This choice of
coordinates to represent the flexibility is called the constrained modal coordinate. An

example of shape functions for this case is the cantilevered beam mode shapes.

Alternatively, if the slope of the shape functions at the root is not equal to zero,
which is the unconstrained modal coordinate case, the total rotation of the link is the rigid
rotation plus the slope at the root. A popular choice of the shape functions for this case is

the mnde shapes of a pinned-free beam.
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For real manipulators, the actual deformation of the links is in between the clamped-
free case and the pinned-free case. However, if the hub inertia is large, and if the link is
firmly clamped at the hub, the choice of the shape functions to be the clamped-free or the
clamped with mass gives a better approximation for the links deflection than the pinned-

free mode shapes.

4.4 Development of the Equations of Motion

In this section, the equations of motion are developed for the flexible manipulator
using Lagrange's formulation. The joints flexibility wil' be introduced to the model by

introducing their torsional effect afterward.

4.4.1 Coordinate Systems

The coordinate frames are shown in Figure (4.3). O; is the origin of the base frame
(XYZ),, where i is the frame number. The inertial frame of the system O, is at the
int :rsection of the base and the shoulder joints. (XYZ), is defined by rotating (XYZ),,

around Z, an angle 9] [14,99].

The system (XYZ), is taken by defining X, along the axis of the second link, Z,
is the shoulder joint axis. The transformation between the coordinate system (XYZ), and

(XYZ) | is achieved by ro.ating about X, 90° and by rotating around Z, an angle of 1 2

The frame (XYZ), is fixed to the third link where X; is along the undeformed axis
of the third link and O, is at the point where the second link meets the elbow joint axis

when the second link is undeformed.
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The flexibility of the links is defined by defining the coordinate frames (XYZ) .
which represents the infinitesimal deformation of link i in such a way that the directions of
their axes coincide with those of (X Y2), when no link deformation exists. The

deformation of the tip of each link is adequately described by this coordinate systems.

X

01”72

Figure (4.3): Robot coordinate frames.

4.4.2 Deformation of Each Link

The deformation of each link is described with respect to its local frame at its root.
Since usually the X, axis is taken to be along the undeformed axis of link i, the deflection

inthe Y; and Z; direction of link i can be described as

n
wy(n1) = 'lejz(x)pjz(r) (i=2,3) (4.13)



n
wii () = -zley (pj (1) (=23 (4.14)
J=

The bending deflection of each link is modelled by only the first cantilevered mode
shape. The expression for the i th cantilevered mode shapes is

coshA. + cosA.

v, (x) =L (cosh (Bix) - COS (Bix) - ( ! ') (sinh (Bi.r - sinB,..r) ) }(4.]5)

sinh Al. + sin A,.

where A, = Bi" is the i™ root of: 1+ coslicoshk'. = 0 and the cantilevered natural

frequencies Q, are related to A, by

Qzl = _E—;
pL

where p is the mass of the beam per unit length. The numerical values for the first three

A4 (4.16)

roots are 1.8751, 4.694 and 7.855 respectively [52,71].

Since the symbolic algebra system (MACSYMA) was used to carry out the
derivation, the expression (equation (4.15)) is very complicated to implement. If equation
(4.15) was implemented, it would result in a huge expression for the Lagrangian and
eventually computer system memory overrun. Using a third order polynomial fit, shown in
Figure (4.4), the expression for the deflection will be the same as the deflection due to static

force at the link tip given by

v =3 -3 (4.17)

Static deflection

Deflection along the length
A L~ BT

N
i
&)
rin
S
~
»|
|

Normalized length of the beam

Figure (4.4): A comparison between the fitted and actual shape function.
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The torsional deflection of each link can be approximated to be linear with x [28];

the expression for the torsional deflection is

0, (6 0) = (D)p (1) (i=23) (4.18)

where p, (1) is the time dependent coordinate.

4.4.3 Kinematics

The rotation matrices and translation vectors are defined in this section. The
position vector for any arbitrary point on the robot will be defined consequently.

Rotation Matrices

Refer to Figure (4.3), the rotation matrices are defined with respect to the

transformed frames. The rotation matrices from the i to the jth frame is iRj. Hence

cosel —sinel 0

0 .
Ry = rot(zp,0)) = sine, cosd, 0 (4.19)
0 0 1
c0592 —sine2 0
lR2 = rot (xl,90)rot (:2, 92) = 0 o -1 (4.20)

Ssz C0502 0

C0893 —Slﬂ93 0

4.21
3 0S8y 0 4.21)

0 0 1

€2
R3 = .'0'(262, 93) = sine

The rotation matrices due to the links elastic deflection can be derived by using
Taylor’s expansion for the sine and cosine functions around zero and neglecting high-order
terms (due to the very small values of elastic deflections). Hence, the rotation matrix from

(XYZ) ,, (the subscript x, denotes the x, position of the second link) to the (XY2) , 18



bo-ey o'y,
R :

Rer st (zez’ ¢2:) ror{yey ¢2.\’) rot (xt‘z’ ¢2.\') = ¢fr2: 1 ’¢"24\ (4.22)
_4’"2_\' o'y, 1
where
X2 N
O = (L_z JPz.t(') (4.23)
0y = W'y o (1) (4 24)
¢2: = W'zyp2y(t) (4.25)

The rotation at the end of the second link with respectto (XYZ), can be obtained
by setting x, equal to L, in equation (4.22). Similarly, the rotation matrix from (XvZ) ,
to (XYZ), is
1 _¢x3: ¢"3y
Re3x = rot (26‘3’ ¢3Z)ro' (ye39 ¢3y) rot (xe3’ ¢3X) = ®x3z l -&%A (4.26)
—¢x3y ¢x3x !
Defining OTI. to be the rotation matrix from the inertial frame of reference (XYZ2)

to (XYZ),, hence

0. _ 0,1 o)
T2 = Rl R2 (4.27)
0 0, 1, 2
T = "R, 'R,“R (4.28)
€y 1 72 e,
0 0, 1, 2, €2, 3
T = "R, "R,"R R.°R (4.29)
€3, 1 72 €y 3 €3y
where OTe , Or . are the rotation of any point on the second and third link respectively.
2x 3

Translation Vectors

Since the links are assumed to be inextensible, the translation vector for an arbitrary

point on any link with respect to its corresponding local frame at its root is
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X

— X
dix = |50y (i=2.3) (4.30)

&,

1z

where §*,,, 8%;, are the deflections at the position x of the i! link given by

iy

85,(n) = v, (Dpy, (1) (@31)
&0 = ¥y, (Dp; (1) (432)

The elastic deflection at the end of the link can be obtained by evaluating equations

(4.31432)atx = L.

i

Position Vectors

The position vector for any arbitrary point along the second link with respect to the

inertial frame of reference is

0

- Te (4.33)

r d
2x 2x 2x

Similarly, the position vector for any point on the third link with respect to the

inertal frame (XYZ),, is

_0
F3x =

0
Teyat T, 43 (4.34)

0

where T, , d, are calculated at the tip of the second link.
2

4.4.4 Dynamics

Lagrange’s formulation was implemented in deriving the robot equa.ions of motion.
To formulate the Lagrangian, the expressions for the potential and kinetic energies are

needed.
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The Kinetic Energy
The kinetic energy for the manipulator can be divided into three parts, namely

¢ The kinetic energy of the rotating components at the joints (note that the joints

inertias are calculated on the robot side)

1 H 1

KE| = 3 1,6 1+ 5! 292 5 63 (4.35)

¢ The kinetic energy of the payload and the elbow joint

KEy = %"’p 3T’3+ 3™’ 22 (4.36)
® The kinetic energy of the links which includes the kinctic energy of vibration
L2 L,
key = 2 L2 J- Faxfaxd%y + i‘L_SJ 3xf3,dxy (4.37)
0

The total kinetic energy |s

KE = KE| +KE, +KE, (4.38)

The Potentia! Energy
The potential energy can be divided into two parts, namely

® The gravitational potential energy
T T "¢ ™3 e T
PE] =m_gr, +mpg r3 + _L; J.g r2xdx2 + T;, Jg r:udx3 (4.39)
0 0
where gT = [0,0,-g,]. and g is the acceleration of gravity.

® The strain energy due to the bending and torsional flexibility

L2 L2 1.2

h - "2 2 '2
PEy = 3 jﬁzlzzzw 2ydxy + 5 j Egly" 22253+ 5 _[ Gyl 02y day +
0 0
5 L3 "3 (4.40)

3
1_[51 w'ls dx. + _[1;1 w23 dxy + jojwz dx
3 ) Ealzg W 3ydx3t 5 | B3l wi T3y 2)%3 349X
0 0
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The total potential erergy is

PE = PE| + PE, (4.41)

The Equations of motion
Defiring the Lagrangian L to be [7,52]

L = KE-PE (4.42)
Using the joint coordinates 9, (i=1,2,3) as generalized coordinates, the equations of

moiion become

d o oL .
(= ,-5— =r1.(i=123) (4.43)
di*ge,” 9C, i

wheve T is the § th motor torque appiled a1 the § th Joint.

Similai.3, the equations of motion for the flexible generalized coordinates are

(a,, ) "a‘,: =0 (4.44)

wheie p, i (Pyp Pay P2 Pay My P3;) the flexible generalized coordinates.

The final forn: of the equations of motion is very long and complicated. The
derivation was carried out under a symbolic algebra system as explained in the following

section. The final form of the equations of motion is
Dy D 3l . | o Cor|[d], [C v
0 9” Ol 4| 0 TOPe 0 +[0 "]E = H (4.45)
g M Cpo Cpllol (G, 0Kl [0

4.4.5 Frame of Work

1ais section demonstrates how the derivation was carcied out under MACSYMA
and how it is put in a simplified form for simulation he steps for the derivation ace as

follows
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® The kinetic. potential energy and the Lagrangiar are derived by the formula given
in equations (4.41, 4.38). Equation simplification routines were applied to the
Lagrangian expression so that the time independent terms are extracted and

replaced by a constant to be evaluated once and oft-line.

® The equations of motion are derived (equations (4.43,4.44)) and simplified so that
the constant terms as well as the terms that are functions of ¢, ¢ are extracted, where

q = [OT plj . Note that the dimension of ¢ is 9 (3 rigid DOF + 6 flexible DOF).

® The coefficients of &}T = [éT I.).Tj are extracted (which is the inertia matrix) to put

the final equations in a state space form as follows:

@:[O’H}EJ C! | (4.46)
q 00 —0 (t-Flgd))]

where F (q, ¢) is the nonlinear terms vector.

® The FORTRAN code for the equations of motion was generated and linked with the
control system package MATRIX, in the form of “user code block™ to carry out the
simulation and control design. This frame of work helped in speeding up the
s nulation and control system design. Available in Appendix B. is the derivation of

the equations of motion up to the final form (equation (4.46)) on MACSYMA.

4.4.6 Inclusion of the Joint Dynamics

Inclusion of the joint dynamics in the mode! involves modifying equation (4.45) by
redefining the links inertia matrix and augmenting the model by a set of second order

equations which represent the joint inertia and flexibility.

The flexibic joint-link assembly is shown Figure (4.5). Centinkunt and Book [14]



concluded that the equations of motion can be modified to bt

(g Dop [ﬁ]+ Co Cop) [j+ G| Lo oMj _ {—k,ﬂ 6-0 | 4.47)
Do Dy llBl |Cpo Cp|ls G,| 10K 0 0| p J

r

—

Ui () * (4] 00— 8] = (4.48)
where 8, is the i motor displacement, 0 is the i ! Jink displacement, k,; is the

joint stiffness, and I, is the motor’s inertia. Note that D’y is a modified version of Dg where

the /,;’s are set to zero.

0
Link2
¥~ Linkl
00,

Figure (4.5): The Flexible joint - link assembly.

4.5 The System Frequency Response Functions

After generating the model, the system frequency response functions have to be
calculated to give a first approximation to the robot natural frequencies. The state-space
form of the equations of motion is linearize 3 around zero-angles configuration (i.e the arm
is fully extended and horizontal) using the perturbation techniques [37]. Using the
estimated robot parameters shown in Table (3.4), the frequency response functions of the
joint angle to the corresponding joint torque are shown in Figures (4.6,4.7,4.8). The system

poles and zeros arc shown in Table (4.1).
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Figure (4.6): Frequency response of the base angle to the base torque.
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Figure (4.7): Frequency response of the shoulder angle to the shoulder torque.
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Figure (4.8): Frequency response of the elbow angle to the efbow torgue.



Table 4.1: Robot poles and zeros.

Mode No. Poles (Hz) Explanation Zeros (Hz)
1 0 Rigid body (base joint) 1.21
2 0 Rigid body (shoulder joint) 1.97
3 0 Rigid Body (elbow joint) 2.88
4 2.06 first bending (vertical) 10.8
5 2.86 first bending (horizontal) 18.48
6 5.47 second bending (vertical) 21.06
7 19.90 second bending (horizontal) 2595
8 51.53 Elbow joint flexibility 58.44
9 60.72 shoulder joint flexibility 63.04
10 62.33 base joint flexibility 64.31
11 120.2 torsion mode (link 3) 120.1
12 179.5 torsional mode (link2) 179.4

The system poles are the eigenvalues of the state matrix while the system zeros are
the eigenvalues of the constrained (joint locked) state matrix. The constrained system can
be obtained simply by closing each torque / corresponding joint angle loop with a very

high-gain proportionai feedback.

It is shown that for all the joint angles, the joint flexibility starts to have an influence
at frequencies higher than S0 Hz. This was attributed to the high stiffness of th= drive
compared to the links. It is also shown that the links torsional modes occur at relatively high
frequency compared to the bending frequencies due to the modeiling of the elbow and

payload as point masses.

It should be noted that there is some pole-zeros cancelation at the system (e.g. the

elbow joint) due to the relatively close values of some poles and zeros.

A final conclusion for this chapter is that the joint flexibility can be neglected in the
modelling. Moreover, the analysis bandwidth can be limited to 40 Hz. This will be

confirmed experimentally with modal analysis.
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- CHAPTER 5 -

SYSTEM IDENTIFICATION

In this chapter, the system parameters are identified experimentally. This includes
the modal parameters, structural and joint damping, torque constant and the inertia of the
joints. Based on the identification results of this chapter, a reduced order model will be

derived in Chapter 6.

The identification techniques, used here, are applicable to a wide range of robotic

manipulators including industrial robots (see Zaki et al. {103}).

5.1 Experimental Modal Analysis

In this section, an experimental .termination of the natural frequencies, modal
damping and mode shapes of the flexible manipulator is accomplished. Note that the modal

parameters are dependent on the robot configuration.

By analyzing the results of this test, the following aspects can be accomplished:
identifying the resonant behavior of the robot, determining the relevant modes that
dominate the robot response, identifying the relative importance of the flexibility of the
drive system versus the links, determining the sensitivity of the robot to varying postures

and verifying the analytically derived models.

Important assumptions have to be made while carrying out a modal test: the

structure is assumed to be linear, homogenous, stable and time invariant [23]. Although
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robots may violate these assumptions especially during motion, the vibration
characteristics of most robots tend to meet the linear behavior when robots are at a stop

condition.

5.1.1 System Setup

To carry out a modal test, care has to be taken in preparing the structure as well as
setting up the equipment. The time responses were captured using a spectrum analyzer

(HP35655) and the post-processing of the data was carried on SDRC-TDAS modules [84].

Manipulator Setup

The first step for any modal test is a decision on how the structure is going to be
supported for testing. In general, it is preferred that the structural is tested in the free
condition. White et al. [97] carried out . odal tests for industrial robots (General Electric
model GE A4, SCARA type robot). They indicated that there is a little variation in the
modal frequencies with servo on/off. However, this conclusion depends on the joint inertia

and is valid if high gear reductions are used.

For the experimental manipulator, it was found that implementing different PD
gains does not alter the natural frequencies significantly. The results shown in Figure (5.1)
were taken from a quick impact test for the robot in the vertical direction. It is shown that
due to high incrtia at the joints, there is no difference between the FRF wiv., 'ow-gains PD
and the brakes locked which represent infinitely high-gains PD. Consequently, a grounded

(brakes locked) condition was selected as a test configuration.

The next step for any modal analysis test is to lay out the test points on the structure.
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It is known that too few test points will give an inaccurate display of the mode shapes,
whereas too many points will make the test very time consuming. The modal test points
were chosen to give an accurate display of the mode shapes of the structure as shown in the

stick diagram (Figure (5.2)). The total number of test points was 72.
Equipment Setup

A major point in modal testing is how to excite the structure. Initially, modal tests
were carried out by exciting each motor at a time with a random or sine sweep excitation.
Although it seemed logical to use this method, it gave very noisy frequency response

functions due to the chatter of the harn.onic drives and the stiction.

'The excitation was given from an electrodynamic shaker which gave a relatively
clean spectrum. The driving signal for the excitation was a continuously random or “white
noise” signal. The main advantage of using white noise is that the excitation power 1s
evenly distributed over all the frequencies. The excitation signal was generated using the

source module of the spectrum analyzer.

The equipment setup is as shown in Figure (5.3) and the list is in Table (5.1)

Table 5.1: List of equipment used for modal testing.

Instrument Maker Serial No.

Force Transducer B&K 8200
Accelerometeis B&K 4374 #2
Charge amplifiers B&K 2651
Electromagnetic shaker B&K 4810
Impact hammer B&K 8202
Calibration exciter B&K 4294
Spectrum analyzer HP 35655
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Figure (5.1): Variation of the natural frequencies with the PD gain.
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Figure (5.3): The modal test setup (simplified).
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5.1.2 Modal Test Results

The modal test was carried out by exciting the robot in the horizontal and vertical
directions. Two configurations for the robot were tested: a straight horizontal configuration
that represent maximum inertia and a typical operating condition (45 degrees for the
shoulder and 90 degrees for the elbow angle (elbow up)). Also, another series of tests were

carried out on the robot while the payload was detached.

Frequency Response Functions (FRFs)

The frequency response function for all the test points with respect to the excitation
point has to be acquired and analyzed. Depending on the test location, various numbers of
averages were taken in order to suppress the noise. At locations near the areas of maximum
mobility, such as the end-effector, as few as ten averages were needed. However, as many
as 32 averages have to be taken to get a clean FRF and good coherence while gathering data
from the supporting base. An example for a typical coherence function is shown in Figure
(5.4). The analyzer was set for 400 lines over a range of 0-100 Hz. This gave a resolution

of 0.25 Hz over a time record of 4 sec.
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Figure (5.4): The coherence function for a typical measurcment.
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The FRFs for the end-point with respect to the excitation location for a straight
configuration in the horizontal and vertical directions are shown in Figures (5.5). Similarly,
for a bent configuration, the FRFs are shown in Figures (5.6). From these plots, it can be

shown that the robot has well defined and lightly damped modes.

System Modal Parameters

The structure has lightly coupled modes and smail damping factors for which single

degree of freedom (SDOF) characteristics can be assumed around the modal frequencies.

Consequently, a SDOF peak-amplitude method [23] was used for estimating the
modal parameter. To get accurate results for the damping, a circle-fit technique [23] was
used which accounts for slight interference of the other modes. An example of curve fitting

is shown in Figure (5.7). It is shown that high correlation is achieved.

The modal parameters and damping for the straight and bent arm configurations in
the horizontal and vertical directions are shown in Table (5.2,5.3,5.4, and 5.5). The analysis
bandwidth was limited to 50 Hz since the contribution of the higher frequencies to the
response will be very small. The results of the modal test with no mass were presented for
comparison only. Notice the shift in the natural frequency with the arm configuration and

with the mass change.

It is shown that the first two modes in the horizontal and vertical directions for the
straight arm configuration are close in value due to the arm symmetry. They tend to separate

as the arm moves due to the lack of symmetry.

The payload removal seemed to affect the first and second natural frequencies by
almost a factor of two, although the mode shapes remained the same. The third mode

remained the same since it is due to the torsion of the elbow joint around the first link axis.
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Figure (5.7): An example for curve fitting using SDOF methods.

Table 5.2: Modal par meters-straight configuration - horizontal direction.

Nli\]ode Frequency Damping Explanation N()‘Muss Nut.
0. (Hz) (%) Freq (Hz)

1 2.5% 0.18 first bending 4.68

2 7.68 1.27 second bending 19.45

3 20.12 0.14 elbow torsion 20.02

Table 5.3: Modal parameters-straight configuration- vertical direction.

MNO:C l~re(q};nze;1cy Da(r?%‘:; g Explanation N‘; r::;s;t
1 2.32 0.68 first bending 4.27
2 7.00 1.40 second bending 17.24
3 22.05 0.162 elbow torsion 22.25 B
4 47.51 1.14 elbow joint + bending 61.05
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Table 5.4: Modal parameters-bent configuration - horizontal direction.

I\I/g)(Se Fregy;:;ncy Da:nq;))ing Explanation N«;: rl\::\(;;:l)u
1 3.14 0.51 first bending 4.63
P 5.66 0.87 second bending 13.22
—3 25.06 0.84 elbow torsion 20.02
4 42.83 0.42 base joint + bending 53.03

Table 5.5: Modal parameters-bent configuration - vertical direction.

I\:;;d‘e Fre;q;;;lcy Da?%;:)ing Explanation N(l) ;:4(;\(;1[:1;!
1 2.93 0.87 first bending 4.74
2 5.52 1.31 second bending 15.89
3 26.74 0.36 elbow torsion 20.02
4 45.06 1.56 shoulder joint + bending | 63.00 ]

5.1.3 Dominant Vibration Modes

As expected, the lowest frequency of vibration occurs when all of the masses are
moving in the same direction at the same time. The second frequency of vibration can be
monitored as the elbow joint and payload move in the opposite directions. This is shown in
Figures (5.8) for straight configuration and Figure (5.9) for bent configuration, where the

undeformed configuration is represented by dashed lines.

