24,427 research outputs found

    Stieltjes-Bethe equations in higher genus and branched coverings with even ramifications

    Full text link
    We describe projective structures on a Riemann surface corresponding to monodromy groups which have trivial SL(2)SL(2) monodromies around singularities and trivial PSL(2)PSL(2) monodromies along homologically non-trivial loops on a Riemann surface. We propose a natural higher genus analog of Stieltjes-Bethe equations. Links with branched projective structures and with Hurwitz spaces with ramifications of even order are established. We find a higher genus analog of the genus zero Yang-Yang function (the function generating accessory parameters) and describe its similarity and difference with Bergman tau-function on the Hurwitz spaces

    Coarse Projective kMC Integration: Forward/Reverse Initial and Boundary Value Problems

    Full text link
    In "equation-free" multiscale computation a dynamic model is given at a fine, microscopic level; yet we believe that its coarse-grained, macroscopic dynamics can be described by closed equations involving only coarse variables. These variables are typically various low-order moments of the distributions evolved through the microscopic model. We consider the problem of integrating these unavailable equations by acting directly on kinetic Monte Carlo microscopic simulators, thus circumventing their derivation in closed form. In particular, we use projective multi-step integration to solve the coarse initial value problem forward in time as well as backward in time (under certain conditions). Macroscopic trajectories are thus traced back to unstable, source-type, and even sometimes saddle-like stationary points, even though the microscopic simulator only evolves forward in time. We also demonstrate the use of such projective integrators in a shooting boundary value problem formulation for the computation of "coarse limit cycles" of the macroscopic behavior, and the approximation of their stability through estimates of the leading "coarse Floquet multipliers".Comment: Submitted to Journal of Computational Physic

    Equation-free modeling of evolving diseases: Coarse-grained computations with individual-based models

    Full text link
    We demonstrate how direct simulation of stochastic, individual-based models can be combined with continuum numerical analysis techniques to study the dynamics of evolving diseases. % Sidestepping the necessity of obtaining explicit population-level models, the approach analyzes the (unavailable in closed form) `coarse' macroscopic equations, estimating the necessary quantities through appropriately initialized, short `bursts' of individual-based dynamic simulation. % We illustrate this approach by analyzing a stochastic and discrete model for the evolution of disease agents caused by point mutations within individual hosts. % Building up from classical SIR and SIRS models, our example uses a one-dimensional lattice for variant space, and assumes a finite number of individuals. % Macroscopic computational tasks enabled through this approach include stationary state computation, coarse projective integration, parametric continuation and stability analysis.Comment: 16 pages, 8 figure

    A thread calculus with molecular dynamics

    Get PDF
    We present a theory of threads, interleaving of threads, and interaction between threads and services with features of molecular dynamics, a model of computation that bears on computations in which dynamic data structures are involved. Threads can interact with services of which the states consist of structured data objects and computations take place by means of actions which may change the structure of the data objects. The features introduced include restriction of the scope of names used in threads to refer to data objects. Because that feature makes it troublesome to provide a model based on structural operational semantics and bisimulation, we construct a projective limit model for the theory.Comment: 47 pages; examples and results added, phrasing improved, references replace

    Enhanced Symmetries in Multiparameter Flux Vacua

    Full text link
    We give a construction of type IIB flux vacua with discrete R-symmetries and vanishing superpotential for hypersurfaces in weighted projective space with any number of moduli. We find that the existence of such vacua for a given space depends on properties of the modular group, and for Fermat models can be determined solely by the weights of the projective space. The periods of the geometry do not in general have arithmetic properties, but live in a vector space whose properties are vital to the construction.Comment: 32 pages, LaTeX. v2: references adde

    Coarse Grained Computations for a Micellar System

    Full text link
    We establish, through coarse-grained computation, a connection between traditional, continuum numerical algorithms (initial value problems as well as fixed point algorithms) and atomistic simulations of the Larson model of micelle formation. The procedure hinges on the (expected) evolution of a few slow, coarse-grained mesoscopic observables of the MC simulation, and on (computational) time scale separation between these and the remaining "slaved", fast variables. Short bursts of appropriately initialized atomistic simulation are used to estimate the (coarse-grained, deterministic) local dynamics of the evolution of the observables. These estimates are then in turn used to accelerate the evolution to computational stationarity through traditional continuum algorithms (forward Euler integration, Newton-Raphson fixed point computation). This "equation-free" framework, bypassing the derivation of explicit, closed equations for the observables (e.g. equations of state) may provide a computational bridge between direct atomistic / stochastic simulation and the analysis of its macroscopic, system-level consequences
    • 

    corecore