
DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

PEDRO ALEXANDRE FRANCISCO CAPELO

Degree in Electrical and Computers Engineering Sciences

AI GYM FOR NETWORKS

MASTER IN ELECTRICAL AND COMPUTER ENGINEERING

NOVA University Lisbon
September, 2022

DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

AI GYM FOR NETWORKS

PEDRO ALEXANDRE FRANCISCO CAPELO

Degree in Electrical and Computers Engineering Sciences

Adviser: Pedro Miguel Figueiredo Amaral
Assistant Professor, NOVA University Lisbon

MASTER IN ELECTRICAL AND COMPUTER ENGINEERING

NOVA University Lisbon
September, 2022

AI Gym for Networks

Copyright © Pedro Alexandre Francisco Capelo, NOVA School of Science and Technology,
NOVA University Lisbon.
The NOVA School of Science and Technology and the NOVA University Lisbon have the
right, perpetual and without geographical boundaries, to file and publish this dissertation
through printed copies reproduced on paper or on digital form, or by any other means
known or that may be invented, and to disseminate through scientific repositories and
admit its copying and distribution for non-commercial, educational or research purposes,
as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.15) [1].

https://github.com/joaomlourenco/novathesis

To my family and friends.

Acknowledgements

First of all, I would like to thank my family. Specifically, my mother and my father for
providing me with education, support and conditions to be the person that I am today.
They are the principal reason on why I was able to achieve this goal and many others in
my life.

Furthermore, I would like to thank my adviser, Dr. Pedro Amaral, for suggesting the
thesis topic and for providing the needs to develop the wanted project, by giving me the
material, the helpful advices and assistance.

I would also like to thanks NOVA School of Science and Technology, NOVA University
of Lisbon and all the teachers who crossed my academic path, for helping me to build the
bases to become a better human and professional.

Finally, I would like to thank my colleagues, Alexandre Brito and João Faria, who have
become great friends and helped me during the past 5 years. They shared with me the
struggles and victories that an academic engineer path brings.

iv

“
Recomeça....
Se puderes

Sem angústia
E sem pressa.

E os passos que deres,
Nesse caminho duro

Do futuro
Dá-os em liberdade.

Enquanto não alcances
Não descanses.

De nenhum fruto queiras só metade.
E, nunca saciado,

Vai colhendo ilusões sucessivas no pomar.
Sempre a sonhar e vendo

O logro da aventura.
És homem, não te esqueças!

Só é tua a loucura
Onde, com lucidez, te reconheças...

” (Sísifo, Miguel Torga)

Abstract

5G Networks are delivering better services and connecting more devices, but at the same
time are becoming more complex.

Problems like resource managementandcontroloptimization are increasingly dynamic
and difficult to model making it very hard to use traditional model-based optimization
techniques. Artificial Intelligence (AI) explores techniques such as Deep Reinforcement
Learning (DRL), which uses the interaction between the agent and the environment to
learn what action to take to obtain the best possible result.

Researchers usually need to create and develop a simulation environment for their
scenario of interest to be able to experiment with DRL algorithms. This takes a large
amount of time from the research process, while the lack of a common environment
makes it difficult to compare algorithms.

The proposed solution aims to fill this gap by creating a tool that facilitates the setting
up of DRL training environments for network scenarios. The developed tool uses three
open source software, the Containernet to simulate the connections between devices, the
Ryu Controller as the Software Defined Network Controller, and OpenAI Gym which
is responsible for setting up the communication between the environment and the DRL
agent.

With the project developed during the thesis, the users will be capable of creating
more scenarios in a short period, opening space to set up different environments, solving
various problems as well as providing a common environment where other Agents can
be compared.

The developed software is used to compare the performance of several DRL agents in
two different network control problems: routing and network slice admission control. A
novel DRL based solution is used in the case of network slice admission control that jointly
optimizes the admission and the placement of traffic of a network slice in the physical
resources.

Keywords: 5G Networks, Deep Reinforcement Learning, Containernet, Ryu Controller

vi

Resumo

As redes 5G oferecem melhores serviços e conectam mais dispositivos, fazendo com que
se tornem mais complexas e difíceis de gerir.

Problemas como a gestão de recursos e a otimização de controlo são cada vez mais
dinâmicos e difíceis de modelar, o que torna difícil usar soluções de optimização basea-
das em modelos tradicionais. A Inteligência Artificial (IA) explora técnicas como Deep
Reinforcement Learning que utiliza a interação entre o agente e o ambiente para aprender
qual a ação a ter para obter o melhor resultado possível.

Normalmente, os investigadores precisam de criar e desenvolver um ambiente de
simulação para poder estudar os algoritmos DRL e a sua interação com o cenário de
interesse. A criação de ambientes a partir do zero retira tempo indispensável para a
pesquisa em si, e a falta de ambientes de treino comuns torna difícil a comparação dos
algoritmos.

A solução proposta foca-se em preencher esta lacuna criando uma ferramenta que
facilite a configuração de ambientes de treino DRL para cenários de rede. A ferramenta
desenvolvida utiliza três softwares open source, o Containernet para simular as conexões
entre os dispositivos, o Ryu Controller como Software Defined Network Controller e o
OpenAI Gym que é responsável por configurar a comunicação entre o ambiente e o agente
DRL.

Através do projeto desenvolvido, os utilizadores serão capazes de criar mais cenários
em um curto período, abrindo espaço para configurar diferentes ambientes e resolver
diferentes problemas, bem como fornecer um ambiente comum onde diferentes Agentes
podem ser comparados.

O software desenvolvido foi usado para comparar o desempenho de vários agentes
DRL em dois problemas diferentes de controlo de rede, nomeadamente, roteamento e
controlo de admissão de slices na rede. Uma solução baseada em DRL é usada no caso
do controlo de admissão de slices na rede que otimiza conjuntamente a admissão e a
colocação de tráfego de uma slice na rede nos recursos físicos da mesma.

Palavras-chave: Redes 5G, Deep Reinforcement Learning, Containernet, Ryu Controller

vii

Contents

List of Figures x

List of Tables xii

Acronyms xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Contributions . 3
1.4 Outline . 4

2 Fundamentals and Literature Review 6
2.1 5G Networks . 6
2.2 Radio Access Network . 7
2.3 5G Core Network . 10
2.4 Network Function Virtualization . 12
2.5 Software Defined Network . 13

2.5.1 OpenFlow . 15
2.6 Artifial Intelligence . 15
2.7 Reinforcement Learning . 16

2.7.1 Markov Decision Process . 17
2.8 Deep Learning . 18
2.9 Deep Reinforcement Learning . 19

2.9.1 Deep Q-Network . 19
2.9.2 Dueling Deep Q-Network . 20
2.9.3 Double Deep Q-Learning . 21
2.9.4 Deep Q-Networks with Actor-Critic 22

2.10 NS3 . 23
2.10.1 NS-Gym . 23

viii

2.10.2 5G-Lena . 24
2.11 Related Work . 24

3 Environment Architecture 26
3.1 Architecture Overview . 26
3.2 Containernet . 31
3.3 Ryu Controller . 33
3.4 OpenAI Gym . 34
3.5 Environment Setup . 34

4 Developed Scenarios 37
4.1 Network Path Selection - Example 1 . 37

4.1.1 System Design . 37
4.2 Dynamic Network Slicing - Example 2 . 42

4.2.1 System Design . 42
4.3 Dynamic Network Slicing and Path Selection - Example 3 47

4.3.1 System Design . 47

5 Results 51
5.1 Results . 51
5.2 Comparison between Example 2 and Example 3 53

6 Conclusion 55

Bibliography 57

ix

List of Figures

2.1 RAN Options . 8
2.2 gNB Architecture . 9
2.3 RAN Architecture . 9
2.4 5G Core Network Functions . 11
2.5 5G Deployment over an SDN architecture . 12
2.6 Centralized Control Plane Architecture . 13
2.7 Distributed Control Plane Architecture . 14
2.8 Logically Centralized-Physically Distributed Control Plane Architecture . . 15
2.9 Reinforcement Learning Overview . 17
2.10 Deep Neural Network Overview . 18
2.11 Deep Reinforcement Learning Overview . 19
2.12 Deep Q-Network Overview . 21
2.13 Dueling Deep Q-Network Architecture Overview 22

3.1 "AI Gym for Networks" Folder . 26
3.2 "AI Gym for Networks" Communication Architecture Overview 27
3.3 Volume Folder . 28
3.4 Log File Example . 29
3.5 OFPMatch File for Starting Rules Example . 29
3.6 Paths File for Starting Rules Example . 29
3.7 Paths and Hops File for Starting Rules Example 30
3.8 Bandwidth Links File Example . 30
3.9 Switches Adjacency File Example . 30
3.10 OFPMatch File Example . 30
3.11 Switch Bandwidth File Example . 31
3.12 Switch Statistics Port File Example . 31
3.13 Setup Bash File . 35
3.14 Constructor - ContainernetEnv Class . 35
3.15 Get State and Get Information Functions - ContainernetEnv Class 36
3.16 Reset and Step Functions - ContainernetEnv Class 36

x

4.1 Network Path Selection Folder - Example 1 37
4.2 Reset Function - Example 1 . 38
4.3 Step Function - Example 1 . 39
4.4 Topology - Example 1 . 41
4.5 Dynamic Network Slicing Folder - Example 2 42
4.6 Reset Function - Example 2 and Example 3 43
4.7 Step Function - Example 2 . 44
4.8 Topology - Example 2 and Example 3 . 46
4.9 Dynamic Network Slicing and Path Selection Folder - Example 3 47
4.10 Step Function - Example 3 . 50

5.1 Results from Network Path Selection - Example 1 52
5.2 Results from Dynamic Network Slicing - Example 2 52
5.3 Results from Dynamic Network Slicing and Path Selection - Example 3 . . . 53
5.4 Comparison between Example 2 and Example 3 - DQN agent 54
5.5 Comparison between Example 2 and Example 3 - Dueling-DQN agent . . . 54

xi

List of Tables

4.1 Agent’s networks layers DQN - Example 1 . 40
4.2 Agent’s networks layers Dueling DQN - Example 1 40
4.3 Agent’s parameters - Example 1 . 40
4.4 Agent’s networks layers DQN - Example 2 and 3 45
4.5 Agent’s networks layers Dueling DQN - Example 2 and 3 45
4.6 Agent’s parameters - Example 2 and 3 . 45

xii

Acronyms

3GPP 3rd Generation Partnership Project (p. 24)

AI Artificial Intelligence (pp. vi, 2–4, 15, 19)
AMF Access and Mobility Management Function (p. 10)
ANN Artificial Neural Network (pp. 18, 50)
API Application Programming Interface (pp. 10, 11, 13, 23, 27)
AUSF Authentication Server Function (p. 10)

BER Bit Error Rate (p. 1)
BS Base Station (pp. 1, 7, 8, 42, 46)
BWP Bandwidth Part (p. 24)

C Control Plane (p. 9)
CN Core Network (pp. 6–8, 10, 11, 55)
CNF Core Network Function (p. 7)
CNN Convolutional Neural Network (p. 18)
CP Control Plane (pp. 10, 11, 14)
CS Computing Station (p. 46)
CU Central Units (p. 9)

DDoS Distributed Denial-of-Services (p. 25)
DDQL Double Deep Q-Learning (pp. 21, 22)
DL Deep Learning (pp. 2, 4, 18, 19)
DN Data Network (p. 10)
DNN Deep Neural Network (p. 20)
DQN Deep Q-Network (pp. 20–22, 37, 40, 45, 51)
DRL Deep Reinforcement Learning (pp. vi, 2–4, 19, 24–26, 34–38, 40, 42, 45, 47, 48, 50,

51, 53, 55, 56)
DU Distributed Units (p. 9)

xiii

E2E end-to-end (pp. 6, 7, 10, 24)
eMBB Enhanced Mobile Broadband (p. 6)
en-gNB Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial

Radio Access -NR-gNB (p. 8)
eNB evolved NodeB (p. 8)
EPC Evolved Packet Core (pp. 7, 8, 24)

gNB next-generation NodeB (pp. 7–9)
GPU Graphics Processing Unit (p. 34)

HTTP2 Hypertext Transfer Protocol Version 2 (p. 11)

IP Internet Protocol (pp. 7, 10)

JSON JavaScript Object Notation (pp. 28, 30)

KPI Key Performance Indicator (p. 6)

LC-PD Logically Centralized-Physically Distributed (p. 14)
LTE Long-Term Evolution (pp. 6–8)

MAC Media Access Control (pp. 24, 28)
MANO Management and Orchestration (p. 11)
MDP Markov Decision Process (pp. 17, 18, 21)
MECS Mobile Edge Computing Station (pp. 45, 46)
MIMO Multiple Input Multiple Output (p. 1)
ML Machine Learning (pp. 2, 15, 16, 55)
mMTC Machine Type Communications (p. 6)
MN Master Node (p. 8)