Animation of the mode shapes was very useful in analyzing the behavior of the
robot at the third mode. It was found out that this mode corresponds to the twist of the elbow

joint around the first link vertical axis. Since the nature of this mode is torsion, it will be



First mode (horizontai direction) Second mode (horizontal direction)

First mode (vertical direction) Second mode (vertical direction)

Figure (5.8): Mode shapes display for straight configuration.



78

First mode (horizontal directicn) Second maode (horizontal direction)

First mode (vertical direction) Second mode (vertical direction)

Figure (5.9): Mode shapes display for bent configuration.
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excited in both directions. However, this mode has very little influence on the tip response

of the third link and it does not even appear in the FRF of the end-point.

Animation of the mode shapes served to identify whether the joint flexibility
conzributed to the first two modes in both directions or not. It was discovered that for this
particular design and set of links, the link flexibility is the primary cause of the end-point
vibration. The modes of vibration due to the joint flexibility did not manifest themselves

until approximately 40 Hz. This agrees with the analytical results presented in Chapter 4.

Consequently, it can be seen that the first two modes in the horizontal and vertical
directions dominate the robot vibration characteristics, and hence controlling these four

modes will significantly reduce the tip vibration as will be shown in the following chapters.

5.1.4 Modal Parameters Variation in Space

The variation of the first two modes in the horizontal and vertical directions (the
dominant modes) in the robot workspace is studied. This was accomplished by positioning
the robot throughout the workspace by 10 degrees increments and analyzing the FRFs of

the end-point acceleration to a soft impact hammer hit at the elbow.

The frequencies of the planar vibration depend on the elbow joint variable, whereas
the frequencies of the out of plane vibration are functions of the elbow and shoulder joint.

Note that the position of the base joint has no influence on the vibration frequencies.

The change of the natural frequencies in the vertical directions with the elbow angle
is shown in Figure (5.10). The lateral vibrations are shown in Figures (5.11,5.12). Note that
positive elbow angle means elbow-up. These plots give a good idea of how the frequencies

change as the arm moves, which indicates how complex the system is.
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5.2 Torque Constant Estimation

The motor equation, as shown in section 4.2.3 is given by

T = kg (5.1)
where k. is the torque constant from the input voltage « to the output torque t. Note that
there is a bias input voltar~ to compensate for the friction. The torque constants were
obtained by hanging known weights at a known arm distance from the motor and increasing
the voltage till the arm starts to move. Then, k. is obtained by fitting equation (5.1) using

least squares. The torque constant for the robot joints are as shown in Table (5.6).

Table 5.6: Robot Torque constants.

Robot joint Gain
k., base (N.m/v) 46.75
k4 shoulder (N.m/v) 46.75
k., elbow (N.m/v) 45.75

5.3 Damping Estimation

Three types of damping were identified in the experimental manipulator: joint
coulomb friction, joint viscous damping and links structural damping. The purpose of
identifying the damping is to add it to the modei. The joint coulomb friction has an adverse

effect on the manipulator. The compensation of the friction will be presented in chapter 7.

5.3.1 Structural Damping Estimation

It is known from simulation [2,107] that the structural damping tends to have an



i)
influence on the robot response if the modal damping ratios for the dominant modes is
higher than 10%. The structural damping mechanism of the robot is very complex as it
changes with the configuration. However, since the robot has very little structural damping,
the damping matrix can be assumed to be linear and proportional to the stiffness and mass

matrices [23].

The damping matrix can be obtained according to the procedures outlined in [S2].

The linearized constrained! robot equations can be written as

Mp+Cp+Kp =0 (5.2)
where M is the mass matrix, C is the damping matrix, and K is the stiffness matrix. These

equations can be diagonalized by performing cigenvalue analysis and substituting tor p by

p=wn (5.3)
where v is the transformation matrix to the modal coordinates. Hence, equation (5.2)

becomes [52]

Myn+ Cyn+Kyn = 0 (5.4)

pre-multiplying by 7

vimyi +yToyn +yTkyn = 0 (5.5)

\uTMw, wTC\u and wTKw are diagonal matrices.
-1
Pre-multiplying by (v My)  we get [52,23]

N+Cn+kn =0 (5.6)

. -1 . . .
where C = (\yTMw) (wTC\v) is the modal damping matrix, where

1. Constrained equations mean that they do not include the rigid body angles 9.
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C = diag (2(;10)], 2§2m2, ) (5.7)

Since ¢, w can be obtained from the modal testing results, the damping matrix is

-1 . N
c= ") (Wmy)c(y)! (5.8)

5.3.2 Joint Viscous Damping and Coulomb Friction

Considering the motor model in section 4.2.3. By including the coulomb friction as

disturbance, the motor torque t contains

t=td+b0+1:f (5.9
where b6 is the joint effective? damping, 1, is the joint coulomb friction and T is the

f
desired torque to control the robot.

The values of b for the joints can be obtained by running the moto: at constant
speeds using a DC power supply and me~suring the corresponding torque (by measuring
the current). Consequently, b can be estimated using least squares fitting of the linear
relationship between the voltage and the joint speed. The values for the effective damping
b for the robot joints are given in Table (5.7). Note that these values are calculated for the

robot side (i.e. multiplied by the gear ratio squared).

Harmonic drives 'vere used as gear reducers for the robot. The mechanism of
motion for the harmonic drives is very complex and they tend to have relatively high
coulomb friction [3]. The coulomb friction is assumed to be invariant with the angles (it
may vary with the joint angle due to the irregularity of the drive). For each robot joint, the

coulomb friction can be identified by averaging the measured voltage that corresponds to

2. called effective because it is a combination of the joint damping and back e.m.f



the start of the motor motion. The coulomb friction for each joint is given in Table (5.7).

Table 5.7: Joints damping and couiomb friction (robot side).

Robot Joint Vl:;()z:/:z:?q;ng Coulo(nl:[l?nl:)r iction
Base 13.05 9.35
Shoulder 9.55 7.05
Elbow 2.65 7.78

5.4 Joint Inertia Estimation

The inertia of the motor and gearbox can be approximately calculated using I-
DEAS and the manufacturer catalogues. The experimental determination of the joint inertia
is done by calculating the time it takes for the motor and gearbox to step to a different

constant speed. Considering the joint equation of motion

T = 10+b0 (5.10)

Hence,

t(s)  Is+b  b(<s+1)
where t' is the time taken to reach 0.633 of the steady state amplitude. The values

6(s) 1 1 5.1y

for the identified inertias compared to the estimated using I-DEAS are shown in Table (5.9)

Table 5.8: Joints inertia (robot side).

Robot Joints Estimatcd Identified
by I-DEAS | Experimentally
—— =
Base joint (kg.mz) 1.683 1.79
Shoulder joint (kg.m?) | 1.638 1.69

Elbow joint (kg.m?) 1.004 1.1




- CHAPTER 6 -

A REDUCED ORDER MODEL

In this chapter, a reduced order model that includes the dominant vibration modes
is derived. The equations of motion are derived using Lagrange’s formulation where the
links flexibility is represented using finite-element approximation. The developed model is

highly nonlinear and will be used subsequently for simulation and controllers design.

A technique for model tuning by matching the locked natural frequencies of the
model to the experimental data is applied. This technique results in verifying the reduced

order model for the purpose of control.

6.1 Why a Reduced Order Model?

In Chapter S, it was concluded that the robot dominant vibration modes are the first
two modes in the horizontal and vertical directions. Therefore, by controlling these modes,

the end-point vibration will be dramatically reduced.

It will be redundant to model vibration modes that do not contribute significantly to
the robot response. Hence, a proper model that contains the relevant modes is needed to

reduce the simulation time and simplify the controller design.

Finally, a reduced order model is also essential for the development of control
algorithms which are based on the inverse dynamics technique. Controllers based on this

technique are formulated in the continuous-time domain. Consequently, they have to be

82
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implemented at a sampling frequency higher than (50 - 100) the bandwidth of the system

to approximate the continuous-time domain assumption [40,93].

In general, the equations of motior for manipuiators with flexible links have a kuge
number of terms that have to be calculated in real-time. Hence, reducing the model order

will significantly increase the sampling frequency.

6.2 Modelling Assumptions

In addition to the assumptions posed in Chapter 4, the following maodelling
assumptions were adopted based on experimental modal analysis results and the physical
observation of the robot behavior. These assumption will simplify the development of the

equations of motion as will be shown

¢ Neglecting the joints flexibility: It was found that the joint flexibility starts to have
an influence on the modes which are higher than 40 Hz. Since it is required to
control the modes that are up to 10 Hz, the effect of the joint flexibility on these two

modes is very small and can be neglected.

® Neglecting the links kinetic energy of vibration: From the robot parumeters, it can
be seen that the first and second link masses are small in comparison with the elbow
and tip mass. Hence, the distributed effect of the links masses can be neglected and

both their masses and inertias can be lumped at the end of each link.

® One mode per link: Since the first two modes in the horizontal and vertical
directions are desired to be controlled, one mode per link will be sufficient for the

purpose of end-point vibration control.
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® The elbow and tip masses are point masses: Since the purpose of the control
system is to control the end-point vibration, the kinetic energy due to the rotational
vibration of the tip and elbow masses (due to the flexible motion) can be neglected

with respect to the kinetic energy due to the rigid body rotation.

Based on these assumptions, it will be shown that a relationship can be formulated
between the flexible rotation and the deflections at the links ends. As a result, the flexible

degrees of freedom will be significantly reduced.

6.3 Representation of the Links Flexibility

The coordinate system:s for the robot are the same as in Chapter 4 (see Figure (4.3)).
8, and ¢, are the deflections and anguiar deformations of each link with respect to its local
frame at the root, where

5, = [8, al.z]r (i=23) (6.1)
T
[0 0y 0] (1=23) (6.2)

ix Tiy

0.

]

The elastic deformation of each link is represented by a simple clamped-free beam.

The relationship between the force and deformation, taken from finite-element analysis, is

F,’ Kil Ki3 6,' ,
=| 7 (i= 2, 3) (6.3)
Mij  |Ki3 K| (%

where,
12E1 12E1 GJ AElI 4EI 00 '6_131
K., = diag(—=-, =), K., = diag (=2, 22 222 = L
i g ( 3 ’ 3 ) Ky dzag(L, T L) and K, 6E]
0= 0
L

J and / are the polar and area moment of inertia of link i.



6.4 Development of the Equations of Motion

Similar to Chapter 4, the eguations of motion were derived using Lagrangian

dynamics [101]. Youshikawa et al. [99] developed a similar model. Using the same

conventions as Section 4.4.3, the rotation and transformation matrices from the coordinate

system (XYZ) , to (XYZ), are

Q0 0,1
T, R, R,
OTc _ 0’*1]"22"’..
2 2
Cpr _ 0, 1, 2, €2
Ty = "Ry 'Ry Re2 Ry

where,

0
R, = rot (zo, 9])

1
Ry = rot (x], 9O)rot(12, 92)

€2
R, = rot (zez, 63)

-

Rez = rot (zeZ’ 4)2:) rot (yp2’ ¢2y) rot (er’ ¢2x)

(6.4)

(6.5)

(6.6)

The translation vectors for the second and third links with respect to (XYZ) , arc

_ T
dy = iy 8,5, ]

d 5..8, 1"

3 = [1385,8;,

The positions of the elbow mass and tip mass with respect to (XYZ) , are

_ 0
ry = Thd,

Or. a

0
ry = Tydy+ "Tady

(6.7)

(6.8)

(6.9)

(6.10)

Notice the difference between these equations and equations (4.33, 4.34) as the
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flexible rotat’on of m, due to the second link and m, due to the third link are not included

in defining the position of each mass.
The Kinetic and Potential Energies

The kinetic and potential energies are as follows

‘ 2 2 2 T T
2KE = 1,8 1 +1 50 9+ 18 3+my™ 25+ myi 37, (6.11)

K., K s K., K S
op 1 T 21 723119 ] T .T 31 733119 T
k= 2[82 °;j [LT M"j [83 * K33 K| |93 T2t r2+m3g 3 (G2

23 K2/ (*2] )
T
The links masses are lumped at the elbow and tip of the robot. Hence, m, is the

where g' = [0,0, —gO] , is the gravity vector.

mass of the elbow plus half of the mass of the second link and third link, m, is the mass of

the payload plus half of the mass of the third link.
The Equations of Motion

Defining the Lagrangian L to be L = KE ~ PE , the equations of motion can be

derived as follows

d, oL, oL _ .

d!(au ) - 89 = tei (i=123) {6.13)
aL aL _ .

dr(as ) 5% = 0 (i=23) (6.14)

d oL, oL _ .

d!(a¢ ) —T¢’. =0 (l —2,3) (6.15)

Since the tip masses are assumed to be point masses, their rotational vibration can
be neglected. Hence, the ¢’s can be expressed as a function of the 8°s and the &’s. Although
the derivation was carried out on MACSYMA, the following demonstrates how the ¢’s are

cancelled out of the equations of motion.



The Lagrange’s equation of motion for the joint angle i/ is

3 j
. T .
v = 2 AmG+e) (2 (a—%,OTk“k)]} +1,8;  (i=1.2.3) (6.16)
j=i k=1 i

where m;, = 0 for notational convenience, and
2
7= A2 (07 4) 6.17)
P

f
The Lagrange’s equations for the deformations &, and ¢, arc

T T
o.T . 0.7,
my T, (F3+g) +my T, (Fy+¢g) +Ky8,+ K30, =0 (6.18)
o.T .

my Ty (F3+g) + K318, + K330, =0 (6.19)
m VI (7o +8) + K18, + Koy, = 0 (6.20)

3V3 3 2392 T 8229 -
KI5, +Kint, =0 6.21)

3303 T R32%3 :

where V; is defined as
_ 0 (0, 1, d 2, €2
V3 = " 70R Ry, CR ) R3) (6.22)
06,
The flexible rotation angles ¢’s can be expressed as a function of 8 and & from

equations (6.16,.., 6.21) as follows: from equation (6.21)

T
03 = —K33K338, (6.23)

Substituting equation (6.23) to equation (6.19)

1,0 _ 1T v s om1uT
0, = KppV3 Ty (Ky) — K33K33K33) 83— Kp3K 548, (6.24)

By differentiating equations (6.22) and equation (6.23), the expressions for d», and

R7

'q';,. can be derived. Consequently, the equations of motion can be obtained independent of

¢. The final equations of motion become

D(9)§+C(q,4)4§+Kg+G{q) =1 (6.25)
where

0,,8,,6,,8,,58

q = [91162’ 39 zy’ 2(’ 3,)" 3Zl (626)
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The procedure for the symbolic derivation, carried out under MACSYMA, is shown
in Appendix B. The state-space form of the equations of motion is linked to MATRIXy
according to the framework presented in Section 4.4.5. Note that the arrangement of the

states throughout the thesis is

= [g.r q:j (6.27)

6.5 Model Tuning

The robot model may not be accurate in determining the system natural frequencies
due to the uncertainty in some parameters. In this section, a technique is described to tune

the robot model so that the natural frequencies of the model match the experimental values.

Section 4.5 describes a technique to calculate the locked natural frequencies for the

robot. The idea is to match these values with the experimental values.

Usirg the control systems package MATRIX, the locked natural frequencies of the
robot are matched to the experimental data by updating the robot parameters using the
gradient approach. The procedures for tuning the robot model are shown in the following

block diagram (Figure (6.1)).

- Linearize the locked
robot model

Y

r Calculate the system
Change the model natural frequencies
| parameters
f \ * Figure (6.1): Block diagram for the
Compare the NF to tuning algorithm.
the experimental data
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The robot paameters compared to the identified parameters are shown in Table

(6.1). The natural frequencies are given in Table (6.2).

Table 6.1: A comparison between the estimated

and identified robot parameters.

Parameters Estimated Identified

1, (kg.m?) 1.683 2.4

I, (kg.m?) 1.638 22

I, (kg.m?) 1.01 1.4

(El, N.m?) | 1107. 890.0
(EN, (N.m%) | 2022 140.0
(GJ), (N.m?) | 8734 721.0
(GJ), (N.m?) | 160. 150.

m, (kg) 7.3 9.1

my (kg) 1.7 1.9

Table 6.2: A comparison between the meas. red and
predicted lockeu natural frequencies.

Mode. No. | Memured | Predicted
1. (vertical) 2.32 2.34
2. (horizontal) 2.59 2.59
3. (vertical) 7.0 6.90
4. (horizontal) 7.68 7.90

It should be noted that the identified parameters are higher and unrcasonable
sometimes. This is attributed to the low order of the model and its simplicity. However, this
“identified” model is suitable for control design. Better matching of the locked natural

frequencies and robot parameters can be obtained by increasing the order of the model.

The frequency response functions (FRFs) obtained for the linearized (around zero

angles) reduced-order robot model are shown in Figures (6.2,..,6.5). It is shown that each
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FRF is a double integrator at low frequencies. Due to the relatively high inertia at the elbow

joint, the sccond zero lies close to the second pole and thus, the corresponding peak at the

second pole is reduced.

The level of the FRF between the elbow torque and the base angle indicates the

wceak coupling between the horizontal and vertical motion.

Amplitude rad/N.m (db)
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Figure (6.2): Frequency response of the base Figure (6.3): Frequency response of the shoulder
angle to the base torque. angle to the shoulder torque.
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- CHAPTER 7 -

PD CONTROL

In this chapter, the development and implementation of a Proportional-Derivative
(PD) control technique will be presented. Unlike rigid robots, it is not sufficient to control
flexible manipulators by collocated control algorithms. Consequently, advanced control

strategies are needed to achieve better performance.

7.1 The Control Strategy

The block diagram for the PD controller is shown in Figure (7.1). The control input

u; (which implies the motor torque L according to equation (4.10)) for joint i is given by

u; =k, (8, —0) +k, (6,-6) (7.1)
where kpi is the proportional gain,  ,; is the derivative gain for joint i. The control law

implemented on the robot uses the angular measurement only as follows

u; = (k

A)
ot hg——7) (8,-9) (7.2)

where s is Laplace operator, and t is the time constant of the derivative filter tuken to be
(.01-.1). It can be seen from the control law that the coupling between the joints is ignored
and the feedback gains for each joint servo are then set to compensate for the coupling in
the system. Hence, the resulting feedback gains might have to be large to overcome the
coupling in the system and achieve better response. However, the gains are limited due to

amplifier saturation and the bandwidth is limited due to system dynamics.
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Figure {7.1): Block diagram for an individual robot joint under PD.

Slotine and Li [77] showed that for any passive system, the PD feedback is always
stable assuming no phase loss due to sensor /actuator dynamics or computational delays.

This is why PD controllers are commonly used for robot control in industry.

7.2 Limitations

In general, PD control is a collocated control technique. Hence the bandwidth will
not exceed the first cantilevered frequency. For elastic manipulators, a general rule for PD
control is that the achievable bandwidth should be limited to half the fundamental natural

frequency to avoid excessive vibration at the tip.

By increasing the gains, the dominant roots for the system will tend to the
cantilevered zeros, and the end-point oscillation will decay only under the influence of the

structural damping present in the links (which is very small).

This can be illustrated by the simple example of the single link manipulator. The

open-loop transfer function of the hub torque 7 to the angle 0 is given by [71]

0(s) _ Kop (s2+(22)

t(s) 52(524_”’21) (7.3)
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where one vibration mode is considered only for simplicity, joo, is the pole and Q is the

cantilever zero. The characteristic equation for this system under PD control is

2 2
kd s KOL(S +Q°)
l+kp

1+-- =0 (74)
kp”+1 sz(s2+m'2')
k
Usually, &, is less then kp. Consider the ratio k—d equal to 0.8, and 1 to be 0.0 for
p

simplicity. The root locus for the - «. >m is as shown in Figure (7.2).
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Figure (7.2): Root-locus for a single link under PD.

It is shown that for this particular case, the rigid body roots tend toward the
cantilever zeros Q, whereas the flexible roots tend toward the compensator zero and
infinity. It can also be shown that the dominant roots are always “trapped” by the
cantilevered zeros. Also, from the iso-damping ratio lines, it is shown that for a maximum

damping ratio, the bandwidth will be approximately half the cantilevered frequency.
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7.3 PD Controller Design

The successive-loop-closure technique was used to design the PD gains for each
joint of the manipulator [71]. The ratio of the derivative to the proportional gains was kept
equal to 0.8 for all the joints as it was found tc give good results. Using MATRIXy, the
open-loop system is linearized around a nominal configuration (8,=40°, 8,=-40°). The PD
gains for the base were designed first and closed, and then with ihe base loop closed, the

shoulder gains were designed and closed, and finally, the elbow gains were designed.

The PD gains were chosen to maximize the closed loop bandwidth while
maintaining sufficient damping to the closed loop poles. However, there was a trade-off
between lowering the damping of the rigid-body poles a..d the damping of the closed-loop
high frequency poles. The open-loop pole and zero locations are indicated by ‘x’ and ‘o’

symbol respectively, the location of the chosen closed-loop are indicated by the ‘*’ symbol.

The root locus for the base joint is given in Figure (7.3). The diagonal lines
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Figure (7.3). PD control design for the base.
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represent tae constant damping ratio lines. The dominant closed-loop roots are all
reasonably damped including small damping at the poles associated to the vibration. It
should be noted that the real-valued open-loop poles are due to the differentiator-tilter block

since T was chosen to be 0.01.

Closing the base joint, the resulting root-locus for the shoulder joint is given in
Figure (7.4). For the subsequently closed loops, the location of their roots is indicated by
‘x0’ symbol. Note that since there is no coupling between the base and shoulder, the root

locus branches do not pass through the poles which affect the base loop.

100

Imaginary

Figure (7.4): PD control design for the shoulder.

The closed loop poles were chosen to give reasonable values for the damping ratios

of the poles. Similarly, the root-locus for the elbow joint is shown in Figure (7.5).
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Figure (7.5): PD control design for the elbow.

Finally, the corresponding values for the gains are as shown in Table (7.1)

Table 7.1: The PD controller gains.

