339 research outputs found

    Flexible capacity sharing in multi-tenant wireless networks through fuzzy neural controllers

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The introduction of multi-tenancy in the Radio Access Network (RAN) is seen as a relevant capability of future 5G systems to support the challenging capacity requirements in a cost-effective way. Multi-tenancy brings in new challenges in the way how the RAN has to be managed and operated in order to provide the agreed service levels to each tenant and at the same time achieve an efficient utilization of the radio resources. This paper proposes a new solution for flexible capacity sharing among tenants based on a hybrid centralized/distributed Self- Organizing Network (SON) function to automatically adjust the Admission Control (AC) settings of the different cells. The proposed solution makes use of fuzzy neural controllers that provide intrinsic benefits in terms of dealing with the uncertainties of complex cellular scenarios and introducing the formulation of preferences and policies in the decision process. Together with the detailed description of the different components of the proposed solution, the paper presents an initial evaluation that provides sufficient insight into the potentials of the fuzzy neural hybrid SON to stimulate further and subsequent analysis.Peer ReviewedPostprint (author's final draft

    Admission Control Optimisation for QoS and QoE Enhancement in Future Networks

    Get PDF
    Recent exponential growth in demand for traffic heterogeneity support and the number of associated devices has considerably increased demand for network resources and induced numerous challenges for the networks, such as bottleneck congestion, and inefficient admission control and resource allocation. Challenges such as these degrade network Quality of Service (QoS) and user-perceived Quality of Experience (QoE). This work studies admission control from various perspectives. For example, two novel single-objective optimisation-based admission control models, Dynamica Slice Allocation and Admission Control (DSAAC) and Signalling and Admission Control (SAC), are presented to enhance future limited-capacity network Grade of Service (GoS), and for control signalling optimisation, respectively. DSAAC is an integrated model whereby a cost-estimation function based on user demand and network capacity quantifies resource allocation among users. Moreover, to maximise resource utility, adjustable minimum and maximum slice resource bounds have also been derived. In the case of user blocking from the primary slice due to congestion or resource scarcity, a set of optimisation algorithms on inter-slice admission control and resource allocation and adaptability of slice elasticity have been proposed. A novel SAC model uses an unsupervised learning technique (i.e. Ranking-based clustering) for optimal clustering based on users’ homogeneous demand characteristics to minimise signalling redundancy in the access network. The redundant signalling reduction reduces the additional burden on the network in terms of unnecessary resource utilisation and computational time. Moreover, dynamically reconfigurable QoE-based slice performance bounds are also derived in the SAC model from multiple demand characteristics for clustered user admission to the optimal network. A set of optimisation algorithms are also proposed to attain efficient slice allocation and users’ QoE enhancement via assessing the capability of slice QoE elasticity. An enhancement of the SAC model is proposed through a novel multi-objective optimisation model named Edge Redundancy Minimisation and Admission Control (E-RMAC). A novel E-RMAC model for the first time considers the issue of redundant signalling between the edge and core networks. This model minimises redundant signalling using two classical unsupervised learning algorithms, K-mean and Ranking-based clustering, and maximises the efficiency of the link (bandwidth resources) between the edge and core networks. For multi-operator environments such as Open-RAN, a novel Forecasting and Admission Control (FAC) model for tenant-aware network selection and configuration is proposed. The model features a dynamic demand-estimation scheme embedded with fuzzy-logic-based optimisation for optimal network selection and admission control. FAC for the first time considers the coexistence of the various heterogeneous cellular technologies (2G, 3G,4G, and 5G) and their integration to enhance overall network throughput by efficient resource allocation and utilisation within a multi-operator environment. A QoS/QoE-based service monitoring feature is also presented to update the demand estimates with the support of a forecasting modifier. he provided service monitoring feature helps resource allocation to tenants, approximately closer to the actual demand of the tenants, to improve tenant-acquired QoE and overall network performance. Foremost, a novel and dynamic admission control model named Slice Congestion and Admission Control (SCAC) is also presented in this thesis. SCAC employs machine learning (i.e. unsupervised, reinforcement, and transfer learning) and multi-objective optimisation techniques (i.e. Non-dominated Sorting Genetic Algorithm II ) to minimise bottleneck and intra-slice congestion. Knowledge transfer among requests in form of coefficients has been employed for the first time for optimal slice requests queuing. A unified cost estimation function is also derived in this model for slice selection to ensure fairness among slice request admission. In view of instantaneous network circumstances and load, a reinforcement learning-based admission control policy is established for taking appropriate action on guaranteed soft and best-effort slice requests admissions. Intra-slice, as well as inter-slice resource allocation, along with the adaptability of slice elasticity, are also proposed for maximising slice acceptance ratio and resource utilisation. Extensive simulation results are obtained and compared with similar models found in the literature. The proposed E-RMAC model is 35% superior at reducing redundant signalling between the edge and core networks compared to recent work. The E-RMAC model reduces the complexity from O(U) to O(R) for service signalling and O(N) for resource signalling. This represents a significant saving in the uplink control plane signalling and link capacity compared to the results found in the existing literature. Similarly, the SCAC model reduces bottleneck congestion by approximately 56% over the entire load compared to ground truth and increases the slice acceptance ratio. Inter-slice admission and resource allocation offer admission gain of 25% and 51% over cooperative slice- and intra-slice-based admission control and resource allocation, respectively. Detailed analysis of the results obtained suggests that the proposed models can efficiently manage future heterogeneous traffic flow in terms of enhanced throughput, maximum network resources utilisation, better admission gain, and congestion control

