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A B S T R A C T   

Meeting the energy goals of the European Union requires new ways of managing energy. Decentralized energy 
management, cross-commodity energy production and usage optimization are promising means. Future neigh-
bourhoods will include multiple forms of energy such as electricity, heat, and cooling. According to our vision, 
the smart neighbourhoods, can optimize energy across different vectors by sharing resources in a controlled way. 

The first contribution of this paper is a comprehensive review on market, regulatory and technological status 
to support the transition towards distributed cross-commodity energy management with focus on Germany and 
Finland. Markets disruption could lead to more decentralized structures. Mechanisms therefore have been pro-
posed, but mostly without sector integration. 

Clean Energy Package includes legislation that is supportive towards cross-commodity energy sharing solu-
tions. Corresponding implementation in Germany and Finland may be successful in both countries even though it 
differs. 

Regarding technology, the article identifies required technical components (IoT, AI and blockchain) focusing 
on their support decentralized and cross-sector energy systems. Key components of IoT are wireless communi-
cation and interoperability middleware. AI provides key technologies for modelling and optimization of sector- 
integrated and distributed energy systems. Even if there has been lots of research, practical implementations are 
still lacking. Furthermore, many technical challenges still exist for blockchain based solutions in decentralized 
energy systems. Moreover, organizational, and legal responsibilities need to be clarified to support the adoption 
of blockchains in decentralized energy systems. Finally, the article gives recommendations regarding an 
increasing implementation of cross-commodity sharing and how it can contribute to the energy transition.   

1. Introduction 

According to the special report [1] by the Intergovernmental Panel 
on Climate Change, energy transition is required as a means to limit 

global warming to 1.5 ◦C above pre-industrial conditions. In Europe, 
consumers, prosumers, and their collectives are seen as core part of the 
energy transition, and the aim is to strengthen their role [2]. Key con-
cepts to realize this include energy communities and the so-called Pos-
itive Energy Districts. As decentralized and renewable-based energy 
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projects, energy communities can promote sustainable energy produc-
tion and consumption practices in addition to citizens’ participation [3]. 
The Positive Energy District [4] in turn aim at increased and optimized 
use of local energy resources across different energy vectors. To support 
these trends, the International Energy Agency [5] highlights Informa-
tion and Communication Technologies (ICT) in energy and its ability to 
break down boundaries between energy sectors, increasing flexibility 
and enabling integration across entire systems. 

This paper subscribes to the viewpoint where ICT, including Internet 
of Things (IoT), Artificial Intelligence (AI), and blockchain play an 
important role in the transition towards distributed and sector- 
integrated energy systems. To elaborate, we envision a decentralized 
and sector-integrated energy system, where trading energy between 
consumers and prosumers is a core part of the daily operation. Net-
worked prosumers can negotiate and form smart contracts based on 
blockchain [6–11] technology to match production with consumption 
(and storage) as locally as possible. Building from bottom-up, locality 
and timely management of distributed cross-commodity resources will 
be the key to ensure energy efficiency and stability at smart city level. In 
this context, IoT [12,13] technologies are needed for real-time moni-
toring and control of Distributed Energy Resources (DER). AI technol-
ogies such as machine learning and automated decision-making in turn 
ensure optimal control of DER in different climate and temporal con-
ditions [14,15]. 

It is not, however, enough to have the ICT-enablers in place. Proper 
regulation and market structures are also needed to realize the energy 
transition. In this paper, we focus especially on the regulation and 
market situation in Finland and Germany, two countries that have set 
high targets towards carbon neutrality. For instance, the Finnish gov-
ernment [16] has set ambitious climate targets and defined that Finland 
should achieve carbon neutrality by 2035. There are also several ac-
tivities going-on to phase-out coal in energy production, e.g., Refs. 
[17–19]. The German “energy transitions” started in the early 2000s. 
Since then, Renewable Energy Sources (RES) represent a steadily 
increasing share of the electricity supply [20,21]. However, to achieve 
set climate goals, the German government enacted the coal phase-out by 
2038 [22,23]. Together with the shutdown from nuclear power plants 
by 2022, a major redirection of the power system is declared [24]. 

Local energy systems are not a new topic and there is a large number 
of review papers focusing on local energy systems that consider only a 
single energy vector such as microgrids [25–27], and district heating 
and cooling systems [28–30]. In many situations, it would be more en-
ergy efficient to be able to manage and trade energy across many vectors 
in local context. Consequently, there exists research (and review papers) 
on local energy systems that integrate different energy vectors to 

improve energy efficiency [31–36]. However, these review papers focus 
mainly to the design and physical infrastructure needed to implement 
energy efficient and local energy systems. More studies and reviews are 
needed for properly addressing the ICT, regulation, and market 
viewpoints. 

To address this need, this article provides an overview of the market, 
regulation, and technical situation towards cross-commodity energy 
sharing communities. More specifically, we aim to answer the following 
research questions: 1) Are the existing and foreseen market development 
supporting cross-commodity energy sharing in Finland and in Germany, 
2) What is the role of core European Union (EU) regulations in realizing 
cross-commodity energy sharing solutions, and 3) How could the core 
ICT enablers such as IoT, AI and blockchains support the realization of 
cross-commodity energy sharing in local context? 

The subsequent sections are organized as follows. Section 2 describes 
the vision on decentralized cross-commodity energy markets and prin-
ciples of how the work was performed. Section 3 deals with recent en-
ergy production trends, shares of main market components and 
liberalization of energy markets in Finland and Germany as well as 
potential functioning of multi-energy markets. Section 4 compares reg-
ulations of core components of multi-energy systems between Finland 
and Germany. Section 5 analyses how AI, IoT and blockchains could 
support multi-energy systems. In Section 6, we discuss the findings. 
Finally, in Section 7 we conclude our study and give recommendations 
for future research. 

2. Vision for and principles of the work 

Future neighbourhoods will be prosuming [37]: not only the con-
sumption of energy but also its production and storage will be decen-
tralized [38]. This includes multiple forms of energy such as electricity, 
heat, and cooling. With solar panels or block heating devices this is 
already the case in single-family houses today. 

Decentralization may make it difficult to benefit from scaling factors. 
For a smart grid operator, it might be cost efficient to invest in large 
storage or production capacities. For a single prosumer, it often makes 
no sense resulting in non-optimal energy management. 

To compensate for scalability and resilience aspects of decentralized 
energy production and storage, communities can be formed. Our vision 
is to build Smart Cities within which, participants share resources in a 
controlled way including monetary exchange. This is schematised in 
Fig. 1. There, Smart Buildings organised in Smart Districts offer their 
flexibilities to the market. For example, one participant uses an intelli-
gent Electric Vehicle (EV) charger to shift its load if needed. The next 
house owner installs a high-capacity battery offering electricity storage 

Abbreviations 

AI Artificial Intelligence 
ANN Artificial Neural Network 
CoAP Constrained Application Protocol 
con conventional 
CHP Combined Heat and Power 
DECT Digital Enhanced Cordless Telecommunications 
DH District Heat/Heating 
DSO Distribution System Operator 
ERC European Radiocommunications Committee 
ETSI European Telecommunications Standards Institute 
EU European Union 
EV Electric Vehicle 
HART Highway Addressable Remote Transducer 
HVAC Heating, Ventilation, and Air-Conditioning 
ICT Information and Communications Technology 

IMS Intelligent Metering System 
IoT Internet of Things 
LoRa Long Range 
LoRaWAN Long Range Wide Area Network 
LTE Long Term Evolution 
ML Machine Learning 
MNO Mobile Network Operator 
MPC Model Predictive Control 
MQTT Message Queuing Telemetry Transport 
P2P Peer-to-Peer 
PV Photovoltaic 
RES Renewable Energy Sources 
RL Reinforcement Learning 
SRD Short Range Devices 
TSO Transmission System Operator 
UA Unified Architecture  
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services. Another Smart Building uses a fuel-cell to provide heat and 
electricity, consuming green hydrogen from another local source. Or a 
Trigeneration unit produces electricity, heat, and cooling at the same 
time. During the DECENT project, we established a successful prototype 
of an integrated solution, which is presented in Ref. [39] and will be 
presented in future work. 

In this context, ICT solutions are key to the intended cross- 
commodity energy sharing. They are needed for distributed, trusted 
logging of exchanged energy [11,40], self-organizing markets [41–46], 
and goal-optimizing learning algorithms [47–53]. Bajpai et al. demon-
strate how to achieve a higher order of management in cross community 
energy sharing [39]. 

From a technical background, local energy exchange necessarily 
requires Physical Enablers, like pipes or the electricity network. Man-
agement and accounting of the energy flows requires remotely 

controllable valves, counter, and energy system controllers. They are 
called Cyber-Physical Enablers in our overview (compare Fig. 2). 

While the previously described infrastructure is often in-place, an 
ICT infrastructure on top can bring benefits as this paper shows. Such an 
infrastructure requires:  

• Middleware. It connects the distributed heterogeneous systems. 
Central challenges here are common semantics [54], and security 
[55,56].  

• Several Core Services. They are detailed in Section 5. It includes 
different predictions [57–96], secure data exchange between 
untrusted parties [97–102], and mechanisms for incentivizing 
investments.  

• Business Opportunities. They are required for making systems as 
efficient as possible based on free market competition [41–46]. 

Fig. 1. An indicative image of a cross-commodity energy framework.  