NF Network Function (pp. 1, 7, 10, 11)
NFV Network Function Virtualization (pp. 1, 4, 6, 12, 24, 31)
ng-eNB next generation eNB (pp. 8, 9)
NR New Radio (pp. 6–9, 24)
NSA Non-Standalone Architecture (pp. 6, 24)
NSSF Network Slice Selection Function (p. 10)

OFDMA Orthogonal Frequency-Division Multiple Access (p. 24)
OSI Open Systems Interconnection (p. 2)

xiv

PCF Policy Control Function (p. 10)
PDU Protocol Data Unit (p. 10)

QoS Quality of Service (pp. 1, 10, 24, 55)

RAN Radio Access Network (pp. 6, 7, 9, 10, 23, 24, 55)
RESTfull Representational State Transfer Application Programming Interface (p. 11)
RL Reinforcement Learning (pp. 2–4, 16, 19, 24, 25, 34)
RNF Radio Network Function (p. 7)
RNN Recurrent Neural Network (pp. 18, 19)

SBA Service Based Architecture (p. 11)
SBI Service Based Interface (p. 11)
SDN Software-defined networking (pp. 3, 4, 6, 11, 13–15, 24–26, 55)
SMF Session Management Function (p. 10)
SN Secondary Node (p. 8)

TD Temporal-Difference (p. 22)
TDMA Time-Division Multiple Access (p. 24)

U User Plane (p. 9)
UDM Unified Data Management (p. 10)
UE User Equipments (pp. 1, 8, 10)
UL UpLink (p. 24)
UP User Plane (p. 10)
UPF User Plane Function (p. 10)
URLLC Ultra-Reliable and Low Latency Communications (p. 6)

VM Virtual Machine (pp. 1, 11, 12)
VNF Virtual Network Function (pp. 12, 24)

xv

1

Introduction

1.1 Motivation

Over the years, we have witnessed a growth in the number of connected mobile devices
and the transmitted data in modern networks. Furthermore, the necessity to support
new use cases and services, such as the Internet of Things, Industry 4.0, and Connected
Vehicles, that were not possible to implement with older wireless network generations,
led to the investigation and implementation of future generation wireless networks.

5G networks and beyond have numerous characteristics. Starting with the physical
network advancements, technologies like Multiple Input Multiple Output (MIMO) allow
each Base Station (BS) to transmit high-speed data streams to multiple User Equipments
(UE)s, simultaneously, reducing the Bit Error Rate (BER), minimizing fading effects, and
offering high Quality of Service (QoS) by increasing spectral efficiency and data rates.
Another technology, known as millimeter-wave (mm-wave) communications, provides
a higher transmission rate, more immunity to interference, and enables multiple short
distance usages because of its higher frequencies [2].

An significant characteristic of 5th generation technology is network softwarization
and Network Function Virtualization (NFV). These technologies bring the advantage of
not depending on dedicated hardware. NFV brings the possibility of virtualizing network
services by packing the services in Virtual Machine (VM)s or containers on commodity
hardware.

These technologies provide significant benefits to handle the challenges discussed
above, such as the possibility to run multiple functions on a single server, leading to use
fewer physical hardware and to have a cost reduction. An extra benefit is the flexibility
to run Network Function (NF)s in different services with the capacity to change their
locations when demand changes, accelerating the delivery of services [3].

5G networks with these characteristics have more UEs and BSs of different types
and different QoS requirements, creating large-scale, heterogeneous, and decentralized
networks, with a high level of complexity, dynamism, and uncertainty, that difficults
the goal of optimizing these networks in aspects such as data rate, energy consumption,

1

CHAPTER 1. INTRODUCTION

latency, resources, management, and policy definitions.
There are conventional approaches, such as convex optimization and linear program-

ming that can be used for optimizing and planning networks, but due to the complexity,
scalability, and uncertainty of 5G networks modelling the problems is very complex. These
approaches have intractable complexity when facing challenging problems to model and
are not easily applicable in highly dynamic scenarios [4]. An alternative is the use AI based
approaches for network control, especially in the Reinforcement Learning (RL) domain,
that are model-free and are demonstrating great potential for control based problems in
communication systems.

RL is a class of Machine Learning (ML) that is suited for handling problems related
to real-time dynamic-decisions-making. The advantage of RL is that it does not rely on a
system mathematical model and it can adapt and learn in dynamic conditions, making It
useful in scenarios such as 5G networks. RL algorithms can update decision policies to
obtain better systems performance, using feedback based on previous decisions. Solutions
based on RL can be an alternative to solve resource management problems in extensive
networks.

When the complexity and the scale of networks increases, RL algorithms have a slow
convergence speed because of the increasing number of space and action spaces. Another
problem is related to the amount of stored information, for example, state-action pair
information, making the amount of data too big, increasing the problem of finding optimal
policies in a reasonable time. A better solution than RL is DRL, which belongs to the AI
field and can be described as a combination of RL with Deep Learning (DL) [5].

The use of DRL allows handling larger scale dynamic systems, by eliminating the need
to store action-state pairs [6]. DRL has been used to optimize and solve issues related to
5G networks, as data offloading, data rate control, dynamic network access and network
security.

The paper [6] presents a survey focus on the applications of DRL in communications
and networking. The applications included subjects related with dynamic network access,
data rate control, wireless caching, data offloading, traffic routing, resource sharing and
others.

DRL agents need to be trained to achieve a good performance in a specific scenario.
The problem is the necessity of having a high volume of trial and error interactions with
the environment to learn an useful policy. The simulators’ utilization leads to better results
in a cost-effective way. Researchers need to use simulations or mathematical models to
obtain the results from a given action on the environment.

On other hand, there are many tools available that can be use to simulate network
environments. The issue is that each of these tools is for specific scenarios or specific Open
Systems Interconnection (OSI) Layers. The complexity of each layer and the different
types of architectures adopted by them, make it difficult to find simulators capable of
replicating all the network’s layers behaviour, including the links between them.

This leads to a myriad of simulation implementations in the research literature, with

2

1.2. OBJECTIVES

each author building its custom environment to train a specific DRL for a specific scenario.
Tools that can streamline this process are needed in order to expedite experimentation, but
also to more easily provide , common environment implementations for benchmarking
DRL algorithms. The lack of a tool that facilitates and speeds up the development of
environments to train, test, and compare DRL agents in 5g network scenarios is the
motivational basis that supports this thesis.

1.2 Objectives

The Thesis is focused on developing a simulated DRL training environment that can
simulate 5G networks scenarios. In other words, the goal is to create a tool for simulation
environments that can accelerate the experimentation and validation of DRL models and at
the same time facilitate the comparison of different algorithms in a common environment
simulation platform. The followed approach is based on implementing a solution that
integrates simulators used in different 5G network domains, including, Transport, and
Software-defined networking (SDN) controller.

Beyond that, the solution needs to have the capacity to provide a standardized interface,
allowing access to the executed actions and the state in the environment for communication
with the DRL agent.

OpenAIGym will be used to integrate the environment with the DRL agent providing
a known interface, that allows the execution of actions and the observation of states
in an environment. OpenAIGym is a python toolkit for developing and comparing RL
algorithms.

The software to emulate the transport and computing parts of the environment is
called Containernet, a fork of Mininet. Containernet provides relevant features, such as
using Docker containers as hosts in emulated network topologies. This tool is used by
the research community, focusing on experiments in fog computing, cloud computing,
multi-access edge computing, and network function computing, which it is one of the
most important aspects of 5G networks [7].

Finally, the software used to implement the Software Defined Network controller is
Ryu Controller, which is an open-source software-defined networking controller written
in python.

After the developmentof the environment simulation tool, the final step is to benchmark
algorithms proposed in the literature for three different scenarios to demonstrate the use
of the "AI Gym for Networks" solution.

1.3 Contributions

The contributions achieved by the present thesis are the creation of a tool that facilitates
the setup of network environments, decreasing the amount of time the user needs to create

3

https://www.gymlibrary.dev/
https://containernet.github.io/
https://ryu-sdn.org/

CHAPTER 1. INTRODUCTION

a simulation environment, opening space to create different scenarios and facilitating the
comparison of different proposals in the same simulation environment.

The different DRL based solutions for three separate problems/scenarios were imple-
mented to demonstrate the simplicity in the development of the different environments
using of the developed software.

The first scenario, named "Network Path Selection", is a DRL based routing scenario
in which the DRL agent has to decide what is the best path to be installed in the Software
Defined Network Controller, taking into consideration the network bandwidth utilization
state.

The second scenario, named "Dynamic Network Slicing", is a scenario to train and test
the performance of DRL agents for network slice admission control.

The third scenario, named "Dynamic Network Slicing and Path Selection", is a scenario
where DRL has the responsibility of considering both slicing admission and choose the
best path for each slice. Being a novel contribution of the thesis, extends the model used
in the second scenario to jointly consider path selection for a slice in order to optimize
both profit and network utilization.

Finally, it is compared the "Dynamic Network Slicing" scenario and the "Dynamic
Network Slicing and Path Selection" scenario to conclude what it is the influence of path
selection by agent and path selection by a predefined rule in the Dynamic Network Slicing
scenario.

1.4 Outline

Besides the introduction, this document is structured into five more chapters.
The second chapter describes the state of the art.
It begins by describing basic concepts related to 5G Networks, SDN, NFV, AI, DL, RL

and DRL.
There is also a section on Related Work that provides an overview of research papers

that use DRL for network control and management problems with focus on how the
environments were simulated.

The third chapter, named "Environment Architecture", describes the software used to
develop the proposed solution and what is the architecture behind, in other words, how
the different blocks of the "AI Gym for Networks" communicate and works with each
other.

Furthermore, the chapter has a sub-section named "Environment Setup" focus on
describing from a tutorial perspective, how a usercan download andsetup his environment
to run and test his scenarios.

The fourth, chapter is named "Developed Scenarios" and describes the setup design
used to build each of the three example scenarios developed to prove the advantages of
the thesis solution.

4

1.4. OUTLINE

The fifth chapter, named "Results", is focused on presenting the agents’ train for
each example, the comparison between the "Dynamic Network Slicing" example and the
"Dynamic Network Slicing and Path Selection" example and the conclusions based on the
obtained results.

The sixth and final chapter describes the conclusions achieved with the work developed.

5

2

Fundamentals and Literature Review

2.1 5G Networks

The first discussions about the successor of 4G Long-Term Evolution (LTE) were about
analyzing the different options that could take 5G to be a next-generation system farbeyond
4G LTE, and then these Technical Reports were turned into Technical Specifications. The
areas that were improved by 5G are the following use case scenarios.

Enhanced Mobile Broadband (eMBB) which defines a minimum level of data transfer
rate, and delivers increased bandwidth and decreased latency in comparison to 4G,
Machine Type Communications (mMTC), that can support extremely high connection
density of devices and Ultra-Reliable and Low Latency Communications (URLLC).

One of the most important Technical Specifications is a global view and description of
the 5G New Radio (NR), also known as the 5G Radio Access Network (RAN), which can
be high-level related to LTE.

The beginning 5G implementation started by re-using the existing LTE radio and core
network, these deployments are referred to as 5G Non-Standalone Architecture (NSA).
The purpose is to replace 4G networks with 5G components and support many different
scenarios. Along 5G NR, 5G networks are also composed of 5G Core Network (CN)s,
which is desirable for scenarios such as 5G end-to-end (E2E) networks, bringing new
capabilities such as very high reliability and very low latency.

SDN and NFV have a huge importance in terms of the possible 5G applications
and flexible network implementations. The goal of implementing 5G technology is to
create connections with ultra-low latency, with more connected devices, more speed in
transmissions, and network slicing [8] [9].

In addition to improving broadband services, 5G networks also improve Key Per-
formance Indicator (KPI)s, such as user experience data rate, E2E latency, reliability,
communications efficiency, availability, and energy consumption. These KPIs have differ-
ent requirements for different. The solution to support the diverse requirements of 5G
use cases it’s by using Network Slicing.

To enable the multiplexing of virtualized independent logical networks on the same

6

2.2. RADIO ACCESS NETWORK

physical network infrastructure. With this technology, it is possible to have multiple
logical networks in parallel on a single physical platform.

With Network Slicing, it’s possible to have multiple verticals supported by dedicated
logical networks, which are composed of Core Network Function (CNF)s and Radio
Network Function (RNF)s, running on top of the physical 5G infrastructures.

Network slicing has many advantages, the logically separated networks can be assigned
to different types of service providers, which can administer and manage them. It is also
possible to handle the resulting networks in an isolated way, such as isolation of the
configurations, isolation of the NFs, isolation of the specifications settings hardware or
virtual resources and security isolation [9].

5G networks can be divided into two main networks, the RAN and the CN.
The RAN is related to radio, such as scheduling access concerning aspects, radio-

resource handling, transmission protocols, and multi-antenna schemes.
The CN is responsible for E2E connections, authentication, and charging functionalities.

