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1. INTRODUCTION 

There hos been a lot of effort in the current Uteroture to understand the 
mothemaUca1 behavior of processes. Beg1nn1ng with M11ner's seminal work 
on Calculus of Communic~Ung Systems, as described in (M], an 
attempt was made to bring the provability of correctness of computer 
programs under a soHd mathematical fm.mdaUon. In fact,, one of MHner's 
main contributions is to regard the basic concepts of communication and 
paraneHsm as a1gebra1c tn neiture. Motivated from th1s Bergstra and Klop 
gave em axiomauc.:.a1gebra1c framework for studying processes (see (BK) 

for a survey 1ntroduction to the1r equaUona1 laws), which 1s more easily 
amenable to formal ana1ys1s and mathemaUca1 proof verification. In many 
respects the1r axiomaUzaUon constitutes a formal ana1og of some basic 
concepts in Milner's Ca1cu1us of Commm11cating Systems (see [M]). 

Starting from a given set of atom1c processes <or act1ons) one can 

assemble together large systems of processes. The atom1c processes of 

such a system may interact with one another, communicate, be executed in 

parallel or even lead to a deadlock (see [H 1 ]). The experience accumulated 

from studying the behav1or of processes (see [H 1]) has led to a set of 

equational laws (see [BK]). In the Hst below the ax1oms of the theory of 

the algebras of communicating processes are given (the reader is advised 

to look in [BK] for detans and further discussion of the axiom system). The 

g1ven signature is: + (alternative compos1t1on or sum), · (sequential 

compos1t1on or product), II (parallel composition or merge), IL (left 

merge), I (communication merge), q. (encapsulation, for Ha subset of A), 5 

(deadlock or failure), t (silent or internal action) and the atom a (for each 

a e A) (the atomic processes). The 11st (A) consists of the basic axioms, 

(C) the axioms of communication, (CM) the axioms of merge, (T) the 

axioms of the internal action and (0) the axioms for the encapsulation. The 

communication function I : As x As .... As (where As consists of the atoms 

in A including S) is initially defined on atomic processes. In the absence of 

communication, axiom (CM1) should be replaced wlth x II y = y IL x + x lL y. 
The theory (in the signature +, ., II, lL a (with a e A)) consisting of the 

ftrst f1ve axtoms 1n (A) plus the first four axtoms 1n (CM) ts known as 

(basic) process algebra and is abbreviated by PA; ACP (algebra of 

communicating processes) consists of the axioms in (A), (C), (CM) and (0); 

finally,. ACP[t] consists of ACP plus the axioms in (T). As usual, the 

multipl1cat1on sign as well as the universal quantifiers, which quantify 

the variables x, y, z, wlll be omitted. The letters a, b range over A 



(A): x + y = y + x 
X + (y + Z) = (X + y) + Z 

x+x=x 
(x + y)z = xz + yz 
(xy)z = x(yz) 
x+6=6 
Bx= 6 

(CM): x II y = y lL x + x lL y + x I y 
all..x=ax 
(ax) lL y = a(x II y) 
(x + y) lL z = x lL z + y lL z 
(ax) I b = (a I b)x 
a I (bx) = Ca I b)x 
Cax) I (by) = Ca I b)(x II y) 

ex + y> I z = x I z + y I z 
x I (y + Z) = x I y + x I z 

( C): a I b = b I a 
Ca I b) I c = a I (b I c) 
SJa=S 

(0): ~ (t) = t 
~ (a) = a if a e H 
~(a)= 6 if a 4j H 
~ (X + y) = ~ (X) + 0., (y) 

0.. Cxy) = 0., (X) 0.. (y) 

(T): Xt = X 

tx + x = tx 
a (tx + y) = a(rx + y) 

rU..x=tx 
(tx) lL y = t(x II y) 
t Ix= s 
x I r = s 
<rx> I y = x I y 
x I Cry)= x I y 
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In this ex1omet1c fntmework one can define the so-caHed term (or 
initial) model Aw (= the set of a11 processes bunt-up from the atomic 

processes a 1n the set A6, via the operations in the given signature), as 

well as the models An, where n > 0. In fact, if one thinks of the elements 

of Aw as f1n1te trees w1th edges 1abe1ed by atoms then An can be 

considered as consisting of those trees which have height at most n (see 
[BK]). 