Fig. 2. Cross-commodity energy sharing building blocks.  

S. Paiho et al.                                                                                                                                                                                                                                    



Renewable and Sustainable Energy Reviews 151 (2021) 111568

4

• A Legal Framework. It defines the possibilities within a country. 

Considering this vision, we perform our analysis in three phases 
(Fig. 3). Firstly, we analyze the existing energy markets in Finland and 
Germany based on public statistics and other documents. Potential 
multi-energy markets and trading are analyzed based on literature. 
Secondly, we compare regulations related to key components of cross- 
commodity energy systems considering EU and national legislation 
and initiatives. Thirdly, we review literature on critical ICT enablers. 

3. Energy market perspectives in Finland and Germany 

Fig. 4 depicts the shares of the main energy-market components 
(heat, natural gas and electricity) of the end-user energy consumption in 
Finland and Germany in 2017. The role of gas is small in Finland 
whereas in Germany it forms the largest share. The heat market is small 
in Germany compared to the size of markets in general. In Finland, the 
size of the heating market is about 57 % of the electricity market while in 
Germany it is only 21 %. 

3.1. Electricity markets 

In 2018, 46.2 % of the electricity in Finland [104], and 40.6 % of 
electricity in Germany [105] were produced out of RES. Fig. 5 and Fig. 6 
show the development of electricity production between conventional 
and RES in Finland and in Germany. In Finland, the share of RES has 
been significant for a long time mainly due to hydropower and 
wood-based, i.e. biomass fuels (Fig. 5). In Germany, the share of RES has 
increased steadily, but the burning of brown and hard coal is still 
extensive (Fig. 6). 

In 2018, the Photovoltaic (PV) electricity productions were 0.2 TWh 
and 46.2 TWh representing 0.23 % and 7.1 % of the total electricity 
production in Finland and Germany, respectively (Fig. 7, left). Even if 
the PV production is really small in Finland, it has increased over 32-fold 
from the year 2010 when it was only 5 GWh [106]. Similarly, 
wind-electricity production has increased in both countries (Fig. 7, 
right) being 5.9 TWh (8.4 % of the electricity production) in Finland and 
111.6 TWh (17.2 % of the electricity production) in Germany [106,107] 
in 2018. 

Both, the Finnish and the German electricity markets are completely 
opened/liberalized [109–111]. All electricity users can purchase elec-
tricity from any supplier, practice small-scale electricity production, and 
sell the energy on the market. 

Finland is part of the Nordic electricity market [112], covering the 
Nordic countries and the Baltic states. Germany belongs to Central 
Western Europe electricity market [113]. Both countries’ electricity 
generation sector is characterized by a relatively large number of actors. 

A summary of the actors in the overall electricity market structure can be 
found in Table 1. Note, in some cases companies are active in more than 
one area of the value chain [114,115], i.e. they are accounted in more 
than one line of Table 1. That does not contradict unbundling, since it is 
only mandatory for companies with a certain number of customers. 

3.2. Gas markets 

German and Finnish gas market structures differ. In Finland, mainly 
large industry and energy utilities use gas, whereas in Germany, also 
households burn a greater share of it. In both countries, the markets are 
open. Table 2 shows the main figures of the gas markets in both 
countries. 

Even though, import dependencies are high already, they might still 
increase in both countries. In Finland, developments are going on to 
enable new alternative sources [117]. However, the gas network can 
also be used to distribute locally produced biogas, the share of which is 
likely to increase in Finland. In Germany, gas will necessarily substitute 
energy from nuclear and coal power plants phasing out over the next 
years. Projects like the pipeline Nord Stream II should ensure the natural 
gas-supply security therefore by bypassing politically unstable transit 
regions [118]. On the other hand, Liquefied Natural Gas (LNG) could 
also become more important. As LNG is transported via ship, it is less 
dependent on the geopolitical situation [119]. 

A recent study [120] shows that if renewable gases, like green 
hydrogen, are supposed to account for a significant share of gas 
consumed in Germany they either need to be funded substantially or 
market conditions have to change. The International Energy Agency 
(IEA) claims in their technical report for the G20 meeting in 2019 that 
regulations are a main challenge for hydrogen industry too [121]. 
Lately, EU targets this issue with the hydrogen strategy for a 
climate-neutral Europe [122]. High production cost and slow develop-
ment of hydrogen infrastructure are other obstacles for the increasing 
usage of green hydrogen. If these boundaries will fall, IEA sees high 
potential in a variety of applications, like use for road freight, aviation, 
electricity storage, and fuel-cells for distributed generation [121]. Latter 
is essential for the use of hydrogen in cross-commodity sharing on a local 
level. A recent study from Potsdam Institute for Climate Impact Research 
gives a pessimistic prognose for hydrogen. They argue that bad effi-
ciencies of hydrogen and e-fuels lead to 2 to 14 times higher needs of 
renewable energy for electrification of traffic compared to EV. Even 
worse, they see a lock-in of fossil-fuel when betting on hydrogen and 
e-fuels availability. And yet they see potential for selected applications 
such as chemicals, iron and steel and aviation [123]. 

Fig. 3. Principles of the work.  
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Fig. 4. Main market components from total end-user consumption in 2017 [103].  

Fig. 5. Development of conventional (con) and RES in Finnish electricity production. The data is retrieved from Ref. [104].  

Fig. 6. Development of conventional (con) and RES in German electricity production. The data is retrieved from Ref. [105].  

S. Paiho et al.                                                                                                                                                                                                                                    



Renewable and Sustainable Energy Reviews 151 (2021) 111568

6

3.3. Heat markets 

Unlike electricity and gas markets, District Heat (DH) market is un-
regulated in both Finland and Germany. For Germany [115] concludes 
that liberalization and revenue ceiling for grid operation (as for elec-
tricity and gas market) are not necessary, because there is a competition 
with other heat “fuels” (e.g. natural gas) to limit prices anyway. 
Furthermore, grid operators are main heat supplier/distributor anyway. 
Table 3 gives a short overview about the situations. 

3.4. Potential multi-energy markets and trading 

In this section, we review the latest findings about potential func-
tioning of multi-energy markets. Van Stiphout et al. [41] envision three 
distinct cases of market design for sharing between different energy 
commodities. The first, conventional “reference” option is the use of 
separate markets for different commodities. There, a market participant 
must sequentially decide what kind of offers to place on the currently 
open market while forecasting subsequent markets. Another approach is 
a centrally cleared, integrated wholesale market, where conditional 
bidding reflects the actual values more accurately. However, the option 
is not probable or feasible due to practical, regulatory, and historical 
reasons. .The third “control” option is again a sequential market, where 
the outcomes from conditional market clearings are used as forecasted 
values. It served as control scenario for the conditional approach by 
mitigating forecast errors [41]. 

Relevant literature suggests several models for centrally cleared 
markets and linking sequential markets. Van Stiphout et al. [41] orga-
nize simultaneously cleared, centralized markets by specifying different 
order types for the required trade operations. Pekeč et al. [42] prefer 
more generalized, combinatorial auctions. The auctions could be cleared 
in a single round or using an iterative auction process. For linking 
sequential markets, Mitridati et al. [43] consider the effects of the 
subsequent markets in a bi-level model during the clearing of the initial 
market. Another model allows conditional bids which depend on the 
prices of the following markets [44]. 

The typical time horizon for trading is 1 h in all market simulations of 
the investigated papers regardless the commodities [41,43–45]. 
Thinking of different inertias of heat, electricity etc. systems further 
consideration is necessary, especially on local level. There, with lower 
number of participants, fluctuation effects exceed statistical means – 
compare simultaneity factors [129,130]. Additionally, the clearing 
order of sequential markets deserves investigation. All authors first clear 

Fig. 7. Annual electricity production from PV (left) and wind (right) in Finland and Germany. “Per Inhabitant/inh.“: power normalised by the total number of inhabitants 
[108]. “share”: share of the total electricity production. Electricity data retrieved from Refs. [106,107]. 

Table 1 
Stakeholders in the electricity markets of Finland [114] and Germany [116].   

Finland Germany Comment 

Producers 150 90 Those two values are comparable to a limited 
extent. For Finland, every registered company 
is counted, while for Germany only producers 
>100 MW are counted. 
Anyway, the number of producers is increasing 
in both countries, which is mainly driven by 
energy transition: Lots of producers having 
small plants, such as wind turbines, PV, or 
biomass plants 

DSO 77 907 At Distribution System Operators (DSOs) both 
countries have a comparable structure. Since 
Germany also has approximately 15-times 
more inhabitants, it is not surprising to have 
nearly 15-times more DSOs 

TSO 1 4 In Finland, there is one single, state owned 
Transmission System Operator (TSO), whereas 
in Germany that task is fulfilled by several 
private owned companies 

Retailers 72 1353 Despite the numbers looks very different, there 
are the same number of retailers in Germany 
and Finland in terms of population (16.3 per 
one million inhabitants)  

Table 2 
Comparison of Finnish and German gas markets [114,124–126].   

Finland Germany 

Final usage 24.7 TWh (in 2018) 982 TWh (in 2019) 
Production Mainly imported, some own biogas 

production 
Mainly imported 

Number of 
TSOs 

1 16 

Number of 
DSOs 

24 718 

End-users  - large industrial end-users 58 %  
- energy and power companies in 

Combined Heat and Power (CHP) 
production 34 %  

- industry 39 %  
- households 29 %  
- business, commerce, 

and services 12 %  
- heat and cooling 

production 7 % 
Market opened opened and unbundled  

Table 3 
Comparison of Finnish and German DH markets [115,127,128].   