The CN should have a service-based architecture with support for slicing, and control-
plane/user-plane split.

The next chapters will introduce concepts, such as Network Slicing and the domains
that compose a 5G network, i.e., RAN, CN, and the aspects related to the CN, such as
Transport, Computing, and Software Defined Network [10].

2.2 Radio Access Network

The RAN is the network that establishes the connection between wireless host and the
CN.

With the development of 5G networks, it has been crucial to develop a RAN that can
handle a wide range of frequency bands with variable characteristics, such as bandwidths
and propagation conditions. It also needs to scale in terms of throughput, the number of
devices, and connections [11].

The 5G NR has its radio transmission technology based on LTE concepts, but it
optimizes them due to the necessity of delivering better performance and flexible handling.

The implementation of the NR RAN takes into count the existence of the LTE, the first
standardized RAN technology that uses Internet Protocol (IP) as the transport protocol,
also known as the transition between 3G and 4G. So, the NR has the capacity of connecting
to the Evolved Packet Core (EPC), the LTE CN, which can be called a non-standalone
operation [10].

The New Generation RAN can operate in Standalone operations as in Non-Standalone
operations, which means that it can have 4G and 5G technology working in the same
network.

There are different combinations between CNs and RANs, and these combinations,
besides having the EPC and 5GCN components, have four distinct elements related to
the radio access domain, next-generation NodeB (gNB), which is a 5G BS with a direct

7

CHAPTER 2. FUNDAMENTALS AND LITERATURE REVIEW

interface to the 5G core, Evolved Universal Mobile Telecommunications System (UMTS)
Terrestrial Radio Access -NR-gNB (en-gNB), which is a 5G BS with an interface to the 4G
core (EPC) via a 4G BS evolved NodeB (eNB) with LTE functionality, eNB which is an LTE
BS with an EPC interface and finally next generation eNB (ng-eNB) which is an LTE BS
with an interface to 5G CN [8].

The combination of these elements derived to different configuration options, being
each of them a viable deployment option of network operators. The RAN options are
represented in Figure 2.1.

Figure 2.1: RAN Options

In option 2, the gNBs are connected to the 5G CN, using the NR interface, in option 3,
the UE is connected to an eNB that works as a Master Node (MN) and to an en-gNB that
works as a Secondary Node (SN). The eNB is linked to EPC and en-gNB is linked to eNB
and also can be linked to EPC.

In option 4, the UE is linked to a gNB that works as an MN and to an ng-eNB that
works as an SN. The gNB is connected to the 5G Core and the ng-eNB is connected to the
gNB.

In option 5, the ng-eNBs are connected to the 5GC network, but it also allows the
existence of an LTE radio infrastructure if the node eNB gets an upgrade and then it will
be able to connect to the 5GC.

Finally, option 7, is when the UE is linked to an ng-eNB that works as an MN and to a
gNB that works as an SN. The ng-eNB is linked to the 5GC and the gNB is linked to the

8

2.2. RADIO ACCESS NETWORK

ng-eNB.
In summary, we have 5 options, two (option 2 and option 5) are Standalone and the

other three are Non-Standalone.
The 5G NR logical node, gNB, brings new concepts to the RAN field. By splitting up the

gNB into Central Units (CU)s and Distributed Units (DU)s, it’s possible to have important
benefits such as flexible hardware implementation allowing coordination performance
features, scalable cost-effective solutions, real-time performance optimization, and load
management. The gNB Architecture is represented in Figure 2.2.

Figure 2.2: gNB Architecture

When implementing the gNB, the important aspect is to know that one gNB-DU
only connects to one gNB-CU and can support one or more cells, but one gNB-CU can
connect to many gNB-DU. The interface that connects them is called the F1 interface
and supports signalling exchange and data transmission. Its functions are separated into
F1-Control Plane (C) which handles with Management Functions and F1-User Plane (U),
which is responsible for transferring user data and flow control functions [12]. The RAN
architecture is represented in Figure 2.3.

Figure 2.3: RAN Architecture

9

CHAPTER 2. FUNDAMENTALS AND LITERATURE REVIEW

2.3 5G Core Network

To fulfil the requirements required in 5G network, the CN must follow some design
principles that include, network softwarization, cloudification, openness for 3rd-party
providers, multi-tenant capability, modularization, and support of a wide range of wireless
and wired access network technologies.

It is also important to have a functional design’s modularization to provide aspects
like flexibility and efficiency on network slicing, to mapping processes between NFs and
services, to reuse system functionalities, traffic steering between NFs and to uniform
authentication system among others.

Another important feature is the separation between the User Plane (UP) and the Con-
trol Plane (CP), which brings advantages, such as independent scalability and evolutionary
development.

The 5G CN is split into two main modules, the UP and the CP.

The UP is responsible for the functions of user data transport, routing, forwarding
of data packets, traffic control, provision of required QoS, service continuity ensurance,
transmission, and recording of billing data.

On other hand the CP is responsible for authentication, authorization, mobility man-
agement, roaming, monitoring, and policy definitions.

The functions that are provided by these two main modules are called NFs and they
are hosted in a repository and called via Application Programming Interface (API)s.

Some important examples of network functions are the Access and Mobility Man-
agement Function (AMF) located in the CP that is responsible for the UE registration,
connection, accessibility, mobility management, authentication and authorization and the
User Plane Function (UPF) that represents the connection between the RAN and the Data
Network (DN) and it is responsible for data handling routing, traffic control, redirection,
QoS handling, packet inspection and collection and provision of usage data.

The Policy Control Function (PCF) is responsible for providing network policies related
with QoS, traffic forwarding, Access Network priorities and it also make it available to the
others NFs, the Unified Data Management (UDM) is responsible to process authentication
and identification of data based on user profiles.

The Authentication Server Function (AUSF) is the representation of an authentication
server, the Network Slice Selection Function (NSSF) is responsible for associating a network
slice with a UE and determines the AMF instance.

And finally, the Session Management Function (SMF) is responsible for establishing,
modifying and terminating Protocol Data Unit (PDU) sessions, providing E2E UP connec-
tivity between the UE and a specific DN, and controlling IP address management. The
5G Core Network Functions are represented in Figure 2.4.

10

2.3. 5G CORE NETWORK

Figure 2.4: 5G Core Network Functions

The architecture responsible for the planning is called Service Based Architecture
(SBA) [8]. In SBA, the Network Function Service is a set of NFs that provide the services
that are accessed via the Service Based Interface (SBI).

The Services on the CP communicate with each other via Hypertext Transfer Protocol
Version 2 (HTTP2) Representational State Transfer Application Programming Interface
(RESTfull) APIs. It is possible to create independent , and reusable manageable communi-
cations, by defining the NF Services [13].

The hardware used to build the CN consists of SDN switches or high-performance
routers with dedicated hardware, the servers for the 5G Core, and the Management and
Orchestration (MANO) functions. The Transport Network is based on SDN switches,
controlled by SDN controllers, and connects the data centers with Edge Cloud location
and Access Networks. The 5G Deployment over an SDN Architecture is represented in
Figure 2.5.

To use Virtual Network Functions, a virtualization layer in the hardware is needed to
provide virtual computing, storage, network resources, and SDN controllers in form of
VMs or Containers [8].

11

CHAPTER 2. FUNDAMENTALS AND LITERATURE REVIEW

Figure 2.5: 5G Deployment over an SDN architecture

2.4 Network Function Virtualization

NFV is a technology that was created to overcome different problems related to the
launching of services inside large and dynamic networks.

NFV aims to overcome problems, such as the difficulty of finding space, power, and
people skilled enough to deploy, integrate and operate network services, which need to
be installed in specific hardware-based appliances.

Using this kind of hardware that has a short period of life, increases, the costs and the
time spent to re-implement the services executed in those hardware-based appliances.

NVFs technology, which is based on standard IT virtualisation technology, brings to
the market the possibility of installing network services in a virtualized way, that has no
need to depend of the type of hardware that it is being used.

This characteristic comes from installing the Virtual Network Functions inside of VMs
or containers that are running in computing devices. In this way it is possible to bring
more flexibility and agility to adapt the network to overcome future problems and deliver
different types of services and solutions.

Some advantages of using Virtual Network Function (VNF)s are the reduction of
equipment costs and energy consumption, the adaptability to the market requirements,
enabling a large variety of different ecosystems and the rapid creation or scaling of services.

12

2.5. SOFTWARE DEFINED NETWORK

2.5 Software Defined Network

Software Defined Network allows new approaches in terms of orchestration mechanisms
that contribute to the automation of the management and service deployment process
[14].

The SDN architecture is split into three main layers, the infrastructure layer is composed
of switches, routers, and access points, and it is where the data transportation occurs,
the control layer controls the network devices, i.e., which policies are adopted and how
the devices should behave, responsible for the network’s automation, and management.
Finally, the application layer is responsible for getting the network information and for
defining the desired requirements and behavior for the network.

The communication between the controller and the network devices is made via
Southbound APIs and the communication between the application layer and the controller
is made via Northbound APIs.

The network performance is directly affected by the location of the SDN controller, so
it is important to have an idea about some SDN control plane architectures.

The centralized control plane architecture has only one centralized controller connected
to the infrastructure layer. The advantage of this approach is the overall network overview
that it provides leading to better decision-making and knowledge about what is happening
in the network. The problems with this type of architecture are the lack of redundancy, not
preventing failures, and the bad performance when the network’s size increases, so it is a
better architecture for small-scale networks. The Centralized Control Plane Architecture
is represented in Figure 2.6.

Figure 2.6: Centralized Control Plane Architecture

13

CHAPTER 2. FUNDAMENTALS AND LITERATURE REVIEW

The distributed control plane architecture tries to overcome the centralized control
plane architecture problems by having multiple distributed controllers, creating sets of
clusters structured each with its own responsible controller. Having many SDN controllers
increases the response time compared to the previous architecture and the cost to maintain
the architecture is also higher. The Distributed Control Plane Architecture is represented
in Figure 2.7.

Figure 2.7: Distributed Control Plane Architecture

The Logically Centralized-Physically Distributed (LC-PD) CP architecture combines
the two previous approaches, by having distributed controllers spread across the network.
The idea is to have controllers distributed physically all over the network, but they act as a
centralized one. The LC-PD Control Plane Architecture is represented in Figure 2.8. The
distributed controllers are connected and aware of any network change, and all of them
share the same information [15].

14

2.6. ARTIFIAL INTELLIGENCE

Figure 2.8: Logically Centralized-Physically Distributed Control Plane Architecture

The communication between the Controller and the network switches can be accom-
plish by using a communication protocol named OpenFlow.

2.5.1 OpenFlow

The OpenFlow protocol is one of the possible protocols for the SouthBound API and is
supported by most of the existing virtual switching software.

To use the OpenFlow protocol a secure channel communication with the SDN controller
must be established. The switches forwarding behaviour is then determined by a Flow
table were forwarding rules are installed that determine how to handle specific packets.

The forwarding rules are defined using flow entries that are composed by three main
fields: Match, instructions and priority. Flow entries statistics are provided by counters
and each flow entry has a priority value.

The Match field is used to define to which packets the rule is applied.
Each match field has a corresponding action/instruction, which defines how the

switch has to handle a specific packet that is sent to the switch. The Counters contain flow
statistics and the Priority defines the organization of flow entries inside the flow table.
Finally there are Timeouts to control the lifetime of a flow entry before expiring.

2.6 Artifial Intelligence

AI consists of many branches that use different techniques to solve many problems. Some
of these branches are Natural Language Processing, Expert Systems, Fuzzy Systems, and
ML.

15

CHAPTER 2. FUNDAMENTALS AND LITERATURE REVIEW

Natural Language Processing has the task of linking the human language and the
computer understanding, i.e., the study of how a computer can process and analyze text
and documents written in human language.

Expert Systems are computer systems that can solve complex problems and give advice
at a level comparable to an expert in the problem’s field.

Fuzzy Systems aims to solve problems with a certain level of imprecision and uncer-
tainty. ML is the science of giving a machine the capacity to learn and act based on the
data that we offer [16] [17].

Acquiring knowledge has some aspects in consideration. First, we need to understand
the processed information and then make decisions. ML can be described as a system that
can learn from its experience, respecting a set of tasks, and with that experience obtain
knowledge to improve its performance.

ML solves many different tasks. We can use it for classification to find the preset cate-
gory belonging to the respective input. Regression to predict numeric values depending
on the given input, Transcription to observe unstructured data and transform it into a
textual form, Machine Translation to translate information, Anomaly Detection to detect
unusual behaviors when analyzing events, etc.

The algorithm performance is specific to the task attributed to the system. We can
use performance measurements such as accuracy for classification tasks or error rate to
measure if the model creates an incorrect output. When we have known data, we usually
split the data set into training sets and test set to evaluate the accuracy. Relatively to the
kind of experience that a ML algorithm can have, it is possible to distinguish three ML
categories.