Robot Joint P’Op;;it;onal De;i:ia:ive
Base 2.6 2.08
Shoulder 4.5 3.6

Elbow 2.8 2.24

The closed-loop roots can be obtained by linearizing the system around any
arbitrary position. Note that since the system is nonlinear, the roots will vary with the

linearization point. Table (7.2) shows the closed-loop roots for a straight horizontal

configuration (8,= 0°, 8, = 0°) which corresponds to maximum inertia.
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Table 7.2: PD-control closed-loop roots.

Pole No. Root Location (rad/sec) o, (Hz) C
1 -1.21 0.19 1.00
2 -1.45 0.23 1.00
3 -1.58 0.25 1.00
4 -71.26 1.16 1.00
5 -13.7+9.37 j 2.64 0.825
6 -32.51 5.17 1.00
7 -8.51132.14j 5.29 0.24
8 -22.71+£35.94 j 6.72 0.20
9 -46.65 +26.36 j 8.53 0.87
10 -16.451+76.41 j 12.44 0.21
11 -21.321+124.18 j 20.05 0.17

Higher gains are implemented to demonstrate the reduction in the steady-state error

in spite of the increase of the tip vibration and the insignificant increase in the bandwidth.

7.4 Step Response

It is shown from Table (7.2) that the closed-loop low-frequency roots which are
associated with the vibration are sufficiently damped. In addition, the system time-constant,
associated with the rigid-body motion, is large. This results in making the robot motion

sufficiently slow to avoid exciting the system flexibility.

The response of the system is tested under a step input. This trajectory can not be
implemented in practice due to the infinite change of acceleration associated with it.

However, it can demonstrate how fast the system can respond. The response of the robot
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joints is shown in Figures (7.6,7.7, and 7.8). The tip deflection of the second and third links

in the horizontal and vertical directions (Siy, 5:':) are shown in Figures (7.9, 7.10).
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Figure (7.6): Step response of the base under PD. Figure (7.7): Step response of the shoulder under
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It can be seen that the robot takes almost five seconds to reach the desired position.
Note thai the simulation is done without taking the gravity and friction into consideraticn.
If the PD gains are increased to reduce the steady-state error (as in the experimental case),
the speed of response will be almost the same since the bandwidth can not exceed the first
cantilevered zero. However, the links tip will suffer residual vibration due to the reduction

in the damping ratio as seen from the roct-locus plots in Section 7.3.

Figures (7.11, 7.12) show the response of the base and shoulder joints under
proportional gains of 5.0, 10.0, 8.0 and derivative gains of 4.0, 8.0, 6.0 respectively. The

tip deflections are shown in Figures (7.13, 7.14).
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Figure (7.11): Step response of the base under Figure (7.12): Step response of the shoulder
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Figure (7.13): Tip deflection of the second link  Figure (7.14): Tip deflection of the third link
under high-gains PD. under high-gains PD.
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7.5 Implementation Aspects

Implementing the PD controller alone will give poor response and a steady-state
error due to the friction and gravity effects. The following demonstrates some experimental

aspects that have to be considered while implementing the control algorithm.

7.5.1 Gravity Compensation

The gravity compensation terms are required for the second and third motors in
order to improve the transient response and reduce the steady-state error (without using
inteZral terms in the controller). This is accomplished by feeding-forward the equivalent

voltages, which result in torques, to balance the gravity.

By lumping the mass of the second and third links at the joints, according to the

simplified equations of motion derived in Section 6.4, the equivalent voltages are given by

Vi = (—mszgCOS (92) —mag (chos (92) +Lycos (62+93) ) )/KTZ 7.5

Vyz = (—m38(L,c08 (8,) +Lyc0s (8,46,))) /Ky (7.6)
where m, is the elbow mass plus half of the links masses and m, is the tip mass plus half

of the second link mass.

7.5.2 Friction Compensation

Friction constitutes the main source of nonlinearity in the robot joints. Friction
results in a steady-state error and residual vibration as the flexible arm tends to stop. The
nonlinear effect of friction can be dramatically reduced through a model-based

compensation mechanism that compensates for the stiction and coulomb friction.
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The coulomb friction is compensated for by feeding forward a torque according to

the equation

T .sgn (8;) 6| >0.015
T = { vi ] l .l‘ (7,7)
fi Trisgn(u) 18] <0.015

where T, ,,

Ty

; are 0.95 and 0.8 of the coulomb friction torque values identified
experimentally and u; is the control action. The compensator was implemented this way to
avoid vibration due to input torque commutation in the neighborhood of null velocity and

also to eliminate the residual vibration when the arm tends to stop [26].

The stiction effect is reduced by keeping the >zaring surfaces from coming to rest
with each other. This can be accomplished by applying to the motor a high frequency square
wave torque command, called “dither” T, that keeps the surfaces oscillating at a very
small amplitude [34)]. The amplitude was taken so that it would give one encoder count at
a frequency of 100 Hz (after several experimental trials) to avoid exciting the system high
frequency unmodelled dynamics. The torques values, at the robot side, (which can be

transformed to input voltages) for friction compensation are as shown in Table (7.3).

Table 7.3: Friction compensation torques for the robot joints.

T,(Nm) | T,(N.m) | T, (N.m)

Base joint 11.22 7.95 7.95
Shoulder joint | 8.88 7.01 7.01
Elbow joint 9.07 7.26 7.71

7.5.3 Trajectory Generation

Selecting a trajectory generation scheme is an important task in robot motion.

Mujtaba [59] studied five different generation schemes, namely, bang-bang acceleration,
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critically damped step response, cosine trajectory, sinusoid imposed on a ramp, and

polynomial interpolation. It has been concluded that a fifth-order polynomial spline fit gave

the best combination of smooth changes in the acceleration and minimal computation.

The coefficients for the polynomial can be obtained by assuming zero velocity,

acceleration at the start, end of the trajectory, and by the minimization of the mean square

of the jerk over the trajectory (see Hogan and Flash [33]). The time histories for the

position, velocity and acceleration are given by [33,34]

g(1) = g+ (6T° - 151 +107°) A
g () = (30t*-601°+301°)A/T
g (1)

(1207° - 18012 + 601) A/ T

(7.8)

where, g is one of the coordinates that describes the motion, g, is the starting coordinate,

A is the amplitude, T is the time for the slew and 7 is the normalization time (range from

Zero to one).

0 (rad)

Figure (7.15) shows position velocity and acceleration for a 1-sec rise-time step.
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7.6 Simulation Results

The system is simulated under a step of one-second rise time. The joint angles
response are as shown in Figures (7.16,7.17, and 7.18) where the desired trajectory is
represented by dashed lines and the actual response is represented by solid lines. The links
tip deflections are as shown in Figures (7.19,7.20). It is shown that the robot tracking

performance is not good due to the low bandwidth of the system.

Another simulation was carried out with higher gains in order to demnstrate the
trade-off between the improvement in the tracking performance of the system and tip
vibration. The response of the base and shoulder is shown in Figures (7.21,7.22). The links

tip deflections are shown in Figures (7.23,7.24).
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7.7 Experimental Results

The PD controller, with gravity and friction compensation, was implemented on the
robot at a sampling frequency of 5 kHz. The estimator, presented in Section 8.4, was
implemented along with the PD to estimate the tip deflections. The robot was initially at
rest at the home position defined to be straight up. The trajectory was set to be 40° step in

one second.

The response of the robot joints, under the PD gains shown in Table (7.1), is shown
in Figures (7.25,7.26, and 7.27). The dashed-lines represent the desired trajectory while the
solid-lines represent the actual joints motion. It is shown that there is a little delay in the
robot response due to the relatively low-bandwidth of the system. There is also a steady-

state error at the end of motion due to friction (about 2% to 5%).

The deflection at the tips of the links (in mm) are shown in Figures (7.28 and 7.29).
It is shown that the robot undergoes residual vibrations (after the 1 sec. maneuver) that are
unacceptable and take a long time to damp out. The torque at the shoulder is shown in

Figure(7.30). The chatter presented in the torque signal is for friction compensation.

The response for high-gains PD controller (as presented in Section 7.4) is shown in
Figures (7.31 to 7.35). It is shown that with high-gains, the joints tracking is better and the
steady-state error is very small. However, the tip vibrations are excessive and take a longer

time to damp out.

Consequently, a non-collocated controller is required to improve the performance

of the robot.
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Figure (7.31): Experimental response of the base

under high-gains PD control.

107

i i

Figure (7.32): Experimental response of the shoulder

under high-gains PD control.

Figure (7.34): Experimental tip deflections of the

second link under high-gains PD.

" -
—_ el
3 . ;
S ; i
~ H -
> , .
) : :
S |
t (sec)
Figure (7.33): Experimental response of the elbow
under high-gains PD control.
[ , ; i s »
[ 15 d e
9 : 10 .
b . —_~— :
[ E t ;
B st ‘
: ~ o NP .
Ty e mmo . VAN A J A R P
L N A : AV RV AY AL A AN
TN Tt s
r .‘ LT ‘-/'-' X Af S d N T ~ . .
1R JL!*V/ SR S > Y
’T 1: 2z : . e
-i ; . i : ' -10 X
Ll i N - “ X
A : : ,
als a4 a a4 a4 IS AU -15
2 3 ] 5 [ ¢ 1 (1 5 [
t (sec) t (sec)

Figure (7.35): Experimental tip deflections of the

third link under high-gains PD.



- CHAPTER 8 -

OPTIMAL REGULATOR CONTROL

This chapter presents the first trial toward the objective of the thesis which is
controlling the end-point vibration of the manipulator. The vibration measurement is
accomplished by means of accelerometers attached to the end of each link. The controller
that will integrate the vibration measurements with the joint angles will be designed so that

it minimizes certain performance criteria using optimal control theory.

8.1 The System Controllability and Observability

Before deriving control algorithms for the flexible manipulator, the system
controllability and observability have to be addressed. While the robot joints are always
controllable and observable due to the presence of an actuator and encoder (sensor) at each

joint, the flexible states are not controllable in some positions.

Although the robot is a nonlinear system, the controllability and observability of the
flexible states can be carried out on the linearized system since the vibration can be

assumed to be linear locally.

8.1.1 Controllability

A dynamic system is controllable if for every ¢4, x(1,), #, it is possible to find an

unconstrained control input « (t) 1gS vt suchthat x (¢)) is at any desired states [24].
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For a linear system described by

X = Ax+Bu (8.1)

y = Cx (8.2)

the controllability is equivalent to the algebraic condition {24]

rank (B|AB|A2B| ...| A" 'B) = n (8.3)
For the robot, the system states are contrellable except when 8,= 90° as the out of

plane (horizontal) vibration cannot be controlled by the base motion.

8.1.2 Observability

A dynamic system is observable in the interval 1y <¢<r if every x(r;) can be

uniquely determined given « (¢) and y (1), to S t<t;, knowing (4,8,C) .

For the linear system defined by equations (8.1, 8.2), the observability is equivalent

to the algebraic condition [24]

rank (C’] ATCT| AT c71 ..... IAT(n—])CT) =n (8.4)
For the experimental manipulator, the estimation of the flexible states is
accomplished by mounting two accelerometers at the end of each link. Throughout the

entire space, the system is found to be observable.

Since the system is nonlinear, linear observers [24] cannot be used to estimate the
states. Limitations are posed on implementing many nonlinear observers [54] in real time
due to the complex nature of the equations of motion of flexible manipulatoi s. In this work,
on-line estimation of the states from the acceleration measurements was done as shown in

Section 8.4, and Section 8.9.
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8.2 The LQR Block Diagram

The Linear Quadratic Regulator (LQR) algorithm was chosen because of its wide
use in flexible manipulators control. Several authors tend to use LQR algorithms because
they can successfully handle Multi-Input Multi-Output (MIMO) systems with lightly
damped poles [61]. However, LQR controllers are sensitive to how well the system is
modelled. Also, since the controller is linear, it is only suitable around the design point.
Consequently, a gain-scheduling technique is implemented to guarantee optimal

performance for all the robot configurations.

The block diagram for the controller is shown in Figure (8.1). It consists of two

parts: a state-estimator and a regulator.

The LQR controller works as follows: the estimator, in general, takes the control
torques, the joint angles and the links tip acceleration as inputs and outputs the flexible
states. The regulator takes the difference between the desired and actual states and outputs

the control torques that will bring the system to the desired configuration.

The design of the LQR controller is performed in the continuous-time domain, and
then converted to the discrete-time domain for real-time implementation according to the

procedures presented in Appendix B.

erej’ eref
Regulator Robot >
- . 0
3, 8 a2y’ a,
a3y’ as,
j State Estimator |—————
0,0

Figure (8.1): Block diagram for the LQR controller.
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8.3 Regulator Design

The optimal state feedback problem involves * ‘nimizing the continuous quadratic

cost function J given by

- -]

1
1= 5[ (TR x+uTR ) dr (8.5)
0
where R is the state weighting matrix, and R is the control effort weighting matrix. The

solution of the LQR problem stated above is to use a controller of the form

u= —R;ll‘BPx = —kx (8.6)

where P is the solution of the matrix Riccati equation [80,24] given by

PA+ATP—pPBR1BTP+R =0 (8.7)

The choice of ® | and R, determines how the regulation error and actuation effo:t

are traded off to reach an optimal design. Several approaches exist to choose the weighting
matrices aided by control design packages (e.g. MATRIX,) as follows: R and R, can be
chosen iteratively to achieve maximum bandwidth [61], to get certain values of PD gains

[99], or to weight each state by how well the control of the state is desired [71].

For the flexible manipulator case, R . and R, are chosen by trial and error to
achieve high PD gains for the joint angles and best performance in damping the tip
vibration experimentally. Note that high gains may work fine in simulation but will produce
instability for the experimental manipulator due to the excitation of the system unmodelled
dynamics and the amplification of sensors noise. The control weighting matrices were

chosen to be (refer to Section 6.4 for the corresponding state representation)

R, = diag ([99, 10, 10, 4, 0.5, 8, 0.5, 400, 600, 100, 60, 100, 100, 100] ) (8.8)

R,, = 3Xxdiag( [2,1,05]) (8.9)
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A particular point of interest is the choice of the manipulator angles around which
the system is linearized. Hollars [34] showed that for maximum robustness of the controller
against the change of the inertia matrix, the linearization point should be where the inverse
determinant of the mass matrix is minimum. This corresponds to an elbow angle of 90° and

a shoulder angle of 0°.

The regulator gains are found to be
425 0 0 0 —043 0 -006817 0 O 0 122 0 030

k=|0 333-008037 0 014 0 0 141 -049-1768 0 1088 o | (8.10)
0 075 297 081 0 —067 O O 168 814 —4057 0 —1520 O

Note that for this particular manipulator the vertical and horizontal motions are
decoupled as seen by the zero locations of the regulator. The closed-loop pole locations,

obtained by linearizing the system around (8,=0°, 6, = 90°), are presented in Table (8.1).

Table 8.1: Regulator-control closed loop roots.

Pole No. Root Location (rad/sec) o, (Hz) C
1 -2.52 0.40 1.00
2 -3.20 0.51 1.00
3 -6.10+4.16 1.18 0.83
4 -7.54 £ 19.84j 3.38 0.35
5 -8.1£2091 j 3.57 0.36
6 -22.02+29.96 j 592 0.59
7 -37.62 5.99 1.00
8 -17.03 £ 59.07 j 9.78 0.28
_9 -131.46 20.90 1.00

As shown in Table (8.1), the values of the dominant poles are higher than the
corresponding dominant poles of the closed loop system under PD (shown in Table (7.2)).

Hence, it is expected that the system response is faster than the PD.
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8.4 Estimator Design

In implementing the regulator, the system states are assumed to be known. Since not

all the states are measurable, they need to be estimated.

For the flexible manipulator, the joint angles are known from the encoder outputs.
The joint velocities can be obtained by filtering and differentiating the joint position
signals. The elastic terms &’s are observed by a set of accelerometers attached to the tip of

each link and pointed to the ¥ and Z axes with respect to the links local coordinates.

The accelerometer signals can be integrated on-line to give the tips velocities

v=40) =23 @.11)
By substituting for ¢. ,¢.,¢. from Chapter 6, the velocities v, can be expressed as a
ix iy’ Viz i

function of the first derivative of the elastic terms § as follows

v=yb+n (8.12)
where v is a function of @, 6 and §. n is a function of 6, 6. From equation (8.11}, & can be

obtained by least squares synthesis as follow:

. -1
8= (wlv) v(v-n) (8.13)

The elastic terms & can be obtained by integrating equation (8.13).
The following were considered in implementing the estimator for the system

® The inversion of the matrix (v7v) 4 x 4 Was implemented symbolically to achieve

fast execution of the code. However, the sampling rate was limited to | KHz.

® No noise model was assumed. However, the noise was attenuated by filtering

accelerometer signals using 1-40 Hz band-pass filter and due to double integration.



® A linearized version of this estimator can be derived from chapter 6 as follows:

By attaching accelerometers to the tips of the elastic links along the (XYZ) ., the

output acceleration a; can be given by

0,7,
a; =T, (ri+g) (8.149)
Using equations (6.18 to 6.21), and neglecting the coriolis and centrifugal terms,

the relationship between the sensor output a; and the deformation 8, can be [99]

1 12, _ 1 1
F{l - - mzNT m3N; R3 m3N; NZNS l:az} (8.15)
5 ~1 ’
1°3 0 miAS a3
where
- _ -1,T
Ny = Koo KIV.OT, (Kay = Kaak KT 8.17)
2 23%22Y3 13831 7833833833 .
— _ 1,T
Ny = K3) — K33K3;K33 (8.18)
The final result is
mng m3L%
-—— 0 --— (2L200893+3L3) 0
3E, I, 3E,l,
3 3
m2L2 m,L a
5 0 -2 (2L, +3L5c080,) || 2
_ 21 6E,1; %2
m3Lg a3)’
0 0 - 0 a
3E,1, 3z
3
m.L
0 0 0 33
L 3E5/4 ] (8.19)

where a,,, a,_ and a;,, a4, are the accelerations at the tip of the second and third
links, respectively, pointed toward the reference frame (XYZ),,. Szy, d,, and

83‘,, 53: are the deflections at the second and third links, respectively.
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® This estimator will give acceptable results for the purpose of vibration control since

the effect of the coriolis and centrifugal terms is small under low speed operations.

® The implementation of the estimator given by equation (8.19) do=s not require a lot

of computations. Hence, it may be used for controllers that need a lot of

computations such as the adaptive inverse dynamics algorithm.

8.5 Step Response

The system was simulated under a unit step command without taking into

consideration the gravity and friction. The gains for the LQR were calculated by linearizing

the system around (8,= 0°, €, = 90°). The joint angles response is as shown in Figures

(8.2,8.3, and 8.4), the links-tip deflections in Figures (8.5, 8.6).

It is shown that the system reaches the final position in less than 3 seconds. The

response of the system is faster than the response under PD-control due to the improvement

of the bandwidth. However, the deflection of the links tips is larger due to the significant

increase of speed. The end-points, under this control strategy, settle down quickly after 2
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t (sec)

Figure (8.2): Re:sponse of the base joint under

LQR control.
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Figure (8.4): Response of the elbow joint

under LQR control.
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Figure (8.6): Links tip deflections in the horizontal

Figure (8.5): Links tip deflections of the vertical
direction under LQR control.

direction under LQR control.

second without vibration.

In order to show the effect of linearization angles used to calculate the LQR gains
on the system performance, the response of the sysiem based on a linearization

configuration around (92- 70°, 93 = —60°) is as shown in Figures (8.7,8.8,8.9, and 8.10).

It is shown that the vertical performance remains acceptable. However, the
horizontal motion suffers residual vibration. Consequently, adaptive control techniques
have to be used to keep acceptable performance for ail robot configurations. The first

algorithm that was implemented on the robot was the gain-scheduling technique.
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8.6 Simulation

The system is simulated under a step of one-second rise time. The response of the
joint angles is shown in Figures (8.11,8.12, and 8.13) where the desired trajectory is
represented by dashed lines and the actual response is represented by solid lines. The links
tip deflections are as shown in Figures (8.14, 8.15). It is shown that the tracking
performance is better than that which correspond to the PD controller and the tip vibration

is less.
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8.7 Gain Scheduling Control

The optimal feedback gains depend on the choice of the linearization point.
Although the system may remain stable, the performance will be degraded if the design
point is different from the operating point. It is known that the damping and bandwidth are
adversely affected by a large change of the elbow and shoulder angles. Notice the change

in the natural frequencies with the elbow and shoulder change in Section (5.1.4).

The performance can be improved using the gain-scheduling technique. The gains
of the controller, based on the same cost function, are computed, discretized and stored off-
line. As the robot sweeps across the workspace, the gains of the vertical motion change
according to the elbow angle whereas the horizontal motion gains are a function of the

elbow and shoulder angles.

As presented in [68], the main advantage of gain-scheduling is that linear design
methods are applied to the linearized system at each operating point. Also, gain-scheduled
systems tend to respond rapidly to changes in the operating conditions. The major

difficulties are the selection of the scheduling procedure and the proof of stability.

In the flexible manipulator case, the gains were calculated as the angles are stepped
by 0.1 radians. The gains were scheduled using a linear interpolation technique. Figure
(8.16) shows the variation of some of the regulator gains with the changes of angles. Note
that the values of the gains used for the plotting are the discretized values based on the
algorithm in Appendix B. This technique will give a consistent performance at all the robot

configurations.

1t should be noted that the gains are functions of the angles only and not the angular

velocities which may cause the response to deteriorate for high angular velocities. Also, the
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payload change is not taken into account which may even result in instability for high
payloads. In order to schedule the gains for the payload, a payload identification technique
is required [15]). However, experiments with payload identification were not successful due
to the presence of noise and unmodeiled dynamics. Also, this technique usually leads to a
poor transient response for the system due to the time taken to identify the payload. This

led to the implementation of Lyapunov-based adaptive controllers.