G1ven any term t 1n Aw and any positive integer n let <t>n be the subtree of 

t of height at most n obtained from t by deleting a11 those nodes which are 
located at height bigger than n. Thus. <.>n can be considered as projecting 

the term model Aw onto the model An. Now the projective (or 

standard) model., denoted by A 00 consists of all infinite sequences 
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In the study of the theory of concurrent processes one is particularly 

interested in solving fixed point equations, i.e. equations of the form 

x=T(x). where T(x) is a (polynomial) operator built up from the atomic 

processes, the variable x and the operations of the given signature. Such 
equations, or even systems of such equations arise naturally in the 

description of several well known concepts in computer science, like 

stack, bag, counter, mutual exclusion, etc. (see [BK] for a description of 
such concepts via process algebra). 

In general one is interested in estab1ishing criteria that will guarantee 

both the existence as well as the uniqueness of solutions 1n systems of 

fixed point equations. For finite systems two such theorems are given 1n 
[BK] and [BK 1] for the above mentioned projective model (in the signature 

+, ., II. IL L <\, a <with a e A)): 

· Theorem 1.1 [Existence Theorem] 
Every finite system I = {xk = T k (x 1, ... ,x0 ) : k = 1 , ... ,n} of fixed point 

equations has a solution in (A
001'. 

Theorem 1.1 is stated in [BK] only for the signature+, ., II, lL a (with a e A). 
Also, [BK 1] provides a proof of the theorem for the case k = 1 and the 

signature +, ., II. IL a (with a e A). The full statement of theorem 1.1, as 

this stated above, was communicated to the author by J. W. Klop and will 

appear in a forthcoming revised version of [BK 1]. 

A similar existence theorem for systems of arbitrary size (without 
parameters> has recently been proved by R. J. van Glabbeek Csee [vG]) for 
the case of the countably branching graph model. 

Theorem 1.2 [Uniqueness Theorem] 
Every finite system I = {xk = T k (x 1, ... ,xn> : k = 1, ... ,n} of guarded fixed 

point equations has a unique solution in (A co)n. 

The present paper generalizes both of the above theorems in two 

dfrect1ons: on the one hand it allows the systems to have parameters 1n 
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the project1ve model and on the other 1t perm1ts systems w1th a countable 
number of fixed point equations. In the case of finite systems without 
parameters the finiteness of the set A of atoms 1s not an 1ssue; one can 
assume, without loss of generality, that A is a finite set containing all 
the atoms occurring in all the specifications of the given (finite) system 
of fixed point equations. However, the situation is different in the case of 
a system of fixed point specifications with parameters. Th1s is due to the 
fact that if A is infinite and a 1, ... ,a0 , ... is an infinite list of mutually 

distinct atomic processes in A then the process p = <a1,a 1a2, ... ,a 1 ... an,. .. > e 

A 00 can occur as a parameter in a fixed point specification. In particular 
it is shown that 

Theorem 1.3 [Extended Existence Theorem; A is finite] 
Every countable system I = {xk = T k(x 1, ... ,Xn(k)>P 1, ... ,Pm(k» : k > O} of fixed 

point equations, with parameters p 1, ... ,pm, ... e A 00
, has a solution in (A 00)w. 

Theorem 1.4 [Extended Existence Theorem; A is arbitrary] 
Every finite system I = {xk = T 1«x 1, ... ,xn,P 1, ... ,pm) : k = t , ... ,n} of flxed point 

equations, with parameters p1,...,Pm E A00
, has a solution in (A00

)w. 

As an immediate corollary of theorem 1.4 one obtains, for arbitrary A. an 
existence theorem for countable, infinite, diagonal systems of nxed 
point equations with parameters. 

