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1. INTRODUCTION

There has been a lot of effort in the current literature to understand the
mathematical behavior of processes. Beginning with Milner's seminal work
on Calculus of Communiceting Systems, as described in [M], an
attempt was made to bring the provability of correctness of computer
programs under a solid mathematical foundation. In fact, one of Milner's
main contributions is to regard the basic concepts of communication and
parallelism as algebraic in nature. Motivated from this Bergstra and Klop
gave an axiomatic-algebraic framework for studying processes (see [BK]
for a survey introduction to their equational laws), which is more easily
amenable to formal analysis and mathematical proof verificaetion. In many
respects their axiomatization constitutes a formal analog of some basic
concepts in Milner's Calculus of Communicating Systems (see [M]).

Starting from a given set of atomic processes (or actions) one can
assemble together large systems of processes. The atomic processes of
such a system may interact with one another, communicate, be executed in
parallel or even lead to a deadlock (see [H1]). The experience accumulated
- from studying the behavior of processes (see [H1]) has led to a set of
equational laws (see [BK]). In the list below the axioms of the theory of
the algebras of communicating processes are given (the reader is advised
to look in [BK] for details and further discussion of the axiom system). The
given signature is: + (alternative composition or sum), - (sequential
composition or product), || (paraliel composition or merge), [ (left
merge), | (communication merge), g, (encapsulation, for H a subset of A), &
(deadlock or failure), T (silent or internal action) and the atom a (for each
a € A) (the atomic processes). The list (A) consists of the basic axioms,
(C) the axioms of communication, (CM) the axioms of merge, (T) the
axioms of the internal action and (D) the axioms for the encapsulation. The
communication function | : Ag % Ag - Ag (where Ag consists of the atoms

in A including 8) is initially defined on atomic processes. In the absence of
communication, axiom (CM1) should be replaced withx ly=yL x+x L y.
The theory (in the signature +, ., I, I, @ (with a € A)) consisting of the
first five axioms in (A) plus the first four axioms in (CM) is known as
(basic) process algebra and is abbreviated by PA; ACP (algebra of
communicating processes) consists of the axioms in (A), (C), (CM) and (D);
finally, ACP[t] consists of ACP plus the axioms in (T). As usual, the
multiplication sign as well as the universal quantifiers, which quantify
the variables ¥, y, z, will be omitted. The letters a, b range over A.




(A x+y=y+x (Cxa|b=1b|a
X+(y+z)=(x+y)+z (alb)|c=al]c)
X+ X=X §|a=8

(x+y)z=xz+yz

(xy)z = x(yz)

X+8=5 D)y (=1

Bx =5 (@ =aifaeH
q(a=6ifagH
(X +yY) =29, (x)+ g, (Y
3 (xy) = g, (x) &, (Y)

CM:xlly=ylLx+xlLy+x|y

all x=ax (T): xt=x
(@) lLy=alx]y) TX+ X =TX
x+yllz=xlLz+yl z a(tx+y)=a(rx + y)
(ax) | b =(a]|b)x Tl x=1tx
a | (bx) =(a|b)x () Ly=tuxy
(ax) | (by) = (a | bXx || T|x=8
x+ylz=x|z+y|z x|t=8
x| (y+r2)=x]y+x|z () jy=xly

x| (ty=x]y

in this axiomatic framework one can define the so-called term {or
initial) model Ay (= the set of all processes built-up from the atomic

processes a in the set A5, via the operations in the given signature), as
well as the models An, where n> 0. In fact, if one thinks of the elements
of A, as finite trees with edges labeled by atoms then A, can be

considered as consisting of those trees which have height at most n (see
[BK).

Given any term t in A, and any positive integer n let (t),, be the subtree of

t of height at most n obtained from t by deleting all those nodes which are
located at height bigger than n. Thus, (), can be considered as projecting

the term model A, onto the model A, Now the projective (or
standard) model, denoted by A® consists of all infinite sequences




<P1,P9,....Pp.-> SUCh that pj, € A, and (Pp+ 1)y =Py, foralin> 0.

In the study of the theory of concurrent processes one is particularly
interested in solving fixed point equations, i.e. equations of the form
x=T(x), where T(x) is a (poiynomial) operator built up from the atomic
processes, the variable x and the operations of the given signature. Such
equations, or even systems of such equations arise naturally in the
description of several well known concepts in computer science, like
stack, bag, counter, mutual exclusion, etc. (see [BK] for a description of
such concepts via process algebra).

In general one is interested in establishing criteria that will guarantee
both the existence as well as the uniqueness of solutions in systems of
fixed point equations. For finite systems two such theorems are given in
[BK] and [BK1] for the above mentioned projective model (in the signature
.0 L 1, 3 awithae A

- Theorem 1.1 [Existence Theorem]
Every finite system 2 = {x, = Ty (Xy,..%3) : K = 1,..,n} of fixed point

equations has a solution in (AN,

Theorem 1.1 is stated in [BK] only for the signature +, ., |I, IL, 2 (with a € A).
Also, [BK1] provides a proof of the theorem for the case k = 1 and the
signature +, ., |I, IL, a (with a € A). The full statement of theorem 1.1, as
this stated above, was communicated to the author by J. W. Klop and will
appear in a forthcoming revised version of [BK1].

