64 research outputs found

    Model Predictive Control based on Dynamic Voltage Vectors for Six-phase Induction Machines

    Get PDF
    Model predictive control (MPC) has been recently suggested as an interesting alternative for the regulation of multiphase electric drives because it easily exploits the inherent advantages of multiphase machines. However, the standard MPC applies a single switching state during the whole sampling period, inevitably leading to an undesired x y voltage production. Consequently, its performance can be highly degraded when the stator leakage inductance is low. This shortcoming has been, however, mitigated in recent work with the implementation of virtual/synthetic voltage vectors (VVs) in MPC strategies. Their implementation reduces the phase current harmonic distortion since the average x y voltage production becomes null. Nevertheless, VVs have a static nature because they are generally estimated offline, and this implies that the flux/torque regulation is suboptimal. Moreover, these static VVs also present some limitations from the point of view of the dc-link voltage exploitation. Based on these previous limitations, this article proposes the implementation of dynamic virtual voltage vectors (DVVs), where VVs are created online within the MPC strategy. This new concept provides an online optimization of the output voltage production depending on the operating point, resulting in an enhanced flux/torque regulation and a better use of the dc-link voltage. Experimental results have been employed to assess the goodness of the proposed MPC based on DVVs.Ministerio de Ciencia, Innovación y Universidades RTI2018-096151-B-100

    Advances in dual-three-phase permanent magnet synchronous machines and control techniques

    Get PDF
    Multiphase electrical machines are advantageous for many industrial applications that require a high power rating, smooth torque, power/torque sharing capability, and fault-tolerant capability, compared with conventional single three-phase electrical machines. Consequently, a significant number of studies of multiphase machines has been published in recent years. This paper presents an overview of the recent advances in multiphase permanent magnet synchronous machines (PMSMs) and drive control techniques, with a focus on dual-three-phase PMSMs. It includes an extensive overview of the machine topologies, as well as their modelling methods, pulse-width-modulation techniques, field-oriented control, direct torque control, model predictive control, sensorless control, and fault-tolerant control, together with the newest control strategies for suppressing current harmonics and torque ripples, as well as carrier phase shift techniques, all with worked examples

    Symmetrical six-phase induction machines: a solution for multiphase direct control strategies

    Get PDF
    Six-phase induction machines are considered an interesting multiphase option because they can benefit from the well-known three-phase converter technology. These multiphase machines can be classified according to the spatial distribution of their windings into two main groups: asymmetrical and symmetrical six-phase machines. In the case of symmetrical sixphase machines, some sets of voltage vectors show an important advantage from the point of view of the - current mitigation. They provide an active production in the - plane with a completely null injection of - components. This fact is a desired feature for direct control strategies, such as standard model predictive control (MPC), where a single switching state is applied during the entire sampling period. Based on these statements, this work proposes an MPC strategy for symmetrical six-phase induction machines using voltage vectors with null - voltage production in order to obtain the flux/torque generation with minimum - currents. Simulated results have been included to validate the goodness of the developed control scheme.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Predictive control of two synchronous machines in parallel supplied by a standard three phase static converter