Finland Germany 

Grid 15,140 km 26,400 km 
Final usage 33.5 TWh 124 TWh 
Production (in 

2018) 
64 % CHP 
36 % DH plants 

2/3 CHP 

Fuels (in 2018) 53.3 % fossil fuels 
and peat 
36.7 % renewable 
fuels 
10 % other energy 
sources 

>40 % gas 
>30 % coal increasing but still small 
shares of waste and biomass 

End users ~50 % residential 
buildings 

40 % industry 
40 % residential buildings 
20 % business, commerce & services 

Market unregulated unregulated  
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heat, followed by electricity (and then gas) [41,43,44]. Stiphout et al. 
reason it in lower elasticity of heat demand [41]. 

For separated single-commodity markets, the markets can be cleared 
either centrally as a single pool or using centralized or distributed Peet- 
to-Peer (P2P) mechanisms where product differentiation can be made 
between preferred trading partners [45,46]. However, the aforemen-
tioned solutions do not generally offer the possibility to describe com-
plex valuations that would be required in multi-energy markets. 

In most research literature, the aim is to optimize the bidding in the 
case of separate commodity markets while possibly considering the price 
uncertainties in the subsequent markets. Multi-Energy Systems’ sched-
uling under known prices has also been optimized considering sources 
such as PV, battery energy storage systems with inputs for electricity and 
gas [131]. In addition, storages especially for heat and electricity, heat 
pumps and boilers have been modelled [132,133]. When uncertainties 
in coming markets are considered, the Multi-Energy Systems’ bidding 
can be optimized in terms of robustness by e.g. maximizing the 
worst-case outcome [134], or maximizing robustness while satisfying 
some specified outcome [135]. 

Alternatively, a multi-stage model can be specified using a scenario- 
based approach as a stochastic programming problem, and as a mixed 
integer linear programming problem [136,137] with relaxing chance 
constraints [138]. However, bidding strategies in a single 
multi-commodity market setting have not been actively studied. In 
addition, the feasibility and practicality of blockchain and smart con-
tracts for complex clearing required in multi-commodity markets is an 
open topic. Automated trading strategies are required for the trading to 
be worthwhile on a local scale, considering specificities of a local mar-
ket, and requirements of end-customer load management. Multi-energy 
(or more generally multi-product) markets, especially in local contexts 
with less competition or possibly lack of trust, should provide mecha-
nisms which are incentive compatible and reduce the potential for 
market abuse and the need for strategic trading. The proposed mecha-
nisms do not always provide such guarantees [41]. 

4. Regulatory framework 

Recently, a comprehensive update of the energy policy framework 
has been agreed at EU-level including e.g. directives on renewable en-
ergy [139], internal electricity markets [140], energy efficiency [141] 
and energy performance of the buildings [142]. 

Renewable energy directive [139] promotes increasing the share of 
RES by setting a binding union target of a share of at least 32 % of RES. 
The directive includes provisions that aim to accelerate the uptake of 
RES also in the heating/cooling and transport sector in addition to the 
electricity sector. New electricity market design aims to make electricity 
markets more flexible, more market-oriented and enable integration of a 
greater share of RES. Energy performance of the building’s directive 
aims at promoting smarter buildings and e-mobility in buildings. 

Both renewable energy directive and directive on common rules for 
the internal market for electricity aim to strengthen the role of active 
consumers and energy communities. The electricity market directive 
[140] has provisions for active customers and citizen energy commu-
nities. Renewable energy directive [139] has provisions for renewable 
energy communities (article 22) and renewables self-consumers (article 
21) e.g.: 

Article 22.  

- Ensure non-discriminative access to suitable energy markets directly 
or via aggregators  

- Remove unjustified juristic and administrative burdens  
- Ensure fair, proportionate, and transparent procedures, including 

registration and licensing procedures, and cost-reflective network 
charges, as well as relevant charges, levies, and taxes, ensuring that 
they contribute, in an adequate, fair and balanced way, to the overall 
cost sharing of the system in line with a transparent cost-benefit 

analysis of distributed energy sources developed by the national 
competent authorities 

Article 21.  

- Allow individual or aggregated actions  
- Ensure production for own consumption, storage and selling of 

excess production via power purchase agreements with electricity 
suppliers and peer-to-peer trading arrangements, e.g., without 
discriminatory or disproportionate (network) charges 

In addition to the energy policy framework, there are also other 
policy domains that are relevant for cross-commodity energy systems e. 
g., regulatory framework and standardization related to metrology, 
smart metering systems, energy taxation, data protection and 
cybersecurity. 

Currently, for example, the measuring instrument directive requires 
measurement instrument displays, which may be unnecessary and 
expensive as technology evolves [143]. Commission will propose to 
revise energy taxation directive, which is in its current form not aligned 
with climate objectives and the required energy transition [144]. 
Commission has issued recommendations on cybersecurity in the energy 
sector [145] due to risks that digitalization increasingly exposes the 
energy system. 

The implementation of the EU level energy policy framework is 
ongoing at national level. In addition, regional or city level framework 
can be relevant for cross-commodity energy systems as some parts of the 
systems may be subject e.g. to land use/zoning or permitting re-
quirements. Comparison between Finland and Germany as regards the 
regulation of some key components of cross-commodity energy systems 
is included in Table 4. 

5. Technical perspective 

5.1. Current core hardware 

5.1.1. Networks 
The current overall trend in energy use is the electrification of many 

sectors. However, in practice for some cases, other energy carriers such 
as heat and gas can be useful, either due to technical reasons such as 
remoteness or for example reuse of excess heat, or alternatively due to 
network availability for historical reasons. In addition, other commod-
ities such as water is distributed in most places, and its metering data 
could be utilized in assessing for example domestic hot water or water 
pumping needs. 

Distribution networks are used to transfer the commodities to resi-
dential customers. When there is a choice to be made between the 
commodities, correlation between their demand or possibility for 
transfer of energy, all the commodities should be considered holistically. 
Within the specific distribution networks, there can be losses and con-
gestions, which must be considered if optimal use of resources is going to 
be achieved. In addition, the overall balance of energy generation and 
demand must be maintained. 

5.1.2. Energy metering devices 
Energy metering devices are traditionally designed for metering one 

specific parameter, such as electricity, gas, or heat consumption. Their 
design has also been influenced by a set of standards such as “Device 
Language Message Specification”, “Companion Specification for Energy 
Metering”, the metering data transfer protocol 62,056 & 61,107 from 
the International Electrotechnical Commission to name a few of them. 
These standards are designed for a very specific use defining the con-
sumption values communication protocols between the meter and the 
data aggregation point. These standards enable vertical integration of 
operations, which is optimal for traditional utility business today and is 
effectively locking the consumer with a specific service provider. 
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Table 4 
Overview of the regulation context for cross-commodity markets.   

Finland Germany Comparison 

Smart metering 
system 

Regulatory requirement to take into use remote 
meters that register electricity consumption data 
by the end of 2013. There was almost complete 
roll-out of remote meters by 2017. 
Next generation AMR installation is expected 
during 2020’s 

Rollout started at the beginning of 2020. Households 
with distributed generation & high energy 
consuming customizers first [146]. For participation 
in cross-commodity markets either smart or 
Intelligent Metering Systems are mandatory, 
according to the consumers’ annual energy 
consumption. In theory, this enables market 
participation via any aggregator/service provider 

In overall, smart metering systems enable 
digitised marketing of (cross-) commodities 

Metering data 
handling 

In 2022 centralized information exchange system 
for the electricity retail market - datahub - will 
store metering and contract data from 3.7 million 
electricity accounting points in Finland. This 
data is currently located in various companies’ 
systems. The aim of the datahub is to speed up, 
simplify and improve the actions of all parties 
and enable new services and participation to 
demand-side management. 
Similar hub exists for the recently opened gas 
market [147]. 

Metering point operator must cover installation, 
operation, data handling etc. of smart metering 
installations. The metering point operator can be the 
DSO, but tasks can be delegated to other companies. 
In addition, the “Law for digitization of the energy 
transition” encourages the evolution of a 
competitive market for Metering point operations 
and related services. The DSO is the Fallback 
provider for those who have not opted for a 
commercial Metering Point Operator [148]. There is 
no centralized data handling foreseen. The German 
federal network agency is supervising processes 
linked to smart meter measuring [146]. 

In both countries, the flexibility of digitised 
measuring data supports decentralized market 
approaches. But still contracts with every single 
owner of an asset have to be made. On German 
side this can be overcome by engaging a 
commercial Metering Point Operator 

Control and external 
connections, like 
Smart gateway 

For electricity, current iteration of smart meters 
or the coming first version of the centralized 
datahub do not have standardized control 
interfaces. For the next generation of meters, the 
requirement will be to have control interfaces for 
clients with “substantial loads”. However, the 
interface has not been yet specified but is 
planned [149]. In addition, a central flexibility 
resource register is currently being investigated 
for the purposes of contract and validation 
information storage [150]. 