In Supervised Learning, the system has access to a data set that is known previously,
and it’s labeled. This solution is useful for classification, regression tasks, and calculating
outcomes.

In Unsupervised Learning, the system must learn from unknown data, observe many
examples of random data, and try to find properties of that data without any guidance. It’s
useful to deal with clustering and consists in slipping the data-set into clusters of similar
examples, mining associative rules, and discovering patterns in new data sets [18] [19].

2.7 Reinforcement Learning

RL is a ML area concerned with the methods and algorithms used to make an agent learn
how to act when facing a specific situations in the environment around him. This agent
does not know which actions to take, so it will have a try and error behaviour, until finding
out what action generates the best reward.

Distinct from the ML branches described before, RL aims to maximize rewards, im-
proving the agent’s actions instead of classifying or clustering data sets.

The agent needs to have the ability to evaluate the state of its environment, take actions
that can change the state, and have goals depending on the environment’s state.

16

2.7. REINFORCEMENT LEARNING

The policy defines the behaviour of an agent depending on the state, in other words,
the action that should be executed in a specific situation.

The reward signal defines what is good and bad for the agent, in other words, this
element defines if a reward sent by the environment indicates that the agent took a good
action or not.

The value function is present in each state and indicates to the agent if the choice of
that specific state will have more rewards in a long term, even if the specific state doesn’t
have a good reward the value function indicates if the next states, the future ones, will
give good rewards to the agent.

And finally, the environment generates the result and reward of the action depending
on the agent state [20]. The Reinforcement Learning Overview is represented in Figure
2.9.

Figure 2.9: Reinforcement Learning Overview

2.7.1 Markov Decision Process

Modeling a control task as an Markov Decision Process (MDP) is fundamental in Rein-
forcement Learning. The current state of the system is used to choose the optimal actions
that maximize the rewards, there is no memory requirement.

The MDP is associated to evaluative feedback and it is structured by sequential decision
making, actions influence, immediate rewards, subsequent events, and future rewards.

In MDPs, we have an agent who learns with the experience acquired from acting in
the environment. The goal is to define an optimal policy behaviour by giving a set of
states, a set of actions, a probability for an agent to jump from one state to another, and an
immediate reward by some action [21].

The outcomes of MDPs are partially random and controlled by an agent or a decision-
maker and used in the studying of optimization problems.

17

CHAPTER 2. FUNDAMENTALS AND LITERATURE REVIEW

Normally, MPDs are tuples with a finite set of actions, a finite set of states, a transition
probability from one state to another after a specific action, and the instant reward obtained
after the action is made. The MDPs’ goal focused on discovering the best policy that can
maximize the reward function [6].

2.8 Deep Learning

DL algorithms are built to extract knowledge from complex data representations using
a hierarchical learning process in Artificial Neural Network (ANN) with multiple layers.
Each of the middle layers depends on the previous one, which means that the input of each
layer will be calculated having in attention the weights of the links that are connecting
two layers and a nonlinear function that can be chosen according to the problem.

After the computation, the error value between the output and the wanted result is
used in a backpropagation algoritm to update and adjust the weights.

This approach can transform a complex dataset into a combination of more elementary
components. The Deep Neural Network Overview is represented in Figure 2.10.

Figure 2.10: Deep Neural Network Overview

There are many different models used in DL, the most known are the Convolutional
Neural Network (CNN) and the Recurrent Neural Network (RNN).

The purpose of CNNs is to process data that come in form of multiple arrays and
are structured in a series of layers. Convolutional layers extract features from the data,
pooling layers mapping the previous features, reducing the data dimension, and fully
connected layers predict classes for the input data. The problem with this algorithm is
failing in the interpretation of the temporal and sequential information. But for this type
of problem, we can use Recurrent Neural Networks.

18

2.9. DEEP REINFORCEMENT LEARNING

RNNs process input at a time, but they have a vector in their hidden units that has the
history of all past elements of the sequence. This is due to the existence of direct cycles in
these networks that allow the information to circulate in the network, making the output
related not just with the present input but also related to the previous steps.

DL it’s the best way to solve classification problems but it’s limited, we can’t use it in
a task where we need to learn how to act in the environment and not just to classify or
make a prediction [22] [23].

2.9 Deep Reinforcement Learning

DRL tries to combine the benefits of DL and RL to build AI Systems. We use deep neural
networks to improve RL elements, such as the action value or the policy. The Deep
Reinforcement Learning Overview is represented in Figure 2.11.

DRL is an alternative to traditional methods that are limited and dependent on models,
network traffic and others data sets [6].

Figure 2.11: Deep Reinforcement Learning Overview

2.9.1 Deep Q-Network

The algorithm Q-Learning, has been proven to converge to an optimal solution when using
a tabular case or a linear function approximation, but when using a non-linear function
becomes unstable. Q-Learning algorithms, also suffers when applied to complicated
system models with large spaces [6].

With the evolution and progress of deep neural networks, it has become possible to
overcome this issue, igniting the research of DRL [24].

19

CHAPTER 2. FUNDAMENTALS AND LITERATURE REVIEW

The Deep Q-Network (DQN) algorithm can be explained as a combination of a Q-
learning algorithm with Deep Neural Network (DNN).

The algorithm uses a function called Q-function to return the Q-value considering
the received input state-action pair. The Q-values are stored in the Q-Table, which is
represented by a DNN.

To optimize the function, the value is calculated by multiplying each reward by a
reward coefficient that measures the reward importance and compares the result to the
observed accumulated rewards. The process is described by the equation 3.1.

𝑄 (𝑆𝑡 , 𝐴𝑡) = 𝑄 (𝑆𝑡 , 𝐴𝑡) + 𝛼 [𝑅 (𝑆𝑡 , 𝐴𝑡) + 𝛾𝑚𝑎𝑥𝑄 (𝑆𝑡+1 , 𝑎
′) −𝑄 (𝑆𝑡 , 𝐴𝑡)] (2.1)

The updated Q-value is the current Q-value (Q(𝑆𝑡 , 𝐴𝑡)) plus the Temporal Difference,
which is the amount of value expected in the future. In this equation, 𝛼 is the learning
rate, 𝛾 is the discount factor.

The Q-value dependency on the observed reward, make it unstable, and because of
that, the same state-action pair input can have different outcomes which lead to constant
function and policy updates. There are two important mechanisms to overcome the
instability problem.

The first mechanism is known as target network or fixed target Q-network and aims
to increase the learning stability. Instead of using the Q-network, a target network is used
to slowly update the primary Q-networks’ values, and with that the dependence between
the target and estimated Q-values are significantly reduced, stabilizing the algorithm. The
usage of a Target Network, which is a copy of the main DQN Q, will help stabilize the
back-propagation training process because it will hold off on updating its parameters. By
using the Q-values of the target network to train the main one, the previously mentioned
updates will decrease [6].

Another important technique is called Experience Replay mechanism or Replay Buffer
which consists in saving at each time step, the agent’s experience into a replay buffer. A
set of samples from this buffer is then uniformly sampled to apply the Q-learning update.

The advantage of using a replay buffer is that the experience in each step can be reused
to learn the Q-function, smoothing out learning and reducing oscillations and divergence
in the parameters [24]. Figure 2.12 presents an overview of Deep Q-Network algorithm.

The Experience Replay method has a problem related to the extraction of samples
from the data structured randomly. So a method called Prioritized Experience Replay
was implemented, which samples data by priority criteria, characterized by their recent
addition to the replay buffer or low error verified in past transitions.

2.9.2 Dueling Deep Q-Network

In Q-learning Algorithms, the Q-value has the function to express the evaluation of taking
a specific action at a provided state, which can be split into two principal values.

20

2.9. DEEP REINFORCEMENT LEARNING

Figure 2.12: Deep Q-Network Overview

One of the values is known by state-value function, V(s), and it’s used to calculate the
relevance of being in a specific state, the second value is called action-value function, A(a),
and it is used to calculate which is the best action to choose.

These two functions represent different layers in the DQN, and by summing them, we
will get the Q-Value. The process is described by the equation 3.3.

𝑄 (𝑠, 𝑎, 𝛼, 𝛽) = 𝑉 (𝑠; 𝛽) +
(
𝐴 (𝑠, 𝑎; 𝛼) −

∑
𝑎′ 𝐴 (𝑠, 𝑎′; 𝛼)
|𝐴|

)
(2.2)

Where, 𝛼 and 𝛽 are function parameters, and |A| represents the total number of
actions. This method makes it easier for DQN to learn what action valuers will get a better
result. In Figure 2.13 shows the Dueling DQN agent architecture.

In some MDPs, there is no need to calculate the two values that composed the Q-value
function at the same time, so it was developed an idea of using two sequences of fully
connected layers. These two sequences are constructed to be able to give independent
estimations on the state value function and action, and finally can be combined to generate
the Q-value output. This approach has been proved that can outperform DQNs, but only
have clear benefits for MDPs when there is large action space.

2.9.3 Double Deep Q-Learning

Q-learning uses the maximum action value as an approximate value for the maximum
expected action value, influenced by the samples used to choose which action is the
best and to calculate the action-value, which are the same. This procedure creates an
overestimation problem, and the Double Deep Q-Learning (DDQL) model tries to solve it.

21

CHAPTER 2. FUNDAMENTALS AND LITERATURE REVIEW

Figure 2.13: Dueling Deep Q-Network Architecture Overview

The DDQL algorithm is basedon a solution thatuses two Q-functions to simultaneously
select and evaluate action values. This means that the selection of action is still due to the
online weights, but the second set of weights is used to evaluate fairly the value of the
policy.

In DDQL, the weights of the second network are replaced with the weights of the target
networks for the evaluation of the current greedy policy, The update of target networks
stays unchanged from DQN, and remains a periodic copy of the online network [6].

2.9.4 Deep Q-Networks with Actor-Critic

As seen before, DQN algorithm is an off-policy method, which means that it is independent
of the agent’s action, figuring out the optimal policy despite the agent’s motivation, and
integrating the Q-learning algorithm with a deep neural network to get knowledge from
visual inputs and response with decision outputs.

The problem is that, while the inputs can be raw and observed in a high-dimensional
space, DQNs just handle discrete and low-dimension action spaces. The actor-critic is an
extension of the Reinforce algorithm and converts the policy gradient update of Monte
Carlo into a Temporal-Difference (TD) update, by incorporating a critic.

The multi-step method, make it possible to have a degree of bootstrapping flexibly
selected, and with that, the updated policy doesn’t have the necessity of waiting until the
end of the game. The problem with this method is being an on-policy algorithm, making
it have a lower sample efficiency.

With the combination of these two methods, it is possible to take advantage of both,
because with DQNs, the actor-critic methods are turned into off-policy methods. So, now
using this combination, networks can be trained using samples from a replay buffer (seen
in previous chapters) that improves sample efficiency, and can also minimize correlations

22

2.10. NS3

between samples, making it possible to learn value function in a stable and consistent
way, without losing the advantage obtained by the actor-critic method of easily solving
problems by using continuous action spaces to learn the policy [24].

2.10 NS3

All of the tools described in the present section, were studied and tested to be used for
simulating a possible RAN. The problem with these tools were the difficulty to implement
due to the fact of being deprecated in some functions that were needed to build the wanted
solution, "AI Gym for Networks".

Even though they were not used, it is important for the reader to know there were
studies and tests focus on creating a RAN simulator, which couldn’t be executed properly.

NS3 is an open-source project that aims to deliver a network simulation platform that
can assist the community in networking research and education. Some of the advantages
of using ns-3 are its capacity to develop studies that are more challenging or not possible
to perform in real systems, to analyse systems behaviour in an extremely controlled,
reproducible environment, and to understand how networks work.

There are many simulation tools, but ns-3 has some distinguishing features, which
is the advantage of being a modular simulator regarding the possibility for the user to
use external tools with ns-3 to complement the study/research, such as data analysis and
visualization tools and external animators.

Along with ns-3, it’s important to introduce two ns-3 modules (NS3-gym and 5g-Lena)
that were studied and tested for simulate the wanted environment [25].

2.10.1 NS-Gym

Ns3-gym is an ns-3 module to connect the ns-3 network simulator and OpenAI Gym
framework. This middleware is responsible for transferring state and control between
the Gym agent and the simulated environment. It is structured by two modules, the
Environment Gateway written in C++, and the Environment Proxy written in Python.

The Environment Gateway is located inside the simulator and has the responsibility
for converting the environment state into structured numerical data and translating the
received actions from OpenAI Gym into function calls with appropriated arguments to
the environment.

The Environment Proxy receives the environment state and sends it to the agent via
the Gym API. The state and actions are transferred as numerical values and the user is
who must define their semantics.

The ns3-gym toolkit is responsible for simplifying the development of networking
environments and training RL-based agents, it also enables the collection and exchange
of information between frameworks, handles the managing of the simulation process life
cycle, and freezing the simulation’s execution of the agent’s interaction [26].