A similar existence theorem for systems of arbitrary size (without
parameters) has recently been proved by R. J. van Glabbeek (see [vG]) for
the case of the countably branching graph model.

Theorem 1.2 [Unigueness Theorem]
Every finite system Z = {x = Ty (X;,.,%3) : k = 1,.,n} of guarded fixed

point equations has a unigue solution in (A**)",

The present paper generalizes both of the above theorems in two
directions: on the one hand it allows the systems to have parameters in
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the projective model and on the other it permits systems with a countable
number of fixed point equations. In the case of finite systems without
parameters the finiteness of the set A of atoms is not an issue; one can
assume, without loss of generality, that A is a finite set containing all
the atoms occurring in all the specifications of the given (finite) system
of fixed point equations. However, the situation is different in the case of
a system of fixed point specifications with parameters. This is due to the
fact that if A is infinite and ay,..,a,,.. is an infinite list of mutually

distinct atomic processes in A then the process p = <@1,2129;-,81--8p,> €

A% can occur as a parameter in a fixed point specification. In particular
it is shown that

Theorem 1.3 [Extended Existence Theorem; A is finite]
Every countable system Z = {x = Tk(x,,...,xn(k),pl,...,pm(k)) : k » 0} of fixed

point equations, with parameters py,...,py,.. € A%, has a solution in (A%)®

Theorem 1.4 [Extended Existence Theorem; A is arbitrary]
Every finite system 2 = {xk = T (X gy s XuP 1P - K = 1,...,n} of fixed point

equations, with parameters py,..,p, € A, has a solution in (A™)W.

As an immediate corollary of theorem 1.4 one obtains, for arbitrary A, an
existence theorem for countable, infinite, diagonal systems of fixed
point equations with parameters.

Moreover, the notion of guardedness given in [BK] is generalized to
include fixed point equations with parameters. Guarded operators T(x) do
not always provide equations x = T(x) which have unique solutions in every
model of process algebra (pathological counterexamples are in fact easy
to give). However, it is one of the many interesting properties of the
projective model that in the signature +, , Il IL, |, 3, 6, T, a (with a € A)
one can prove the following result: (notice the omission of the
abstraction operator t,).

Theorem 1.5 [Extended Uniqueness Theorem; A is arbitrary]
Every countable system 2 = {xk = Tk(x],...,xn(k),p],...,pm(k)) - k> 0} of

guarded fixed point equations, with parameters py,..,Py,. € A% has a




unique solution in (A%)®,

In fact, the last theorem is proved for arbitrary (even uncountable)
systems of fixed point specifications. However, it appears that it is only
the countable case which is applicable in practice.

The converse of the uniqueness theorem appears to be much more
intricate. In general, one is interested if the notion of guardedness given
in the paper fully captures all the specifications which have unique
solutions. To be more specific the following partial converse to theorem
1.5 is proved.

Theorem 1.6 [Converse of the Uniqueness Theorem]

Let T(x) be an operator in the signature +, -, ||, IL, a (with a € A) such that
the equation x = T(x) has a unique solution in A®. If A has an atom which
does not occur in T(x) then there exists a guarded operator S(x), without
any parameters other than atomic processes in A, such that the equations
X = T(x), x = 5(x) have exactly the same solutions. In addition, if A has at
least two atoms then T(x) itself is guarded.

Remark on Notation:
Throughout the present paper T(x;,..,x,) will always denote a (polynomial)

operator, i.e. a term built-up from the atomic processes, the variables
X 1,--Xp, the atoms a (with a € A) and the operations of the given signature.

2. TOPOLOGY OF THE PROJECTIVE MODEL

Let A , be the term model; it consists of all terms modulo the equivalence

determined by the corresponding theory in the given signature. In addition
let the projection function (), be defined as follows on A

(@), =

(at)y =3,

(at), = a(t),_y, forn> 1,

(t+ 1), = (), +(t), forn>o.

The atomic process 8 (deadlock) will be treated like the atomic processes
in A (If 5 s In the signature). In the case of t (internal action) one uses, in
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addition to the above defining axioms, the following: (T), = T and (tt), =
wt), Let Ay = {(t), : t € Ayl The projective model A™ consists of all
infinite sequences <py,p,..,Pps-- such that each Pn belongs to An and
(Pp+1)n = Pp. fOr all n > 0. The term model can be embedded in a natural

way in the projective model; because of this, it is considered a subset of
the projective model (see [BK). For any such p = <py.pp,....Pp..> in A¥put

(p), = P, For any p,g € A™ such that p is not equal to q let k(p,q) = the
least n > 0 such that (p), is not equal to (q). The set A% can be endowed

with a metric space structure by defining a distance function d as
follows: d(p,q) = 2—k(p,q) if p is different from q, and d(p,q) = 0 otherwise.

This metric was used by Arnold and Nivat (see [AN]) in the context of
Denotational Semantics of Concurrency. An equivalent metric was also
defined by de Bakker and Zucker (see [dBZ]). For additional information the
reader is advised to consult [L] and [Ro].