8.8 Experimental Results

The gain-scheduling linear quadratic regulator (GS-LQR) controller, with gravity
and friction compensation was implemented at a sampling rate of 1 kHz, while the sensors
reading, averaging and filtering used 4 kHz to reduce the noise. The maneuver was set to

be 40° step in one second for all the joints which ends with an elbow-up posture.

The response for the robot joint under GS-LQR are shown in Figures (8.17,8.18,
and 8.19) where the desired trajectory is represented by dashed-lines and the actual

response is represented by solid lines. It is shown that the tracking is better than the PD
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Figure (8.17): Experimental response of the base Figure (8.18): Experimental response of the shoulder

joint under GS-LQR control. joint under GS-LQR control.
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although there exists a little overshoot at the elbow and shoulder joints.

The defiection at the tips of the links (in mm) are shown in Figures (8.20, 8.21). It
is shown that the residual vibration (after 1 sec. maneuver) are quickly damped under the
controller action. However, the end-point deflections take some time to reach zero due to

the effect of friction.

In order to demonstrate the effect of friction, the same maneuver was run without
friction compensation. The base response is shown in Figure (8.22). It is shown that the

robot undergoes a large steady-state error and the tracking performance is poor. The
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Figure (8.22). Expenimental response of the base  Figure (8.23): Third link tip deflections under GS-
under GS-LQR without friction LQR control  without friction
compensation. compensation.

deflection of the tip of the third link is shown in Figure (8.23). It is shown that the robot
undergoes excessive residual vibration. Since the torques required to damp the vibration are
relatively small compared to the torques required for the rigid body motion, they can not
overcome the joints coulomb friction which results in having residual vibration at the end

of motion.

By increasing the payload by 0.5 kg, the response of the robot joints are shown in
Figures (8.24,8.25, and 8.26). It is shown that the robot joints are still able to track the
desired trajectory even with an increase of the tip mass. This is attributed to the significant
reduction of the effect payload dynamics on the motors due to the high ratio of the gear

reducers implemented at the joints.

However, the tip of the links continue to vibrate and take longer to damp out. Since
the tip mass is changed, the GS-LQR will operate off its design-point due to the change of
the robot properties. Note that the GS-LQR controller is adaptive with respect to the change

in the configuration and not to the change of payload.

This led to the design of more advanced controllers which will be presented in the

following chapters.
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8.9 Development of a Robust Nonlinear Observer

In this section, a robust observer is developed to be implemented for estimating the
states of flexible manipulators. Throughout the thesis work, estimating the states was done
using either equations (8.13) or (8.19). Although acceptable performance was obtained, the
previous estimators can not be implemented for the general case of flexible manipulators.
Also, obtaining the joint velocities from position measurements by differentiation may

cause problems if the position signals are contaminated by noise.

The developed observer uses the sliding modes approach to improve the

performance of a quasi-linear observer, as will be shown.

8.9.1 Development of a Quasi-Linear Observer

As explained in Section 8.4, the joint angles and the velocities of the links tip are
measured. Hence, a linear observer can be designed based on the linearized system
(equations 8.1,8.2) using optimal control theory. The equation for the full order observer
can be given by [24]

F=AS+Bu+K,(y-9) (8.20)

where, y is the measurements vector given by

y = [91, 92, 63, ‘sz, Vag V3y, V3Z] (8.21)

and K, is the observer gain calculated by minimizing a cost function give by

= T T
J = j(x Q. x+y nyy)dt (8.22)
0
The end-point velocities of the robot may be sufficient to estimate all the states.

However, more measurements are used to improve the observer robustness.

The observer was designed by linearizing the equations of motion around (0., = 0°,
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6, = 90°) and changing the weighting matrices 0, Q,, SO that it would be twice as fast

as the linearized system under regulator control. The weighting matrices are

Q. = diag ([10,10, 10, 1,1, 1, 1, 100, 100, 100, 10, 10, 10, 10] ) (8.23)

XX
Q,, = 005 x diag ([1, 1, 1, 10, 10, 10, 10] ) (8.24)
In order to further improve the robustness in implementing the observer, the
estimated output § was not calculated based on the linearized equations of motion
(equation 8.2), rather the nonlinear functions relating the estimated links tip velocities to

the estimated states were used by differentiating equations (6.9,6.10) symbolically.

The robot joints are commanded, in simulation, to track a trapezoidal trajectory,
shown in Figure (8.29), under the high gains PD control presented in Section 7.4. The
estimated states (represented by dotted-lines) were compared with the actual states

(represented by solid-lines) as shown in Figures (8.30 to 8.34).

It is shown that the estimation for the joint velocities is poor although the estimation

for the flexible states is acceptable.

8.9.2 Development of a Sliding Observer

Sliding observers are nonlinear state estimators based on the theory of variable
structure systems [77]. Designing controllers based on the sliding modes approach feature
good robustness for specific classes of nonlinear tracking problems. However, their

applicability is limited since they involve large control authority and control chattering.

Sliding observers offer advantages similar to those of sliding controllers. Further,
the chattering issues in sliding observers are only linked to numerical implementation and

hence does not have influence on the system response.
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The cquation for the sliding observer is given by

F = As+Bu+K,(y=9) +K,I, (8.25)

where K is the sliding observer gain, /_is given by

I, = {sign(y=3)} (8.26)

and sign (y) is the signum function defined to be sign (y) = y/Iyl.

Hence, the sliding observer is basically the linear observer (or Lucnberger observer)
with the additional “switching” term K _/_ that will be used to guarantee robustness against

modelling errors/uncertainties.

Misawa and Hedrick {54} presented two methods to design the observer gain K  for
specific classes of nonl:aear systems. The method used here is as follows: since the quasi-
linear observer gave acceptable results in estimating the flexible states, the error vector used

in I was taken to be the joint angles position error only, and K was taken to be

k.= (10-100)B (8.27)

The system was simulated under the conditions present in Section 8.9.1. Figures

(8.35 10 8.38) show the response of the observer where k. was taken to oe 25B. It is shown
that the performanre of the observer is better than the quasi-linear observer. Note that high
values of K give better tracking performance for the joint velocities but may cause

instability while estimating the flexible states and increase the observer sensitivity to noise.

The response of the observer while the robot payload is chianged is shown in Figures
(8.39 and 8.40). It is shown that the observer performance remains acceptable even with the
change in parameters. This demonstrates the advantages of using such observer in

estimating the states for flexible manipulators.
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- CHAPTER 9 -

MODEL REFERENCE ADAPTIVE CONTROL

In this chapter, a general nonlinear controller is derived for manipulators with
flexible links. The controller is based on the model reference approach. The adaptation
technique was selected to be in the integral form and the gains were chosen to guarantee

the stability of the system in the Lyapunov sense.

The reference model was derived from the linearized state equations with an
optimal state feedback. The controller was enhanced further by choosing the reference

model to be the full linearized system under optimal control.

9.1 Introduction

Model reference adaptive control (MRAC) is not new as a basic principle (see
Landau [46]). Several authors applied this technique in the control of rigid robots.
Dubowsky and DesForges [21] proposed an adaptive controller structure based on the
gradient method. Stoten [82] used a model reference strategy to successfully control a two-
link rigid manipulator. Stoten then extended this method to the Minimal Controller

Synthesis (MCS) algorithm and proved the robustness of both methods [83].

For rigid robots, MRAC has some advantages over the computed torque method as
the effect of modelling and parameter disturbance errors can be neglected and the amount

of computation required is comparatively small.

Siciliano et al. [74] used MRAC to successfully control a single link flexible
130
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manipulator. They showed that in order to satisfy the perfect model following conditions,
the reference model was chosen from the linearized model of the system as optimally
controlled. The nominal trajectory is commanded using a dynamic filter, which limits this
method to the single link case due to the nonlinear interaction between the joint variables

for the multi-link case.

9.2 The Controller Structure

The complete MRAC strategy is shown in Figure (9.1). The idea behind the control
algorithm is to make the plant follow a perfect model (the reference model) which enables
the synthesis of the LMRC (linear model reference controller) gains . k and to generate
ideal states x, and output trajectories y, following the reference trajectory. The adaptive

loop changes the gains k,_and & by 8k and &k as the state error x,, is detected.

As shown in Chapter 4, the robot equations of motion, in the state-space form, arc

REFERENCE | *m C —» 'm
MODEL I

x
FLEXIBLE Y NONLINEAR ’%
ROBOT OBSERVER -

} N

...................

ADAPTIVE
- CONTROLLER

Figure (9.1): MRAC block diagram.
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given by [82]

X = Ax+ Bu 9.1)
y = Cx (9.2)
Let the reference model be
Xy = Ap X, + 8,7 (9.3)
where

0 I 0
A = ,B_ = 9.9)

o= o afen = )

Let the standard linear state feedback tracking controller be

u = —kx+ krr (9.5)

and defining the model following error to be

X, = X, —x (9.6)
By substraction of equations (9.3) from (9.1) and by substituting for « by equation

(9.5). This leads to

X, = A x,+ (A, —A+Bk)x+ (B, —Bk)r 9.7

Consequently, the error dynamics reduces to

Xg = A X, (9.8)

if
A —A+Bk =0 9.9
B,—Bk =0 (9.10)

This implies that the error tends to zero (x e 0, )ast increases, whatever the

initial finite error x_ (v) may be. Hence, the desired objective of x — x _ is achieved. This
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implies that y — ¥,y » assuming that C matrix is the same for both the plant and the reference

model. Performing the pseudo inverse of B in equations (9.9) and (9.10) gives

k =BT(A—Am) 9.1

k = BB (9.12)

-1 . .
where, Bt = (878) ™ 87 is the pseudo inverse for 8.

By back substitution to equation (9.9) and equation (9.10). Then,

(1-BBf) (A, —A) =0 (9.13)

(1-B8Y)B, =0 (9.14)
which are called the Ezberger’s conditions [46,82]. These conditions are used to verify the
choice of the reference model although small terms on the right-hand side (instead of the

zeros) can be accepted without too much loss of closed-loop performance.

9.3 The Reference Model

The gain matrix & is chosen to be the solution for the minimization of a performance

index problem for the linearized system. Then

A, =A-Bik 9.15)
where, A; and B, are the linearized system matrices. This choice satisfies the Ezberger’s
conditions. B, is chosen to give a “perfect model following” condition. The manipulator

joint angles must reach certain values equal to the reference trajectory in a given time as

well as equal to the reference model. This implies that

Jo=y=F (9.16)
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where, r is the reference trajectory. The “bar” notation implies the steady state values.
This requirement is satisfied when x,_ is zero, which gives

X=-A'B,r (9.17)

where, the inverse always exists. Consequently,

Y = —CA,'B,F (9.18)

From equation (9.17), this simply leads to

B, = -A,Ct (9.19)

9.4 The MRAC Adaptive Loop

Equation (9.5) can be extended to include the adaptive terms as follows

u=—(k+8k)x+ (k +8k)r (9.20)

Substituting with the control action into equation (9.1), and by subtraction of

equation (9.3) from the result. This leads to

X, = A x, + (Am—A+B(k+8k))x+ (8,,—B(k +8k))r 9.21)
Let

A. = A—B(k+8k) 9.22)

B, = B(k +38k) (9.23)

Then, equation (9.21) becomes

)Ee=Amxe+(Am-Ac)x+(Bm—Bc)r (9.294)
In order to satisfy the model following conditions and using equations (9.9) and

(9.10), then
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- - o
A, —A. = BSk (9.25)

Bm - Bc = —BSk’ (9.26)
which means that the gains will vary according to the difference between the reference model

and the plant. Substituting back to equation (9.7)

X, = A, x,+ B8kx— B8k r (9.27)
In order to guarantee the stability of the overall system, defining the Lyapunov

function candidate V to be [74,46]

V=xlPx,+r((a,-4)T0 (A, —A)) +1r((B, -B)TW(B -B)) (9.28)

where, P, ®, ¥ are positive definite matrices. Taking the derivative of V results in

V= ilPx, +xPi,+2r (A, —A )T (~0A)) +2r (B, -B )T (-¥B,))  (929)

substituting from equations (9.7), (9.25) and (9.26). Then,

V=xl (AlP+PA,)x,+2ir ((B8K)T (PxpT — @A) ) +20r ((-88k )T (Px T —WB,))
(9.30)

since,

T =
A, P+PA, = -0 (9.31)
where Q is a positive definite matrix, and equation (9.31) is the Lyapunov equation form

[46,71].
From equations (9.25) and (9.26), it can be shown that

A. = — B8k — B8k (9.32)

i

B. = B8k, + B8k, (9.33)
since A_, B, are constant matrices. Assuming that the gains change are much faster than the

system changes, that is
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5k, 8k, >> B, A, (9.34)

then,

v = —xlox, +20r ((88k) T (Px x" + ®B8K)) +2tr ((—BSK,) T (Px T - wBSK,)) (9.35)
In order to guarantee that V is negative (i.e. stability in the Lyapunov sense), the

T

terms Pxx' + ®F8k, PxerT - WBsk, should vanish. This is achieved by multiplying both

equations by 87 and solving for 8k, 8%, . Then
sk = —(8ToB) " 8TPs T (9.36)

. -1
sk, = (8TwB)” BTPx T 9.37)
These equations can be integrated given the initial conditions to give 5k, 5k .
. -1 -1 .
Assuming that the terms —(BT¢B) and (BTWB) can be considered as constant

terms. By setting C, = B7p, then

y, = B'Px, = Cx (9.38)

Then, the solution for 8k, 8k can be put in an integral form

f

Sk = j ay,xTdt (9.39)
0
t
8k, = jazyeert (9.40)
0
where, a , a, >0 should be large enough to overcome the changes in B while keeping 1%

negative and hence assure stability in the Lyapunov sense [77].

This formula is similar to the form derived by Landau [46] and Stoten [82).
However, in their formulae they added low-value constant terms B‘s to the integration in
order to improve the convergence of the gains. The final formulae for the adaptation gains
are

'

8k = Jalyexrdt + BlyexT (9.41)
0
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8k =

, “2-"e’T‘“ + Bz-"e'r (9.42)

Oy =~

In general, the ratio of « to B is taken to be around 10:1, and a,, B, arc taken to be

equal to o, B, for simplicity.

9.5 Steps for Designing MRAC

The steps for designing a model reference adaptive controller are summarized in the

following points:

1. An optimal regulator is designed based on the linearized form of the state-space
equations (equation 9.1) where the weighting functions can be selected to give a

maximum real part for the poles of the linearized system using MATRIXy [37).
2. The reference model is designed using equations (9.15) and (9.19).
3. The k, matrix is estimated using equation (9.12).

4. The Q matrix is chosen to be a diagonal matrix with positive elements. Then, the
matrix is calculated by solving Lyapunov equation (9.31) using the routine shown

in Appendix B.
5. The C, matrix is estimated and the y, vector is calculated based on equation (9.38).

6. The adaptation gains are calculated based on equations (9.41) and (9.42).

9.6 Simulation of MRAC

The joint angle trajectory is chosen to be a step command with a trajectory shown
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in Figure (9.2) and an amplitude of 1 radian for all the joints. This particular trajectory has
infinite acceleration at the start and end which results in large tip deflection and residual
vibration. The manipulator is initially at rest at the home position. The optimal regulator
was designed similar to that given in Chapter 8 and the system was linearized around the

home position for the calculations of the LQR gains. The payload was taken to be 0.5 kg.

Two different sets of simulation were carried out, cne with constant state feedback
and the other with the adaptation algorithm where « and B ‘were chosen arbitrary to 20.0

and 1.0, respectively. @ was chosen to be (refer to Section 6.4 for the corresponding state)

Q = diag (10, 10, 10, 1, 1, 1, 1, 100, 100, 100, 10, 10, 10, 10) (9.43)

The response for the joint angles is as shown in Figures (9.3, 9.4, and 9.5) and the
tip vibration is as shown in Figures (9.6, 9.7). It is shown that the adaptive controller
behaves better than the constant feedback controller as the latter operates off the design

point with respect to the configuration change.

The tip mass is changed to 1.55 kg. The joint angles response, for both controllers,
is shown in Figures (9.8, 9.9, and 9.10). The tip vibration is shown in Figures (9.11, 9.12).
It is shown that since the constant feedback controller is employed off the design point, with
respect to the configuration and parameters changes, the vibration is large, although the
system remains stable. However, the adaptive controller retains its response and behaves as
expected, but the system is a little slower than the previous case. The slow motion of the
system under MRAC is attributed to the choice of the reference model. In conclusion, this

controller can not be used for trajectory tracking.
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9.7 Experimental Results

The model reference adaptive control law is applied to the system at a sampling rate
of 1 kHz. Note that the control law was implemented with friction and gravity
compensation. The gravity torques were calculated for the nominal payload of 1.55 kg.
Also, for this control law, the reference inputs are the desired angles only and it docs not

require the velocity as input.

The values of a and B were set to be 5.0, 0.5. Note that they are adjusted by trial
and error to achieve better tracking and vibration damping for the robot. It was noticed that
high values of a and B excite the system unmodelled dynamics, and especially the
torsional modes of the elbow joint present at 26.5 Hz. The system tends also to vibrate
excessively, with high values of the adaptation gains, in the horizontal direction at some

positions (e.g. the straight horizontal configuration).

The system response to a one-second step is shown in Figures (9.13 10 9.17), where
the reference input is represented by dashed-lines and the respi-1<e by solid lines. It is
shown that the robot joints do not track the reference input. This is attributed to the choice

of the reference model as it has relatively low bandwidth.

The low values of the end-points deflections are due to the slow movement of the

robot. However, the residual vibrations are damped quickly by the control action.

By attaching 0.5 kg to the robot tip, the response the system to the one-second time
step is shown in Figures (9.18 to 9.22). It is shown that the robot behavior is the same as its
behavior with the regular load. The end-point deflections changed slightly. However, they

are close to the values of the previous experiment.
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9.8 Enhancement of the Reference Model

It was shown in the previous simulation that the response of the system is slower
than the LQR and it does not track the trajectory perfectly. This is attributed to the choice
of the referencc model. The performance can be improved by choosing a faster reference

model that satisfies the Ezberger’s conditions.

Given the linearized system matrices as shown in Figure (9.23), wherc A, B, are the

lincarized state matrices, the reference model can be taken to be the linearized system as

optimally controlled.

...................................................................... 6,8

‘0,8

-

Figure (9.23): The Optimally-Controlled Linearized System.
Hence, A_, B, can be given according to Figure (9.23) to be

A, = A =Bk (9.44)
B, = Bk, (9.45)
k. = kCt (9.46)

r

where C is a 6x14 matrix that corresponds the joint angles and velocities as outputs from
the state variable (equation (9.22)), and k is chosen similar to Section 9.3. Also, It can be

shown that this choice satisfies the Ezberger’s conditions.
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9.9 Simulation Results

Similar to section 9.7, the reference model was taken to be the linearized system
under optimal state feedback. Using MATRIX, the reference model was synthesized using

equations (9.44 to 9.46).

Simulation was carried out on two cases, with 0.5 kg payload and with 1.55 kg
payload. o and 3 were chosen arbitrary to be 0.1 and 0.01, respectively. @ was chosen to

be

Q = diag (02,1, 1,0.1,001,0.1,001,1,5,5, 1,0.1, 1, 0.5) (9.47)

Figures (9.24 to 9.28) shows the response of the system under the adaptive
controller. It is shown that the response of the system is as fast as the system under LQR
control. However, under MRAC the system has little overshoot and the end-point deflection
is less. This is attributed to the model following characteristics of the system as it tends to

follow the reference model.

The response of the system with higher, and unexpected payload is shewn in
Figures (9.29 to 9.33). It is shown that the system under the adaptive controller preserves

its characteristics and tbs response is almost the same as that with the increased payload.

It was also found out that very high values of « and B, which implies faster
adaptation, produce instability to the system. Hence, there is always a trade-off between
instability and faster adaptation. The values of « can be calculated based on equation

(9.36), while the values of B are usually taken to be one-tenth the values of «.
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9.10 Experimental Results

The control law was applied to the system at a sampling rate of 1 kHz with friction
and gravity compensation. Similar to section 9.7, the gravity torques were calculated for
the nominal payload of 1.55 kg. Note that this control law requires the input to be the
reference position and velocity. The values of a and B were set, by trial and error, to be

1.0, 0.1, respectively.

The response to a one-second time step is shown in Figures (9.34 t0 9.38), where
the reference input is represented by dashed-lines and the actual response by solid lines. It
is shown that the robot tracks the desired trajectory accurately, especially for the shoulder
and the elbow. Little overshoot was present in the base, which is attributed to the choice of
the reference model. Notice that there is no steady-state error at the joints due to the integral

action present in implementing this particular control algorithm.

The end-point deflections are higher than the case presented in section 9.7 due to
the relatively faster motion but the residual vibrations are quickly damped under the control

action.

By attaching 0.5 kg to the tip of the robot, the response of the system to the one-
second time step is shown in Figures (9.39 to 9.43). It is shown, as expecte 1, that the robot
performance is very close to the regular payload case. The end-points deflections in the
vertical direction are relatively higher than the regular load case due to the increase of

dynamic loading at the tip.

In conclusion, this control algorithm gives very good results in trajectory tracking
as well as vibration damping, but care has to be taken in choosing the reference model for

the system.
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- CHAPTER 10 -

INVERSE DYNAMICS CONTROL

The passivity based inverse dynamic approach provides an elegant technique for the
adaptive control of rigid robots. In this chapter, an extension of the passivity-based inverse
dynamics approach, as applied to a rigid robot, to the case of manipulators with rotary joints
and flexible links is derived. It is proved that this technique leads to a globally
asymptotically stable system. An adaptive version of the inverse dynamics method is
derived and simulated on the experimental manipulator. The internal dynamics of the

system was found to be asymptotically stable due to the existence of structural damping.

In order to balance the internal flexible dynamics, a regulator is implemented in the
feedback loop in parallel with the inverse dynamics algorithm. Experimental results show

good performance of the controller.