23

CHAPTER 2. FUNDAMENTALS AND LITERATURE REVIEW

2.10.2 5G-Lena

5G-LENA is an ns-3 module to simulate 3rd Generation Partnership Project (3GPP) 5G
networks. Some of the features that this module supports are NSA, architecture: 5G RAN
and 4G EPC, flexible and automatic configuration of the NR frame structure through
multiple numerologies, realistic beamforming based on SRS-based channel estimates,
Time-Division Multiple Access (TDMA) and Orthogonal Frequency-Division Multiple
Access (OFDMA)-based access with variable transmission time intervals and single beam
capability, etc.

The NR module is based on the ns-3 mmWave simulation tool, and it is a pluggable
module for ns-3 that can be used to simulate 5G NR networks. The features that were
added and modified are the flexibility and automatic configuration of the NR frame
structure through multiple numerologies, the OFDMA based access with variable TTIs,
the restructuration and redesign of the Media Access Control (MAC) layer, the UpLink (UL)
grant-based access scheme, the NR-compliant processing timings, the new Bandwidth
Part (BWP) managers, etc. The NR module was developed to perform E2E simulations of
3GPP- oriented cellular networks.

2.11 Related Work

The role of DRL in trying to solve network problems is a common solution nowadays.
The paper [27], focuses on solving a problem that decreases the QoS requirements and

deny reliability criterion in latency-critical applications.
This problem has its roots related to the difficult of having good dynamic resource

management in virtualized environments and at the same time finding a balance between
efficiency and reliability parameters.

And for this problem, the paper proposes a model for an Asynchronous DRL enhanced
Graph Neural Network for topology-aware VNF resource prediction in dynamic NFV
environments, which solves the need by predicting scaling decisions to balance the
provisioning time sink.

The software used to simulate the DRL agent environment was the VIM-Emulator,
which is a platform that was created to emulate realistic E2E multi-PoP scenarios and is
based on Containernet.

The paper [28] starts to present a problem related to the need of having faster and
more robust network services that lead to the use of technologies, such as NFV and SDN.

These technologies create the necessity of having solutions based on self-adaption
and automation, capable of managing resource allocation. So the researchers present a
DRL algorithm, more specifically, a Deep Deterministic Policy Gradient RL algorithm, to
automate the Virtual Network Functions deployment process between edge and cloud
network nodes.

24

https://apps.nsnam.org/app/nr/

2.11. RELATED WORK

Itwas usedContainernet anda NetworkLevelPOX controller, to create the environment
for their research.

The paper [29], starts to present the necessity of having ways and techniques to
coordinate detection and mitigation, considering that are always anomalies that need to
be found and solved in computer networks.

The solution found by the researchers was to collect network metrics, group them into
profiles, and use RL algorithms to detect and handle anomalies.

To create the environment for their research, they choose to work with Containernet
and POX to develop the SDN Controller.

The paper [30] identifies that the Distributed Denial-of-Services(Distributed Denial-of-
Services (DDoS)) flooding attack is a threat that exists for more than two decades and it is
always difficult to protect from it, because of the fact that malicious traffic can be mixed
with benign traffic.

In another hand, using the technology SDN which is a centralized controller that has
an overview of the network, brings the necessity of having better defenses against network
attacks.

As a solution, the researchers proposed a DRL algorithm that reduces DDoS flooding
attacks by learning the optimal mitigation policies under different attacks.

To train and test their solution, the researchers used Mininet as a network emulator
and Ryu Controller as SDN Controller to set up the environment.

The papers described previously have three things in common. All of them try to solve
a network problem, all of them present solutions based on DRL and all of them have to
build a simulator ad-hoc using different simulators.

Because of these and other examples, the proposed thesis theme presents a tool in
which there is no need to create an ad-hoc environment. The user just has to understand
the architecture and follow a tutorial to set up his own environment.

25

3

Environment Architecture

3.1 Architecture Overview

The present section focus on describing the developed project architecture and what is
the interaction between the different modules.

The complete solution developed during the thesis can be found on https://github.
com/pedrocapelo10/ai_gym_for_networks and has the name "AI Gym for Networks".
The Project folder structure is represented in Figure 3.1.

Figure 3.1: "AI Gym for Networks" Folder

The project architecture is built by using four important modules. The SDN Controller
built using Ryu Controller, the network topology, composed of containers and Open
VSwitches, and emulated by Containernet, the framework that connects the DRL agent to
the environment, that is built using OpenAI gym and "ContainernetAPI", which is a class

26

https://github.com/pedrocapelo10/ai_gym_for_networks
https://github.com/pedrocapelo10/ai_gym_for_networks

3.1. ARCHITECTURE OVERVIEW

that is defined in the "containernet_api_topo.py" file, enables the communication between
the Ryu Controller, Containernet and the OpenAI Gym framework. This class gives access
to Containernet functions, enables the creation and use of Containernet components,
and offers auxiliary functions to extract information from Containernet and to create the
files that will be described below. Figure 3.2 illustrates the interaction between the Ryu
Controller, Containernet and OpenAI Gym via the "ContainernetAPI" class.

Figure 3.2: "AI Gym for Networks" Communication Architecture Overview

Information is shared between the "ContainernetAPI" class and the Ryu Controller
by using a folder named "volume" where the shared data shared is stored. The "volume"
folder was created because the Ryu Controller API was not able to get all the information

27

CHAPTER 3. ENVIRONMENT ARCHITECTURE

related to the topology created in Containernet. The content of the "volume" folder is
represented in Figure 3.3

Figure 3.3: Volume Folder

In all the shared files, containers are identified by using their MAC address while
switches are identified by the label ""S"+switch identifier".

The shared information between the "ContainernetAPI" class and the Ryu Controller is
related with the Open VSwitch rules. "ContainernetAPI" class creates four folders: "logs",
"starting rules","topology and "OFPMatch".

The "logs" folder is used to save statistics about the generated traffic. Figure 3.4 shows
an example of a log file.

The "starting_rules" folder contains the information about the initial rules that need
to be installed in the Open VSwitches by the Ryu Controller.

This folder contains three different types of JavaScript Object Notation (JSON) files.
The "ofp_match_params.json" file stores information about the OFPMatches (Match part
of the Rules) that need to be used when installing the rules, an example is illustrates in
Figure 3.5.

The "paths.json" file, illustrated in Figure 3.6, stores information about the input port
and output port that belong to a given path in each switch. Finally, the "paths_hops.json"
file stores information about the sequence of nodes in a path and is illustrated in Figure
3.7.

28

3.1. ARCHITECTURE OVERVIEW

Figure 3.4: Log File Example

Figure 3.5: OFPMatch File for Starting Rules Example

Figure 3.6: Paths File for Starting Rules Example

29

CHAPTER 3. ENVIRONMENT ARCHITECTURE

Figure 3.7: Paths and Hops File for Starting Rules Example

The "topology" contains of two JSON files. The "bandwidth_links.json" file depicted
in Figure 3.8 stores information about the bandwith of the topology links that connect the
paths between containers.

The second file, named "switches_adjacency.json", is used to store information about
the output port that connects to a specific neighbor. Figure 3.9 shows an example.

Figure 3.8: Bandwidth Links File Example

Figure 3.9: Switches Adjacency File Example

The folder "OFPMatch" has a file named "OFPMatch_params.json" that stores the
OPFMatch information that needs to be installed between a pair of containers, during the
agents training. Figure 3.10

The "ContainernetAPI" class also creates a file named "active_paths.json" that stores
the information about the path and the hops that need to be installed to connect a pair of
containers, which has the structure depicted in Figure 3.7

Figure 3.10: OFPMatch File Example

The shared information that the Ryu Controller sends to the "ContainernetAPI" class
is stored inside a folder called "switches". This folder has a sub-folder with the identifier
of each switch named "s+identifier" and each of these sub-folders contain two JSON files.

30

3.2. CONTAINERNET

One of the files is named "bandwidth_sw+identifier.json" and contains information
about the initial bandwidth, define when creating the links between the switchers, the
used bandwidth, and the available bandwidth between the switch and its neighbors.
Figure 3.11 shown an example of the file structure.

The second file, named "statistics_ports_sw+identifier.json" illustrated in Figure 3.12,
stores switch port statistics obtained by the Ryu Controller.

The next section will describe all the functions used by the "ContainernetAPI" class.

Figure 3.11: Switch Bandwidth File Example

Figure 3.12: Switch Statistics Port File Example

3.2 Containernet

Containernet is a fork of Mininet, i.e., it is a copy of Mininet with relevant additional
features, allowing to use of Docker containers as hosts in emulated networks. Some of
Containernet’s most relevant features include adding and removing Docker containers to
Mininet topologies, connecting containers to switches, or Mininet hosts and allowing the
execution of commands inside containers.

Containernet is used to build networking emulators and testbeds, focusing on research
related to cloud computing, fog computing, multi-access edge computing, and NFV [7].

Mininet has been used for research, testing, and educational purposes and it is a
network emulation orchestration system, in other words, with Mininet it is possible to
create a virtual network composed by hosts, switches, routers, and connections between
them, using lightweight virtualization. This network emulator system provides a set of
features built into Linux allowing a single system to be split into a set of smaller containers.

31

https://containernet.github.io/

CHAPTER 3. ENVIRONMENT ARCHITECTURE

A Mininet network consists of three components: hosts, links and switches. Hosts
are implemented using Linux name-space isolation to enable the possibility to have,
for example, two web servers in two network namespaces coexisting independently in
one system. The Emulated Links connect the devices inside the Mininet network and
are connected to virtual interfaces or virtual switch ports and enable the sending of
packets between interfaces with a configured data rate. Finally, the Emulated Switches
are implemented using either the Linux bridge or Open vSwitch to switch packets across
interfaces.

With this tool is possible to have a real network environment emulated on a single Linux
kernel and run and test our programs in it with the advantage of having a trustworthy
mirror from real networks.

The benefits of using Mininet are the fast and flexible network creation, the trustfulness
in running programs in the emulatednetworkandgetting reliable responses, the utilization
of OpenFlow protocol in switches for customized packet forwarding, it’s open-source, and
under active development.

On other hand, Mininet has its limitations, such as the sharing of machine process
resources among the virtual hosts and switches, and the need to use a separate SDN
controller.

The "ContainernetAPI" class is defined in the "containernet_api_topo.py" file inside
of the "envs" folder and is were the user can implement control functions, set up the
topology, use functions to obtain information from the Containernet environment and
send information to the Ryu Controller and to OpenAI Gym.

More specifically, it is inside of the class "ContainernetAPI" that are functions with
particular roles implemented. One of the main functions is named "load_topology",
this function creates the containers, switches, and links between the nodes according to
the topology file description. This function makes use of functions imported from the
Containernet library.

The "add_arps" unction defines the initial ARP rules. The "generate_traffic_with_iperf"
function is responsible for creating iperf traffic and saving the statistics related to the
specific traffic into a log file inside the "logs" folder. There is also a function that gets
information from the logs files called "json_from_log" and another that can return specific
statistics from the log files called "get_traffic_stats".

A function named "get_bw_used_bw_available" updates the used bandwidth val-
ues and the available bandwidth from the links between the switchers. The "up-
load_sw_adjacency" function updates the "switches_adjacency.json" file.

A function named "send_path_to_controller" adds information about the path that
needs to be installed fora specific containers pair to the file "OFPMatch_params.json" and to
the file "active_paths.json". Another important function is the "define_ofp_match_params"
function that defines the parameters that can be used when defining the OFPMatch.

A function named "update_container_cpu_limits" to change a container CPU defini-
tions and another function named "add_container_to_topo" which is used to add new

32

3.3. RYU CONTROLLER

containers to the topology. It is also possible to get the container statistics by calling the
function "get_container_stats".

There are also other auxiliar functions that write and read data in files to enable the
sharing of information between the "ContainernetAPI" class and the Ryu Controller, i.e.,
"get_data_from_json" and "upload_data_in_json_file".

3.3 Ryu Controller

The Ryu Controller is a open source SDN controller that supports the OpenFlow protocol.
This software is implemented in python in the "ryu_controller.py" file that can be

found in the "envs" folder. The auxiliary functions created in this file are responsible to
load information from "ContainernetAPI" side and to organize the information to create
the rules to be installed by the Controller.

The functions to get information from "ContainernetAPI" are "load_paths", "up-
load_ topology_information", "upload_bw_links", "get_data_from_json" and the func-
tion to adapt the information to be used by the Controller is called "convert_json_
with_key_tuples_into_dict". All of these functions are described in the "ryu_controller.py"
file.

In order to obtain the current network status, it is necessary to monitor the network on
a regular basis, there are two functions that implement a traffic monitoring system. The
"_monitor" function is called every three seconds and uses the "_request_stats" function
to send an OFPPortStatsRequest message to each datapath registered in the controller to
obtain the port and flow statistics of each datapath.

Before starting receiving rules to install in the switches, during the agent’s training, the
Ryu Controller is programmed to install the starting rules defined by the user, after all the
switches are registered. The function responsible for this is called "install_starting_rules".