The following result summarizes all the basic properties of the metric
space (A™,d) and will be used frequently in the sequel.

Theorem 2.1 [in the signature +, ., I, IL, |, &, 8, ¥, a (with a € A)]
(i) (A® d) is an ultrametric space, i.e. it satisfies the following
properties:
() d(p,a)=0ep=aq
(b) d(p,q) = d (q,p).
(c) d(p,q) < max {d(p,r), d(r,q)}.
(1) p{ » p & ¥n 3m Wk 2 m (%)) = (o),

(111) (A™, d) is the metric completion of the metric space (A, ,d’), where
d' is the restrictionof don A,

(iv) For all p € A, n> 0, d(p,(p),) < 27" . Hence, lim, .(P)y = P.

(v) The operations (), : A™ - A, are continuous.

Proof: The proof is omitted. For details the reader can consult [L] and
[AN].

The forthcoming results of the section will require a finer analysis of the
algebraic structure of A™ The appropriate signature iz +, , ||, IL, |, &. &,




T, a(witha € A).

Lemma 2.2 [Bergstra-Kiop]
For any p € A™, and any integers n, M, ((P)p)m = Pin (n,m}

Proof: It is enough to prove that ((W)y = (Wpin {n,m} NOlds for terms u
in A, (the lemma will then follow by passing to the limit using the fact
that A, is dense in A%). The proof is by induction on the length of the
given term u. Write u as a finite sum u = Z; a;u; +3. TVt 2] b] + T,

where 3, bj are atomic processes in A and u;, v are terms; from the

representation of u above empty sums are set equal to 8 and the term t
may or may not be missing (in the presence of T the next to the last
summand is not necessary since b;t =b j)' Then it is true that

(Wl =UZj ajuy +Zp Tvp + b+ T nm
():] 8j(updp-1 *2p Wy + 2505+ T
=2 3{{{Upy- Py *2 P UVppdm + 2y by T
’zj 2i{WUp)minin-1,m-1} *Zr Wedmin {n,m} * 205+ T

= (Wrnin {n,m}
This completes the proof of the lemma.

Lemma 2.3

Let * (respectively 1) denote any of the binary (respectively unary)
operations in the signature +, ., ll, [L, |, 3, Then for any p, @ in A and any
integer n the following equalities hold:

(p * @) = ((P)y* (@p)y,
(1PN, = (WP, Ny

Proof: As before it is enough to prove that the lemma holds for terms u,
v € A, (the lemma will then follow by passing to the limit using the fact
that A, is dense in A™). The proof is tedious but straightforward and can

be given by induction on the construction of the terms u, v simultaneously
for all the operations in the given signature.

As an immediate corollary one obtains that




Lemma 2.4 |
Let « (respectively 1) denote any of the binary (respectively unary)

operations in the signature +, ., [I, IL, |, & Then for anyp, py, q, q; in A%,
d(p«P1, Gxqy) < max {d(p, @), d(p4, q )}

d(m(p), m(q)) < d(p, Q).
Consequently, for any operator T(x,,...,xn) and any PPy Aposlp € A®,

d(T(py,....pp), TCQy,....a)) < max {d(py, Gy),....dpp, Gp)}.

Proof: The second part of the lemma concerning operators follows from
the first part using induction on the construction of the operator T. To
prove the first part let k = k(p, @), k; = k(py, q)) and s = min {k, ky}. Then it

is clear that for all 1 < s, (p); = (@); and (py); = (qyp);. It follows from
lemma 2.3 that (pxpylg-y = (AxqQy)g-y and hence, s < k(pxpy, G=q;), which
completes the proof of the lemma.

Example 2.5 [J. W. Klop (unpublished)]
In the presence of t the space A is not compact. To see this, construct a

sequence {t.} of terms such that for all n = m, t, # t;, and (t), = t,; such
a sequence cannot have any convergent subsequence since d(tn, tm) =1/2,
for n = m. The first five members of the sequence are given by: ty=a, t; =
13, ty =1, t3= ta + 1), t4 = a+ ta For higher indices one defines by
induction

tak+ i Tlak+ -1 ifi=1,3,

Lo+ i=tak+i-3" takvi-5 111202

On the contrary, if T is not present in the signature then the space A™ can
be compact as the theorem below Shows.

Theorem 2.6 [In the signature +, , |I, I, I, 8,, 8, a (with a € A)]

(i) Ais finite @ (A®,d) is compact.

(ii) In fact, if A is finite then (A®™,d) must be topologically
homeocmorphic to the Cantor set.

Proof: (1) («) Assume on the contrary that A is infinite and let a,,..,ap,,..
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be an infinite list of pairwise distinct atoms in A. Then the sequence {an}
cannot have any convergent subsequence since d(ay, ay,) = 1/2, for n = m.