10.1 Introduction

The term inverse dynamics (also called computed torque) is a special case of the
notation of feedback linearization of nonlinear sysiems (Slotine and Li [76,78]). Inverse
dynamics was used by Craig [18,19] for the adaptive control of rigid manipulators. The
same technique was discussed for manipulators with flexible joints by Uhlik [93]. Ortega
and Spong [64] classified the inverse dynamics based controllers into two groups. The first

class involves obtaining a closed loop system which is linear and decoupled by feeding
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back the dynamics of the system (Craig [18,19]). The objective of the nonlinear controller
for the second class is to preserve the passivity property of the rigid robot and hence achieve

global stability (Slotine and Li [77,78]).

When implementing the first technique on manipulators with flexible links, the full
linearization property is lost. This was first discussed by De Luca and Siciliano [20] as they
attempt to control a nonlinear single flexible link. They showed that a subsystem, which
describes the elastic behavior associated with the arm deformation, arises which becomes
unobservable and possibly nonlinear. The dynamic characteristics of this subsystems
depend on the particular output chosen. If the output was chosen to be the end-point
position, it will lead to instability due to the unstable zero dynamics. This unstable zero
dynamics also corresponds to the non-minimum phase behavior of the linear model of the

single flexible link discussed by Schmitz [71}].

10.2 Properties of the Robot Equations of Motion

Centinkunt and Book {14] presented a general symbolic form for the equations of
motion for manipulators with compliant links and rotary joints. The general form of the

equations of motion is
D(5,0) L:|+C(8 9,35,0) El [0 F;I[::l+[o O}U I:g(f:) 8)] |:0} (10.1)

where, 0 € &' is the joint angles, and 5 € R" ! is the vibration generalized coordinates, i
is the number of rotary joints, n is the number of degrees of freedom of the system.
D (8,0) € R™" (1) isthe inertia matrix. C (8,0, 8, 8) is the coriolis and centrifugal terms

matrix. Fg € R is the linear joint damping matrix. Fs € R™" is the structural damping
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matrix. g(8,8) € R is the gravitational for-es vector. K € g-NAn-D)

is the linear
stiffness matrix. t € R is the applied joint torque and the zero term in the torque exists if
constrained modes are used in the modal expansion formulation, i.e. the slope at the hub is

zero!. Note that the joint flexibility is not included in the analysis. Define

g7 = [o7,87] (10.2)

where, g € R". The gravity and stiffness terms were defined as

G(q) = [‘ (l‘:’:)] (10.3)

The final form for the equations of motion is

D(q)§+C(q,4)§+Fj+G(q) =T (10.4)
This form will be used since it is simiiar to the form of the cquations of motion for

rigid robots. Here, T € R” is the applied torque vector given by the following equation
]T

T = [ti’on—i

= Bt (10.5)
t=B'T (10.6)

i . . -1 7. .
where B € R is a mapping matrix, and 8t = (878) " 87 is the pseudo inverse for 5.

Although the equations of motion are nonlinear and complex they have
fundamental properties which can be used to facilitate the control design. For the case of a

manipulator with rotary rigid joints and flexible links, it has the following propertics [64]:

Property 1: The inertia matrix D (q) is symmetric, positive definite and uniformly

bounded as a function of g. In addition 0< ||D (g) ||

Property 2: There is an independent control input for each joint but not for each

1. Although this case is considered here, the derivation is for the general case.
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degree of freedom as opposed to the rigid manipulators case.

Property 3: Some of the constant parameters (e.g. links mass, inertia, etc.) appear
as coefficients of known functions of the generalized coordinates. (In case of rigid robots,

all the parameters satisfy this condition).

Property 4: The matrix (D (q) —2C(q,4¢)) is skew symmetric. The proof of this
property is as follows: Neglecting the damping, the derivative of the kinetic and potential

energies must equal to the power input by the actuators minus the gravitationa: forces

1 . . .
-2—34;(qTDq+8TK6) = qT(‘t—g) (10.7)

By expanding the derivative

T
TG+ %q'TDq'+8 k5 = T (1-2) (10.8)

Then, by substituting from the robot equation (equation 10.1) we get [78]
T, n .
g (D-2C)é¢ =0 (10.9)

Property 5: The stiffness and damping matrices are positive definite and usually
constant. The joint damping matrix is diagonal. The structural damping matrix is usually

taken to be proportional to the stiffness matrixZ,

The fourth property is the key for the passivity property as will be explained later.
Ortega and Spong [64] showed that the inverse dynamics control algorithm can be

classified by whether they use the skew-symmetry property or not.

2. without loss of generality, the damping matrix will be neglected in the passivity controller deri-
vation
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10.3 Passivity Structure for Flexible Manipulators

A mapping between x and y (x — y) is said to be passive if and only if [64]

T
<xly> . = J' ydr 2 - (10.10)

0
for some B> 0 and for all T. For rigid robots, the mapping between the torque and the joint
velocity is passive. This relationship can be extended to robots with flexible links. The

proof is as follows: The Hamiltonian # is the sum of the kinetic and potential energies, i.c.

1. .
H=:i'D(@)i+P(q) (10.11)
where, P (¢) is the potential energy. The total derivative of the Hamiltonian must equal the

power input by the actuators, hence

di _ T .
The mapping g to T is
T T

<dt> = [§'1ar = [aH = H(D) -H(0) 2-H(0) = <d|z> (10.13)
0 0

since H (T) is non negative for all T, which implies that the mapping between the torque

7 and joint velocity @ for manipulators with flexible links and rotary joints is passive.

10.4 Joint Based Inverse Dynamics

The joint-b~sed direct inverse dynamics approach will be presented to be compared
with the passivity-based inverse dynamics algorithms. The development of the control law
is according to the inversion algorithm by Hirschorn [32]. The derivation is accomplished

by choosing an output y associated with the flexible manipulator system, the input torque
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1 that is capable of exactly reproducing the given trajectory yd (t) can be derived by means
of system inversion technique. If the output is chosen to be the joint angles 6, the inversion
technigue will lead to a stable system since the reiationship between the input torque and

output joint angle is passive.

Equation (10.1) can be put in the form

I ) ) )
3 kg Lo

Pos D5 | ng (6, 6,8, 8) 0 Fg| |38

where ng, n, are nonlinear vect. *5. i king the inverse of the inertia matrix D to be

oo = (B BT (10.15)
L”uz B2
"iquating for 8,
L B, (t~g—Fn0- )+B (=n —Fé—KS)
F—I _ [P 8 12 5778 (10.16)

Choosing the output y to be the joint angle 6 and applying the inversion approach

[20,64], we can sce from equation (10.16) that

¥ =B, (t—g=Fg8—ng) +B 13(~ng~Fsb—K8) (10.17)
Chonosing o7 as the desired joint trajectory. Note that 64 has to be 2 function twice

differcntiable with time. The linearizing control torque can be obtained by setting

y=0 (10.18)

Solving for r

d
$10.90.0,95,8) =e+ne+I99+b’ (9 +B (n8+F88+K5)) (10.19)

The input-output relation from the external 1. .erence 64 to the joint angle 6 is now
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linear and in the form of double integration as a result of choosing the inversion control

torque T given by equation (10.19) [20].

The above control algorithm can be implemented in an open-loop or closed-loop
scheme as demonstrated by De Luca and Siciliano [20). However, the closed-loop
implementation is more robust against the uncertainty in the robot parameters. This is
achieved by replacing 8 by 8, where 8 is the “virtual” reference trajectory. The

relationship between 8, and 6 is given by

9, = é"+xv(éd—é) +Kp(9d—0) (10.20)
where Kk, and K are positive definitc matrices. The virtual reference trajectory is
distinguished from the desired trajectory since it is implemented in the closed loop to
guarantee robustness. The closed-loop control torque is obtained by substituting from

equation (10.20) to equation (10.19) to be

v = 1(8% 6,0,85) +B7] (Kp(ﬂd—ﬂ) +Kv(éd—9) ) (10.21)
The control algorithm (equation (10.21)) can be implemented according to the

block diagram shown in Figure (10.1) by setting

K(p) = Kvp+Kp (10.22)

NONLINEAR FLEXIBLE | geaf NONLINEAR .
CONTROLLER - ROBOT STAE ESTIMATOR

N

Inner Loop

Outer Loop

Figure (10.1): Adaptive inverse dynamics block diagram.
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where p is Laplace operator. The implementation of this ~ontrol algorithm in real-time is
almost impossible since it involves the estimation of the full inertia matrix and inverting it.
Uhlik [93] showed that the inversion control algorithms have to be implemented at high
sampling rate otherwise the continuous time approximation will begin to faii and result in
instability. He concluded that for flexible systems, the sampling rate must be 30 to 50 times

the highest natural frequency desired to be controlled.

The adaptive version of this control algorithm can not be derived either since the
control torque is not a linear function of the constant manipulator parameter due to the

inversion of the inertia matrix [64].

10.5 The Passive-Controller Design

The control law for the actuator torques are required to get the manipulator,
knowing its p2rameters, to track a desired trajectory qd (1), in the presence of model
imprecision. This can be achieved by restricting the tracking error to lie on a sliding surface

given by [78,77)

s =qg+Ag =0 (10.23)
where A is a constant positive definite matrix, and g (1) = q(r) — ¢ 4(1) is the tracking

error. Assuming the control law to be

T=D(q)4§,+C(q,4)4,+G(q) ~Kps (10.24)
where ¢ (1) = g,(¢) ~K(p)q and K (p) is according to the block diagram shown in

Figure (10.1). According to Slotine and Li [78], K (p) 1is taken to be

K(p) = (10.25)

N>
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or g, is taken to be

t

4, = ag— Afadr (10.26)
0
s can be shown to be
s=d—d, = a+Aq (10.27)
§=§-4, (10.28)

Choosing the Lyapunov function candidate {" to be

V() = —s Tp(q)s (10.29)
Where, D (¢q) is always positive definite, hence, V (¢) is always positive. Differentiating

V(1) yields

V(1) = +5TDs +sTDs (10.30)

|8}

Substituting for s and s

V() = % Dq—lis Dq,+s Dq—-sTDq (10.31)

Substituting for Dy and D¢, from the controller and manipulator equaiions

respectively,
. lr.. 1 7T.. . .
V() = isTDq - ESTqu +sT(T-¢4-G) -sT (T~ C4,-G+K)») (10.32)
1 : o1 : .
= isT(D ~-2C)g— isT(D -20C) 4, - sTKDs
Using property 4 (equation (10.9)), the final expression for v (1) is
V() = =sTK,s (10.33)

This expression implies that the control law leads to a globally stable system with

zero steady-state error for the joint position. Using equation (10.6), the actuators torques are

1=8"(D(q)§,+C(4,4)4,+G(q) —K,3) (10.34)
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which can be viewed as taking the rows that correspond to the joint angles. Hence, the
implementation of the control algorithm does not involve calculating all terms of D, C, G,
rather the rows that correspond to the control torques are only considered. This will reduce
the time required for the calculation and hence make it easier for real-time control

implementation.

The control algorithm (equation (10.24)) can be implemented in view of the block

diagram shown in Figure (10.1) by setting

Q, = Gg+P°K(p)e (1035)
In general, K (p) can be chosen to be of the form of PID controller, in order to

improve the robustness [69,64], as follows

K
I
K(p) = K, +Kp+— (10.36)

where K » K, and K, are positive definite matrices, chosen by trial and error to achieve good

trajectory tracking performance.

10.6 Extension to the Adaptive Controller

In the previous derivation, the controller is derived assuming that the robot
parameters are known. Furthermore, with the use of the sliding modes technique, robust
stability is guaranteed for the controller/manipulator. However, the above technique can be

extended to the adaptive case as opposed to the direct inverse dynamic technique.

The idea behind the adaptive controller is to update the manipulator parameters in
the control equation on-line by implementing a regressor driven by the tracking error. The
derivation of this controller will be based on property 3. Although the rigid manipulator

equations are linear in the parameters, the flexible manipulator equations are linear for
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almost all the parameters except for the links length (due to the bending stiffness

dependency on length cubed). Hence, the manipulator equations can be written as

Y(¢ 4 ¢ a)a=T (10.37)
where o are the nonlinear parameters (links lengths) and a arc the linear parameters,
usually the joints inertia, links masses, payload and links stiffness. The giobal convergence

of the controller is demonstrated by considering the following Lyapunov function

V() = —s Tpe+ 'aTra (10.38)

where a = a—a is the parameter estimation error vector, and I' is a positive definite

matrix. The controller equation is as follows

T=D0(9)§,+C(q,4)4,+G(q) —Kps (10.39)
where L .
D(q) = D(q) +D(q)
C(g,4) = C(q,4) +C(q)
(Aq q) : (.q 4 (q (10.40)
G(q) = G(q)+G(q)
Differentiating v yields
Vo sTDi+ %.STD5+&TFZ (10.41)
Substituting for s and s yields
V) = %srbq—%sTD'qrﬂT(T—cq—G) -sT(T-¢4,-G+kp) +a Ta (10.42)
= %sT(D—zc)q'— %sr(b—2C)qr—sTKDs+sT(btjr+é‘c)r+&) +ara
Using property 4 (equation (10.5)), the final expression for v (1) is
V= ~sTkys+sT{Dj,+Cj,+G)+d T (10.43)
From equation (10.37)

D§,+C4,+G = Ya (10.44)
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Substituting into equation (10.42) we get

V= —sTKys+a (Ta+1Ts) (10.45)
The above equation suggests that V is always negative by choosing an adaptation

law so that the term between brackets vanishes. That is

a=-T'Ys (10.46)
Thus, the adaptive controller is globally stable. The structure of the control law
(equations (10.46) and (10.39)) can be implemented according to the block diagram shown

in Figure (10.1). Note that T is chosen so that it guarantees parameter convergence.

10.7 Effect of the Flexible Dynamics

The application of the contre! - rque (equation (10.34)) is more involved since there
is no applied torque for the elastic uegrees of freedom. The dynamics of the flexible
variables is of particular interest due to the need to damp out the arm vibration when it

reaches a stop.

By expanding equation (10.14) to isolate the flexible variables equation

DB +DTgsb+ng+Feb+g = 1 (10.47)

Dggb+Dgd+ng+ Fs8+K8 = 0 (10.48)

Equation (10.47) is the rigid variables (8) equation which is bala,..»d by the control

torque using either the direct inverse dynamics approach or the passivity based approach.
However, there is no applied torque at the right hand side of equation (10.48) which

represents the flexible variables behavior.
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The stability of the flexible variables when the arm reaches a stop condition is
closely related to the zero-dynamics, as demonstrated by De Luca and Siciliano [20]. Under
this condition the angular velocities 6 and the angular accelerations 8 are set to zeros in

equation (10.48). Consequently, the flexible variables equation decomes

Dgb+rgb+K8 =0 (10.49)

which is a nonlinear equation of the flexible variables as Dg is nonlincar. Since Dy Fg K
are positive definite matrices, the internal dynamics are asymptotically stable and
eventually the residual oscillation will be damped out. If F = 0, i.e, there is no passive

damping in the structure, the fiexib:e internal dynamics will be critically stable.

10.8 Simulation Results

The above control algorithm was simulated on the robot based on the parameters
shown in Table (6.1). The trajectory function was taken to be a one-second nise-time fifth
order step according to Chapter 7. The simulation was carried out on the control system

CAD package MATRIXx([37].

In the first simulation run, the model parameters were assumed to be known and the
controller was based on equation (10.34) (i.e. it did not include any adaptation). The valuc

of X p was chosen to be

Ky = diag (40, 40, 40]) (10.50)
The outer loop was chosen to be a PD control law, where kp and «k, are chosen for
the base joint to be 10.0, 6.0, for the shoulder 12.0, 8.0, and for the elbow joint to be 12.0,

8.0, respectively. The response for the joint angles is shown in Figures (10.2,10.3 and 10.4).
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Figure (10.6): Tip deflection of the third link
under inverse dynamics control
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The desired trajectories are represented by dotted-line and the actual trajectorics by the
solid lines. It is shown that the robot tracks the desired trajectory accurately with a

negligible error compared to the other control strategies.

The link tips vibrations in the horizontal and vertical directions are shown in
Figures (10.5, 10.6), where the horizontal deflections are represented by dotted-lines. It is
shown that the robot exhibits excessive vibrations at the end motion. The vibrations are
damped only due to the existence of small structural damping in the system (damping ratios
less than 1% for the vibration modes according to Chapter 5). However, the amplitude of

the tip deflections are less than those of the PD control presented in Chapter 7.

The second simulation was carried out on the -ystem assuming unknown
parameters case, where the payload mass was set for the controller to be 1.5 kg while for
the actual system load was 2.0 kg. The other parameters were left the same. The unknown

parameters chosen for the regression were the three joints inertia, elbow mass, and payload.

The controller was based on equations (10.46) and (10.39) where K, and the outer

D

loop gains were taken similar to the previous run. I' was chosen to be

I' = diag ({20, 20, 20, 20, 20] ) (10.51)

The joints response are shown in Figures (10.7,10.8,10.9). It is shown that although

some parameters are unknown, the robot still tracks the desired trajectory accurately. The
deflections of the links are shown in Figures (10.11, 10.12). Similar to the previous casc,
the tips vibration are damped only under the influence of structural damping. However, the

amplitude is a little larger than in the previous case.

By observing this controller, it is shown that structural damping plays an i:iponiant

role in this controller. By increasing the structural damping, i.e. building the robot with
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under the adaptation law.

composite material [53] or using constraint layer damping [1,2} for the links, the

performance of the inverse dynamics controller will be substantially improved.

An example for parameters regression is the change of the payload and shoulder
inertia shown in Figure (10.12, 10.13). It is shown that both do not converge to the exact
values, which is 0.0 for the shoulder inertia and 0.45 for the payload. This is attributed to
the characteristics of the trajectory as it is not persistently exciting. As explained in Slotinc
and Li [76,77,78], the reference trajectory must sufficiently excite the dynamic response of

the system so that the effects of the various parameters can be distinguished. However, the

tracking performance is still acceptable.

10.9 Development of a Cemposite Controllers

It was concluded that the control algorithm, based on the inverse dynamics

technique, relies on the existence of links structural damping to decay of the end-points
residual vibration.

A composite controller is proposed that consssts of implementing a state feedback
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Figure (10.14): Block diagram for the composite controller.

regulator in the feedback ioop with the inverse dynamics controller as shown in Figure
(10.14). Note that the state-regulator takes the elastic degrees of freedom (8) and their
derivative as input and outputs torque. The calculation of the regulator gains is based on
minimizing a certain performance index for the linearized system similar to Chapter 8,

while considering the elastic deflection part only.

The primary advantage of using the regulator is to damp out the residual vibration
by providing the torques for that assuming perfect model tracking by the adaptive

controller. Hence, for the unknown parameters case, the control input equations are

. N o7
v= 8" (D(9)§, +C(44)d,+GC(a) —Kps) K [8,8] (10.52)
where Kg is the elastic-deflections gains matrix and the negative sign assumes that the
desired elastic deflections are zero. Note that for the unknown parameter case, the

controller equations are modified similar to equation (10.52).
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10.10 Simulation - the Composite Controller

The system was simulated assuming an unknown parameter case similar to that in
Section 10.8. The joint angles response are as shown in Figures (10.15, 10.16 and 10.17).

It is shown that the robot tracks the desired trajectory perfectly.

The response for the elastic deflections is shown in Figures (10.18, 1C.19). It is
shown that the residual vibrations are damped by the controller. Notice that the regulator
has a negligible effect on the rigid body response of the system since the required torques
to damp out the vibration (generated by the regulator) are much less than the torques

required for the rigid body motion (generated by the inverse dynamics control'er).

10.11 Experimental Results

The composite controller, with friction and gravity compensation, is applicd to the
system at a sampling rate of S00 Hz. The gravity torques were calculated for the nominal
payload of 1.55 kg. The system parameters were taken to be close to the real values. Note

that this control strategy takes as reference-input the position, velocity and acceleration.

The values of X, I and the outer loop PD gains were taken to be the sume as given
in Section 10.9. Additional integral action was added to the outer loop and the gains for it
were 1.0, 2.0 and 2.0 for the base, shoulder and elbow, respectively. K5 in equation (10.52)
was taken to be the scheduled gains leveloped in Chapter 8. The implementation of the

scheduled gains gave better response than that with fixed gains.

The response to a one-seconu rise-time fifth order step is shown in Figures (10.20

to 10.24), where the reference input is represented by dashed-lines and the response by
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solid lines. It is shown that the robot tracks the desired trajectory accurately. However. there
are some disturbances as the robot reaches the desired position due to zeroing the friction

effect.

It is shown that the residual vibrations are quickly damped out under the controller
action although the robot tends to reach the desired position relatively slowly under the

integral action.

By attaching an additional 0.5 kg to the tip of the robot, the response of the system
is shown in Figures {10.25 to 10.29). It is shown that the robot behavior was similar to the
previous case. The end-»oint deflections are relatively higher than the previous case;

however, the vibrations are quickly damped out.

In conclusion, this controller combines the advantases of two controllers, namely,
the inverse dynamics contro.ler for the parameter adaptation action and the high tracking
performance, and the optimal controller for damping out the vibration. However, it has the

disadvantage of the heavy computation involved in its implementation.

Without using a DSP-based real-time computer it would seem to be infcasible to

implement this kind of controller in real-time.

Modification of this controller may include on-line identification and compensation

of column friction to improve the tracking performance.
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- CHAPTER 11 -

PERFORMANCE CCMPARISON FOR THE
CONTROLLERS

In this chapter, the controllers designed and applied on the robot are compared in a
unified way. The performance measures are classified into tracking mcasures and
disturbance rejection measures. Before presenting the results, a summary of the controllers,

tests, and performance measures are described.