The function "add_flow" is responsible for installing a forwarding rule using a Flow
Modification OpenFlow message. The "remove_flow" function removes installed rules.

During the training of a DRL agent a function called "update_paths" can be used to
install new rules to forward packets and uninstall old ones that are not used, by calling
the methods "install_path" and "uninstall_path".

Besides the functions to upload the information about the topology that is set up by
the Containernet side, the "ryu_controller.py" file has defined call back functions that are
called in specific events.

The "_state_change_handler" call back function, is called in the connection and discon-
nection of switches from the network when all the switchers are connected, a function to
install the starting rules is called.

The "switch_features_handler" function is called, after the handshake between the
controller and the switch. In this function a table-miss flow entry in the switch, tells the
switch how to handle packets that do not match ant Flow Entry.

33

https://ryu-sdn.org/

CHAPTER 3. ENVIRONMENT ARCHITECTURE

Two other callback functions are the "_port_stats_reply_handler" function and the
"_flow_stats _reply_handler" function, which receive statistics from the ports and the flow
of each switch.

The function "_port_stats_reply_handler" is also responsible to create the folders and
files related to the switches’ statistics, as mentioned previously. And it is also responsible
to download the more recent paths from the "active_paths.json" file and installing them.

3.4 OpenAI Gym

OpenAI Gym is a framework that provides an interface that gives to an DRL agent the
access to execute actions and to observe the state in an environment.

The Gym toolkit is used for developing and comparing RL algorithms. The Gym
library provides many types of environments to be used for the algorithm tests. Some
of these environments are for simulating robots, classic control scenarios, Atari games,
continuous control tasks, etc.

Considering the advantages of RL as a tool to solve decision making problems in hard
to model complex networking scenarios, there is a need for simulation tools that can easily
provide a simulated environment to train DRL agents.

Such tools can also provide a common benchmarking environment to allow the direct
comparison of different DRL architectures.

The OpenAI Gym was used on the "containernetenv.py" file and can be found in the
"envs" folder.

It is in this file that the user will define all the functions that it will use to communicate
with the DRL agent, along with an object from the "ContainernetAPI" class to have access
to Containernet and the features created by the author.

The "Environment Setup" section describes the contents of this file.

3.5 Environment Setup

This section describes the setup of all the software needed to use the developed environ-
ment simulation tool.

Containernet and Python 3 should be installed previously, and the instructions can be
found on Containernet Github. The installation of Ryu Controller is then made by running
the "setup.sh" bash file that can be found on the projects folder "ai_gym_for_networks" in
Github Figure 3.13, and it is also used to install the dependencies related to the python
libraries, i.e., "gym", "torch", "networkx" and "matplotlib".

The gym library is used to compare RL algorithms, the torch library is used for tensor
computation with strong Graphics Processing Unit (GPU) acceleration and to build deep
neural networks, the networkX library is used for graph analysis and finally matplotlib is
used for plotting the results obtained in the simulation.

34

https://www.gymlibrary.dev/
https://github.com/containernet/containernet
https://ryu.readthedocs.io/en/latest/getting_started.html
https://github.com/pedrocapelo10/ai_gym_for_networks

3.5. ENVIRONMENT SETUP

The bash file last line creates a Docker container labeled "iperf:latest" that will be used
to create the different hosts for the simulated scenarios.

Figure 3.13: Setup Bash File

After having all the dependencies installed, the user will open the "containernetenv.py"
file that can be found inside of "envs" folder and starts to define the variables and functions
that the DRL agent will need to communicate with the training environment. Figure 3.14.

The observation space defines the structure to observe the state of the environment
before the agent chooses an action.

The action space defines what are the possible actions that can be taken by the agent
to interact with the environment.

Figure 3.14: Constructor - ContainernetEnv Class

It is necessary to instantiate the "ContainernetAPI" class object that receives as input
the topology file name of the file that contains the topology the user wants to implement.

Then the user needs to develop a function that creates the files where the information
about the starting rules that will be installed in Ryu Controller is described.

After that, the user needs to define a "get_state" function to return the environment
state, the "_get_info" function which returns auxiliary information from the environment
and finally needs to define the most important functions. Figure 3.15.

The "reset" function is where the user will define how the environment will be reset to
its initial state, returning the environment’s observation to the initial state.

35

CHAPTER 3. ENVIRONMENT ARCHITECTURE

Figure 3.15: Get State and Get Information Functions - ContainernetEnv Class

The "step" function receives an action as input and uses it to change the state of
the environment. By doing that, the environment will return a "reward" that indicates
the performance of the specific action, an "observation" or, in other words, the next
environment state, and the variable "done" indicating if the step terminated the epoch.
There is also a fourth variable called "information" that can be added to provide additional
information depending on the environment that the user built.Figure 3.16.

Figure 3.16: Reset and Step Functions - ContainernetEnv Class

After setting up the environment, the DRL algorithm the user wants to test must be
defined. If the user wants to have some examples of DRL agents or environments, they
can be found in the folders named "agents" and "env_examples".

The next chapters describe how three different scenarios were created in order to
demonstrate how different scenarios can be set up using the same code base.

36

4

Developed Scenarios

The following chapter focuses on describing application examples of the developed simu-
lator, illustrating the use of the simulator developed during the thesis and simultaneously
explaining how each example was implemented. The first two examples were taken from
previous works and the last one was developed in the thesis.

It was necessary to develop two DRL algorithms. Respectively, DQNs and Dueling
DQNs, to be trained in the environment examples that will be presented in the this chapter.

The code implementation of the agents was inspired by the implementation of the
work reported in [31] and can be found in the "agents" folder of the "AI Gym for Networks"
project.

4.1 Network Path Selection - Example 1

4.1.1 System Design

The first example replicates an experience from the paper reported in [31] that applies a
DRL algorithm to select the best path to transport a video stream between a pair of hosts.
This example can be found in our repository inside of the "network_path_selection" folder
in the "env_examples" folder. Figure 4.1.

Figure 4.1: Network Path Selection Folder - Example 1

The implemented "Network Path Selection - Example 1" can be found on "container-
netenv_network_path_selection.py", and contains all the functions and variables referred
in section 3.5 and also specific functions needed to create the example.

The environment is composed of a state space which is a four-dimensional tensor
with dimensions [N, N, k, 1], where N represents the number of hosts and k represents

37

CHAPTER 4. DEVELOPED SCENARIOS

the pre-computed number of paths per host pair. The last value represents the available
bandwidth in the bottleneck link of each path, i.e., the link with the smallest available
bandwidth.

The action space is defined by discrete values with a range of the number of pre-
computed paths per host pair. The reward results are obtained based on the available
path bandwidth in the resulting state and are influenced by the action used in a specific
environment state. The bandwidth is calculated on the Ryu Controller side, by receiving
the port statistics from each datapath that composed the topology.

The program starts with the installation in the Ruy Controller, then an algorithm that
obtains the k shortest paths is used to calculate the paths that make up the action space of
the DRL agents for each host pair. The bandwidth values are then changed by the traffic,
created using the iperf tool via Containernet.

In the "reset" function the "reset_measures" function to reset the variables related
with the active paths and the available bandwidth, and then the initial state is calculated.
Figure 4.2 shows the code.

Figure 4.2: Reset Function - Example 1

The "step" function gets the available bandwidth between each active communicating
pair and calculates the reward resulting from the percentage of the available bandwidth.
Figure 4.3.

38

4.1. NETWORK PATH SELECTION - EXAMPLE 1

Figure 4.3: Step Function - Example 1

39

CHAPTER 4. DEVELOPED SCENARIOS

The "parameters.py" file is where the parameters of the DRL algorithms, that define
the characteristics related to the paths to store, the needed files and also the number of
hosts, switches and paths used in the scenario are defined.

The parameters related to the agent’s neural network used to define the layers of each
agent were defined by experimentation and can be found in the table 4.1 for the DQN
agent and in table 4.2 for the Dueling-DQN agent. The DRL algorithms used to train the
agents for this scenario are described in section 2.9 and their results will be discussed in
the "Results" chapter.

Table 4.1: Agent’s networks layers DQN - Example 1

Type Input Size Output Size Activation Function

Linear 845 1500 ReLU
Linear 1500 700 ReLU
Linear 700 200 ReLU
Linear 200 5 ReLU

Table 4.2: Agent’s networks layers Dueling DQN - Example 1

Type Input Size Output Size Activation Function

Linear 845 1500 ReLU
Linear 1500 700 ReLU
Linear (Value) 700 200 ReLU
Linear (Value) 200 5 -
Linear (Advantage) 700 200 ReLU
Linear (Advantage) 200 5 -

Table 4.3: Agent’s parameters - Example 1

Parameter Value

Epochs 2500
𝜖 0.5
𝛾 0.99
Replay Buffer Size 50000
Batch Size 256
Learning Rate 0.001

The topology implemented in Containernet has thirteen hosts and twenty switchers
and is shown in Figure 4.4.

40

4.1. NETWORK PATH SELECTION - EXAMPLE 1

The topology is described in file "topology_arpanet.txt" that is store on "env_examples/
network_path_selection" folder. The file specifies the configuration links between hosts
and switches and the characteristics from each link, in this case the link bandwidth
capacity.

Figure 4.4: Topology - Example 1

41

CHAPTER 4. DEVELOPED SCENARIOS

4.2 Dynamic Network Slicing - Example 2

4.2.1 System Design

The second example is based on the problem addressed in the work reported in [32]. It
concerns the use of a DRL algorithm to address the problem of optimal slices’ admission in
transport networks. This example can be found in the "dynamic_network_slicing" folder,
on the "env_examples" folder. Figure 4.5.

Figure 4.5: Dynamic Network Slicing Folder - Example 2

The implementation can be foundon the "containernetenv_dynamic_network_slicing.py"
file. The scenario has two main components, the tenants represented by the requests gen-
erator, and the operator that defines the prices for each slice request. The DRL algorithm
chooses if it accepts or not the slice admission in the network.

First, we have the request, composed of the slice type, the slice duration, the bandwidth,
the price, and the needed connectivity between the BSs and the computing stations. The
information about the slice type, the bandwidth and the price per second is downloaded
from the "request_templates.txt" file.

The number of elastic and inelastic slice requests follow probability distributions, to
regulate the frequency of requests for each slice type. The request duration and the
number of needed connections are obtained through exponential distributions. After that,
the connections are picked randomly to know between each host pairs the creation of a
slice will be made.

The goal of this model is to use a DRL agent and optimize the operator profit by
responding to the slice requests sent by the tenants, deciding when to accept or not the
request based the decision on profit and the network state.

The paths installation is decided by choosing the path with a higher bottleneck, which
is the path with the link with lower bandwidth. These bandwidth values are obtain by
the Ryu Controller, using the port statistics of the typology’s datapaths.

The use of DRL agents creates the need to set up an environment with specific
characteristics.

The state space is obtained by having the request information, the number of elastic
slices, the number of inelastic slices, and the value of the bottleneck of each calculated
path for each pair of BSs and computing stations of the slice.

42

4.2. DYNAMIC NETWORK SLICING - EXAMPLE 2

The action space is composed of two discrete numbers representing accepting or
rejecting the received request.

The reward is obtained by multiplying the price of a slice by its duration. When a slice
ends, it is evaluated and the result will influence the reward.

For elastic slices, the average of the measured bandwidth needs to be equal to or higher
than the requested bandwidth, if not the reward will be half of its value.

For inelastic slices, all the bandwidth measurements need to be equal to or higher
than the requested bandwidth. If not, the reward will be zero. If all the requirements are
respected the reward remains intact.

The "reset" function cleans the "logs" folder from the last epoch and then restarts the
variables needed for the next step: the queues to save the requests; the threads to generate
and validate the slices; the variables related with the bandwidth values; the active paths
and the connections. Finally, the next environment state is generated and returned it. The
"reset" function can be seen in Figure 4.6.

Figure 4.6: Reset Function - Example 2 and Example 3

43

CHAPTER 4. DEVELOPED SCENARIOS

The "step" function receives the action value representing the agent’s acceptation or
rejection for the request. If the agent accepts the request, the slice is created and evaluated
based on that request. Then the reward is stored and this procedure occurs until the
requests reach the max requests value, after that the program will wait until all the remain
evaluation threads are finished and then send their rewards to the agent, along with the
environment state and the value of the done variable. The "step" function code can be
found on Figure 4.7.

Figure 4.7: Step Function - Example 2

44

4.2. DYNAMIC NETWORK SLICING - EXAMPLE 2

The "parameters.py" file is where the DRL algorithms parameters of the table 4.6 are
defined together with the paths to store and consult the needed files and also the number
of hosts, switches and paths used in the scenario.

The parameters related to the agent’s neural network used to define the layers of each
agent were defined by experimentation and can be found in the table 4.4 for the DQN
agent and in table 4.5 for the Dueling-DQN agent.