    Get PDF
    De nos jours, les systèmes embarqués sont de plus en plus nombreux ce qui impacte fortement les systèmes de conversion de l’énergie. Les contraintes associées se traduisent par une réduction des masses et des pertes afin d’améliorer l’efficacité énergétique de la chaine de conversion. C’est le cas dans le domaine de l’aéronautique où le concept ″d’avion plus électrique″ devient aujourd’hui une réalité. C’est ainsi que la machine synchrone à aimants permanents devient un actionneur d’excellence de par sa puissance massique importante, son faible coût de maintenance et ses qualités dynamiques. Lorsque ces machines sont associées pour remplir des fonctions coopératives (surfaces de vol par exemple) on peut encore réduire la masse embarquée en mutualisant l’électronique de puissance. C’est précisément dans ce cadre que se situe notre travail, en proposant des structures d’alimentation réduites, à base d’électronique de puissance, permettant d’alimenter deux ou plusieurs machines électriques en parallèle et en proposant des lois de commande visant à améliorer le rendement énergétique. Nous nous sommes intéressés plus particulièrement à la Commande Prédictive de deux Machines Synchrones alimentées en parallèle par un Onduleur de Tension Triphasé. Ces machines ont des caractéristiques identiques et doivent suivre un même profil de vitesse avec un couple de charge différent et en tout cas indépendant. L’approche commande prédictive nous conduit à considérer l’onduleur de tension comme un dispositif ayant un nombre fini d’états de commande. Nous devons sélectionner à chaque instant la meilleure solution de commande permettant de minimiser une fonction coût. Cette fonction coût, relative à une ou deux machines, est composée d’une partie représentant la qualité du couple produit (courant IRqR) et d’une autre partie représentant la qualité de la conversion via les pertes produites (courant IRdR). Cette approche opère naturellement à fréquence de découpage variable. Ainsi le document fait état de différentes solutions étudiées montrant les limites d’une telle approche tant sur le plan dynamique que sur le plan des pertes. Pour améliorer cette solution de base nous développons une approche basée sur l’utilisation de vecteurs virtuels. Ces vecteurs virtuels augmentent les possibilités de commande et conduisent à un fonctionnement à fréquence constante au travers d’une modulation de type SVM. La recherche d’un vecteur virtuel optimum est proposée et appliquée sur un dispositif composé de deux machines de faible puissance. Les différentes propositions sont validées par la voie de la simulation numérique et consolidées par des résultats expérimentaux. ABSTRACT : Nowadays, embedded systems are more and more numerous that impacted strongly energy conversion systems. Associated constraints translates into a reduction of the masses and the losses to improve energy efficiency in the conversion chain. This is the case in the field of aeronautics or the concept of ″More Electric Aircraft″ now becomes a reality. Therefore, the permanent magnet synchronous machine becomes an actuator of excellence because of its important mass power, its low maintenance cost and its dynamic qualities. When these machines are associated to carry out cooperative functions (for example flight surfaces) can still reduce the mass embedded in pooling power electronics. It is precisely in this context that localizes our work by offering structures power electronics-based, reduced to power for two or more electric machines in parallel and providing control laws aimed at improving energy efficiency. We we are interested specifically in the Predictive Control of two Synchronous Machines connected in parallel with a 3-Phase Converter. These machines have identical characteristics and must follow a same velocity profile with a torque of different load and in any case independent. The predictive control approach leads us to consider the voltage inverter as a device having a finite number of input states and we need to select every moment the best control solution to minimize a cost function. This cost function on one or two machines, is composed of a portion which represents the quality of the produced torque (Iq current) and another party representative quality of the conversion via produced losses (Id current). This approach works naturally for variable switching frequency. Thus the document state of different solutions studied showing the limits of such an approach both dynamic in terms of losses. To improve this basic solution we develop an approach based on the use of virtual vector which increase the possibilities of control and led to operation at constant frequency through a SVM solution. The search for an optimum virtual vector is proposed and applied to a device consisting of two low-power machines. The various proposals are validated through numerical simulation and consolidated by experimental results

    On the advantages of symmetrical over asymmetrical multiphase AC drives with even phase number using direct controllers

    Get PDF
    Multiphase electric drives offer attractive advantages over conventional three-phase systems. Some of the benefits are shared by all multiphase configurations, but the performance can be highly affected by the specific location of the stator windings. While the asymmetrical configuration has been traditionally a popular choice, the symmetrical disposition in even-phase machines has a main advantage: it is possible to generate α – β voltages without any contribution in different x – y subspaces. This article explains and demonstrates this feature for the general case of distributed-winding symmetrical n -phase machines, with n being an even number. Fortunately, direct controllers can benefit from this characteristic by exclusively selecting voltage states with only α – β voltage production. To illustrate this capability, a finite-control-set model predictive control (FCS-MPC) using these special voltage states is also suggested in this work for symmetrical six-phase electric drives. This approach provides a greater simplicity and much less current distortion than in standard FCS-MPC for the asymmetrical configuration. Comparative experimental results confirm the minimal x – y injection of symmetrical configurations thanks to the proposed control actions (i.e., voltage states)Agencia Estatal de Investigación | Ref. RTI2018-096151-B-I00Xunta de Galicia | Ref. ED431F 2020/07Agencia Estatal de Investigación | Ref. RYC2018-024407-IAgencia Estatal de Investigación | Ref. PID2019-105612RB-I0