11.1 Summary of the Designed Controllers

In this thesis, four main controllers are successfully designed and implemented
namely: the collocated PD controller, the GS-LQR (gain-scheduling linear quadratic
regulator), the MRAC (model reference adapiive controller). the INV-GS (adaptive inverse

dynamics with gain-scheduling). A summary of these controllers is shown in Table (11.1).

As a performance measure for the simplscity «  ..p! .nenting these controllers, the
maximum allowable sampling rate is defined. It is obiuiltd by increasing the sampling rate
till the DSP becomes unable to run the code. A quick indication of the used number of
FLOPS (floating point operations per second) can be estimated knowing that the real-time

controller runs at 33 MFLOPS.

The PD controller, described in Chapter 7, uses only the joint angles. Hence, it does
not have much influence on damping the vibration cf the end-point. Because of its
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simplicity, it can be implemented at a high sampling rate.
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The GS-LQR, described in Chapter 8, represents the first trial toward a non-

collocated controller design. This controller uses a look-up table, based on the robot

configuration, to find the appropriate gains. Hence, it is configuration adaptable but not

payload adaptable. It is relatively simpler than the other two controllers.

The MRAC, described in Chapter 9, tries to get the robot to follow a reference

model. As a result, this controller is fully adaptive with respect to the payload and

configuration. However, the performance is limited by the choice of the reference model.

The INV-GS, described in Chapter 10, uses the adaptive inverse dynamics to

linearize the robot and a secondary loop of GS-LQR to damp out the vibration. This

controller is also adaptive. However, it needs substantial computational overhead to

linearize the robot which makes it impossible to be used on relatively slow hardware.

Table 11.1: Summary of the controllers.

sampling rate

PD GS-LQR MRAC INV-GS
Sensors joint angles | joint angles & | joint angles & | joint angles &
accelerometers | accelerometers | accelerometers
Sampling rate S kHz 4 kHz 1 kHz 500 Hz
Max. allowable | 10 kHz 6 kHz 2.5kHz 700 Hz

11.2 Definition of the Performance Measures

The performance measures are divided into trajectory tracking performance, and

disturbance rejection performance. Trajectory tracking performance measures the ability of

the controller to track a desired trajectory with minimum residual vibration. Whereas,
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disturbance rejection performance measures the ability of the controller to damp the end-

point vibration if it is disturbed from its original position.

In this section, quantitative measures are defined and used to compare various

controllers.

11.2.1 Trajectory Tracking Measures

The following definitions are used to assess the ability of the controller to track a

desired trajectory with end-point vibration damping.
Joint Tracking Error
It is defined, for each angle, as the maximum deviation from the desired path

egif’x = max(”eei(r)”) (1.1

where || x|| is the norm of x.
Joint Steady-State Error

It is defined as the error between the final position of the joint and the desired final

position.
1 — o0

ea: = lim “eei(t) ” (11.2)

Maximum End-Point Deflection

It is defined as the maximum amplitude of the end-point residual vibration after

finishing the trajectory.

max _ t
Sy,z —max(”S py,z(')“) VIET, (11.3)
where, T, is the time taken to execute the reference trajectory (the rise-time for the fifth

order step).
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End-Point Settling Time

It is a measure of the time elapsed, after the end of the maneuver, for the end-point
to reach an acceptable icvel of deflection or acceleration in the horizontal and vertical
directions. Note that the value for the acceptable deflection was set, for simplicity, to S mm

peak-to-peak. Mathematically, it can be defined as

min {T* (5, 2)|[84] < Setle_Threshold } Vi1 (11.4)

11.2.2 Disturbance Rejection Measures

To examine the ability of the controller in responding to external disturbances, the
end-point of the manipulator is disturbed from its regulated configuration and observed
while it returns back. The controller disturbance rejection can be judged by the following

measures:
Settling Time

Measures how quickly the robot returns to its regulation position. It is defined
similar to equation (11.4). The settle threshold is taken to be 5% of the initial value in the

horizontal and vertical directions.
End-Point Vibration Energy

It is defined by measuring the energy in the decaying end-point vibration in the

horizontal and vertical direction. This can be calculated by

o0

_ (<2
Eye = .[8 yz (0] 4t (11.5)
0

where, for simplicity, the integral is calculated for a period of 10 sec.
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It should be noted that for the disturbance rejection, the robot has to be at an

11.3 Experimental Results

measures will depend on the robot position.

arbitrary nominal pos.iion under the controller action. Since the system is nonlinear, these

In this section, the performance of the four developed controllers is presented. Also,

11.3.1 Trajectory Tracking Performance

the torques developed by the controllers are compared.

As a standard test for all the controllers, the maneuver was set to be a 40° fifth-order

Table 11.2: Trajectory tracking performance.

shown in Table (11.2) for the case of normal payload and 0.5 kg increase in the payload.

PD PD (high gains) | GS-LQR l MRAC LINV-GS

am k&) 100 05 Joo Jo0s5 [oo Jos Joo |05 Joo |05
0% (deg) |24 |45 |05 [05 [-0401 [-02 [02 |-16]-0
05 deg) |04 |19 |01 [-10 Jo2 Jos Joa Jo3z oo |10
05 deg) |19 |35 Joo [os Joo {14 o1 [-00 o Jou
6% (deg) |82 | 105[36 |41 |50 [30 [es [60 |-20]-10
omax deg) |74 |98 |19 |32 |42 [70 [20 [as [27]-2s
omax deg) [ 41 |65 [15  [18 |23 [45 [14a Jio [28[20
smexmm) [26 |45 [35  [6s [11 [25 [12 13 14 [us
e mm) |20 [40 Jas  [s1 J32 Je2 15 |17 |27 |25
T (sec) |55 |81 [1s2 [175 |13 [32 38 [a0 a0 |52
15Gec) |50 |72 |85 [o2 [a2 |75 Jas Jas [as {47

step in one second for all the joints which ends with an elbow-up posture. The results arc
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The high-gain PD is shown in the comparative study to demonstrate the effect of
increasc of the PD gains. It is shown that the PD (with low-gains) has better vibrational
performance than the high-gains PD. However, the tracking performance is bad. The high-
gain PD has the best tracking performance for the joint angles but the worst for the vibration

damping.

The performance of the GS-LQR tends to deteriorate, in the horizontal direction,
with the addition of payload. However, it has the best performance in damping the vertical

vibration in the regular payload case.

The adaptive controllers performance remains acceptable even with the change of
the payload whereas the performance of the other controllers tends to suffer more vibration.
From the above results, it is shown that the MRAC and the INV-GS seem to have the best

performance.

11.3.2 Disturbance Rejection Performance

In this section, the disturbance rejection performance of the experimental
manipulator under various control schemes is demonstrated. Disturbance can enter into the
system at many locations and can have many characteristics e.g. noise at the sensors,

impulsive loads applied to the robot, sudden release of the payload, etc.

For the robot case, one particular type of disturbance was considered which consists
of applying a quick move to the end-point and observing it returning back to its regulated

position. This is equivalent to applying an impulsive load at the end-point.

The manipulator response, since it is nonlinear, will depend on the robot position

and the amplitude of motion. For this reason, the robot was tested around a regulated
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nominal position of (40°, 40°, 40°), measured from the vertical home position, with regular

payload and larger payload cases.

Figure (11.1 to 11.5) shows the disturbance rejection performance for the different
controllers. The horizontal deflections are represented by dashed lines while the vertical
deflections are represented by solid lines and the results are taken for the case of a regular
payload (Notice that the vertical scaling is not the same for all figures). The energy of the
end-point as well as the settling time in the horizontal and vertical directions are shown in

Table (11.3).

Table 11.3: Disturbance rejection performance.

PD PD (high gains) GS-LQR MRAC INV-GS

Am (kg) 00 |05 o0 0.5 0.0
E;"“X(mmz) 172 | 194 | 258 310 1785 | 110. f110. | 120. | 124 | 140.
E?9% (mm?) {180 | 215 |264. | 298 115. 1280 | 160 | 180. | 137 | 145.
Ty (sec.) 50 |65 |80 10. 20 |45 |30 |23 32 |35
ﬁ (sec.) 55 |70 |92 9.5 35 190 |45 |48 |35 |4¢

0.5 0.0 0.5 00 |05

It is shown that both the energy and scttling time show the controller effect in
damping out the end-point vibration. Lower values of energy and scttling time indicate

better performance for the controller.

By increasing the gains of the PD, the joint becomes more stiff which results in
more settling time and vibration at the end-point. As for the GS-LQR, by increasing the
payload, the end-point tends to “wiggle™. This means that the system poles tend to be have

lower damping and become critically stable 1n the horizontal direction.

As for the MRAC and the INV-GS, they preserve acceptable performance with the

increase of payload.
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Figure (11.2): End-point disturbance rejection

under PD control with high gains.
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11.3.3 Required Torques

In this section, a comparison ot the required torques by the dittferent controllers is
presented, where u, u,, 145 are the input voltages for the basc, shoulder and clbow

respectively.

For each motor, four components of torques are due to the following: the rigid-body

motion and vibration suppression, the gravity compensation, and the triction compensation.

The output torques for the different controllers have chatter due to the friction
compensation dither. Notice that the up and down DC values of the torques, after the
maneuver, are due to th ~olumb friction compensation which depends on the sign of the

vibration suppression torque.

As for the INV-GS, the velocity estimation is smoothed by reducing the cut-off

frequency of the low-pass filter. Hence, the torque signals do not undergo excessive chatter.

The level of the torques for the different controllers are close to cach other. Note

that the INV-GS demands higher level of torques *han the rest of controllers.

Trials to run the robot downward at a similar maneuver but with a 0.5 sccond rise-
time did not succeed and resulted in collapsing the robot due to shoulder amplifier
saturation as the voltage level exceeded 4 volts. However, moving it upward was

successful.
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- CHAPTER 12 -

CONCLUSIONS AND RECOMMENDATIONS

This chapter is divided into two sections. The first section is a swmmary of the
research presented in the thesis, conclusions and general observations. The second section
includes a discussion of some recommended future rescarch topics that can be considered

as an extension to the current thesis work.

12.1 Summary and General Observations

The control of the robot end-point vibration has been achieved. Experimental
verification of the simulation was accomplished throughout the thesis context. This would
give confideace in implementing the modelling, identification, and control algorithms to a

wide range of space and industrial manipulators.

Three issues are significant in this thesis: the 3D configuration of the robot, the
modelling and identification, and the sensing techniques as well as adaptive control

algorithms.

12.1.1 The Two-Link 3D Configuration

This is one of the most difficult and challenging problems in the area of flexible
manipulators since most researchers investigated planar manipulators composed of a

single-link or a two-link. The system is complex by nature as it is inherently nonlinear. It

184
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undergoes vibration in the horizontal and vertical directions as well as a complex change

of the vibration frequencies with the configuration.

In addition, large space and industrial manipulators which are composed of many
links usually have significant flexibility in the first two links. Hence, the techniques
developed in the thesis can be applicable to many similar systems. The experimental setup

can be casily extended for future research.

12.1.2 Dynamic Modelling and ldentification

The modelling and identification approaches used in this thesis are generic. They
started by deriving a large order model that includes the flexibility of all the components.
This model is used to give a preliminary indication of the system dominant modes, the

analysis bandwidth, and the contribution of the joint flexibility to the dominant modes.

Experimental modal analysis was used to identify the system natural frequencies,
damping and mode shapes. Based on experimental results, a reduced order model that
includes the significant modes is derived to be used for control purposes. Finally, a model

tuning technique was used to tune the model to match the experimental results.

Hence, it is shown that the analogy used in the thesis can be applied to any industrial

or space manipulator.

12.1.3 Vibration Sensing and Adaptive Control

Accelerometers, attached to the tip of the links, were used to measure the robot
vibration. This sensing technique was used due to its availability at relatively low cost and

its wide use in the area of vibration. However, the information about the end-point position
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can only be estimated using the robot kinematics.

Since the system is highly nonlinear, adaptive controllers and nonlinear state
estimators were implemented. Adaptive controllers tend to deal with systems with
uncertainty as they incorporate some sort of on-line adaptation. Hence, they have a certain

degree of learning ability.

Three controllers were developed for the purpose of vibration control, namely:
gain-scheduling regulator (GS-LQR), model rcference adaptive control (MRAC) and
adaptive inverse dynamics (INV-GS). The first algorithm was not adaptable to the change

oi .he payload while the other two are adaptable to both payload and configuration changes.

The performance improvement of the adaptive controllers over the PD control
algorithm was illustrated in the thesis. It was also she'm that the MRAC and INV-GS
behave the best. However, MRAC is recommended for most applications rather than INV-

GS because it is computationally less expensive.

Two nonlinear state estimators were presented in the thesis, the first was developed
specifically for this manipulator in which the flexible states were synthesized using least-

squares, while the second was a general observer based on the sliding modes approach.

It should be noted that the controllers and state estimators, derived in the thesis, can
be easily applied to any industrial or space manipulator provided that the model order is

known and the parameters are partially known.

12.1.4 General Observations

The most general observation that can be drawn from the dissertation is that

“Models are made to be used not to be believed”. Usually, models are not close to perfect



{0, 0, k3b, O, -k3e, 0), [0, O, O, k3c, 0, 0 ),
{0, 0, -k3e, 0, k3d, 0], [0, k3e, 0, 0, 0, k3d])$

delta2 : matrix({ d2x), [ d2y], [ d2z].[ ph2x), { ph2y]. ! ph2z])$
delta3d : matrix([ d3x], [ d3y].[ d3z],{ ph3x],[ ph3y]l.[ ph3z])$

epl:transpose(delta2).stiff2.delta2+ transpose(deltal).stiff3.deltald $
ep2:mass2+*ratsimp(transpose(g).posm2) +mass3*ratsimp(transpose(q).posm3) $

lag: ratsimp(ekl + ek2 - .5*epl - ep2);
/* ---- Calculating the values for the angles phi’s ---- */
r2e2t: matrix({ 0, -ph2zt, ph2yt],[ ph2zt, 0, -ph2xt],
[ -ph2yt, ph2xt, 0])$
ustar: ratsimp(r0l.rl2.r2e2.re23.def2);
for i thru 3 do ¢
v31[i][1]): ratsimp(diff(ustar[i],ph2xt)),
v32[1i][1): ratsimp(diff(ustar[i],ph2yt)),
v33(i}f1l): ratsimp(diff(ustar{i],ph2zt)) }:

for i thru 3 do {
v3{i)[1): w33[i1(1},v3([i}[2): v32(i][1},
v3{i)[3]): v33[i][1]) )
k22:matrix((k2c,0,0},(0,k2d,0},(0,0,k2d])$
k3l:matrix({k3a,0,0),(0,k3b,0),{0,0,k3b))$
k32:matrix([k3¢c,0,0]),[0,k3d4,0],[0,0,k3d1)$
k23:matrix([01010]: [0,0,k2e], [0"k2e.0])$
k33:matrix((0,0,0],[0,0,k3e], [0, -k3e,0])$
aa:ratsimp(-invert(k32) . transpose(k33))$
bb2:ratsimp(-invert(k22) . transpose(k23))$
temp:ratsimp(k31l - k33 . invert(k32) . transpose(k33))$
t3:ratsimp(r01 . rl2 . r2e2 . re23;$
bbl:ratsimp(invert(k22) . transpose(v3) . t3 . temp)$
ph3:ratsimp(aa . def3);
ph2:ratsimp(bbl . def3)+ratsimp(bb2 . def2);
ph3t: diff(ph3,t); ph2t: diff(ph2,t);
kill(k22,k31,k32,k23,k33,aa,bb2,t3,bbl, v3);

/* substitue and simplify the lagrangian for the analysis */
lag:subst(ph3t[1]{1], ph3xt,lag)$ lag:subst(ph3t[2][1], ph3yt, laqg)$
lag:subst(ph3t([3]([1], ph3zt, lag)$ lag:subst(ph2t[1][1](1]), ph2xt, lag)$
lag:subst(ph2t[2][1]1{1},ph2yt,lag)$lag:subst(ph2t([3](1]({1],ph22t, lag)$

lag:subst(ph3{1][1], ph3x,lag)$ lag:subst(ph3[2]{1]), ph3y, lag)$
lag:subst(ph3{3][1], ph3z, lag)$ lag:subst(ph2[1](1){1], ph2x, lag)$
lag:subst(ph2(2])[1)[1], ph2y, lag)$ lag:subst(ph2{3){11[1), ph2z, lag)$

lag: subst(0, d2xt, lag)}$ /* Zeroing the axial deflection */
lag: subst(0, d3xt, lag)$
lag: subst(0, d2x, lag)$ lag: subst(0, d3x, lag)$

dont : [ thl, th2, th3, d2y, d2z, d3y, d3z,
thlt, th2t, th3t, d2yt, d2zt, d3yt, d3zt,
thltt, th2tt, th3tt, d2ytt, d2ztt ,d3ytt, d3ztt];

zz:{];
lag:crunch(lag,dont, 'tmp)$

eql: ratsimp(diff(diff(lag,thlt),t)
eqg2: ratsimp(diff(diff(lag,th2t),t)
eqg3: ratsimp(diff(diff(lag,th3t),t)
eq4: ratsimp(diff(diff(lag,d2yt).t)
eqS: ratsimp(diff(diff(lag,d2zt),t)
eqgb: ratsimp(diff(diff(lag,d3yt),t)
eq7: ratsimp(diff(diff(lag,d3zt),t)

diff(lag,thl)}$
diff(lag,th2))$
diff(lag,th3))$
diff(lag,d2y))$
diff(lag,d2z))$
diff(lag,d3y))$
diff(lag,d3z))$

kill(lag):;
eqns: [eql,eq2,eqg3,eqd,eq5,eq6,eq7]$

for i thru length(egns) do (
eqns (i) :ratsimp(eqns|i]),
egns{i]:crunch(egns(i]),dont, 'aaa) )$

204
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12.2.2 Robot Configurations

The advantages of the manipulator configuration studied in this thesis 1s that it can
be easily extended to study several other configurations. Some of these configurations are

discussed below:
Mini-Manipulators

As explained in Section 2.1, the new trend in designing space manipulators is to
make a large flexible two-link, 3D, robot to carry out the gross motion. The end of this

manipulator will have a mini-manipulator to carry out the fine motion.

Extending the modelling and control algorithms to include mini-manipulators
should be investigated. Also, the mini-manipulator motion can be controlled so :hat the

overall vibration may be damped out.
Cooperative Flexible Manipulators

This is a future research area that will have significant applications in space and in
industry. However, cooperation of multiple flexible robots is difficult to model successfully
since it is a closed-chain flexible mechanism with a lot of interactions. Hence, advanced

modelling and control strategies have to be developed for such systems.
Mobile Base Manipulators

For the space-station, the manipulator will be mounted on a mobile base. The

interaction of the base motion and the robot motion has to be investigated.

Payload with Dynamics

Usually, large space manipulators are required to handle large payloads (such as
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solar-cell arrays). Such payloads can not be modelled as a simple point mass or even as a
rigid body mass with inertia. The control strategies have to be modified to cope with the

unknown dynamics of the payload.
Force Control of Flexible Links and Flexible Joints Manipulators

While force control of manipulators with flexible joints has been investigated b)}
several authors [S1, 80], introducing the links flexibility was not investigated yet. This is
attributed to the large size of the problem and difficulties involved in the modelling and
control. However, this problem is of particular interest to the industry as a second step that

follows end-point trajectory tracking.

12.2.3 Dynamic Modelling

For flexible manipulators, accurate modelling is required in order to appropriately

design the control algorithm.

Throughout the thesis, the modelling was done using Lagrangian dynamics where
the flexible vibration of the links was imposed over the rigid body motion using either the
assumed modes method or the finite element approach. Symbolic algebra packages were

used to carry out the derivation.

It is required to develop a comprehensive, user friendly package that can generate
the equations of motion for the manipulator given its configuration. The package should
have the options of including several modelling issues such as an arbitrary number of
modes per link, the payload dynamics, the links centrifugal stiffening, etc. The package

should also be capable of generating an optimized code in FORTRAN or C.

A technique that seems to be promising for such development is Kane’s approach
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[38,39]. Developing such a package will permit studying the influence of many different

modelling issues and whether they should be neglected or kept.

Also, parametric study, as a first step toward optimizing the robot design. can be
easily done using such a n: kage, e.g. by introducing non-uniform cross-section and

strategic locations ‘or the n-.ink sensors to achieve desired performance.

Another issue that needs to be investigated is the modelling of links that are made
of laminated coi. _ “site structures. Making links out of composite material can incrcase the
payload to weight ratio for the manipulator up to 40%. Also, inducing significant joint and

link damping will alter the system dynamics and improve the performance.

Finally, another area that is important for robotic applications is the modelling of
harmonic dnives and the dynamics of friction present at the robot joints. Although friction
was reduced by feedforward compensation, accurate modelling is required to lead

eventually to better end-point tracking performance.

12.2.4 Control and Identification Strategies

The identification done in the thesis was based on experimental modal analysis. It
is bighly desirable to develop unified identification algorithms for any industrial
manipulator to identify its inertias, masses, joints and links flexibility, etc. The degree of

flexibility of the manipulator has to be addressed.

The area of suppressing robot vibrations using impulse shaping and command
filtering is of particular interest since most industrial robots are controlled by PD controllers
[50]. It is required to develop unified methods based on these techniques and incorporate

them with an existing industrial robot controller to analyze its performance.
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An area of particular interest, especially if any advanced control strategy was used,
is reconfigurable control. It was found that if an accelerometer is disconnected, while the
robot is under the control action, the system goes dangerously unstable and eventually leads
to breaking the robot. Hence, it will be hazardous to implement any of these control
algorithms unless redundant sensors were used and handled by a reconfigurable controller

to predict and compensate for the failure of one of the sensors.

Using redundant sensors will lead to the area of sensor fusion. An advanced

estimation algorithm is required to handle multiple sensors.

Impiementing and comparing different controllers is an open-ended research topic

for control, in general.