    View on 5G Architecture: Version 2.0

    Get PDF
    The 5G Architecture Working Group as part of the 5GPPP Initiative is looking at capturing novel trends and key technological enablers for the realization of the 5G architecture. It also targets at presenting in a harmonized way the architectural concepts developed in various projects and initiatives (not limited to 5GPPP projects only) so as to provide a consolidated view on the technical directions for the architecture design in the 5G era. The first version of the white paper was released in July 2016, which captured novel trends and key technological enablers for the realization of the 5G architecture vision along with harmonized architectural concepts from 5GPPP Phase 1 projects and initiatives. Capitalizing on the architectural vision and framework set by the first version of the white paper, this Version 2.0 of the white paper presents the latest findings and analyses with a particular focus on the concept evaluations, and accordingly it presents the consolidated overall architecture design

    Energy-Efficient Softwarized Networks: A Survey

    Full text link
    With the dynamic demands and stringent requirements of various applications, networks need to be high-performance, scalable, and adaptive to changes. Researchers and industries view network softwarization as the best enabler for the evolution of networking to tackle current and prospective challenges. Network softwarization must provide programmability and flexibility to network infrastructures and allow agile management, along with higher control for operators. While satisfying the demands and requirements of network services, energy cannot be overlooked, considering the effects on the sustainability of the environment and business. This paper discusses energy efficiency in modern and future networks with three network softwarization technologies: SDN, NFV, and NS, introduced in an energy-oriented context. With that framework in mind, we review the literature based on network scenarios, control/MANO layers, and energy-efficiency strategies. Following that, we compare the references regarding approach, evaluation method, criterion, and metric attributes to demonstrate the state-of-the-art. Last, we analyze the classified literature, summarize lessons learned, and present ten essential concerns to open discussions about future research opportunities on energy-efficient softwarized networks.Comment: Accepted draft for publication in TNSM with minor updates and editin

    AI gym for Networks

    Get PDF
    5G Networks are delivering better services and connecting more devices, but at the same time are becoming more complex. Problems like resource management and control optimization are increasingly dynamic and difficult to model making it very hard to use traditional model-based optimization techniques. Artificial Intelligence (AI) explores techniques such as Deep Reinforcement Learning (DRL), which uses the interaction between the agent and the environment to learn what action to take to obtain the best possible result. Researchers usually need to create and develop a simulation environment for their scenario of interest to be able to experiment with DRL algorithms. This takes a large amount of time from the research process, while the lack of a common environment makes it difficult to compare algorithms. The proposed solution aims to fill this gap by creating a tool that facilitates the setting up of DRL training environments for network scenarios. The developed tool uses three open source software, the Containernet to simulate the connections between devices, the Ryu Controller as the Software Defined Network Controller, and OpenAI Gym which is responsible for setting up the communication between the environment and the DRL agent. With the project developed during the thesis, the users will be capable of creating more scenarios in a short period, opening space to set up different environments, solving various problems as well as providing a common environment where other Agents can be compared. The developed software is used to compare the performance of several DRL agents in two different network control problems: routing and network slice admission control. A novel DRL based solution is used in the case of network slice admission control that jointly optimizes the admission and the placement of traffic of a network slice in the physical resources.As redes 5G oferecem melhores serviços e conectam mais dispositivos, fazendo com que se tornem mais complexas e difíceis de gerir. Problemas como a gestão de recursos e a otimização de controlo são cada vez mais dinâmicos e difíceis de modelar, o que torna difícil usar soluções de optimização basea- das em modelos tradicionais. A Inteligência Artificial (IA) explora técnicas como Deep Reinforcement Learning que utiliza a interação entre o agente e o ambiente para aprender qual a ação a ter para obter o melhor resultado possível. Normalmente, os investigadores precisam de criar e desenvolver um ambiente de simulação para poder estudar os algoritmos DRL e a sua interação com o cenário de interesse. A criação de ambientes a partir do zero retira tempo indispensável para a pesquisa em si, e a falta de ambientes de treino comuns torna difícil a comparação dos algoritmos. A solução proposta foca-se em preencher esta lacuna criando uma ferramenta que facilite a configuração de ambientes de treino DRL para cenários de rede. A ferramenta desenvolvida utiliza três softwares open source, o Containernet para simular as conexões entre os dispositivos, o Ryu Controller como Software Defined Network Controller e o OpenAI Gym que é responsável por configurar a comunicação entre o ambiente e o agente DRL. Através do projeto desenvolvido, os utilizadores serão capazes de criar mais cenários em um curto período, abrindo espaço para configurar diferentes ambientes e resolver diferentes problemas, bem como fornecer um ambiente comum onde diferentes Agentes podem ser comparados. O software desenvolvido foi usado para comparar o desempenho de vários agentes DRL em dois problemas diferentes de controlo de rede, nomeadamente, roteamento e controlo de admissão de slices na rede. Uma solução baseada em DRL é usada no caso do controlo de admissão de slices na rede que otimiza conjuntamente a admissão e a colocação de tráfego de uma slice na rede nos recursos físicos da mesma
    corecore