The “Law for the digitization of the Energy 
Transition” contains a timeline for the obligation to 
install an Intelligent Metering System (IMS) as well 
as maximum charges that can be asked. The 
obligation and timelines are binding for DSO to 
having installed certified Smart Metering Gateways 
[151,152] and digital meters connected to those 
gateways. DSO can subcontract the installation and 
operation to third parties OR end customer can 
within the installation period opt for an independent 
provider and operator of the IMS. 
DSO in this case is receiving the data required to 
fulfil regulatory needs from the independent service 
provider and must pay a regulated fee for this data 
delivery. In addition, Assets “behind the meter” can 
be connected and controlled through the SMGW. 
This can build the foundation to monetize on direct 
contributions of Assets to the Power Quality (DSO 
side) and on the Security of Supply (TSO side). TSO 
and external market player directly receive data 
from the IMS without having the data passed 
through a central data hub. 

Finland is building a central data hub focusing 
on meter data and asset resource register while 
Germany is creating a fully decentralized 
intelligent metering system with an 
independent data access control. This data 
access control is not limited to the metering 
data but can be extended via a so-called Home 
interface to assets operated in the building 
(Home Area Network) 

Active customer/ 
Renewable self- 
consumers 

In 2015, a legislative change easing the taxation 
of small-scale electricity production entered into 
force. Small-scale electricity production plants 
were relieved of the obligation to pay electricity 
tax. These producers may themselves use at the 
site tax-free the electricity they have generated. 
The DSO collects electricity tax from the end- 
consumers inside the DSO’s network 
Ongoing studies and work with a view to 
implement Electricity market and Renewable 
energy directives. 

In 2004 PV-energy production was supported by a 
fixed price of 57,4 ct/kWh, which was steadily 
decreased to less than 10 ct/kWh in nowadays 
[153]. This enforces PV owners to use produced 
energy on themselves, since the overall electricity 
price (especially with tax included) is higher. The 
subvention is funded by the German RES Act 
reallocation-charge [154]. 
Greater PV-plants must be controllable 
(shut-down/power limitation in case of too high 
production) due to German RES act. This mechanism 
can also be used for direct marketing. (if connected) 
PV and other RES as well as storage Installations >7 
kW fall under the control of the Intelligent Metering 
System and can become part of any eligible 
program. 

Germany has supported this also directly and 
Finland mainly through tax relief. Share of PV 
electricity is much higher in Germany. 

Renewable/Citizen 
energy 
communities 

Government decree on determination of 
electricity supply and metering was amended to 
enable better sharing of self-produced electricity 
in neighbourhood (within the same property) 
[155]. The amendment was adopted December 
22, 2020 and entered into force January 1, 2021. 
Also, provisions related to local energy 
communities and active customers have been 
added to the decree. 

Tenant Current Model funds local used power 
generation in building(s) that belong together by tax 
incentives. This will be supported furthermore 
[156]. Besides, people can invest in RES by 
participating in citizen energy community [154]. 
They foster the acceptance by creating awareness for 
RES and thus increase growth rates of RES [157] 

Tenant Current Model are applicated rarely; 
regulation wants to incentivise this more; 
Tenant Current Model would fit for cross- 
commodity sharing in the immediate vicinity 

Energy taxation at 
energy storages 

Electricity storages do not need to pay double tax 
for charging and discharging. 

Storages don’t need to pay all fees twice for charging 
and discharging, respectively (e.g. German RES Act 
& CHP reallocation fee only at discharging) [158] 

This point is similar in both countries and 
supports usage of storages. Anyway, in general, 
storages are mostly too expensive for single-use 
use cases at the moment.  
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These standards do not consider the physical communication media, 
which allows different methods of connectivity, such as Power Line 
Communication, 802.15.4 family (short range communication) systems 
or proprietary communication systems in 863–874.4 MHz and 2.4 GHz 
unlicensed bands or cellular connections. 

5.2. Critical ICT enablers 

5.2.1. Internet of Things 
The Internet of Things (IoT) is an umbrella definition of connecting 

things to the Internet, but at the same time it does not provide enough 
context in the scope of our studies. We explore a bit further the critical 
issues related to wireless technologies, their limitations and how the 
spectrum regulation within Europe is impacting the wireless commu-
nication technology choices. 

5.2.1.1. Radio spectrum availability in Europe. How and by whom the 
radio spectrum can be used is a very fundamental question when 
considering the use case in the scope of this paper. Radio spectrum is a 
scarce resource and therefore highly regulated commodity. Globally, 
most of the radio spectrum is not free to use, but is licensed or assigned 
for a dedicated purpose, such as mobile communication, satellite use, 
military and so forth. Globally radio spectrum use is defined in Inter-
national Telecommunication Union where Europe is part of region 1 
countries. The next level of decisions in Europe are based on the Euro-
pean Commission’s decision, followed by more detailed technical reg-
ulations done by the European Conference of Postal and 
Telecommunications Administrations. European frequency allocations 
are defined in European Radiocommunications Committee (ERC) Report 
25 [159] which defines the spectrum allocation and intended use. 

In short, one may operate either in licensed spectrum, which in our 
case is the Mobile Network Operator (MNO) exclusive use only band. In 
Europe the harmonized spectrum allocation for mobile networks is up to 
1 GHz, varying between member states [160]. The other alternative is to 
use licenced exempt bands, which anyone can use, but one must follow 
the dedicated spectrum use regulations for given band(s) defined in ERC 
recommendation 70–03 “Relating to the use of Short Range Devices 
(SRD)” [161]. With licensed spectrum operation the available technol-
ogies are 2G General Packet Radio Service (GPRS; phasing out) and 4G 
Long Term Evolution (LTE) based LTE-M and Narrowband-IoT (NB-IoT). 
In Europe, the relevant bands for SRD operation for this type of appli-
cation are:  

- 862–869.65 MHz and 870–874,4 MHz and 915–919.5 MHz below 1 
GHz frequencies  

- 1880–1900 MHz, 2400–2483.5 MHz and 5725–5875 MHz above 1 
GHz bands. 

We note that even though the operation below 1 GHz bands would 
bring benefits in communication link distances, the transmitter opera-
tional time is limited up to max 10 % activity over a period of 1 h. This 
sets limitations on what type of applications one may operate in these 
bands. The Long Range (LoRa) in combination with LoRa Wide Area 
Network (LoRaWAN) is a commonly known technology that operates on 
this range [162]. 

1880–1900 MHz band is allocated for digital enhanced cordless 
telephone technology. European Telecommunications Standards Insti-
tute (ETSI) has published new specifications for Digital Enhanced 
Cordless Telecommunications (DECT)-2020 technology [163] recently, 
which provides a substantial performance updated this spectrum. 

2400–2483.5 MHz band is probably the most used spectrum globally 
which most of short-range devices use. The main reason for this is 
relaxed regulation and no limitations of transmitter activity if one ac-
cesses spectrum politely, i.e. does not transmit over other users which 
are using the spectrum. Wireless technologies such as Bluetooth® [164], 

802.11 [165], 802.15.4 [166], ZigBee [167], Thread [168], Wireless 
Highway Addressable Remote Transducer (HART) [169], to name the 
most used technologies are using this frequency band. 

5725–5875 MHz band is intended for wide band operation for in-
dustrial application and vehicle-to-vehicle communication use, but 
other user scenarios are emerging. The maximum allowed transmitter 
powers are at the same level as in 2400 MHz band. Because higher 
operating frequencies are more limiting the communication range, this 
band is less affordable for the use cases of cross-commodity energy 
systems. 

Forward looking statement: Future cross-commodity energy systems’ 
wireless information transfer would be greatly beneficial for operating 
environments, where radio spectrum access rules allow anyone to join 
the system and contribute to it by providing energy consumption in-
formation and/or producing energy for community needs. The local 
energy production and consumption principle influences the radio so-
lutions which should be designed for optimizing the local consumption 
and production information sharing. The availability of radio spectrum 
viable for wireless local community energy systems is a critical asset to 
foster energy system innovation. In addition, the open access to use for 
such spectrum would be a great enable for innovation. 

5.2.1.2. Critical wireless technology enablers. The radio spectrum pol-
icies have a strong influence on which radio technology/technologies 
enable(s) the most suitable application characteristics. The main divi-
sion between technologies can be drawn whether they can operate in 
licensed bands or unlicensed bands:  

1) The licensed band operation means in practice that the connectivity 
is managed by a Mobile Network Operator (MNO) and the coverage 
is determined by the his network. Cellular technologies have been 
introduced in several books and research papers such as [170,171]. 
These cellular systems are all based on the existence of network 
infrastructure, determining the area or service availability.  

2) Technologies operating in unlicensed bands provide more variety. 
Open access to spectrums enables competitive radio technologies 
operation within them and independent local communication net-
works use anywhere it is needed. This leads to designing wireless 
communication which follows the same distributed system func-
tionality principles as the cross-commodity concept. 

One of the most recent studies of different technologies operating in 
2400–2483.5 MHz frequencies is underway in ETSI - Electromagnetic 
compatibility and Radio spectrum Matters – Task Group 11 (ETSI ERM 
TG11 group), responsible to develop technical radio compliance re-
quirements for wideband systems operating in this band. The report title 
“System Reference document (SRdoc); Data Transmission Systems using 
Wide Band technologies in the 2.4 GHz band” [172] is still under work, 
but it contains already a very comprehensive summary of technologies. 
From this report we summarize the relevant capabilities to Table 5. 