Clearlg, this is a contradiction.
(=) Since T is not in the signature and A is finite each A, is finite and

hence compact. It follows that A is compact (see [Du], page 429).
(ii) This is immediate from [Ri], page 223. A more direct proof can be
given along the following lines. For each u € A, Tet C(u) = {p € A™: (p), =

u, for some integer n > 0} and let n(u) = the least n such that (u), = u. It
can be shown that {C(u) : u € A} is a family of nonempty subsets of A

such that for all u, v € A™ exactly one of the following three conditions
holds; C(u) € C(v) or C(v) ¢ C(u) or C(u) and C(v) are disjoint. Moreover,
each C(u) is the (finite) disjoint union of those sets C(v) such that n(v) =
n() + 1 and (v)() = U Finally, the homeomorphism between A™ and the

Cantor set can be constructed as in [Di], page 84. Details are left to the
reader. |

3. SOLVING EQUATIONS WITH PARAMETERS

Suppose that it is desired to find a solution to an equation of the form x =
T(x). If T(x) is contractive (see idea 3.3 below) then for any element q €
AT, 1M e TV (q) is the unique solution of the equation x = T(x).

However, if T(x) is not contractive then Banach's contraction principle
does not apply. Thus, one is faced with the problem of finding solutions to
x = T(x), for an arbitrary (not necessarily contractive) operator T(x).
Motivated by Banach's contraction principle one is tempted to prove that
for any q € Ay, 1im . TN (g) is a solution of the equation x = T(x). In

fact, this trick works. An outline of the idea of the proof, due to [BK1], is
as follows. Let q € A, One shows by induction on m that the sequence

{(T”(q))m} is constant, for all but a finite number of n. This is done by

induction on the construction of T; to handle the operation +, which is also
the most difficult case, one needs to use Koenig's infinity lemma (i.e. any
infinite, finite branching tree has an infinite branch). For details the
reader should consult [BK1].

Now suppose that it is required to solve a fixed point equation x = T(x,p),
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where p € A® is a parameter and T(x,y) is an operator built-up from the
variables x,y in the signature +, -, ||, IL, |, 3, 2 (with a € A). Depending on
the topological properties of the space (A®,d) and the structure of the
operator T one of the following three ideas can be used.

Idea 3.1 Compactness Argument:

For each positive integer n consider the fixed point equation x =
T(x,(p)y). Each such equation has a solution in A% (by the existence

theorem 1.1), say xp,, such that x, = T(x,,(p),). However, if A is compact
then the sequence {x,} must have a convergent subsequence, say {xn(k)}'
such that X,y converges to the limit point x € A% But, it is clear
from the continuity of the operator T that x = Timy_, ., Xp(k) = 1My 00
Tnk) Pnk)? = TAM 0 Xnk)r 1Moo Plnky? = TX,P). Thus, the
limit point x is the desired solution of the given fixed equation.

The main limitation of this method is that it works only in
the case where the topological space (A®,d) is compact (this excludes
the possibility of an infinite set A of atoms or even using T in the
signature).

Idea 3.2 Density Argument:

For each t € A, let T, be the operator obtained from T by substituting

each occurrence of y in T(x,y) by t. The solution of the equation x =
T(x,t) is obtained as the limit of the sequence (T, ((a)}, where a € A is

a given fixed atom and T, ¢(a) is the n~th iteration of the operator T,
i.e. it is defined inductively as follows: T (a) = Ti(a) and T, {a) =
Ti(To+(@). Let o1 : Ay ~ A™ be the function defined by t » oy (t) =
M, e Tn,t(a)~ It can be shown that the function gy is uniformly
continuous. In fact the claim below states that gy Is non expansive.

Claim: d(o7(u),07(u)) < d(u,v), forally, v € A,

Pr?mf of the claim: Using the continuity of the distance function d
one obtains that
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dlop(u),o7(u)) = limp, . d (T, (@), Tp, (@) < duv),
which proves the claim.

Thus, o7 is a uniformly continuous mapping from a dense subset A, of
A into the complete metric space A™. It follows that or can be
extended by continuity to a continuous mapping wy : A » AT (see
[DiD). Moreover, for any p € A it is true that wp(p) = 1imp, o, O7((p)y).

Now it is possible to find a fixed point of the original equation. Indeed,
o1{(p)y) = T(aT{(P)y), (P)y). Using the continuity of the operator T and

passing to the limit as n—eo it follows that wy(p) = T(wy(p), p), as
desired.

The main advantage of this method is that it allows the set A of atomic
actions to be finite or infinite. In fact, one uses only the density of A,

(in A®) as well as the completeness of the metric space ( A%, d). Its
main disadvantage is that one must have a priori a uniform way of
obtaining solutions of the equation x = T(x,t) (i.e. uniformly in t) as was
the case above.

idea 3.3. Banach's Contraction Principle:

Any operator T(x,p) (with parameter p in A%) determines a continuous
(in fact nonexpansive) mapping x - T(x, p) from A% into A* (see lemma
2.4). In case it is a contraction one can find fixed points by iterating
the operator. Call the operator T contractive if for all x, y € A%,
d(T(x, p), T(y, p)) < (1/2)d(x, y). It follows from Banach’s Contraction
principle (see [DG]) that for any @ €A™, 1im ., T" (g, p) is the unique

fixed point of the equation x = T(x, p) (the reader will benefit from the
discussion in [L] and [Ro)).