Moreover, the notion of guardedness given in [BK] is generalized to 
include fixed point equations with parameters. Guarded operators T(x) do 
not always provide equations x = T(x) which have unique solutions in every 
model of process algebra (pathological counterexamples are in fact easy 
to give). However. 1t is one of the many 1nterest1ng properties of the 
projective model that in the signature+,., II, lL L ~, 8, t, a (with a EA) 
one can prove the following result: (notice the omission of the 
abstract ion operator t 1). 

Theorem 1.5 [Extended Uniqueness Theorem; A is arbitrary] 
Every ~ountab1e system I = {xk = T k(x 1, ... ,xn(k),P 1, .. .,Pm(k» : k > O} of 

guarded fixed point equations, with parameters p 1,. .. ,Pm,. .. e A 00
, has a 
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unique solution in (A 00
)(,). 

In fact, the last theorem ts proved for arb1trary (even uncountable) 
systems of fixed point specifications. However, it appears that it is only 
the countable case which is applicable in practice. 

The converse of the uniqueness theorem appears to be much more 
intricate. In general, one is interested if the notion of guardedness given 
in the paper fu11y captures a11 the specifications which have unique 
solutions. To be more specific the fo11owing partial converse to theorem 
1.5 is proved. 

Theorem 1.6 [Converse of the Uniqueness Theorem] 
Let T(x) be an operator in the signature +, ·, II, lL a (with a e A) such that 
the equation x = T(x) has a unique solution in Af:tO. If A has an atom which 
does not occur in T(x) then there exists a guarded operator S(x), without 
any parameters other than atomic processes in A, such that the equations 
x = T(x). x = S(x) have exactly the same solutions. tn addition, if A has at 
least two atoms then T(x) itself is guarded. 

Remark on Notation: 
Throughout the present paper T(x1,. .. ,xn> wi11 always denote a (polynomial) 

operator, i.e. a term buiJt-up from the atomic processes, the variables 
x 1, ... ,xn, the atoms a (with a e A) and the operations of the given signature. 

2. TOPOLOGY Of THE PROJECT I VE MODEL 

Let Aw be the term model; it consists of a11 terms modulo the equivalence 

determined by the corresponding theory in the given signature. In addition 
let the projection function Un be defined as follows on Aw: 

(a)n = a, 
(at) 1 =a, 

(at>n = a(t)n_ 1, for n > 1, 

(t + t')n = <t>n + (t')n for n > o. 

The atomic process 5 (deadlock) w111 be treated 11ke the atomtc processes ,, 
Jn A (1f 6 ts tn the signature). In the case of t (internal action) one uses, in 



addftton to the above def1n1ng axtoms, the fol1owtng: (t)n = t and (tt>0 = 

t(t)n· Let An = {(t)n : t e Awl· The project1ve model A00 cons1sts of all 

infinite sequences <p 1,p2, .. .,Pn, ... > such that each Pn belongs to Arl and 

CPn+ 1>n = Pn· for all n > o. The term model can be embedded 1n a natural 

way in the projective model; because of this, 1t is considered a subset of 

the projective model (see [BK]). For any such p = <p 1,P2 ..... Pn ... .> in A
00

put 

(p)n = Pn· For any p,q e A00 such that p is not equal to q let k(p,q) = the 

least n > 0 such that (p)n is not equal to (q)n· The set A00 can be endowed 

with a metric space structure by defining a distance function d as 
follows: d(p,q) = 2-k(p,q) if p is different from Q, and d(p,q) = O otherwise. 

This metric was used by Arnold and Nivat (see [AN]) in the context of 
Denotational Semantics of Concurrency. An equivalent metric was also 
defined by de Bakker and Zucker (see [dBZ]). For additional information the 
reader is advised to consult [L] and [Ro]. 

The following result summarizes all the basic properties of the metric 
space (A 00,d) and will be used frequently in the sequel. 

Theorem 2.1 [In the signature+, ., II, IL I, ~. 6, t, a (with a e A)] 
(i) (A00

, d) is an ultrametric space, i.e. it satisfies the following 

properties: 
(a) d(p,Q) = o <* p = Q. 