Some of the technical parameters equal due to radio regulation in the 
EU. However, some of the technologies are not designed for large scale 
systems. The common denominator for standards-based technologies is 
that they were designed with the idea that someone manages and 
maintains connectivity. This is a limiting factor to scale wireless systems 
into massively de-centralized use cases where equipment quantities are 
counted in millions, like a cross-commodity energy production and 
consumption will be. Managed systems’ complexity is limiting how large 
systems can be deployed and maintained. The challenge is how solve the 
limitation of the size of local community driven wireless local networks 
with minimal maintenance effort and cost. 

5.2.1.3. Discussion on wireless communication challenges in cross- 
commodity system. 
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1. Cross-commodity energy systems may grow locally quite large, and 
the number of entities sending and receiving data will demand ca-
pacity for data transfer. The communication challenges are related 
to: how dynamically scale the communication system size and 
required communication capacity while keeping the cost of 
communication in a fraction of the cost of energy asset traded in each 
event?   

2. Another dimension of the communication challenge is related to 
communication system federation: how to prevent the creation of 
monopolies (around connectivity) and enable an open ecosystem 
benefitting all participants?   

3. The interworking layer for different equipment is an important 
question. So far, the stable interworking layer for communication has 
been the Internet Protocol (IP)-layer. Below this layer, we have 
various communication technologies, which are not compatible to 
each other, but still may co-exist. The never-ending technological 
evolution in wireless communication introduces more capable solu-
tions for lower cost. This is contradicting the lifetime expectations of 
energy systems, which usually happens to be decades. Wireless 
technologies evolution is unavoidable and therefore it is unpractical 
to assume that equipment would be able to communicate between 
different generations at very low level over multiple decades.   

4. Similarly, the application data, datagrams and ontologies of data sets 
completely new requirements for effective data processing systems. 
One aspect is to create a sensible interpretation of various datagrams 
(data format conversions), i.e. enable solutions (and regulation) 
which allow to provide SW upgrades to equipment enabling new 
capabilities to operate with different datagrams.   

5. Together with the previous point, it is important to have a correct 
understanding of what the data means, i.e. the context where the 
energy consumption or room temperature is measured.  

6. For cybersecurity, challenges are: What is the security and equip-
ment identity root or origin of technologies? This is essential to verify 
that the identities of each party in automated energy markets. Sec-
ondly, how to ensure tamper proof delivery of data between parties 
in the system. There are numerous technologies to solve these 
abovementioned problems. The main challenge is to solve them in 
cost effective manner in relatively simple equipment’s which are 
involved in the system. Encryption of data at move should use well- 
known encryption technologies such as Advanced Encryption Stan-
dard (AES) 128 today or 256 in next 3–5 years. Also, support in 
relatively simple chip set with novel encryption mask update se-
quences to prevent or complicate the man in the middle opportu-
nities is mandatory to maintain trust in the transactions.   

7. EU Parliament has approved a new cybersecurity act in 2019 [97]. 
The main objective for this legislation is to improve the cybersecurity 
capabilities in all ICT equipment sold in the EU. Main new re-
quirements are related to: 
a. Unified cybersecurity requirements in the EU for given applica-

tion to foster a common EU market.  
b. no default passwords allowed to be used in any equipment.  
c. software update possibility is highly encouraged. 

The actual security requirements for different applications are un-
derway in respective standards bodies since e.g. finance, healthcare or 
energy domains do have different requirements and standards. 

5.2.1.4. Discussion about IoT related opportunities. The IoT plays a cen-
tral role in the success of the envisioned energy-sharing infrastructure. It 
enables the collection and sharing of data, e.g. metering energy usages 
and transfers. It also enables controlling devices remotely including the 
switching of energy producers or state changes in storages and energy 
consumers. 

At the moment, there is no standardized communication between IoT 
devices, resulting in a lack of interoperability of devices between 
different vendors. However, the holistic approach we envision would 
need such interoperability as it works across commodities and vendors. 
Today, in many cases only devices from the same vendor are capable of 

Table 5 
Radio characteristics summary from report [173], extended by DECT -2020 NR [163] and LoRa/LoRaWAN [162,174].   

Bluetooth® Low 
Energy 

IEEE 802.11 
WLAN 

802.15.4 
ZigBee 

802.15.4 
Thread 

802.15.4 
Wireless HART 

Wirepas mesh DECT-2020 New 
Radio 

LoRa/LoRaWAN 

Operating band 2400–2483.5 
MHz 

2400–2483.5 
MHz 

2400–2483.5 
MHz 

2400–2483.5 
MHz 

2400–2483.5 
MHz 

2400–2483.5 
MHz 

1880–1900 
MHz 

867–869 MHz 

Transmission 
(TX) power 

10 dBm 20 dBm 13 dBm 10 dBm 10 dBm 10 dBm 23 dBm 14 dBm 

Network size 32,767  Up to 65,000 
nodes  

Hundreds of 
nodes 

Millions of 
nodes 

Million of nodes  

Network 
management 

fixed Fixed Fixed roles Fixed Autonomous Autonomous Autonomous Fixed roles 

Transmission 
lengths 

1 ms 2,08 to 4096 ms    1.2 ms 208/416 μs  

Radio Access 
type 

***TDMA/ 
FDMA 

Multiple *DSSS *DSSS *DSSS and 
**FHSS 

***TDMA/ 
FDMA 

***TDMA/ 
FDMA 

Chirp modulation 
Spread Spectrum 

Maximum 
activity 

<14% LBT No duty cycle 
limitation 

<66 % <66 % <20% <34 % LBT No duty 
cycle limitation 

<10 % 

Bitrates 1 Ms/s  250 kb/s 250 kb/s 250 kb/s 1 Ms/s ****2,2 Mbit/s Up to 50 kb/s 
# Channel 40 11 (3 non- 

overlapping 
channels) 

16 16 15 40 11 10 

Channel 
bandwidths 

1 MHz 20/40 MHz 2 MHz 2 MHz 2.5 MHz 1 MHz 1728 MHz 125/250 kHz 
(up) + 125 kHz 

Channel spacing 2 MHz  5 MHz 5 MHz 5 MHz 2 MHz 1728 MHz 200 kHz 

*DSSS: Direct Sequence Spread Spectrum. 
**FHSS: Frequency Hopping Spread Spectrum. 
***TDMA/FDMA: Time or Frequency Multiple Access. 
**** With 16 Quadrature Amplitude Modulation (QAM) single slot (416 μs) transmission user plane speed. Higher data rates are supported with multi slot 
transmissions. 
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communicating, hence reducing the number of possible participants in 
such a market or imposing restrictions on the consumers choice by 
forcing them to by devices of a certain vendor. 

A solution is the use of middleware since it can provide a unified 
interface layer to heterogeneous devices [175]. By offering a standard-
ized interface that integrates devices of multiple vendors, a middleware 
removes the hurdle of non-interoperability and simplifies usability. On 
the application layer, middleware simplifies the access to data of con-
nected devices. It makes it easier to control devices of different vendors 
through a standardized interface [98]. In our concrete case, it signifi-
cantly facilitates the development and deployment of portable, so 
context-independent, energy-management applications [176]. 

Overall, a middleware makes it easier to integrate devices from 
different vendors into a single system and for applications to make use of 
the present devices through a standardized interface for the collection 
and exchange of data, as well as, issuing commands. Due to the 
described advantages, the use of a middleware for the IoT has been 
recognized in the research community, resulting in several promising 
approaches with varying adaptation [98–100]. 

With its intermediary role, middleware can enforce security mech-
anisms, making a system secure by design [177]. This includes the 
authentication of devices, access control and encrypted data trans-
mission between the devices and introduce isolation for information on 
need basis by having different security domains e.g. isolating commu-
nication layers and application layers from each other. A middleware 
could example provide simple mechanisms for authenticity, e.g. a public 
key infrastructure for all IoT devices [55]. Further, by wrapping the 
original information in standardized packets it is also possible to provide 
a unified mechanism for data encryption and integrity protection. This 
solves the problem of incompatible mechanisms due to different man-
ufacturers that use different security mechanisms. Thus, a middleware 
also enhances the security of the underlying system. 

5.3. Communication protocols in IoT 

IoT covers use-cases that have highly different requirements. Several 
communication protocols emerged that fits the diversity in the use- 
cases. Lightweight protocols are favourable in embedded devices and 
microcontrollers due to their low resource usages such as processing 
power and bandwidth consumption. Message Queuing Telemetry 
Transport (MQTT) and Constrained Application Protocol (CoAP) are the 
two most common lightweight protocols used in IoT. MQTT is a light-
weight publish-subscribe protocol. It has the advantage of decoupling of 
synchronization, space, and time. Thus, the two endpoints, subscribers 
and publishers are connected via a broker. On the other hand, CoAP is a 
request/response protocol. It is like Hypertext Transfer Protocol (HTTP) 
that makes it possible to integrate these protocols easily. Both, CoAP and 
MQTT, consume low bandwidth and low processing power, and thus 
make them popular in IoT. 

Extensible Messaging and Presence Protocol (XMPP) is a message- 
oriented middleware based on Extensible Markup Language (XML). It 
has near-real-time structured and extensible data exchange between 
network entities. Since the message-oriented middleware is an actively 
researched field, it is crucial to deploy the frameworks that have active 
development. Furthermore, popular solutions can be prioritized to take 
advantage of their broad community support. 