The three ideas considered above will be used extensively in the sequel in
order to solve arbitrary systems of fixed point equations with
parameters in A%
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4. EXISTENCE THEOREMS IN THE PROJECTIVE MODEL

In this section a proof of theorem 1.3 will be given. First the case of
countable systems without parameters is handled; the general theorem
will then follow by applying a compactness argument as in section 3. If
the space A®™ is compact so is the Tychonoff product (A®)¥ of
countably many copies of A®. This can be seen by defining a new metric dy

on (A*)¥ as follows: dy(x, Y) = Sy 27N (¥, Yp) Where , X = < in2 1>,y
= <Yy : N2 1> (see [Di)). To be more specific it can be shown that

Lemma 4.1 [A is finite]
Every countable system Z = {x = Ty (xy,....Xk)) : kK > O} of fixed point

equations has a solution in (A%)Y,

Proof: Let a € A be an arbitrary but fixed atomic process. For each
positive integer m consider the following finite system Z., of m fixed

point equations:

Xy = T](xl,...,xm,a,...,a)

Xm = Tm(x ],-..,Xm,a,-..,a),

i.e. for each k = 1,.,m replace each occurrence of the variables
X+ 1 ¥nck) in Tk by the above atomic process a. Theorem 1.1 implies that

each system Em has a solution, say Sl,m"-’sm,m» such that for all k =
Ve, Sy = T(S 1 yp-.Sm m.@.--,@). FOr each m let sy, denote the infinite
sequence <Sy r,...,Sy s@s--,@,e2. SiNCE A® is compact so is the Tychonoff
product spacé (A°°)“”. It follows that the sequence {s;,} has a convergent

subsequence, say Sm(j) * Y = WUp.Upy,.>, @S i = oo, By the choice of the
sequence Sy, it is true that for all integers i and all k = 1,...,m(i),

Sk,m(i) = Tk(S i ,m(i)...,sm(i))m(i),a,...,a).
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Now fix the integer k. Then there exists an integer 1, such that for ail 1 2
ig, m(i) 2 n(k). However, for each i 2 iy, m(i) 2 n(k) and hence the above

equation becomes

Sk,m(i) = Tk{S1,m(iy--Sn(k),m(i)
Using the continuity of T, and passing to the limit as i » < one easily

obtains that
Uk = Tk(U],...,Un(k)).

This completes the proof of the lemma.

Proof of theorem 1.3 Let Z = {x = Tk(x,,...,xn(k),p ,,...,pm(k)) -k » 0} be

the system of fixed point equations of theorem 1.3, where py,...Pyp,-- € A™
are the given parameters. For each integer r consider the countably
infinite system Er given by the equations below:

Xi =T ](X ],...,Xn( 1 )(D 1)r,,(pm( 1 ))r)

Xy = Tk(X],...,Xn(k),(D])r,...,(pm(k))r)

Each 2. is a countable system of fixed point equations without
parameters. Hence lemma 4.1 applies to each Er- For each r, let Sp =
‘Sl,r’----sk,rr") be a solution of the system 2., i.e. for all integers k, r, it
is true that sk,,.=T k(sl,r:---»xn(k),r’(pl)r:---»(pm(k))r)- Using the compactness
of the Tychonoff product space (A*)Y it follows that the sequence {s.}
has a convergent subsequence, say Spcy) = U = <Uy,...,Ug,..>, @S j- oo lLetk
be fixed. It follows from the choice of the sequence {Sr} that for all
integers 1, Sy (i) = Tk(S1,p(iy-*n(k),r(1)-P Dr(i)-Pmck)n(i) - Passing
to the limit as i » < and using the continuity of the operator Ty one easily
obtains that uy = Tk(“1»---:Un(k)'pv---»pm(k))- This completes the proof of

theorefn 1.3.
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Proof of theorem 1.4 Let 2 = {X, = T (X,...Xp,P 1ulpy) : K = 1,..1) be the
system of fixed point equations of theorem 1.4, where py,...,py, € A% are
the given parameters. For each t,,...,tm € Aw and each positive integer i =
1,...n define the functions gy : (A » A% <ty ty > = 03ty ty) =
1My, o0 Gi,k(t"""tm)’ where the sequence °i,k(t1r--»tm) is defined by
induction on k as follows (for simplicityput t = <ty,.,t, >):

Oijo=a,(k=1,.n),

01 kel (1) = T (04 P (t)»---»"n,k (t),t),

Tiaq ks £8 = T 160 ko 104005 ) (8,044 g (00,140 (0D,1), (K 20),

where (n > i 20) and a € A is a fixed atomic process (the existence of the
limit imy , o, 0 1 (t ... ty) will appear in a revised version of [BK1]). It is

clear that for each i, k there exists an operator 3ik (u1,...,un,v],...,vm)

such that for all g,
Oi,k"‘ ‘(t) =9 1 ,K(G 1,1 (t),...,di_ 1 ,k(t),ci,K*_ i (t),...,di,n (t),0).