Table 4.4: Agent’s networks layers DQN - Example 2 and 3

Type Input Size Output Size Activation Function

Linear 790 1800 ReLU
Linear 1800 1200 ReLU
Linear 1200 800 ReLU
Linear 800 1 ReLU

Table 4.5: Agent’s networks layers Dueling DQN - Example 2 and 3

Type Input Size Output Size Activation Function

Linear 790 1800 ReLU
Linear 1800 1200 ReLU
Linear (Value) 1200 800 ReLU
Linear (Value) 800 1 -
Linear (Advantage) 1200 800 ReLU
Linear (Advantage) 800 1 -

Table 4.6: Agent’s parameters - Example 2 and 3

Parameter Value

Epochs 1300
𝜖 0.3
𝛾 0.99
Replay Buffer Size 1000
Batch Size 200
Learning Rate 0.001

The chosen topology to be used in this example is represented in Figure 4.8 and it is de-
scribed in file "topology.txt" that is storedon the "env_examples/dynamic_network_slicing"
folder. The file specifies the configuration links between hosts and switches and the char-
acteristics for each link, in this case the link bandwidth capacity, the link delay and the
link loss. For this example there are three types of hosts, the Mobile Edge Computing

45

CHAPTER 4. DEVELOPED SCENARIOS

Station (MECS)s, the Computing Station (CS)s and the BSs. The MECSs are used to give
computation and storage power to the access network layer. The CSs are used for more
demanding computation and the BSs simulates a Radio Network Acess point.

Figure 4.8: Topology - Example 2 and Example 3

46

4.3. DYNAMIC NETWORK SLICING AND PATH SELECTION - EXAMPLE 3

4.3 Dynamic Network Slicing and Path Selection - Example 3

4.3.1 System Design

In the third example a new model was developed to jointly optimize network slice
admission control and slice traffic routing. In other words, this example has the main goal
of presenting a possible solution to solve a problem related to the slices’ admission to
transport networks and at the same time optimize the selection path algorithm, by using
DRL agents. This example is inside of the "dynamic_network_slicing_path_selection"
folder, which can be found on "env_examples" folder. Figure 4.9.

Figure 4.9: Dynamic Network Slicing and Path Selection Folder - Example 3

In order to allow a comparison between the agents performance in example 2 and
example 3 the same topology was chosen. It is represented in Figure 4.8 and it is described
in file "topology.txt" on the "env_examples/dynamic_network_slicing" folder.

The model differs from the one of the previous section in an important aspect. In
the problem addressed in example 2, only the admission control is considered, with the
slice traffic being always placed by following a rule that define the best path between
two containers as the one with the best bottleneck. In this model with also consider the
routing of slice traffic, that is also decided by the DRL agent. This leads to a different
agent architecture. In the two previous examples, the DRL agents only had the capacity
to deliver one action per step, in other words, these agents just influenced one aspect of
the environment.

The DRL agents developed for this new model have the capacity to influence two
aspect of the environment by choosing two actions for two different tasks. One to select
the paths to transport slice traffic, and the other to choose to accept new slices admissions
or not.

The new action space must include both the action of accepting or rejecting network
slices as well as the choice of the paths that carry the traffic of each slice. This means that

47

CHAPTER 4. DEVELOPED SCENARIOS

the state space is now a tensor with dimensions [N P] were | N | = 2, accept or reject a
slice, and P is the number of considered paths.

Two different approaches could be followed to deal to the action space. The first one
is to have a single agent with an output layer corresponding to the action space size of N *
P. This size increases exponentially with the increase of the considered paths P and in our
case is 2*6 = 12.

Another option is to divide the problem in to different tasks, each with its own action
space. In this later case we need two agent networks, one with an output layer of size N
that calculates the action values for accepting or rejecting slices, and another with output
of size P to calculate the value of choosing each of the P paths. This later option is more
complex having more neural networks but it scales better with the increase of the number
of paths in P. We opted for this later configuration and therefore, the structure of each DRL
algorithm described in section 2.9 was duplicated, to deal with the the accepting/rejecting
requests actions and selection of the best path to be installed in the controller in to separate
agent networks.

The implementation of the two algorithms can be found inside of the "agents" folder
on the "dynamic_network_slicing_path_selection" folder.

Each agent network receive in the input layer the environment state, the reward and
the respective action for the controller policy and return the next action to be executed
on the environment. So one agent network will calculate the weights to choose the better
path and the other will calculate the weights to decide if accepts the requests.

Algorithm 1 illustrates the training loop in the DQN agent with two separate tasks.
For the Dueling-DRL the same logic is followed but taking into account its particularities,
which are described in section 2.9.

First, there are initialized two replay buffers, two Q-Networks, and two target networks
for the respective agents. Then each agent network returns an action that will affect the
environment state. The environment reacts by returning a new environment state and
a reward. These values are stored in the respective replay buffers, to later be used to
generate new samples to update the agent networks and periodically, the target networks.
This process is repeated until the defined requests to the environment are reached.

48

4.3. DYNAMIC NETWORK SLICING AND PATH SELECTION - EXAMPLE 3

Algorithm 1 Training environment
𝑟𝑒𝑝𝑙𝑎𝑦𝐵𝑢 𝑓 𝑓 𝑒𝑟1← 𝑅𝑒𝑝𝑙𝑎𝑦𝐵𝑢 𝑓 𝑓 𝑒𝑟()
𝑟𝑒𝑝𝑙𝑎𝑦𝐵𝑢 𝑓 𝑓 𝑒𝑟2← 𝑅𝑒𝑝𝑙𝑎𝑦𝐵𝑢 𝑓 𝑓 𝑒𝑟()
𝑚𝑜𝑑𝑒𝑙1← 𝑄𝑁 𝑒𝑡𝑤𝑜𝑟𝑘()
𝑚𝑜𝑑𝑒𝑙2← 𝑄𝑁 𝑒𝑡𝑤𝑜𝑟𝑘()
𝑡𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑑𝑒𝑙1← 𝑚𝑜𝑑𝑒𝑙1
𝑡𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑑𝑒𝑙2← 𝑚𝑜𝑑𝑒𝑙2
for 𝑖 episodes do

𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 ← 0
𝑑𝑜𝑛𝑒 ← 𝐹𝑎𝑙𝑠𝑒

𝑚𝑎𝑥𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 ← 𝑁

while 𝑛𝑜𝑡𝑑𝑜𝑛𝑒 do
𝑎𝑐𝑡𝑖𝑜𝑛1← 𝑎𝑟𝑔𝑚𝑎𝑥(𝑚𝑜𝑑𝑒𝑙1, 𝑠𝑡𝑎𝑡𝑒)
𝑎𝑐𝑡𝑖𝑜𝑛2← 𝑎𝑟𝑔𝑚𝑎𝑥(𝑚𝑜𝑑𝑒𝑙2, 𝑠𝑡𝑎𝑡𝑒)
𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑑𝑆𝑡𝑎𝑡𝑒 ← 𝑚𝑎𝑘𝑒𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑎𝑐𝑡𝑖𝑜𝑛1, 𝑎𝑐𝑡𝑖𝑜𝑛2)
𝑟𝑒𝑤𝑎𝑟𝑑← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑑𝑆𝑡𝑎𝑡𝑒)
𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 ← 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 + 1
𝑟𝑒𝑝𝑙𝑎𝑦𝐵𝑢 𝑓 𝑓 𝑒𝑟1← 𝐴𝑑𝑑(𝑠𝑡𝑎𝑡𝑒 , 𝑎𝑐𝑡𝑖𝑜𝑛1, 𝑟𝑒𝑤𝑎𝑟𝑑, 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑑𝑆𝑡𝑎𝑡𝑒)
𝑟𝑒𝑝𝑙𝑎𝑦𝐵𝑢 𝑓 𝑓 𝑒𝑟2← 𝐴𝑑𝑑(𝑠𝑡𝑎𝑡𝑒 , 𝑎𝑐𝑡𝑖𝑜𝑛2, 𝑟𝑒𝑤𝑎𝑟𝑑, 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑑𝑆𝑡𝑎𝑡𝑒)
𝑚𝑜𝑑𝑒𝑙1← 𝑢𝑝𝑑𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙(𝑠𝑎𝑚𝑝𝑙𝑒(𝑟𝑒𝑝𝑙𝑎𝑦𝐵𝑢 𝑓 𝑓 𝑒𝑟1))
𝑚𝑜𝑑𝑒𝑙2← 𝑢𝑝𝑑𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙(𝑠𝑎𝑚𝑝𝑙𝑒(𝑟𝑒𝑝𝑙𝑎𝑦𝐵𝑢 𝑓 𝑓 𝑒𝑟2))
if 𝑖 == 𝑢𝑝𝑑𝑎𝑡𝑒 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 then

𝑡𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑑𝑒𝑙1← 𝑚𝑜𝑑𝑒𝑙1
𝑡𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑑𝑒𝑙2← 𝑚𝑜𝑑𝑒𝑙2

end if
if 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 == 𝑚𝑎𝑥𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 then

𝑑𝑜𝑛𝑒 ← 𝑇𝑟𝑢𝑒

end if
end while

end for

49

CHAPTER 4. DEVELOPED SCENARIOS

The "parameters.py" file contains the specifications of each DRL agent and their ANN
layers as in the previous example.

The "reset" function is equal to the Example 2 "reset" function and it is represented in
Figure 4.6, however the "step" function has some differences.

In this case the "step" function receives the action which represents the agent’s accep-
tation or rejection for the request and also receives the action that will choose what will
be the path to be installed for the requested slice.

Then the reward from the evaluation is stored and this procedure occurs until the
requests reach the max requests value, after that the program will wait until all the remain
evaluation threads are finished and then send their rewards to the agent, along with the
environment state and the value of the done variable. The "step" function code can be
found on Figure 4.10.

Figure 4.10: Step Function - Example 3

50

5

Results

5.1 Results

This section presents the results obtained by training the agents DQN and Dueling DQN
in the three examples. The training results will be present in the form of plots, of the
reward as a function of epochs. The reward per epoch is the sum of all the step rewards
occurred in a epoch. To smooth the plots, averages of batches of epochs were used, so the
real horizontal axis value of each plot is obtained by multiplying it by the size of the batch
indicated of the figure, in this case batches of 100.

The DRL agents were trained on a machine with the following specifications:

• System:

– Host: compute-Standard-PC-Q35-ICH9-2009

– Kernel: 5.15.0-46-generic x86_64

– bits: 64

– Desktop: Xfce 4.14.2

– Distro: Ubuntu 20.04.3 LTS (Focal Fossa)

– RAM: 9.96 GiB

– CPU:

∗ 2x Single Core: Intel Core (Haswell no TSX IBRS)
∗ type: SMP
∗ speed: 1898 MHz

The first two examples discussed in the last chapter took an average of 2 days to be
implemented. The third example took three days due to the fact that the DRL agents have
a more complex architecture, as described in chapter 4.

The training time did not vary much in the case of the built examples. The DQN agent
took an average of 4 days to run 1000 epochs, while the Dueling-DQN agent took 5 days
to do 1000 epochs on average.

51

CHAPTER 5. RESULTS

It is important to highlight that the results obtained by the examples 1 and 2, built
using the software developed for the thesis are similar to the scenarios that served as
inspiration.

The graphs presented in the figures 5.1 for example 1,5.2 for example 2 and 5.3 for
example 3 demonstrate that the Dueling-DQN agent can obtain better results than the
DQN agent over the trained epochs. It can also be observed that, in the example 1 and
example 3, the Dueling-DQN agent needs less epochs to obtain higher rewards, concluding
that it is a faster learner.

Figure 5.1: Results from Network Path Selection - Example 1

Figure 5.2: Results from Dynamic Network Slicing - Example 2

52

5.2. COMPARISON BETWEEN EXAMPLE 2 AND EXAMPLE 3

Figure 5.3: Results from Dynamic Network Slicing and Path Selection - Example 3

5.2 Comparison between Example 2 and Example 3

One of the objectives of the thesis is to demonstrate the advantages of creating different
examples in a short period of time, making it possible to compare results from different
scenarios using the same development environment.

The comparison of the results generated by the examples " Dynamic Network Slicing"
and "Dynamic Network Slicing and Path Selection" is possible because they were trained
and evaluated using the same environment. The third example uses a DRL algorithm,
developed during the thesis, to jointly optimize Network Slice Admission and slice traffic
routing, while in the model in example 2 only admission control is considered and the
Traffic is always forwarded using the least cost path.

When looking at the figures 5.4 and 5.5, we can see that there is a great gain in terms
of reward in the joint optimization model, were the developed DRL agents choose the
better path to take instead of following a predefined rule that chooses the path with lower
bottleneck.

In figure 5.5, we can also see that the joint model is quicker to convergence in the same
period of time.

It appears that considering joint routing optimization in network slice admission can
lead to an increase in the operator profit. A performance test using the trained agents is
needed to confirm that the increase in reward translates to measurable gains by testing the
amount of accepted and satisfied slices using both trained agents in the same conditions.