OPC Unified Architecture (UA) is another dominant protocol mostly 
used in machine-to-machine communication. It offers rich features of 
services, addressing capabilities and security. It is a platform- 
independent service-oriented architecture. With platform indepen-
dence, it has a vast array of use-cases across hardware platforms such as 
personal computers, cloud-based servers, programmable logic control-
lers, micro-controllers, and operating systems such as Microsoft Win-
dows, Apple OSX, Android, or any distribution of Linux. OPC UA works 
in the client-server network architecture. Address Space Model and the 
Services are at the core of the protocol. Address Space defines a standard 

way to represent objects between servers and clients. Services are the 
standard operations offered to the clients by the servers. OPC UA has 
implementations in different languages both commercial and open- 
source [101,102]. 

5.3.1. Artificial Intelligence 
Artificial Intelligence refers to intelligence demonstrated by ma-

chines. It is also a scientific field within computer science focusing on 
the study of intelligent agents, i.e., devices or software processes that 
take actions that maximize its change of successfully achieving its goals 
[178]. In recent years, the most successful approach for realizing AI has 
been Machine Learning (ML). In ML, the goal is to make computer sys-
tems able to learn from experience, enabling them to perform tasks 
without explicitly programmed to do so. There has been a huge buzz 
around AI and ML during the last years due to various breakthroughs in 
the fields of perception, natural language processing and game playing, 
to name a few [179–183]. Naturally, these advancements have 
encouraged research and development to apply AI-technologies in a 
wide variety of industries and domains ranging from healthcare to 
autonomous cars and smart grids. AI technologies are already used in 
power grid and energy system management, but they will become even 
more important in decentralized and cross-commodity energy manage-
ment, because of the increased complexity and challenges in managing 
such infrastructures. 

The solutions provided by AI-technologies for decentralized and 
cross-commodity energy management can be divided into two main 
categories. First, AI technologies, in particular machine and deep 
learning, provide advanced methods for data-based modelling of com-
plex energy systems. This includes modelling and forecasting of 
demand-side resources such as Heating, Ventilation, and Air- 
Conditioning (HVAC), as well as RES such as PV and windmills. Sec-
ond, AI technologies provide means for automating and optimizing en-
ergy management, empowering consumers and prosumers to become 
central actors in the local energy systems. Depending on the market 
structures and incentive mechanisms, the automated energy manage-
ment performed by AI-enabled intelligent agents can range from intel-
ligent control of flexible resources, to active participation in the (local) 
energy markets through automated trading of energy and flexibility. 

5.3.1.1. Machine learning for distributed energy system modelling. Ma-
chine and deep learning provide advanced means for modelling complex 
processes and systems. It is therefore natural to apply them for learning 
the dynamics of distributed energy systems. We focus on Artificial 
Neural Networks (ANNs) and Support Vector Machines (SVMs) and 
classify existing work on following categories: type of the energy system, 
temporal granularity of the energy data, and type of ML modelling 
approach. Fig. 8 illustrates the distribution of the related works with 
respect to these categories. 

From decentralized energy management point of view, energy sys-
tems can be divided into three main categories: inflexible loads, flexible 
loads and local generation. The challenge for AI-based modelling and 
control is to match local generation and consumption by intelligent 
control of flexible loads. To this end, there is a need for modelling and 
forecasting the inflexible consumption, local generation and flexibility. 

When considering the current infrastructure, buildings constitute 
majority of the electricity consumption in local neighbourhoods. In the 
future, Electric Vehicles (EVs) are most likely to be also a major con-
sumer, as well as source for flexibility within local communities. 
Modelling and forecasting buildings energy consumption with Artificial 
Neural Networks or Support Vector Machines has been an active 
research topic with 50 papers. Most of these papers (27 in total) focus on 
modelling total energy load of buildings [57–73,80,91–96]. Almost a 
large portion (17) of papers have on focused on forecasting flexible loads 
such as HVAC [74–79,81–90]. The inflexible load portion can be natural 
calculated by reducing the flexible loads from the total loads. A smaller 
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amount (6) deals with energy generation forecasting mostly focusing on 
PV generation. 

In principle, buildings contain a wide variety of controllable loads 
that could be used for flexibility management. In practice, the most 
potential flexibility source of buildings is the HVAC due to the fact that 
thermal mass of the buildings acts as a natural energy storage. HVAC 
systems are also interesting from cross-commodity energy management 
point of view as heat and cool can be generated with different energy 
vectors (e.g. combination of DH and RES powered heat pumps). This is 
also shown in the research works as almost all papers on forecasting 
building’s flexible resources have focused on HVAC systems. The main 
shortcoming in existing research is that while relatively large focus has 
been given on forecasting flexible consumption none of the works 
forecast actual response of demand response or flexibility management 
control. 

Primary RES in local neighbourhoods are solar and wind power. 
Forecasting local renewable power is essentially weather forecasting. 
After solar irradiance or wind speed is known, predicting the energy 
output is straightforward. The main challenge is that unlike in typical 
weather forecasting, the spatial accuracy of the forecast plays a much 
bigger role. For example, it is generally not sufficient to use solar irra-
diance forecast for the whole city to forecast building-level solar gen-
eration. In addition, a considerable random element has to be taken into 
account, for example, microclimate events such as wind gusts and small 
clouds blocking the sun are commonplace. 

Most of the energy markets currently operate at an hourly time 
granularity and energy data is also typically collected at this frequency. 
It is therefore natural that most of the research (39 papers) on load and 
generation forecasting is done at hourly resolution [57–61,67–69, 
74–77,81–87,92,93,95,96,184–196]. Moreover, in generation fore-
casting, even larger time granularity such as a day or even a month is 
common [197–201]. With increasing amounts of volatile RES, the 
markets are moving towards finer time granularities. This is also 
important for local cross-commodity energy management with large 
share of volatile RES. In the current literature twelve papers have used 
15-min or 10-min data granularity [62–65,71,79,202–207]. Only three 
studies have been done with 1-min or finer data resolution [73,94,186]. 

ANN [208] and Support Vector Machines (SVMs) (or Support Vector 
Regression) [209,210] are two most popular and best performing model 
families for load and generation forecasting. ANNs are decentralized and 
layered computing systems inspired by biological neural networks. 
There are a wide variety of different type of ANN architecture styles, 
including Feed-Forward ANN, Convolutional ANN, Recurrent ANN, 
Long Short-Term Memory and Gated Recurrent Units. Also there are 
several different ways for training ANNs with backpropagation being the 
most popular [211]. The Feed-Forward ANNs (with single hidden layer) 

have been the most popular ANN architecture style for energy system 
modelling with a total 44 works on building loads, flexibility and local 
generation forecasting. Another popular ML technology for building 
load and RES generation forecasting (33 papers) is Support Vector Ma-
chines (or more precisely its regression variant called Support Vector 
Regression). In addition to standard Feed-Forward ANNs, more 
advanced ANNs for load forecasting have been studied in five papers 
[58,73,185,186,195]. 

5.3.1.2. Automated and optimal decision making for distributed energy 
systems. Over the past decades, there has been a steady interest in 
intelligent control of distributed energy systems utilizing a cavalcade of 
different control strategies, as shown in Fig. 9. The more primitive 
control techniques are utilizing on-off scheduling in order to capture 
cycles in electricity price or in ambient temperature, for example. 
Proportional-Integral-Derivative (PID) controllers are simple feedback 
controllers that aim to minimize tracking error, i.e. the difference be-
tween measured and controlled variable. They can be used for example 
to keep temperature or power consumption constant. 

Model-based control techniques rely on a dynamics model, i.e., a 
representation of the system dynamics known to the controller. In cur-
rent research, most model-based strategies employ Model Predictive 
Control (MPC) approach, which uses the model to predict future 
behaviour of the system and plan controlling of the system accordingly, 
as depicted in Fig. 10. With MPC, the dynamics model can be equations 
describing the dynamics [212–214] or learned from historical data using 
various ML techniques [215–217]. Provided that the system dynamics 
and cost function are differentiable, convex optimization algorithms 
such as quadratic programming can be used [47–50] in planning. 
Otherwise, more general trajectory-space search algorithms such as 
Monte Carlo Tree Search, Particle Swarm Optimization or Genetic al-
gorithms are used [51–53]. MPC systems are generally robust and 
data-efficient, though they may suffer from performance issues 
depending on the model used. 

On the contrary, in recent years, with the rise of volatile RES and the 
subsequent need for distributed energy management, the demand for 
more complex and more intelligent control systems has emerged. 
Fortunately, the recent developments in AI, and more specifically in 
Reinforcement Learning (RL), have provided means for accomplishing 
just that. Reinforcement Learning is a machine-learning paradigm that 
learns to control through interaction with the environment, bearing 
similarities with human learning [218]. It has the obvious advantage of 
not needing any labelled training data to learn from, although it is a 
good practice to first train the RL algorithm in a safe setting before 
deploying it to the real world. In addition, learning through interaction 
also means that no dynamics model is required, classifying most RL as 

Fig. 8. Distribution of related works with respect to (a) type of energy system, (b) temporal granularity of the data, and type of (c) ML models.  
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Model-Free approach. Model-Free algorithms aim to learn an optimal 
control policy through trial and error with the system. Not needing a 
model is a large benefit, as implementing one requires a lot of data or 
person-hours (or both). The downside is that the control policy is largely 
unknown, thus usually a backup controller is used to override any 
adverse controls the policy might suggest, as in Fig. 11. Most commonly 
used RL algorithm for energy system control is Q-learning [218] and it 
has been battle-tested in multiple scenarios [219–228], capable of 
incorporating RES as well. In Q-learning, the agent learns an approxi-
mation Q of the optimal action-value function, that gives the quality of 
an action A performed in state S [218]. Given this function, we can find 
the optimal policy to maximize the expected future rewards. Q-learning 
was first introduced in 1989 [229]. It has since risen to prominence as it 
is easy to implement and understand, while also being a very effective 
algorithm. Over the years, it has also seen improvements and additions 
such as Deep Q-learning [182]. 