The proof is by induction on i; for each i one proves the assertion above in
succession for i =1, i=2,., 1= n Just like in section 3 (using the last
equation) it can be shown that the functions 0y are uniformly continuous,

(in fact they are nonexpansive). Hence, each 0; can be expanded to a
uniformly continuous mapping o, : (A®)M 5 A™ The rest of the details are

as in 3.2 and are left to the reader. This completes the proof of theorem
1.4

As an immediate corollary of theorem 1.4 one can also show that

Corollary 4.2 [Existence theorem for diagonal systems; A is arbitrary]
Every countable diagonal system Z = {x, = Tk(x],...,xk,pl,...,pm(k)) -k >0}

of fixed point equations with parameters D],...,Dm,... € A‘m has a solution in
(AT,

Proof: By theorem 1.4, x; = T,(x,,p,,...,pm(,)) has a solution, say s,. Apply
theorem 1.4 once again to find a solution of x, = Tk(s‘,x2,p‘,...,pm(2)), say
$o. Proceed in this fashion to obtain a solution <81,89,..> of the system Z.
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5. GUARDED EQUATIONS

It will be proved in the sequel that a sufficient condition for a fixed point
equation to have a unique solution is the notion of guardedness. This will
be made precise later. However, in order to obtain the most general
definition of guardedness it will be necessary to define the notion of
guard (see also [H1], page 28).

Definition 5.1 [in the signature +, , |I, IL, |, &, 8, T, a(witha e A)]

Call g € A™ a guard if and only if every finite branch of (the tree
corresponding to) g has an edge which is labeled with an atomic process
other than t.

The above definition arises from the following observation. To obtain a
uniqueness theorem for fixed point equations one wants to consider fixed
point equations of the form x = T(x) such that T(x) is a contraction.
Clearly, by lemma 2.4, T(x) is not distance increasing (at least in the
signature +, ., ||, IL, |, &, .8, t, a (a € A)). Since an operator T is built-up
from the signature +, , ||, IL, |, &, .5, T, a (2 € A)) and the variable x, it is
apparent that one must at first search for a distance contraction
principle for the nontrivial operators of minimal length; such terms are
of the form gv, with g a parameter and v a variable (the operators tv, gflv,
gllv, glv etc, are also of minimal length but they will not be considered as
guarded since they lead to fixed point equations which do not necessarily
have unique solutions.) Hence, one is lead to define g to be a guard if and
only if for all x, y € A™, digx, gy) < (1/2) d(x, y) (see definition 5.1 and
lemma 5.2.i). It follows from Banach's contraction principle and the
completeness of the space (A™, d) that the fixed point equation v = gv has
a unique fixed point, if g is a guard. It is now an immediate consequence of
the definition that that the following result holds.

Lemma 5.2 [In the signature +, , I, IL, |, 3, 8, T, a(witha € A) ]
(i) gisaguard « d(gx, gu) < (1/2)d(x, y), for all x,y € A™.
(ii) If gy, go € A™ are guards then so are g+ gp, gy x (for any x € A™),

911192, 91 L 92, 941 92, & (gy).

Proof: (i) («) Assume g is not a guard. Then g has a finite branch all of
whose edges are labeled with t. It follows from the definition of (), and
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axiom A4 (on left distributivity) that the inequality d(gx, gy) < (1/2)d(x, y)
cannot be true for all x, y € A®, a contradiction.

() If g has no finite branch then gx = g, for all x € A*, and hence d(gx, gy)
=0, for all X, y € A®. Assume that g has finite branches. Since in forming
the product gx the process x can only be appended on finite branches of g
it is clear that d(gx, gy) < (1/2)d(x, ), for all x, y € A*™.

(ii) This is straightforward by considering the graphs corresponding to

the processes gy + go, 9¢ X (for any x € A%), g1 1l g9, 911L 9. 941 9o, Algy.
It is now possible to define the notion of guarded operators.

Definition 5.3 [In the signature +, , ||, L, |, &, 8, T, a(witha e A) ]
Let T(v,,...,vn, p,,...,pm) be an operator with variables vj,.,v, and

parameters py,...Pm € A®. Call T guarded if the following conditions hold:
(i) T=p,wherepeA,U{py,..py} isa guard
(ii) T =pvy, wherep € A, U{py,.,py} is 2 guard.
(iif) T=Ty Top, where T, is guarded.
(iv) T=Ty+Toor Tyl Toor Ty LTy or Ty | Ty, where both
operators Ty, T2 are guarded.
(v) T =g,(Ty), where Ty is guarded.

Remark: As in [BBK] one might be tempted to define T(vy,..,V.P1,-.Pm)
guarded if for any occurrence of a variable v; in T, the operator T has a
subterm of the form pS, where p € A, U {py,...py,} is a guard, and this
occurrence of vy occurs in S. However, it can be shown by induction on the

construction of operators that every operator guarded in this sense will
also be guarded in the sense of definition 5.3.

The next result will be useful in the sequel.

Lemma 5.4 [In the signature +, ., |l IL, |, 3, 5, T, a{witha € A) ]
For any guarded operator T(v,,...,vn,p],...,pm) with variables vy,..,vy, and

parameters py,...py € A% and any Xy,..,.%, € A%, T( Xy,..X, PypPpy) 1S @

guard.
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Proof: The proof is by induction on the construction of T using part (ii) of
lemma 5.2.