Robust control is easier to implement than adaptive control since it is a fixed
controller structure. H-Infinity [111] was used previously in the area of flexible structure

control but was never implemented on flexible manipulators.

Another approach is to enhance the control algorithms using Fuzzy-Logic [22] or
Neural Networks. Also, the use of neural networks to identify flexible manipulators is an

interesting topic of research.

An important robotics control topic is torque control for the robot joints. Ideally, the
torque is proportional to the motor current. In fact, compliance and nonlinearties (such as
friction and backlash) cause significant deviations from the desired case. Although
considerable research was done in this area, there is not any commercial torque controller

that is being used in industry. Hence, this can be considered as a future research topic.

As final research topic, the experimental application of the developed modelling

and control strategies on an industrial robot is worthily of consideration.



- APPENDIX A -

ROBOT CONSTRUCTION AND SPECIFICATIONS

This appendix contains a detailed description of the manipulator hardware. It is
divided into two sections to cover the manipulator construction, and the specifications for

the actuators, transmission, and brakes.

A.1 The Manipulator Construction

The robot, as shown in Figure (A.1), consists of four subassemblics, namely: the
base, the shoulder, the elbow, and the end-effector. For the thesis work, the end-effector was

just a cylindrical mass.

The robot is powered by DC servo motors, shown in Figure (A.2). The motor
chosen for the elbow joint was CMC 3505. The motors for the shoulder and base joints
were CMC 3515. The specifications for the motors are shown in Section A.2. Note that the

motors are over-designed for future implementation of larger and heavier links.

The motors are driven by a PWM Amplifier in the current mode. The amplifier
types are Galil ESA-10/75 with switching frequency of 20 KHz. The current limits are 12

Amps continuous, 40 Amps peak which are sufficient for most robotic applications.

Harmonic drives with a ratio 100:1 are attached to each motor to provide maximum
torque at minimum joint weight. This was particularly needed for the elbow joint. The

harmonic drive components are shown in Figure (A.3). Note that the chosen harmonic drive
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Figure (A.1): Construction drawing of the robot (fully extended).

3500 SERIES Diameter 3.38°

@ P
* »

Figure (A.2): Construction drawing of a DC motor.
(Courtesy of CMC Inc.)



HDC CUP COMPONENT GEAR SET

Flexspline

An elliptical,
nonrigid,
external gear

Circular Spline
A round, rigid,
internal gear

Wave Generator
An elliptical
ball bearing assembly

Figure (A.3): The harmonic drive components.
(Courtesy of Harmonic Drive Inc.)
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2)(8)(5 No PartNo. | DESCRIPTION
3 —_ 1 1M-01 Output shaft
= q 2 1M-02 Retaining ring
®\2 . 3 1M-03 Retaining ring
- 4 1M-04 Bearing
- - - - 2 5 1M-05 Housing
s 6 1M-06 Harmonic drive
~ 7 1M-07 Cover
- 8 1M-08 Bush

Figure (A.4): Construction drawing of the harmonic drive gearbox.
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unit for the elbow was HDC-5C, whereas for the shoulder and base were HDC-1M. The
gearbox that contains the harmonic drive is made in-house. The construction drawing for

the gearbox assembly is shown in Figure (A.4).

The joints design includes the base, shoulder and elbow joints. The design work was
carried out on the solid modelling module of SDRC I-DEAS Ver. 5. The working drawings
for all the components, carried out on the drafting module of the package, are available in

(105].

The base construction drawing is shown in Figure (A.5) and the exploded assembly
is shown in Figure (A.6). Note that the base joint does not have a brake since it is acting in

the horizontal direction.

The construction drawing for the shoulder joint is shown in Figure (A.7). The
assembly drawing is shown in Figure (A.8). The elbow joint is the same as the shoulder

joint but smaller in size.

The motors for both joints had to be extended from the back to allow the mounting
of fail-safe brakes. For the elbow joint, the brake type was MFSB 7-6, while for the
shoulder the brake type was MFSB 26-8 (from Electroid Inc.). This particular design for

the joints was chosen because of its simplicity and low cost.

The links were made of Aluminum tubes (Al 6061-T6) following the pipe standard
specifications. The first link was Pipe std. 0.75” Dia Sch. 40 and 0.75 m length, while the

second link was Pipe std 0.25” Dia Sch. 80 and 0.75 m length.

It should be noted that the robot design is modular to allow various links
configurations. The joints can also be easily modified to include springs to simulate the

joints flexibility.
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DESCRIPTION
1 1M Harmonic Drive
2 BO1 Supporting plate
| 3 B0O2 Outer retainer
4 B03 Outer retainer (top)
5 B804 Bearing
6 BOS Inner relainer
7 B06 Rotating plate

Figure (A.5): Construction drawing of the base joint.

Figure (A.6): Exploded view of the base joint assembly.
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®\ Q. ] 6
No. PartNo. | DESCRIPTION
AN @i ™~ A @ 1 S01 Supporting plate
@-— I I /® 2 S02 Left end
O 3 so3 Right end
. \ 4 S04 Brake support
@ - - SN 5 805 Drive crank
" 6 S06 Dummy crank
7 $07 Dummy shaft
8 Fail safe brake
9 Motor 3515
10 Harmonic drive
1 Flange

Figure (A.7): Construction drawing of the shoulder joint.

Figure (A.8): Shoulder joint assembly.
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A.2 Actuators and Drives Specifications

The specifications for the motors, taken from the manufacturers catalogues, are
shown in Table (A.1), while the specifications for the drives and fail-safe brakes arc shown

in Table (A.2) and Table (A.3), respectively.
Table A.1: Motors specifications.

Motor/Spec. CMC 3505-G | CMC 3515-C
Cont. Torque (Oz-in) 42 103
Peak Torque (Oz-in) ] 350 900
Torq. Sens. (Oz-in/Amp) 16 159
Arm. Resistance (Ohms) 2.2 0.67
Back EMF (Volts/KRPM) 11.8 11.8
Inertia (Oz-In-sec?) 0.0067 0.0135
Mech. Time (ms) 8.1 39
Elect. Time (ms) 1.5 1.7
Weight (Ibs) 3.2 5.0

Table A.2: Harmonic drives specifications,

Drive/Spec. HDC-5C HDC-1M
Max. Output Torque (1b-in) 1240 2640
Out. Torq. at 3500 RPM (Ib-in) | 490 990
No Load Starting Torq. (Oz-in) | 5.0 11.0
Weight (Ibs) 1.2 2.6

Table A.3: Brakes specifications.

Brake/Spec. MFSB-7-6 MFSB-26-8
Rated Static Torque (Ib-in) 7.0 30.0
Weight (lbs) 0.6 1.4
Current at 90 VDC (Amp) 0.06 0.08




- APPENDIX B -

SELECTED SOFTWARE LISTINGS

This appendix contains some of the important software listings that were used in the

process of modelling the manipulator and designing the controllers.

B.1 Modelling Routines

The derivation for the dynamic models as well as the inverse dynamic models for
the robot was carried out on MACSYMA. Presented in this section are the listings for the

derivation of the large and reduced order models.

B.1.1 The Large Order Model

As explained in Chapter 4, the large order model was derived using Lagrangian
dynamics where the elastic deflection was represented using the assumed modes method.

The listing for the MACSY MA routine is as follows:

/* Macsyma derivation for the equations of motion usinr~ the =2ssumed modes method
for a two link manipulator in 3-D using Lagrange’s method. The shape functions
used are the CANT developed using curve-fitting. Assuming that the ass. modes are
the same for the Y,Z directions. The torsion is present, axial deflection is
neglected */

VABEER RS No joint flexibility present in the analysis ------ */
/* dml, dm2 are the links masses per unit length,

lenl, len2 are the links lengths,

massl, mass2 are the tip masses of the links,

diml, dim2, dim3 are the inertia of the motors,

ei is e*i product of the link, gi is the same.

g is the gravity in the -y direction in frame 0 */

batchload(“integ.mac”);

batchload("util.mac”); /* simplification routines */
derivabbrev:true;
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matchdeclare(any, true)s
tellsimp(sin(any)"~2,1-cos(any)"~2)$
linel:100;
writefile(“three_ass.deft.dump”);

/*q2y and g2z are the link def. p2x is the torsional deflection */
depends([thl,th2,th3,02y,q2z,p2x%x,93y,932,p3x],t);

thlt: diff(thl,t)$ th2t: diff(th2,t)$ th3t: diff(th3, t)$

qg2yt: diff(q2y,t)$ q2zt: diff(g2z,t)$ p2xt: diff(p2x,t)s$

g3yt: diff(q3y,t)$ q3zt: diff(q3z,t)$ p3xt: diff(p3x,t)s$

thltt: diff(thl.t,2)$ th2tt: diff(th2,t,2)$ th3tt: diff(th3,t,2)$
g2ytt: diff(q2y,t,2)$ qg2ztt: diff(g2z,t,2)$ p2xtt: diff(p2x,t,2)$
q3ytt: diff(qldy.t,2)$ g3ztt: diff(qg3z,t,2)$ p3xtt: diff(p3x,t,2)$
/* ---- the f2 is the displacement, r is the rotation, p is the torsion */
£2: 3*(x2/len2)"2/2 - (x2/1en2)"3/2;

f2r: ratsimp(diff(£f2,x2))$

f2p: x2/len2;

£3: 3*(x3/len3)"2/2 - (x3/len3)*3/2;

f3r: ratsimp(diff(f3,x3))$

fip: x3/len3;
/* deflection at the tips of both links w/

d2y: ev(q2y*f2, x2=len2)$ d2z: ev(q2z+*f2, x2=len2)$

ph2y: ev(g2z+*f2r, x2=len2)$ ph2z: ev(qg2y*f2r, x2=len2)$

d3y: ev(q3y*f3, x3=1len3)$ d3z. ev(q3z+*f3, x3=lenld)$
ph3y: ev(g3z+*f3r, x3=len3)$ ph3z: ev(q3y*f3r, x3=len3)$

e R Rl rotation matrices for the coord. systems */
r01 : matrix{( cos(thl), -sin(thl), 0],
{ sin(thl), cos(thl) , 0], [ 0, O, 1})$

r12: matrix([ cos(th2), -sin(th2), 0],
{ 0, 0, -11,[ sin(th2), cos(th2), 0])$

r2e2: matrix({ 1, -ph2z, ph2y},
{ ph2z, 1, -p2x], [ -ph2y., p2x, 1])$

re23: matrix({ cos(th3), -sin(th3), 0],
[ sin(th3), cos(th3), 0 ], [0, O, 1])s

r3e3: matrix(( 1, -ph3z, ph3yl,
{ ph3z, 1, -p3x], [ -ph3y, p3x, 1])$

def2: matrix({ 1en2), [ d2y], [ d2z])$

def3: matrix([ len3], [ d3y]}, [ d3z])$

g: matrix([ 0], (0], [-g01)$
VAR rotation matrices for the x’s postion on the links */
def2x: matrix([ x2), [ g2y*f2], [ g2z*f2))$

def3x: matrix([ x3],
[ expand(q3y*f3)], [ expand(qg3z+*f3)])$

r2e2x: matrix(( 1, -g2y+*f2r, g2z+*f2rj},
[ gq2y*f2r, 1, -p2x+%f2p), [ -q2z+f2r, p2x*f2p, 1])$

r3e3x: matrix({ 1, -g3y+*f3r, g3z+f3r],
[ g3y«f3r, 1, -p3x*f3p), [ -g3z+*f3ir, p3x+f3p, 1])$

VAEEEREEE R R R R R R R evaluating the positions +«/
posm2: expand(r0l.rl2 r2e2.def2);
posm3: expand( posm2 + expand(r01.r12.r2e2.re23.r3e3. def3));
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pos2x: expand(r0l1.rl2.r2e2x.def2x)$
pos3x: expand( posm2 + expand(r0l.rl2.r2e2.re23.r3e3x.def3x))$

VARREE R R R R Evaluating the gravitational Pot. energy */

epl :mass2*expand({transpose(g).posm3)+mass3texpand(transpose(qg).posm2)$
ep2: massl2/len2*expand(integ(expand(transpose(g).pos2x),x2,0,1len2))$
ep3: massl3/len3*expand(integ(expand(transpose(g).pos3x),x3,0,1len3))s

VAR R i Evaluating the elastic potential energy */
y2_pp: diff(q2y+*f2,x2,2)$
z2_pp: diff(g2z+*£f2,x2,2)$
p2x_p: diff(p2x+*f2p,x2)$

y3_pp: diff(q3y+*£f3,x3,2)$
z3_pp: diff(q3z+~f3,x3,2)$
p3x_p: diff(p3x*fip,x3)$

epd: integ(expand(ei2wy2 pp~2 + ei2+*z2_pp~2 + gj2*p2x_p~2),x2,0,1len2)$
ep5: integ(expand(eild*y3_pp~2 + ei3*z3_pp~*2 + gj3*p3x_p~2),x3,0,1lend)$
ep: expand(epl + ep2 + ep3 + .5*epd4 + .S5*epS5)$

kill(epl,ep2,ep3,epd4,epS,y2_pp,22_pp,p2X_p,V3i_pp,23_pp):
kill(r01,r12,r2e2,re23,def2,def3,qg,r2e2x,r3=3x);

VA il i evaluating the velocities */
vm2: diff(posm2,t)$ vm3: diff(posm3,t)$

v2x: diff(pos2x,t)$ v3ix: expand(diff(pos3x,t))$

kill(posm2, posm3, pos2x, pos3x);

Vot obtaining the velocity squared */
vm2_2: expand(transpose(vm2).vm2)$ vm3_2: expand(transpose(vm3).vm3)$
v2x_2: expand(transpose(v2x).v2x)$ v3x_2: expand(transpose(v3x).v3x)$

P AR R R R i Calculating the KE for links and masses */
ekl: ratsimp(.S5*iml+*thlt~2 +.5*mass2*vm2_2 + .S5*im2+*th2t~2 + .S5*mass3*
vm3_2 + .5*im3*th3t"2);
ekl2: massl2/len2*integ(v2x_2,x2,0,1len2)/2;
ekll: massl3/len3*integ(v3x_2,x3,0,1len3)/2;
ek: expand(ekl + ekl2 + ekl3)$

P AR R R T Analyzing the lagrangian */
lag: expand{ek - ep):

kill(ekl,ekl2,ekl3, ek, ep):
kill(vm2,vm3,v2x,v3x,vm2_2, vm3_2, v2x_2, v3x_2);

dont:{ thl, th2, th3, q2y, g2z, p2x, q3y, g3z, p3x,

thlt, th2t, th3t, q2yt, qg2zt, p2xt, g3yt, g3zt ,p3xt,

thltt, th2tt, th3tt, qg2ytt, q2ztt, p2xtt, g3vct, g3ztt, p3xtt);

zz: [}

lag:crunch(lag,dont, "tmp)$ /* extracting time-independent terms */
eql: ratsimp(expand(diff(diff(lag,thlt),t) - diff(lag,thl)))$
eq2: ratsimp(expand(diff(diff(lag,th2t),t) - diff(lag,th2)))$
eql: ratsimp(expand(diff(diff(lag,th3t),t) - diff(lag,th3)))$
eq4: ratsimp(expand(diff(diff(lag,g2yt),t) - diff(lag.q2y)))$
eq5: ratsimp(expand(diff(diff(lag,g2zt),t) - diff(lag.q2z)))$
eq6: ratsimp(expand(diff(diff(lag,p2xt),.t) - diff(lag,p2x)))$
eq7: ratsimp(expand(diff(diff(lag,qg3yt).t) - diff(lag,q3y)))$
eqB: ratsimp(expand(diff(diff(lag,q3zt),t) - diff(lag,q3z)))$
eq9: ratsimp(expand(diff(diff(lag,p3xt),t) - diff(lag,p3x)))$

kill(lag)$
eqns: [eql,eq2,eql,eqg4,eq5,eqgb,eq7,eqB, eq9]$
for i thru length(egqns) do (

eqne (i) : ratsimp(eqns[i]).
egqns{i):crunch(eqns([i}.,dont, 'aaa) )$
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kill(eql, eq2, eq3, eqd4, eq5, egb6.eq?.eqB,eq9):
map(fortran,zz); /* coding the time-independent terms */

kill(zz);: zz:(]):

dont:[thltt, th2tt, th3tt, g2ytt, g2ztt, p2xtt, q3ytt, glztt, p3xtt]:
eqns: crunch(egns,dont,’2d); /* collecting the velocity dep. terms */

a:zeromatrix(9,9)$ /* start the extraction of the mass matrix +*/

for i thru 9 do ¢(
tmp:expand((egns(i])).,
alil[1]: coeff(tmp,thltt),
af{i][3]: coeff(tmp,th3tt),
a[i][5): coeff(tmp,g2ztt),
alil{7}: coeff(tmp,g3ytt),
a[il[2]): coeff(tmp,p3xtt) );

]: coeff(tmp,th2tt),
]: coeff(tmp,qg2ytt),
]: coeff(tmp,p2xtt),
}: coeff(tmp,q3ztt),

@ NN

{
{
[
[

—— —

}
)
]
1

[
[Ty

fortran(a);/* Generating the code for the inertial matrix */

egns: subst(0,thltt,eqns)$ eqns:subst(0, th2tt, eqns)$
egns: subst(0, th3tt, egns)$ eqns: subst(0, g2ytt, eqns)$
eqns: subst(0, g2ztt, eqns)$ eqns: subst(0, p2xtt, eqns)$
eqns: subst(0, q3ytt, eqns)$ eqns: subst(0, q3ztt, egns)$
egns: subst(0, p3xtt, eqns)$

for i thru 9 do ( /* generating the state equations */
egns{i):ratsimp(-1*eqns(i]) )$

eqns: subst(x[1],thlt,eqns)$ eqns: subst(x({2],th2t,eqns)$
egns: subst(x[3],th3t,eqns)$ eqns: subst(x[4],g2yt.eqns)$
eqns: subst(x[5],92zt,eqgns)$ egns: subst(x[6],p2xt,eqns)$
eqns: subst(x[7]).,q3yt,eqns)$ eqns: subst(x(8],g3zt,eqns)$
eqns: subst(x[9),p3xt,eqns)$ eqns: subst(x{10]), thl, eqns)$
eqns: subst(x[11], th2, eqns)$ eqns: subst(x[1l2], th3, egns)$
egns: subst(x[13], g2y, egns)$ eqns: subst(x[14], g2z, egns)$
eqns: subst(x[15), p2x, eqns)$ egns: subst(x[16], g3y, eqns)$
egns: subst(x[17), g3z, eqns)$ eqgns: subst(x{i8], p3x, eqns)$

/* generating the code for the state equations */

fortran(eqns(1)); fortran(eqns[2]); fortran(egns(3]);
fortran(eqns(4}); fortran(egns([5])); fortran(egns{6]);
fortran(eqns{7]); fortran(egns(8)); fortran(eqns([9]):

2z: subst(x[1],thlt,zz)$ 2z: subst(x[2],th2t,2z)$

zz: subst(x{3),th3t,zz)$ zz: subst(x[4].,q2yt.,zz)$

zz: subst(x([5],q2zt,zz2)$ zz: subst(x([6],p2xt,zz)$

zz: subst(x([7],gq3yt,zz)$ zz: subst(x[8),q3zt,zz)$

zz: subst(x([9],p3xt,zz)$ zz: subst(x[10]}, thl, zz)$
zz: subst(x([11), th2, zz)$ zz: subst(x([12], th3, zz)$
z2: subst(x[13), q2y, zz)$ zz: subst(x[14), q2z, zz)$
zz: subst(x[15], p2x, zz)$ zz: subst(x([16], q3y, zz)$
zz: subst(x{17]), g3z, 22)$ zz: subst(x([18), p3x, 22)$

map(fortran,zz); /* generating the fortran code for the velocity
and pesition dependent terms */
closefile(); gquit();

B.1.2 The Reduced Order Model

As explained in Chapter 5, a reduced order model was derived using Lagrangian
dynamics where the elastic deflection was represented using the finite element

approximation. The listing for MACSYMA routine is as follows:
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/% Macsyma input file for IWO LINK 3D manipulator. The elastic deflection is
represented by the FE method. Let zero condition be horizontal position, gravity
points down */

/* massl, masg2, are the lumped masses,

lenl, len2 , and lenc are link lengths

ei igs the e*i product for the flexible beam crossection
g is gravity, points in the -y direction in frame 0 */

batchload(*util.mac”);
writefile(“three_lk.app.dump”);
derivabbrev:true;

depends({thl,th2,th3,d2x,d2y,d22,d3x,d3y,d3z,ph2x,ph2y,ph2z,ph3x,ph3y,ph3z],t);

thlt: diff(thl,t)$ th2t: diff(th2,t)$ th3t: diff(th3,t)$
d2xt: diff(d2x,t)$ d2yt: diff(d2y,t)$ d2zt: diff(d2z,t)$
d3xt: diff(d3x,t)$ d3yt: diff(d3y,t)$ d3zt: diff(d3z,t)$
ph2xt: diff(ph2x,t)$ ph2yt: diff(ph2y,t)$ ph2zt: diff(ph2z,t)$
ph3xt: diff(ph3x,t)$ ph3yt: diff(ph3y,t)$ ph3zt: diff(ph3z, t)$

thltt: diff(thl,t,2)$ th2tt: diff(th2,t,2)$ th3tt: diff(th3,t,2)$
d2xtt: Aiff(d2x,t,2)§ d2ytt: diff(d2y,t,2)$ d2ztt: diff(d2z,t,2)$
d3xtt: diff(d3x,t,2)$ d3ytt: diff(d3y,t,2)$ d3ztt: diff(d3z,t,2)$
ph2xtt: diff(ph2xt,t,2)$ ph2ytt: diff(ph2yt,t,2)$ph2ztt: diff(ph2zt,t,2)s
ph3xtt: diff(ph3xt,t,2)$ ph3ytt: diff(ph3yt,t,2)$ph3ztt: diff(ph3zt,t,2)$