5.3.2. Blockchain 
Blockchain is a distributed ledger technology that contains a record 

of transactions that are stored in a distributed manner. The idea of 
blockchains was first introduced by Satoshi Nakamoto where a P2P 
electronic cash system i.e. bitcoin was proposed [230]. Thereafter, 
blockchains are used extensively as an underlying technology for cryp-
tocurrencies that aim to move from centralized systems to decentralized 
systems. Centralized models rely on a single node for computing and 
storage resources, to achieve control and authority over processes. 
Decentralized models share these resources among geographically 
distributed and heterogeneous nodes in a network [40]. It introduces 
transparency, immutability and trust in the system. Every node in the 
network maintains a local copy of an immutable record of transactions. 
Furthermore, smart contracts are deployed in the blockchain in order to 
provide self-executing autonomous programs. They are used to model 
terms and agreements between different parties. A custom business logic 
for any application can be built and deployed on the blockchain using 
smart contracts. Due to these properties blockchain is used in various 
sectors ranging from finance, healthcare, supply-chain, etc. 

5.3.2.1. Blockchain in energy domain. Blockchain is applied extensively 
in the energy sector as it promises automation, disintermediation, 
decentralization, transparency and audit trails. Decentralization in en-
ergy systems bridges the gap between energy producers and energy 
consumers. There are a variety of use cases possible in the energy 
domain. There are different industry and academic projects in the di-
rection of use of blockchains in the energy sector. Brilliantova et al. 
[231] discuss the role of blockchain as shown in current energy market 
transformation. The work provides insights into the future of energy 

systems in context of blockchain. Andoni et al. [11] conducted an 
extensive literature survey on the use of blockchains in the energy 
domain by studying around 140 initiatives. The paper discusses the use 
of blockchains in different areas in energy ranging from metering, 
billing, certificates, grid management and security to energy trading. 
The authors classified different projects based on the blockchain tech-
nology and the consensus algorithms used for the development of the 
platform. They concluded that the research is still in an early develop-
ment phase and a lot of work is focusing on improvement areas such as 
security, scalability, privacy, etc. in such systems. A recent work by 
Silvestre et al. [232] reviews the use of blockchains in power systems by 
studying the current applications including electrical energy trading and 
renewable energy certification and demand response tracing. The au-
thors also argue on the applicability of blockchain for different power 
system use cases by identifying the scenarios and determining if block-
chain implementation is required or it can be avoided. Furthermore, the 
study examines the features of different blockchain technologies such as 
Ethereum, Hyperledger, Tendermint and Multichain and proposes the 
use of suitable technology based on the requirements. 

5.3.2.2. Blockchain based energy markets. Peet-to-Peer energy trading 
makes the energy market more competitive. It gives the consumers the 
flexibility of deciding the energy provider besides the main grid. The 
consumer can have preferences such as buying energy locally, favoring 
RES, etc. Blockchain helps in achieving P2P energy trading through 
decentralization. It makes the system transparent by providing the audit 
trails. Moreover, smart contracts can be used to automate the trans-
actions in a publicly verifiable manner. An early report by PWC throws 
light on the use cases of blockchains in the energy domain while taking 
the legal framework in consideration based on German market [233]. 

The earliest adoption of the blockchain based energy market dates to 
2014. NRGCoin [234] introduced a virtual currency to enable energy 
trading. There is no energy market or matching of orders. SolarCoin 
[235] is also an early adopter which incentivizes solar energy producers. 
It uses a custom blockchain platform based on Proof-of-Stake Time al-
gorithm. A review by Zhang et al. discusses the outcome of the early 
projects. The authors emphasized the importance of the communication 
and control network design along with the business models. These 
studies show the potential of blockchains in energy markets. In contrast 
to earlier findings, however, Buth et al. [236] conducted a study on the 
role of actor configurations and concluded that the impact of blockchain 
in P2P trading can be significant but may not be as disruptive as 
expected. 

The major energy market projects can be categorized broadly in 
three categories. Projects such as Solarcoin [235], EnergiToken [237], 
GrünStromJeton [238], NRG-X-Change [239], Climatecoin [240], 

Fig. 9. Classification of most commonly used control techniques in intelligent energy systems.  
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WePower [241] focus on incentivizing environmentally sound behavior 
through assets or tokens. On the other hand, projects like Power Ledger 
[242], Grid+ [243], BrooklynMicrogrid [244] enables the direct trading 
of energy (P2P trading) between prosumers. There are also blockchain 
platforms that are specifically designed to cater energy applications such 
as Energy Web Foundation. Energy Web Foundation [245] is based on 
top of Ethereum and provides an energy web chain that uses proof of 
authority as a consensus algorithm. We only focus on the second cate-
gory (P2P trading) in this paper. 

5.3.2.3. Design aspects of P2P energy systems. A considerable amount of 
literature has been published on P2P energy trading addressing design 
aspects. These studies can be broadly categorized in decentralized eco-
nomic models and decentralized grid control. The economic models 
mainly focus on market mechanisms and implementing the buyer-seller 
agreements in the smart contract. They also focus on other aspects such 
as fairness, privacy, security, scalability, availability etc. Leeuwen et al. 
[45] proposed an integrated blockchain-based energy management 
platform with bilateral trading for microgrid communities. Trading 
mechanism is combined with the physical microgrid constrains for 
formulation of the optimization problem. A real dataset from a com-
munity in Amsterdam is considered for the simulation. The simulation 
results show that the peak energy is reduced by 50 %. Han et al. [246] 
presented a framework for blockchain platform to enable P2P energy 
trading using private Ethereum blockchain. The study proposed a dou-
ble auction trading mechanism and also considered security and fairness 
parameters. Another work by Li et al. [247] considered design aspects of 
distributed energy systems and proposed a framework for demand side 
management by enabling P2P energy exchange. A case study was con-
ducted to show that the proposed model helps in flattening the energy 
consumption schedule from external grid. Furthermore, the use of 
blockchain helped in achieving better security and transparency. In 

contrast, the increasing number of participants could pose scalability 
issues that requires further research. 

The authors in Ref. [248] address the privacy and security issues in 
blockchain based decentralized energy trading systems. Furthermore, a 
blockchain-based solution is introduced to provide transactional secu-
rity and privacy in decentralized energy systems. A token based secure 
energy trading system is implemented that enables peers to anony-
mously trade energy within themselves. Previous research findings into 
privacy issues have been consistent in Ref. [249] where a consortium 
blockchain was presented to deal with privacy issues during energy 
trading. A method is proposed to overcome linking attacks, an attack 
where data mining algorithms are used to obtain information by linking 
public blockchain information with the existing datasets. These data 
sources can come from an electric company. There are other works that 
focus on privacy and security issues by considering transaction in IoT 
based energy systems [250,251]. 

The scalability issues can be handled either by adapting the market 
clearing process or by relying on underlying technology. To deal with 
the scalability issues, Khorasany et al. [252] followed the former 
approach and proposed an adaptive segmentation method for market 
clearing mechanism. Segments are formed using clustering algorithm 
based on the similarity between players considering amount and price as 
features. In the next step, distributed method is applied to clear the 
market thereby enhancing scalability by reducing communication 
overheads. 

There are various technical challenges that can occur in the inte-
gration of blockchain in energy systems and a broad analysis of these 
challenges is required for the adoption of blockchain in energy domain. 
The most important finding to emerge in the work by Ahl Et al [253]. is 
that the challenges are not limited to technology but can also appear in 
the form of economic, society, institutional and environmental chal-
lenges. However, discussion on that is beyond the scope of this paper. 

Fig. 10. A simplified view of the classical MPC control algorithm deployment in energy system setting.  

Fig. 11. An example of RL based model-free control algorithm in energy system setting.  
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5.3.2.4. Regulatory aspects of blockchains. In general, there are a num-
ber of legal and regulatory requirements that blockchain projects and 
their application in the energy domain must comply with [233]. The law 
on the EU level provides the general right to be supplied with electricity 
and legal provisions must ensure the protection of “vulnerable cus-
tomers”. With regard to customer protection, also the European General 
Data Protection Regulation applies as well as the economic consumer 
protection through unbundling. Furthermore, various national regula-
tions must be taken into account as, for example, contracts for energy 
supply need to include among others the contracts term, price varia-
tions, termination deadlines as well as methods of payment, supplier 
switching or how information about tariffs can be obtained. The 
implementation of Blockchain would affect the current market roles, 
with the changes to be reflected in the regulations. This will also lead to 
changes in the defined areas of responsibility of the currently existing 
roles. Who transmits the measured values to the distribution network 
operator? Who prepares planning and forecasts for the transmission 
system operator? Who is the current contract partner or balancing group 
manager? These tasks, which are defined in the various regulations, 
must be taken into account and agreed upon in a decentralized system. 