53

CHAPTER 5. RESULTS

Figure 5.4: Comparison between Example 2 and Example 3 - DQN agent

Figure 5.5: Comparison between Example 2 and Example 3 - Dueling-DQN agent

54

6

Conclusion

The need to connect devices all over the world and to increase the QoS and communication
speed between them led to the evolution of 5G Networks and Beyond. New technologies
always bring new challenges and 5G Networks are no exception.

With the emerging number of connected devices with different software, hardware,
and interfaces. The complexity to organize, orchestrate and handle with such diversity
increased, and solutions based on heuristic optimization techniques can’t handle all the
problems that 5G brings to the table.

That’s why DRL solutions are being introduced in the networks research area. The
capability to solve extremely complex problems basing the solution on the agent’s ex-
perience makes these solutions more simple to achieve than the heuristic optimization
techniques.

There are software solutions to simulate and emulate networks and create DRL agents,
but there is no software solution that facilitates the creation of a network environment
able to communicate with a DRL agent.

The project developed during the thesis aims to reduce the difficulty of setting up a
network environment to train and compare DRL algorithms to solve network problems.

To reach the final solution, first, there was a research about the state of the art, i.e., the
concepts and fundamentals of the 5G Networks, the 5G CN, the RAN, the SDN Controller,
the ML, the DRL algorithms and also a section dedicated to understand what are the
tools that are being used in this area of research and the importance of creating a software
solution to help future researches.

Then, it is described what were the tools used to build the thesis solution, i.e., Con-
tainernet, Ryu Controller, and OpenAI gym, and how the communication between them
was made. It was also explained how to set up the solution in order to test the wanted
scenario.

After explaining the solution developed, three examples are presented to demonstrate
the true value of the thesis. The two first examples focus on different problem related to
routing and network slice admission control. The third example is the merge between
the previous ones, which led to the development of DRL agents with the capability of

55

CHAPTER 6. CONCLUSION

choosing two actions instead of one. Each example was presented with its building blocks.
The last chapter is focused on showing the agents’ training results from each example

and comparing the second and third examples, reaching the conclusion that the DRL
solution developed in the third example is better than the second one, which could not be
possible without the thesis developed solution.

The thesis fulfilled the main goal of creating a tool to facilitate the fast development
of scenarios for networks research field. Now on, the students and researches that want
to explore, search and compare different DRL algorithms to solve network problems will
have to spend much last time on creating the needed environment and move faster in the
research process.

56

Bibliography

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University
Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/
master/template.pdf (cit. on p. ii).

[2] Z. Xiong et al. “Deep Reinforcement Learning for Mobile 5G and beyond: Funda-
mentals, applications, and challenges”. In: IEEE Vehicular Technology Magazine 14.2
(2019), pp. 44–52. doi: 10.1109/mvt.2019.2903655 (cit. on p. 1).

[3] What is NFV? Accessed: 2022-01-30. url: https://www.redhat.com/en/topics/
virtualization/what-is-nfv (cit. on p. 1).

[4] X. YOU et al. “AI for 5G: Research directions and paradigms”. In: SCIENTIA
SINICA Informationis 48.12 (2018), pp. 1589–1602. doi: 10.1360/n112018-00174
(cit. on p. 2).

[5] X. You et al. AI for 5G: Research directions and paradigms - science china information
sciences. 2018-10. url: https://link.springer.com/article/10.1007/s11432-0
18-9596-5 (cit. on p. 2).

[6] N. C. Luong et al. “Applications of deep reinforcement learning in Communications
and Networking: A Survey”. In: IEEE Communications Surveys; Tutorials 21.4 (2019),
pp. 3133–3174. doi: 10.1109/comst.2019.2916583 (cit. on pp. 2, 18–20, 22).

[7] M. Peuster, H. Karl, and S. van Rossem. “Medicine: Rapid prototyping of production-
ready network services in multi-pop environments”. In: 2016 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-SDN) (2016). doi:
10.1109/nfv-sdn.2016.7919490 (cit. on pp. 3, 31).

[8] U. Trick. 5G an introduction to the 5th generation mobile networks. De Gruyter Olden-
bourg, 2021 (cit. on pp. 6, 8, 11).

[9] P. Marsch and P. Marsch. 5G system design: Architectural and functional considerations
and Long Term Research. Wiley, 2018 (cit. on pp. 6, 7).

[10] “5g nr: the next generation wireless access technology2018”. In: (2018). doi:
10.1016/c2017-0-01347-2 (cit. on p. 7).

57

https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://doi.org/10.1109/mvt.2019.2903655
https://www.redhat.com/en/topics/virtualization/what-is-nfv
https://www.redhat.com/en/topics/virtualization/what-is-nfv
https://doi.org/10.1360/n112018-00174
https://link.springer.com/article/10.1007/s11432-018-9596-5
https://link.springer.com/article/10.1007/s11432-018-9596-5
https://doi.org/10.1109/comst.2019.2916583
https://doi.org/10.1109/nfv-sdn.2016.7919490
https://doi.org/10.1016/c2017-0-01347-2

BIBLIOGRAPHY

[11] K. Ibrahim and S. B. Sadkhan. “Radio Access Network Techniques Beyond 5G
Network: A brief overview”. In: 2021 International Conference on Advanced Computer
Applications (ACA) (2021). doi: 10.1109/aca52198.2021.9626804 (cit. on p. 7).

[12] B. Bertenyi et al. “Ng Radio Access Network (NG-ran)”. In: Journal of ICT Stan-
dardization 6.1 (2018), pp. 59–76. doi: 10.13052/jicts2245-800x.614 (cit. on
p. 9).

[13] S. Rommer et al. 5G Core Networks: Powering Digitalization. Academic Press, an
imprint of Elsevier, 2020 (cit. on p. 11).

[14] P. R. S. Kumar M. C. Trivedi and A. Punhani. “Evolution of software-defined
networking foundations for IOT and 5G Mobile Networks”. In: Advances in Wireless
Technologies and Telecommunication (2021). doi: 10.4018/978- 1- 7998- 4685- 7
(cit. on p. 13).

[15] C. N. Tadros, M. R. Rizk, and B. M. Mokhtar. “Software defined network-based
management for Enhanced 5G network services”. In: IEEE Access 8 (2020), pp. 53997–
54008. doi: 10.1109/access.2020.2980392 (cit. on p. 14).

[16] K. Chowdhary. Fundamentals of Artificial Intelligence. Springer, India, Private Ltd,
2020 (cit. on p. 16).

[17] S. J. Russell, P. Norvig, and E. Davis. Artificial Intelligence: A modern approach. Pearson
Educación, 2022 (cit. on p. 16).

[18] V. François-Lavet et al. “An introduction to deep reinforcement learning”. In:
Foundations and Trends® in Machine Learning 11.3-4 (2018), pp. 219–354. doi: 10.156
1/2200000071 (cit. on p. 16).

[19] Y. Li. Deep Reinforcement Learning: An Overview. 2017. doi: 10.48550/ARXIV.1701
.07274. url: https://arxiv.org/abs/1701.07274 (cit. on p. 16).

[20] M. L. Littman. “Reinforcement learning improves behaviour from evaluative feed-
back”. In: Nature 521.7553 (2015), pp. 445–451. doi: 10.1038/nature14540 (cit. on
p. 17).

[21] R. S. Sutton. “Introduction: The Challenge of Reinforcement Learning”. In: Rein-
forcement Learning (1992), pp. 1–3. doi: 10.1007/978-1-4615-3618-5_1 (cit. on
p. 17).

[22] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In: Nature 521.7553 (2015),
pp. 436–444. doi: 10.1038/nature14539 (cit. on p. 19).

[23] X. Du et al. “Overview of deep learning”. In: 2016 31st Youth Academic Annual
Conference of Chinese Association of Automation (YAC) (2016). doi: 10.1109/yac.201
6.7804882 (cit. on p. 19).

[24] H. Dong, Z. Ding, and S. Zhang. Deep reinforcement learning: Fundamentals, research
and applications. Springer Singapore, 2020 (cit. on pp. 19, 20, 23).

58

https://doi.org/10.1109/aca52198.2021.9626804
https://doi.org/10.13052/jicts2245-800x.614
https://doi.org/10.4018/978-1-7998-4685-7
https://doi.org/10.1109/access.2020.2980392
https://doi.org/10.1561/2200000071
https://doi.org/10.1561/2200000071
https://doi.org/10.48550/ARXIV.1701.07274
https://doi.org/10.48550/ARXIV.1701.07274
https://arxiv.org/abs/1701.07274
https://doi.org/10.1038/nature14540
https://doi.org/10.1007/978-1-4615-3618-5_1
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/yac.2016.7804882
https://doi.org/10.1109/yac.2016.7804882

BIBLIOGRAPHY

[25] NS-3 Tutorial. Accessed: 2022-01-30. url: https : / / www . nsnam . org / docs /
tutorial/ns-3-tutorial.pdf (cit. on p. 23).

[26] P. Gawłowicz and A. Zubow. “NS-3 meets Openai Gym”. In: Proceedings of the
22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems - MSWIM ’19 (2019). doi: 10.1145/3345768.3355908 (cit. on p. 23).

[27] N. Jalodia, S. Henna, and A. Davy. “Deep reinforcement learning for topology-
aware VNF resource prediction in NFV Environments”. In: 2019 IEEE Conference
on Network Function Virtualization and Software Defined Networks (NFV-SDN) (2019).
doi: 10.1109/nfv-sdn47374.2019.9040154 (cit. on p. 24).

[28] A. Dalgkitsis et al. “Dynamic resource aware VNF placement with deep rein-
forcement learning for 5G networks”. In: GLOBECOM 2020 - 2020 IEEE Global
Communications Conference (2020). doi: 10.1109/globecom42002.2020.9322512
(cit. on p. 24).

[29] L. S. Sampaio et al. “Using NFV and reinforcement learning for anomalies detection
and mitigation in SDN”. In: 2018 IEEE Symposium on Computers and Communications
(ISCC) (2018). doi: 10.1109/iscc.2018.8538614 (cit. on p. 25).

[30] Y. Liu et al. “Deep reinforcement learning based smart mitigation of ddos flooding in
software-defined networks”. In: 2018 IEEE 23rd International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks (CAMAD) (2018).
doi: 10.1109/camad.2018.8514971 (cit. on p. 25).

[31] P. Amaral and D. Simoes. “Deep reinforcement learning based routing in IP Media
Broadcast Networks: Feasibility and performance”. In: IEEE Access 10 (2022),
pp. 62459–62470. doi: 10.1109/access.2022.3182009 (cit. on p. 37).

[32] P. Oliveira. “Dynamic Network Slicing using Deep Reinforcement Learning”. In:
NOVA School of Science and Technology, NOVA University Lisbon. Master in Electrical
and Computer Engineering (2022) (cit. on p. 42).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.15) [1]. 12cc90221730b8ba41bb3b1f8b517acd

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf(cit. on p. 59).

59

https://www.nsnam.org/docs/tutorial/ns-3-tutorial.pdf
https://www.nsnam.org/docs/tutorial/ns-3-tutorial.pdf
https://doi.org/10.1145/3345768.3355908
https://doi.org/10.1109/nfv-sdn47374.2019.9040154
https://doi.org/10.1109/globecom42002.2020.9322512
https://doi.org/10.1109/iscc.2018.8538614
https://doi.org/10.1109/camad.2018.8514971
https://doi.org/10.1109/access.2022.3182009
https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

Pe
dr

o
C

ap
el

o
A

IG
ym

fo
r

N
et

w
or

ks
20

22

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Outline

	2 Fundamentals and Literature Review
	2.1 5G Networks
	2.2 Radio Access Network
	2.3 5G Core Network
	2.4 Network Function Virtualization
	2.5 Software Defined Network
	2.5.1 OpenFlow

	2.6 Artifial Intelligence
	2.7 Reinforcement Learning
	2.7.1 Markov Decision Process

	2.8 Deep Learning
	2.9 Deep Reinforcement Learning
	2.9.1 Deep Q-Network
	2.9.2 Dueling Deep Q-Network
	2.9.3 Double Deep Q-Learning
	2.9.4 Deep Q-Networks with Actor-Critic

	2.10 NS3
	2.10.1 NS-Gym
	2.10.2 5G-Lena

	2.11 Related Work

	3 Environment Architecture
	3.1 Architecture Overview
	3.2 Containernet
	3.3 Ryu Controller
	3.4 OpenAI Gym
	3.5 Environment Setup

	4 Developed Scenarios
	4.1 Network Path Selection - Example 1
	4.1.1 System Design

	4.2 Dynamic Network Slicing - Example 2
	4.2.1 System Design

	4.3 Dynamic Network Slicing and Path Selection - Example 3
	4.3.1 System Design

	5 Results
	5.1 Results
	5.2 Comparison between Example 2 and Example 3

	6 Conclusion
	Bibliography
	Back Matter
	Back Cover
	Spine