6. UNIQUENESS THEOREMS IN THE PROJECTIVE MODEL

The main lemma used in proving the uniqueness of the solutions of a
system of guarded fixed point specifications is given below.

Lemma 6.1 [In the signature +, , |I, IL, |, 3, 8, T, a(witha € A) ]
For any guarded operator T(v,,...,vn,pl,...,pm) with variables VinVp and

parameters pi,..,py, € A™ and any Xy,...Xp, Yy.-.4p € A™, ONe can prove that
AT gy Xpyp PPy TCU s Ypys P goenesPpy) € (172) max {d(x 4,4 1),..., dlxp, U}

Proof: Let x, y, p be abbreviations for the sequences Xj,.,Xn, Yj,-.Yps
P1s-Pm respectively. The proof is by induction on the construction of the
operator T. The resuit is clear if T is one of the forms p or pv;. If T is of
one of the forms T+ To, Ty | To, Ty L Tp, Ty | To, then by definition of

guardedness both T4, To must be guarded. Hence it follows by the induction

hypothesis that
d(T(x, p), TCy, p)) < max {d(T (x, p), T(y, p)), d(To(x, p), Toly, PI}

< (1/2) max {d(x ,Y1),..., dxn,4n ).
The case T = g, (T,) is similar. It remains to consider the case T =T, To,
where T] is (but T, does not have to be) guarded. Now, it is clear that

d(T(x, p), T(y, P)) = d(T {(x, PITo(x, P)), T(y, PITH(Y, P))

= d(gyuy, gou»),
where gy = T((X, p), Uy = To(X, p), g5 = T(Y, D), Up = To(y, p). However,
lemma 5.4 implies that both gy, g, are guards. Hence, the result will
follow from the following claim:

Claim: d(gquy, gous) < max {d(gy, go), (1/2) d(uy, up)}.

#

Assuming the claim the remaining proof is easy. Indeed, using lemma 2.4
and the induction hypothesis:
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d(T(x, p), T(y, p)) = d(gquy, Gou»)
< max {d(gy, go), (1/2) d(uy, un)}
¢ max {d(T (x, p), T(y, p)), (1/2)d(TH(x, p), Ty, P}
< (172) max {d(x 1,4 ),..., d0x,yn)}.

Proof of the claim: Using part (i) of lemma 5.2 and the fact that d is an
ultrametric it is easy to show that

d(gquy, goup) < max {d(gyuy, gquo), d(gqus, gous)}
< max {(1/2) d(uy, us), d(gy, go)).
This completes the proof of the lemma.

Theorem 6.2 [Uniqueness theorem, in:+, ., Il IL, |, 3, 6, T, a(witha € A) ]
Let 2 = {v; = T;(V;, Py) : 1 € 1} be an arbitrary system of guarded fixed

point specifications such each V; (respectively P;) is a finite set of
variables (respectively parameters in A™) such that {v;: i€ 1}=U{v;: i€
[}. Then 2 has a unique fixed point in (A%,

Proof: Consider the metric space (E, D) = ((A°°)', D), where the metric D
is defined as follows: D(X,Y) = sup {d(x;, y;) : i € 1}, for X = Xi:ieh, Y=

<y; : 1 € >. The proof uses the following

Claim: (E, D) is a complete metric space».

Proof of the claim: Let {X,} be a Cauchy sequence in (E, D). Let Xq =

¥nj:1€D.Givene> 0, let ng be an integer such that for all n, m 2 ny,
D(Xn, Xpy) = sup {d(xp 5, Xy ) 1€ 1} g €.

It follows that for each i € | the sequence {"n,i} is a Cauchy sequence in

the metric space (A®°, d). By completeness of this last metric space, for
each i € |, the sequence {xn i} has a limit point, say Xj. PULX=<x; i€ It

remains to show that the sequence {Xn} converges to X in the metric D.

Indeed, let € > O be given and let No be such that for all n, m2 Nos
sup {d(Xq j, ¥mq )T € 1} e
Fix i€l Then d(xn i» Xm ,-) < ¢, forall n, m2ng Next, pass to the limit as
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m - <o and use the continuity of d to conclude that d(x, i, X;) <€, forall n
2 ng. It follows that D(Xn, X) <€ forall n2 ng- This completes the proof
of the claim.

To finish the proof of the theorem notice that the function T : E - E
defined by:

X-T(X)= <Ti(Xi, P]) i€ b,
where for each i €, i = {xk Vg € V,-}, is a contraction, indeed,

D{TCO, T(Y)) ¢

sSup {d(Ti(X], pi)’ Ti(Yi, pi) iel}g

(1/2) sup {d(x;, yy) : i € 1} ¢

(1/72)D(X, Y).

Clearly, this is an immediate consequence of lemma 6.1 using the
hypothesis {Vi 1€} = U{V, : i € 1}. This completes the proof of the

theorem.

It is essential to note that the abstraction operator T (see [BK] for the

appropriate definition) is not in the signature of the statement of
theorem 6.2.

Example 6.3 (C. A R. Hoare, J. W. Klop)
Equation x = at(,) (x) has more than one solution in {a, b}, e.g. any x of

the form x = ay, where y satisfies y = t7, (y).