In summary, many of the regulations and frameworks are tailored to 
a centralized energy system and, when taken into account, weaken the 
advantages of a decentralized energy market. In the transformation from 
a centralized system with a clear assignment of organizational and legal 
responsibility, to decentralized blockchain-based concepts, roles and 
responsibilities need to be assigned and defined. 

6. Discussion 

In electricity markets, there is an increasing need for flexibility also 
from the distributed resources located on the demand side. The flexi-
bility could be used for arbitrage in energy markets or for congestion 
management, i.e. balancing the grid. In places where also other com-
modities (e.g. heat or gas) are used as energy carriers, the correlation 
between changes in demand (or generation) could be significant and 
holistic energy management solutions are required, which need to be 
incentivised by government or the grid operators. 

There are centralized market mechanisms in place for trading com-
modities, which vary according to region and commodity type. For 
optimal trading and final use of resources, trading in these markets and 
potentially the interaction of the specific commodity markets in their 
timing, bidding structures and clearing is beneficial. Smaller localized 
markets could also fill a niche for enabling small-scale resources to 
participate in markets, share energy and resources and aid in the man-
agement of the local distribution network. 

There is a need to take a broad look at the regulatory framework 
when discussing what supports and what restricts cross-commodity 
energy systems. The framework should consist of several pieces of 
regulation at different levels (EU, national and regional) for various 
policy domains (RES, energy-efficiency, buildings, electricity markets, 
heating and cooling, metrology and smart metering systems, ICT and 
data, data protection and cybersecurity, taxation etc.). Various pieces of 
regulation have different objectives and they may thus on their own or in 
combinations support or restrict cross-commodity energy systems. 

Considering future middleware functionalities and design, it is important 
to promote software upgrades for all devices since its essential capability to 
maintain and introduce features for the devices in the field. With software 
updates, it is also possible to update datagrams (such as ProtoBuf [254]) 
and/or conversion protocols in each equipment. This can even be considered 
being more important than trying to find a one common application lan-
guage for these systems in the future. With sufficient software upgrading, one 
can modify and adapt devices in the field and foster innovation. 

Artificial Intelligence technologies have been studied extensively for 
modelling and controlling energy consumption and generation. How-
ever, most of the work has focused on hourly data and more work is 
needed to be done for 15 min and finer granularities. This is important to 

be able to manage energy systems in more distributed manner. Another 
significant limitation in the existing research is that, although there are 
many studies forecasting flexible building loads such as HVAC, there is a 
lack of studies modelling flexibility of buildings with data from actual 
controls. This would give a realistic idea on the actual thermal perfor-
mance of buildings and the response caused by flexibility management. 
This is also partly visible in the automated control studies that mainly 
focus on simulated environments. 

From methodology point of view interesting direction for future work 
include hybrid models that combine deep learning models with physics- 
based models in order to achieve high representation capacity in data- 
efficient manner. ML-based approaches are also based on the i. i.d. 
assumption, which is not realistic in real-life buildings since the data 
distribution change due to many reasons (e.g. changes in the control logic 
of HVAC, new appliances, new inhabitants). To this end, more work such 
as in Ref. [255] are needed to make the ML approaches such as deep neural 
networks able to handle changing data distributions, e.g., by utilizing 
information on the errors made by the model in the recent past. 

The relevance of the integration of blockchain with energy systems is 
clearly supported by the current findings. Therefore, it can be concluded 
that blockchain can form an important part in energy transition, espe-
cially in P2P energy trading by providing transparency, supporting audit 
trails and allowing decentralized autonomous computations. However, 
the integration also introduces several challenges. These challenges are 
not limited to technical front but also in terms of legal and regulatory 
parameters. If the challenges are addressed appropriately, then block-
chain can prove to be disruptive in the energy domain. 

Throughout this article, we have considered ‘cross-commodity en-
ergy’. In fact, our thinking is supporting energy system integration, the 
term of which could also have been used. EU Strategy for Energy System 
Integration [122] discusses the pathway towards an effective, affordable 
and deep decarbonisation of the European economy. According to the 
strategy, the Clean Energy Package provides a basis for better integra-
tion across infrastructure, energy carriers and sectors. There are, how-
ever, still regulatory and practical barriers. It its stated that “without 
robust policy action, the energy system of 2030 will be more akin to that of 
2020 than a reflection of what is needed to achieve climate neutrality by 
2050”. The strategy includes several proposals that will be prepared 
during 2021 to advance energy system integration. 

7. Conclusions and recommendations 

This paper dealt with foreseen views to realize cross-commodity 
energy systems when considering trends in energy transition, support-
ing regulations of key components and core technical enablers. 
Considering our research questions, we conclude the following. 

The energy markets both in Finland and in Germany are in a tran-
sition process. Phasing out coal will need all available means including 
new market mechanisms. Several options for organizing markets for 
distributed multi-energy systems have been recently proposed but 
practical applications and supporting forecasting, planning, and trading 
systems are not established. In addition, bidding strategies in a multi- 
commodity market setting have not been actively studied. Automated 
trading strategies are required for the trading to be worthwhile on a 
local scale, which consider the specificities of the local market and re-
quirements of the end-customer load management. 

Clean Energy Package includes several pieces of legislation that are 
at the general level supportive towards the broad aims of the cross- 
commodity energy sharing solutions discussed in this article. The EU 
Strategy for Energy System Integration states that Clean Energy Package 
provides a basis for better integration across infrastructure, energy 
carriers and sectors and recognises need for additional policy action to 
enable effective, affordable, and deep decarbonisation. A Hydrogen 
strategy [256] for a climate-neutral Europe elaborates in more detail on 
the opportunities and necessary measures to scale up the uptake of 
hydrogen in the context of an integrated energy system. In designing 
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further steps at the EU level, it is important to pay attention to linkages 
between energy policy and other policy domains and lessons learned in 
various national contexts when implementing EU policies. Finland and 
Germany are both implementing measures that can pave the way for 
cross-commodity energy sharing solutions (e.g., smart metering and 
data handling, active customers, and renewable self-consumption). 
There are, however, differences between approaches. 

The article provided state-of-the-art review on IoT, AI and blockchain 
with a viewpoint on how these technologies can support decentralized 
and cross-sector energy systems. Key components of IoT are wireless 
communication and interoperability middleware. Wireless communica-
tion technologies are needed for monitoring and control of distributed 
energy resources and flexibility assets, as well as, to support P2P 
communication in local energy markets. However, the development 
should have more focus towards local network deployments from the 
nationwide and MNO driven business model. This development should be 
backed by EU level spectrum policy support for local spectrum access. 
Locally available spectrum and communication capacity will be critical 
assets to support local and decentralized energy management and trading. 
Middleware provides the connecting glue between the required hetero-
geneous distributed entities for measuring and control. The state-of-the- 
art solutions presented in this paper address the central challenges of 
integration, security, scalability, and robustness. However, having a set of 
common interoperability standard(s) is still to be established. 

AI provides key technologies for modelling and optimization of 
sector-integrated and distributed energy systems. There has been a vast 
amount of research and good results on machine learning methods 
especially for load and generation forecasting. AI-based automated 
control and optimization methods have been also heavily studied and 
shown to improve traditional control methods. However, most of the 
studies have been executed in simulation environments and the Tech-
nology Readiness Levels need to be increased to support adoption of AI 
methods also in automated decision-making. 

Similarly, to AI, many blockchain based solutions for decentralized 
energy systems have been proposed in the literature. However, there are 
still many technical challenges, and it would be beneficial to further 
analyze the challenges to support the adoption of blockchains in energy 
domain. Moreover, existing regulations and frameworks are designed 
for centralized energy system and organizational and legal re-
sponsibilities need to be clarified to support the adoption of blockchains 
in decentralized energy systems. 

Based on our work, we give the following recommendations for future 
research directions, which also presents limitations of our proposal:  

• It would be useful to continue and broaden comparative research on 
impacts of EU-level and national policies for advancing cross- 
commodity energy sharing solutions to facilitate learning between 
policy makers at various levels and those developing new concepts. 
The outcome should be new, or refined concepts to incentivise cross- 
commodity energy sharing.  

• Future energy solutions require combining novel communication 
and security technologies that are designed for decentralized oper-
ation. This also requires rethinking at policy level to support tech-
nologies that are can be used on a local level instead of requiring 
nation-wide deployments. 

• Security-by-design is a central challenge for the discussed ICT solu-
tions. Central challenges are the vertical integration of different 
technologies, including their complexity.  

• Standardized interfaces are required to combine the necessary 
building blocks for the envisioned ICT solution. 

• The research on AI methods should focus on practical implementa-
tions with real buildings instead of simulation environments. To 
support this, research is needed to enable more data-efficient, robust, 
and adaptive methods both for supervised and reinforcement 
learning.  

• As the regulation and technical framework is evolving very fast. New 
business opportunities should be scouted frequently. 
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[67] Roldán-Blay C, Escrivá-Escrivá G, Álvarez-Bel C, Roldán-Porta C, Rodríguez- 
García J. Upgrade of an artificial neural network prediction method for electrical 
consumption forecasting using an hourly temperature curve model. Energy Build 
2013. https://doi.org/10.1016/j.enbuild.2012.12.009. 

[68] Zhao D, Zhong M, Zhang X, Su X. Energy consumption predicting model of VRV 
(Variable refrigerant volume) system in office buildings based on data mining. 
Energy; 2016. https://doi.org/10.1016/j.energy.2016.02.134. 
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