    Applications of Power Electronics:Volume 1

    Get PDF

    Virtual current vector‐based method for inverter open‐switch and open‐phase fault diagnosis in multiphase permanent magnet synchronous motor drives

    Get PDF
    Multiphase permanent magnet synchronous motor (PMSM) drives. First defined are adequate variables called virtual current vectors. The projection of the zero‐sequence current component on these variables was used to define two simple fault indices. High sensitivity to fault is thus induced but with a good robustness to transient states and variation of machine parameters. The mathematical development of the proposed method is provided and supported by experimental tests conducted on two prototypes of multiphase machines in the laboratory: sinusoidal and bi‐harmonic PMSMs. The experimental results confirm the effectiveness and the robustness of the proposed method and its capability to detect the single and multiple open‐switches and open‐phase faults in the electric drive.European Regional Development Fund (ERDF); French State; French Region of Hauts-de-Franc

    Modelling and control techniques for multiphase electric drives: a phase variable approach

    Get PDF
    Multiphase electric drives are today one of the most relevant research topics for the electrical engineering scientific community, thanks to the many advantages they offer over standard three-phase solutions (e.g., power segmentation, fault-tolerance, optimized performances, torque/power sharing strategies, etc...). They are considered promising solutions in many application areas, like industry, traction and renewable energy integration, and especially in presence of high-power or high-reliability requirements. However, contrarily to the three-phase counterparts, multiphase drives can assume a wider variety of different configurations, concerning both the electrical machine (e.g., symmetrical/asymmetrical windings disposition, concentrated/distributed windings, etc...) and the overall drive topology (e.g., single-star configuration, multiple-star configuration, open-end windings, etc…). This aspect, together with the higher number of variables of the system, can make their analysis and control more challenging, especially when dealing with reconfigurable systems (e.g., in post-fault scenarios). This Ph.D. thesis is focused on the mathematical modelling and on the control of multiphase electric drives. The aim of this research is to develop a generalized model-based approach that can be used in multiple configurations and scenarios, requiring minimal reconfigurations to deal with different machine designs and/or different converter topologies, and suitable both in healthy and in faulty operating conditions. Standard field-oriented approaches for the analysis and control of multiphase drives, directly derived as extensions of the three-phase equivalents, despite being relatively easy and convenient solutions to deal with symmetrical machines, may suffer some hurdles when applied to some asymmetrical configurations, including post-fault layouts. To address these issues, a different approach, completely derived in the phase variable domain, is here developed. The method does not require any vector space decomposition or rotational transformation but instead explicitly considers the mathematical properties of the multiphase machine and the effects of the drive topology (which typically introduces some constraints on the system variables). In this thesis work, the proposed approach is particularized for multiphase permanent magnet synchronous machines and for multiphase synchronous reluctance machines. All the results are obtained through rigorous mathematical derivations, and are supported and validated by both numerical analysis and experimental tests. As proven considering many different configurations and scenarios, the main benefits of the proposed methodology are its generality and flexibility, which make it a viable alternative to standard modelling and control algorithms

    Control solutions for multiphase permanent magnet synchronous machine drives applied to electric vehicles

    Get PDF
    207 p.En esta tesis se estudia la utilización de un accionamiento eléctrico basado en una máquina simétrica dual trifásica aplicada al sistema de propulsión de un vehículo eléctrico. Dicho accionamiento está basado en una máquina síncrona de imanes permanentes interiores. Además, dispone de un bus CC con una configuración en cascada. Por otra parte, se incorpora un convertidor CC/CC entre el módulo de baterías y el inversor de seis fases para proveer el vehículo con capacidades de carga rápida, y evitando al mismo tiempo la utilización de semiconductores de potencia con altas tensiones nominales. En este escenario, el algoritmo de control debe hacer frente a las no linealidades de la máquina, proporcionando un comando de consigna preciso para todo el rango de par y velocidad del convertidor. Por lo tanto, deben tenerse en cuenta los efectos de acoplamiento cruzado entre los devanados, y la tensión de los condensadores de enlace en cascada debe controlarse y equilibrarse activamente. En vista de ello, los autores proponen un novedoso enfoque de control que proporciona todas estas funcionalidades. La propuesta se ha validado experimentalmente en un prototipo a escala real de accionamiento eléctrico de 70 kW, probado en un laboratorio y en un vehículo eléctrico en condiciones reales de conducción.Tecnali
    corecore