The last part of this section will be dedicated to the converse of the
unigueness theorem.

Proof of theorem 1.6 Without loss of generality it can be assumed that
|l does not occur in the operator T (this is because x || y=ylLx+xLy,by
axiom CM1). It is clear that T(x) must be a sum of terms of the following
form:

(i) atyx),
(i) X"_tz(X),
(i) x t=(x),
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(iv) a,

(v) %
where the atoms a in (i) and (iv) range over a finite subset B of A and
t4(x), to(x), t3(x) are operators (and some category of summands might be

missing from the sum above). Without l1oss of generality it can be assumed
that at least one of the terms in (i1), (111) or (v) occurs as a summand of
T(x). It is clear that for all x € A,

(T(X))] = EaeB at (X)‘;

It is now easy to show bg inductiononn 2 1, that for all X € Aeo,
(Tn(X))] = EaeB at (X)]

For any q € A, let (@) = limp, ., TQ) be the fixed point of x = T(x)

obtained from q by iterating the operator T (see [BK1]). It is clear that for
any q € A%,
(](Q))] = ZaeB at (Q)‘

It follows that in order to obtain two different fixed point of x = T(x) one
must find two terms p, g € A, such that

EaeBa+ (D)I # ZaeBa + (Q)l

If B = @ then the above observation would imply that x = T(x) has at least
two solutions, namely p = zaeB aand g = b, with b € A-B, which is a

contradiction. Hence it can be assumed that B = 8. If A had at least two
distinct atoms, say a, b, then by the above observation 1(a) and 1(b) would
be two distinct solutions of x = T(x), which is also a contradiction.

Hence, without loss of generality, it can be assumed that A consists of a
single atom, say a, and the operator T(x) is atom-free (i.e. the atom a does
not occur in T). Hence, the operator T(x) is a finite sum of terms of the
form (i), (iii) and (v). It will be shown that in fact the summand x cannot
occur in T(x). Let x be a fixed point of the operator T. Clearly, (y); = a, for

all y € A = (since A = {a}). Moreover, (x), equals a sum consisting of

summands of the form:
(X)g, ((X)n(to(x)) g = ((X)g @)y, ((x)g [L (t3(x)) ) = ((X)5 [L2)s.

it follows that for p = a2 andg=2a+ a2 one can prove by induction on n
that

(T™(p)); = a2 and (T™(Q)), = @ + a2,
In this way one obtains two distinct fixed points 1(p), 1(q) of T(x), since
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2

((p))y = a2, ((@)), = a + a%, which is a contradiction.

It follows that T(x) is a sum of operators of the form (ii) or (iii). In this
case it will be shown that the unigue solution of x = T(x) must be a“.
Hence, there is a guarded operator S(x), namely S(x) = ax, such that x =
T(x), x = S(x) have exactly the same fixed point. Let x € A be a fixed point
of T. It will be shown by induction onn> O that (x),, = a". Since A = {a}, the

result is clear for n = 1. Assume it is true for n > 0; to prove it for n+1.
Indeed, (), is @ sum of terms of the form

By induction hypothesis (x),, = a". However it is easy to show that every
tree t € {a} all of whose branches have length > n must satisfy (et =
a"* ! In particular (e = @ I and the proof of the claim is complete.
This completes the proof of the theorem.

An immediate consequence of the proof of theorem 1.6 is the following

Corollary 6.4 [In the signature +, -, ||, [L, a(with a € A)]
If the operator T(x) is atom-free and the equation x = T(x) has a unique
solution in {a}*® then its unique solution must be a®.

Example 6.5

Some examples of atom-free polynomial operators with unique solutions
in{a}*are: x =x", withn> 1, or x = x || %, etc. (If in addition, the atom &
were present in the signature then 6 would also be a solution of x = xN)

7. DISCUSSION AND OPEN PROBLEMS

The proofs of theorems 1.3, 1.4 and 1.5 are signature-free. In fact they
depend only on the statements of theorems 1.1 and 1.2 and the topological
properties of A% (compactness of A%, if A is finite, completeness and the
density of A(o in A%). However, the proof of theorem 1.1 is rather

combinatorial in nature. It would be useful if one could prove theorem 1.1
using theorem 2.2.ii and an appropriate fixed point theorem for the Cantor
set, because the proof would be topological and hence extendible to bigger
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signatures. Theorem 1.4 does not seem to be the most general result one
might hope to prove. For example, it is not known if the theorem is true
for infinite systems, with a not necessarily finite alphabet A (as is the
case in theorem 1.3).

Theorem 1.6 is only an attempt to justify the fact that guarded equations
are the only ones which have unique fixed points. However, it is not known
if the result is true for systems of arbitrarily many equations or even in
bigger signatures. The proof given here is combinatorial in nature and
hence its direct extension to arbitrary systems would most likely be
quite complex. It might be possible however to give a proof using results
from the theory of metric spaces (see [DG]). For example, it can be shown
that if for all n >0, T™x) has at most one fixed point (notice that no
existence of the fixed point of the operator T™(x) is asserted) then T(x)
must have exactly one fixed point (see [B]). A similar result can also be
proved using the deeper result given in [J].
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