PALEEEE LR Rl rotation matrices for the coord. systems */
r0l : matrix(( cos(thl), -sin(thl), 0],
[ sin{thl), cos(thl) ’ 0], [ 0/ 01 1])$

r12: matrix({ cos(th2), -sin(th2), 0]},
[ 0, 0, -1], [ sin(th2), cos(th2), 0])$

r2e2: matrix({ 1, -ph2z, ph2y].
( ph2z, 1, -ph2x], [ -ph2y, ph2x, 1])$%

re23: matrix({ cos(th3), -sin(th3), 0],
[ sin(th3), cos(th3), 01}, [0, O, 1])%

def2: matrix([ len2 + dzx],
[ d2y}, [ d2z])$

rot2: matrix({ ph2x],
[ ph2y), [ ph2z])$

def3: matrix([ len3 + d3xj,
[ d3y), [ d43z])$

rot3: matrix([ ph3x],
[ ph3y]l. [ ph3z])$

g: matrix([ 01,
[0}, [-g0})$

posm2: ratsimp(r0l.rl2.def2);
posm3: ratsimp(posm2 + ratsimp(r0l.rl2.r2e2.re23.def3));
posmc: ratsimp(r0l.rl2.defc);

vm2: diff(posm2,t)$ vm3: diff(posm3,t)$ vmc: diff(posmc,t)$
vm2_2: ratsimp(transpose(vm2).vm2)$
vm3_2: ratsimp(transpose(vm3).vm3)$
vmc_2: ratsimp(transpose(vmc).vmc)$

ekl:ratsimp(.S*iml*thlt~2+.5*mass2#*vm2_2 +.5*im2+*th2t"~2)$
ek2: ratsimp(.S5*mass3*vm3_2 + .Sv+im3+th3t~2)$

stiff2: matrix({k2a, 0, 0, 0, O, 0], [0, k2b, O , O, O, k2e],
{0, 0, k2b, O, -k2e, 0). [0, O, O, k2¢, O, O ],
{0, 0, -k2e, 0, k2d, 0), {0, k2e, 0, O, O, k2d])$

gtiff3: matrix((k3a, 0, 0, O, 0, 0}, [O, k3b, O , O, 0, k3e],
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[0, 0, k3b: 01 -k3el O]I [01 or 01 kacr 0, 0 ]»
[0, 0, -k3e, O, k3d, 0], [0, k3e, 0, 0, 0, k3d])$

delta2 : matrix([ d2x], [ d2y)], [ d2z].{ ph2x]), [ ph2y]l. ! ph2z])$
delta3d : matrix([ d3x], [ d3y],[ d3z),[ ph3x],{ ph3yl,[ ph3z1)$

epl:transpose(delta2).stiff2 . delta2+ transpose(deltal).stiff3.delta3 $
ep2:mass2*ratsimp(transpose(g).posm2) +mass3*ratsimp(transpose(g).posm3) $

lag: ratsimp(ekl + ek2 - .5*epl - ep2);
/* ---- Calculating the values for the angles phi’'s ---- */
r2e2t: matrix([ O, -ph2zt, ph2yt}),[ ph2zt, 0, -ph2xt],
{ -ph2yt, ph2xt, 0])$
ustar: ratsimp(r0l.rl2.r2e2.re23.def2);
for i thru 3 do ¢(
v31[i}({1]): ratsimp(diff(ustar(i],ph2xt)),
v32{i){1l]: ratsimp(diff(ustar{i},ph2yty)),
v33[(i])[1]: ratsimp(diff(ustar{i},ph2zt)) );

for i thru 3 do ¢
v3[i)}[1]: v31[i1(1),v3(i)[2): v32[i}[1]).,
v3[il(3]: v33[i])[1] );
k22:matrix((k2c,0,0),{0,k2d,0],{0,0,k2d))$
k31:matrix([k3a,0,0},[0,k3b,0],[0,0,k3b])$
k32:matrix({k3c,0,0},(0,k34,0},(0,0,k3d]1)$
k23:matrix([0,0,0),(0,0,k2e},[0,-k2e,0])$
k33:matrix([(0,0,0)},(0,0,k3e],[0,-k3e,0])$
aa:ratsimp(-invert(k32) . transpose(k33))$
bb2:ratsimp(-invert(k22) . transpose(k23))$
temp:ratgsimp(k31 - k33 . invert(k32) . transpose(k33))$
t3:ratsimp(r0l . r12 . r2e2 . re23;$
bbl:ratsimp(invert(k22) . transpose(v3) . t3 . temp)$
ph3:ratsimp(aa . def3);
ph2:ratsimp(bbl . def3)+ratsimp(bb2 . def2);
ph3t: diff(ph3,t); ph2t: diff(ph2,t);
kill(k22,k31,k32,k23,k33,aa,bb2,t3,bbl, v3);

/* substitue and simplify the lagrangian for the analysis */
lag:subst(ph3t[1][1], ph3xt,lag}$ lag:subst(ph3t(2]{l1l], ph3yt, lag)$
lag:subst(ph3t[3]1{1], ph3zt, lag)$ lag:subst(ph2t[1])[1][1]), ph2xt, lag)$
lag:subst(ph2t[2][1](1),ph2yt,lag)$lag:subst(ph2t(3])[1]([1]),ph2zt, lag)$

lag:subst(ph3[1]1[1], ph3x,laqg)$ lag:subst(ph3{2}{1l], phldy, lag)$
lag:subst(ph3[3])(1], ph3z, lag)$ lag:subst(ph2{1]{1]}(1], ph2x, lag)$
lag:subst(ph2(2](1}{1], ph2y, lag)$ lag:subst(ph2{3][1]1[1), ph2z, lag)$

lag: subst(0, d2xt, lag)$ /* Zeroing the axial deflection #*/
lag: subst (0, d3xt, lag)$
lag: subst(0, d2x, lag)$ lag: subst(0, d3x, lag)$

dont : [ thl, th2, th3, d2y, d2z, d3y, d3z,
thlt, th2t, th3t, d2yt, d2zt, d3iyt, d3zt,
thiltt, th2tt, th3tt, d2ytt, d2ztt ,d3ytt, d3ztt];

zz: [];
lag:crunch(lag,dont, 'tmp)$

eql: ratsimp(diff(diff(lag,thlit),t) diff(lag,thl))$

eg2: ratsimp(diff(diff(lag,th2t),t) diff(lag,th2))$
eg3: ratsimp(diff(diff(lag,th3t),t) diff(lag.,th3))$
eq4: ratsimp(diff(diff(lag,d2yt),t) diff(lag,d2y))$

eq5: ratsimp(diff(diff(lag,d2zt),t)
eq6: ratsimp(diff(diff(lag,d3yt).t)
eq7: ratsimp(diff(diff(lag,d3zt}.t)

diff(lag,d2z))$
diff(lag,d3y))$
diff(lag,d3z))s

[ A A

kill(lag);
eqns: [eql,eq2,eq3,eq4,eq5,eq6,eq7]$

for i thru length(egns) do (
eqns (i) :ratsimp(eqgns(i]).
eqns{i]:crunch(egns{i],dont, 'aaa) )$
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map(fortran,zz);
a:zeromatrix(7,7)$

for i thru length(eqns) do (
tmp:expand((eqns[il)).,
al[i1(1): coeff(tmp,thitt), a[i}l(2): coeff(tmp,th2tt),
coeff(tmp,th3tt), afi]l4): coeff(tmp,d2ytt),
[6]:

afil{3}]:
a[i]1({S): coeff(tmp,d2ztt), al[i]) coeff(tmp,d3ytt),
a[i){7): coeff(tmp,d3ztt) );

fortran(a); /* generating the code for the mass matrix +*/

eqns: subst(0, thltt, egns)$ egns: subst(0, th2tt, eqgns)$
eqns: subst(0, tr3tt, egns)$ egns: subst(0, d2ytt, eqns)$
eqns: subst(0, d2ztt, eqgns)$ egns: subst(0, d3ytt, eqns)$
egns: subst(0, d3ztt, egns)$

for 1 thru length(eqns) do (
egns[i) :ratsimp(-l*eqns(i]) )$

eqns: subst(x[1],thlt,eqns)$ eqns: subst(x[2],th2t,eqns)$
eqns:subst(x[3],that,eqns)seqns:subst(x[4],d2yt,eqns)$
eqns:subst (x[5],d22t,eqns)$ eqns: subst(x([6],d3yt,eqns)$
eqgns: subst(x[7],d3zt,eqns)$ eqns: subst(x([8], thl, eqns)$
eqns: subst(x{9), th2, eqns)$ egns: subst(x{10], th3, eqns)$
eqns: subst(x({11], d2y, egns)$ eqns: subst(x[12], d2z, eqns)$
eqns: subst(x[13), d3y, eqgns)$ eqns: subst(x[14], d3z, eqns)$

fortran(eqns);

closefile(); quit();

B.2 Control Design Routines

In this section, two routines that were used in the process of designing controllers
are described and coded in MATRIXk [37] command language. The first routine calculates
the equivalent discrete regulator gains, while the second routine solves the Lyapunov’s

equation.

B.2.1 The Discrete-Equivalent-Gains Function

The regulator gains, designed in the continuous-time, have to be converted to the
discrete-time since the implementation is done on a computer. The method used to calculate
the equivalent discrete gains, implemented on MATRIXy [37], is presented as follows: The

linear continuous-time model is given by



The discrete-time model is given by

x(k+1) = Adx(k) +Bdu(k)

y(k) = Cpr (k)

where, A ; and B, are a function of the sampling rate T

The continuous-cost function is

oo

= %I (xTQx+ uTRu)dt
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(B.D

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

0
By minimizing this equation, the solution leads to the continuous regulator gains k.

The discrete equivalent cost function is

o0

Ia = %k o(xT(k)de(k) + 22T (K)N g (k) +u” (k)R ju (k))
where )

TS

0, = J‘AZQAdd:
0
TS

Ny = !AZQdet
0

Ts

Ry = I(B£Q5d+k)dr

(B.9)

(B.10)

(B.11)

(B.12)

0
Note that a cross term N, exists in the trans: srmation. By minimizing this equation

(equation B.9), the discrete equivalent gains can be calculated. The MATRIXx user-



defined-function used to carry out these calculations is as follows

/7 [ Qd, Rd, Nd,dkr) = dreg_gains(S, Ns, Q, R, Ts)
// Function to calculate the equivalent discrete regulator gains

// inputs: S - system matrix
// N8 - number of states
// Q - continous state weighting matrix
// R - continous control weighting matrix
// Ts - sample time
/7
/7 Ouctputs: Qd - discretized state weighting matrix
// Rd - discretized control weighting matrix
// Nd - discretized cross term of state & control weighting matrices
/7 dkr - regulator discrete gain
/7
// split out system matrix
[F, G, H, J] = split(S, Ns);

4

// dimensions
{ Ns, M} = gize(F);
{ M, Nc] = size(G);

//

// calculate discretized weighting matrix

Abar = [ F, G; 0.0*ones(Nc, Nc+Ns)];

Bbar = [Q, 0.0*ones( Ns, Nc); 0.0*ones(Nc, N8), R];

Cbar = [ -Abar’, Bbar; 0.0*ones(Ns + Nc, Ns + Nc), Abar};
Dbar = exp(Cbar*Ts, ‘pade’);

D1 = Dbar( 1:Ns+Nc, 1:Ns+Nc);

El = Dbar( 1:Ns+Nc, Ns+Nc+l:2«(Ns+Nc) );

D2 = Dbar( Ns+Nc+l:2+%(Ns+Nc), Ns+Nc+1:2*(Ns+Nc) );

//

Wt = D2'*El;

Qd = Wt( 1:Ns, 1l:Ns):

Rd =~ Wt(Ns+l: Ns+Nc, Ns+l:Ns+Nc);
Nd = Wt( 1:Ns, Ns+1l:Ns+Nc);

/7
// calculating the discrete gains
8d = disc(S, Ng, Ts);
[ad, bd, cd, dd] = split(sd, Ns):
[eval, dkr] = dregu(ad, bd, Qd, Rd, Nd);

4
RETF

B.2.2 The Solution of Lyapunov Equation
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In designing a controller using the model reference approach, the Lyapunov

equation has to be solved. The equation is given by

ATP+PA = =0

(B.13)

Where Q is a symmetric, positive definite matrix. The solution given by Jameson [82] is

the commonly required for the stability of continuous-time system. Note that the solution

available by MATRIXy will give different results. The method is as follows
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Defining A; (i=1,..,n) be the eigenvalues of A. obtained by solving the characteristic

equation of A which is given by

n-1
A"+ zaili =0
i=0
Let
rok-1
r,=-@" o-r _,a

where ['j = 0, and (k=1,2,..,n). Defining
T T
0= 1'[1 (A" +20)
i=

and

Then, the solution of the Lyapunov’s equation is

P=¢6ly

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

The MATRIXy function, used to carry out the above calculations, is as follows

// p = lyapj(a.q)
/7

// Lyapunov function soclution using Jameson method
// INPUTS: a - the state matrix
// 9 - a symmetric positive definite matrix

/

/

// Outputs: p - The solution for Lyapunov’s Equation

//
{nx,ny] = size(a):;
ai = poly(a);:
lamda = eig(a);
theta = eye(nx):
epsi = O*eye(nx);
gama = O*eye(nx);
for i=1 : nx-1; ...
gama = -((a’)**(i-1))*q - gama*a; .
theta = theta*(a’+ lamda(i)*eye(nx));
epsi = epsi + (-1)**(nx-i)*ai(nx-i+l)*gama;
END;
gama = -((a’)**(nx-1))*q - gama*a;
theta = thetav(a’+ lamda(nx)*eye(nx));
epsi = gama + epsi;
p = inv(theta)*epsi;
retf



- APPENDIX C-

REAL-TIME SYSTEM AND ROBOT INTERFACE

This appendix contains a brief description of the real-time system boards, the
operator manual control to safely drive the robot, the robot inverse kinematic equations,

and the PC-based graphical interface program used to operate the robot.

C.1 The dSPACE System

The “DSP-CIT pro” hardware line, developed by dSPACE Inc., is composed of a
set of boards specifically designed for high speed multivariable contro! systems based on
Texas Instruments TMS 320 DSP family and hosted by an industry standard PC-AT.
Compatibility, among the boards, is maintained by using a 32 bit wide peripheral high
speed bus (PHS-bus). The PHS-bus provides a fast and very flexible I/0 system with large
addressing space. Figure (C.1) illustrates how the boards are used for general robotic

applications. A brief description of the boards is as follows:
DS1002 Floating Point Processor Board

The DS1002 is the processor board. It is built around the Texas Instrument TMS
320C30 floating-point digital signal processor, capable of a computing performance of 33
MFLOPS. It has 60 ns cycle time. Up to 512 KBytes of fast RAM are available on the
board, suitable to run most of the robotic control algorithms. Peripherals can be attached
through the PHS-bus allowing 16 MB/sec transfer speed.
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Figure (C.1): The DSP-CIT hardware and its use for robot control.

DS3001 Incremental Encoder Board

The DS3001 comprises 5 fully parallel input encoder channels. This board has a
special noise rejection circuit, a fourfold pulse multiplication with direction sensing logic
to give high resolution 2 bit counter for each channel, cable failure and encoder power

supply failure detection.

DS2002 Multichannel A/D Board

32 high resolution analog to digital (A/D) channels are provided by this board. This
is based on two 12 bit, 5 us D/A converters. Each of them with 16-channel multiplexer and
a fast sample/hold (S/H) circuit, and 4,8,12 bit short cycling. High linearity of 14 bits and
selectable input voltage ranges accommodate precision control and measurements tasks.

Various input ranges can be easily selected for precision measurement.

DS2101 Multichannel D/A Board

The DS2101 comprises 5 fully parallel analog outputs channels, equipped with 12
bit, 3is digital to analog converters (D/A’s). Flexible output capabilities, independent
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unlatched output (minimum time delay). It also has a special D/A reset mechanism and
PHS-bus interface to transfer data. The output ranges available for the L ‘A are -5V to +5V,

Oto+10Vand-10to +10 V.
DS4001 Digital-I/O and Timer Board

This board was designed for applications with sensors providing a parallel digital
output signal, with switch polling, frequency input and PWM output signals, and handling
of external interrupts. The DS 4001 comprises 32 digital /O lines which can be configured
as inputs or outputs in groups cf 8 lines for in the latched or unlatched mode. Five separate
timers can be used for timer interrupts, frequency measure or PWM. Also, up to 8 external

interrupt inputs for communication are available.

C.2 The Operator Control Panel

The operator control panel comprises a main power panel and three motor drive
panels to control each joint independently. The description of these panels and the method

of operation are as follows:
The Main Power Panel

As shown in Figure (C.2). It has a main power switch, start switch, stop switch and
brake release switch. The brakes are normally engaged in case of power failure. The start

batton will release the brakes, the stop will hold the robot with the brakes engzged.
The Joint Drive Module (once per axis):

As suown in Figure (C.2), each joint drive module has a watch-dog enable switch

and a watch-dog input channel. This circuit expects a 100 Hz, 1V, sine input and it will
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disable the motor and engage the brake in case of not receiving this signal. This enables the

operator to run each joint independently and to stop the robot in case of computer crash.

The joint drive module comprises a three state button switch and a drive signal input
channel. The switch is normally in the middle state which the joint is driven by the input
signal. If the switch is pressed up or down the input drive signal will be disabled and the

motor will be driven by internal signal to move it in a tele-operation mode.
The Sequence of Operation:

1. The operator presses the power button to activate the modules.

2. The operator .1as to position the robot in the home position by releasing the brakes
and position it manually.

3. When the drive signal is ready, the operator presses the start button to drive the
motors or certain modules depending on the watch-dog signal or enable switch.

4. If the operator wants to run it in a tele-op=ration mode, the operator can press the
CCW or CW drive. The robot will be in the stop state after this i.e. the brakes will
be engaged and the drive signal will be disabled. The operator has to press start
again to drive the motors using the external drive signal again.

tart
=y -
re
S S5 o
st & CW Module
® o °
Waghos e

o - Sew Shoulder
Contro! Pty Module

PC + Real-time
system

°
Watch-dog Wi

o 0t vemdce
®

® CCW Base
Clo'sglol : %r&,w Module

w. h-doy W.h o
suioos Wuchidos

Figure (C.2): Robot drive panel.
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C.3 The Robot Inverse Kinematic Equations

The inverse kinematic equations are used to drive the robot end-point along a line,
circle, etc. The home position, which corresponds to zero values for the robot joint angles,
is the position when the robot arm is straight up. This will make it easy to position the robot.
By choosing the coordinate system to be as shown in Figure (C.3), where the z-axis points

in-ward.

The position of the payload is measured in terms of the distance of the payload from
the intersection of centres of the base and shoulder. The desired end-point position is given
in x, y, z, the lengths of the arms are L,, L,, the angles are 8, 8,, 8,. The equations for

the inverse kinematics are as follows;

p = ,’x2+y2+12 (C.1)
z

6, = atan(3) (C.2)
0, = 2) (p2+L§_L23) C.3
2-acos(a acos ——2—[‘2—‘)— (C3)

2 2 3
i (C4)

93 = acos (—35;22—)

The inverse trigonometric functions are defined so that the inverse tangent returns

an angle between -90 and +90 and the inverse cosine returns an angle between 0 - 180.

Joint 3

Joint 2
y
Joint 1

X

Figure (C.3): The robot coordinate system for
inverse kinematics calculations.
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C.4 The Robot Interface Program

The main objective of the robot interface is to provide a link between the control

algorithm, running on the DSP, and the user commands issued on the PC.

For this purpose, two interface programs were developed. The first was a simple
interface that was written using Microsoft Quick C. This interface allowed driving the robot
joint along a series fifth-order step trajectories of given rise-time, collecting the data from

the sensors and control outputs and writing them to a file.

However, the second interface was more sophisticated. It was based on Microsoft
Windows and written using Borland C++. Figure (C.4) shows a typical screen display the

robot controller program. This interface allows the generation of complex arm trajectories

Psth _Algorithm Graphs Jests Help

Arm position: B: 40.00° S: 49.99° E: 40.02°
{1.073,0.801,0.546)

Running:  User: MRACMS

Resufts: R B:0.6793 $:0.9974 E:0.9982
A* overall: 0.9661
Max Dev B:20.09* $:3.93° E:1.90°
Max Defl Y:2.0mm Z:1.9mm
Settle Y:4.6s (11%) Z:6.7s [20%) 3 Log run in file

User: MRACMS (O Pause after initisl step

DEMO2.PTH [Composite] & Find settling ime

Figure (C.4): Sample screen display of the robot interface program.
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from a number of simple primitives, the real-time execution of the calculated path and

displaying of different sensors outputs, the capability to print, save, and compare different

runs, the switching among different control algorithms, and finally, the ability to carry out

statistical tests for the performance measures given in Chapter 11.

A detailed description of the program and how to use it are available in {81]. Note

that the program is user-friendly and has an extensive on-line help system for ease of use.

A sample of the program output is shown in Figure (C.5).

40° ]
35
30"
25
20°
15°
10°3

5=

ol

Ticnica 1. samols gxaob sheet

Running User MRACMS R° B:0.8794 S$.0.9974 E-0.9982 R" overall 0.9662
Max Dev B 20 05 S 390" E.1.83° MaxDefl Y.1.8om2Z 2 2mn Settle

Y:6 0s (158) 2:7.1s (15%)

-
5
60°
45°
30

0 008 3 00s 6 00e 9008 12008  15.008

shonldax Agles

)

T

0s 3008 2 600s @ 900s " 12008  15.00e

coos 3008 6008 9d0s 1200s 15 00s

1 Elbow mefl (lx 2.2

L

Todos 300 600s  9b0s 12 008 15.008

i
L

0s  300s  600s  900s 12008 15.008

Figure (C.5): On-line print-out of the robot interface program.
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