(b) d(p,q) = d (q,p). 
(c) d(p,q) ! max {d(p,r). d(r,q)}. 

(10 p<r> ... p <* Vn 3m Vk } m (p<k»n = (p)n· 

(tf f) (A°'°, d) is the metric completton of the metrtc space (Aw ,d'), where 

d' is the restriction of don A(e). 

(iv) For all p e A 00
, n > 0, d(p,(p)0 ) ~ 2-n. Hence, Hmn...

00
(p)n = p. 

(v) The operations (.)n: A 00 
4 An are continuous. 

Proof: The proof 1s omitted. For details the reader can consult [LJ and 
[AN]. 

The forthcoming results of the section wi11 require a finer analysis of the 

algebraic structure of A 00
. The appropriate signature is +, ., II, IL L ~, S, 
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t, a (w1th a e A). 

Lemma 2.2 [Bergstra-Klop] 

For any p e A co, and any integers n, m, CCp>n>m = Cp>mtn {n,m} 

Proof: It 1s enough to prove that «u>n>m = Cu>min {n,m} holds for terms u 

in A"' (the lemma will then follow by passing to the 1im1t us1ng the fact 

that A"' ts dense 1n A co). The proof is by induction on the length of the 

given term u. Write u as a finite sum u = I 1 a1ui +Lr tvr + Ij bj + t , 

where a1, bj are atomtc processes tn A and u1, vr are terms; from the 

representation of u above empty sums are set equal to S and the term t 

may or may not be missing On the presence or t the next to the last 

summand is not necessary since bjt = bj). Then it is true that 

«u>n>m =((Ii a1u1 + Ir tvr + Ij bj + t >n>m 

= (Ij ai(ur>n- l + Ir t(vr>n>m + Ij bj + t 

= Ij ai((ur>n-1>m-1 +Ir t«vr>n>m + Ij bj + t 

= Ij ai(ur>min{n-1,m-1} + Ir t(vr>min {n,m} + Ij bj + t 

= (U)min {n,ml 
This completes the proof of the lemma. 

lemma 2.3 
Let * (respectively rr) denote any or the binary (respectively unary) 

operations tn the signature+, ., II, IL I, aw. Then for any p, Qin A00 and any 

integer n the following equalities hold: 

(p * q)n = ((p)n * (q)n)n, 

( ff(p »n = < Tf{(p >n ))n· 

Proof: As before tt ts enough to prove that the lemma holds for terms u. 

v e A"' (the lemma will then fo11ow by passing to the 1im1t using the fact 

that A"' is dense in A 
00

). The proof is tedious but straightforward and can 

be gtven by induction on the construction of the terms u, v simultaneously 

for all the operations in the given signature. 

As an immediate corollary one obtains that 
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lemma 2.4 
Let * (respect1ve1y rr) denote any of the binary (respectively unary) 

operations in the signature+,., II. lL I.<\. Then for any p, p 1, q, q1 in A00
, 

d(p*p 1, q*q 1> i max {d(p, q), d(p 1, q 1n 
d( TT(p), TT(q)) i d(p, q). 

Consequently, for any operator T(x 1, ... ,xn) and any p 1, ... ,Pn• q 1, ... ,qn E A 00
, 

d(T(p 1, ... ,pn), T(q 1'-···qn)) i max {d(p 1, q 1> •... ,d(pn, qn)}. 

Proof: The second part of the lemma concerntng operators follows from 
the first part using induction on the construction of the operator T. To 
prove the first part let k = k(p, q), k1 = k(p1, q1) and s = min {k, k 1l Then it 

1s clear that for all 1 < s, (p)i = (q)i and (p 1>i = (q 1>i· It follows from 

lemma 2.3 that (P*Pt>s-I = (q*qt>s-l and hence, s i k(p*p 1, q*q1), whlch 

completes the proof of the lemma. 

Example 2.5 [J. W. Klop (unpubllshed)] 
In the presence or t the space A00 is not compact. To see thts, construct a 
sequence {tn} of terms such that for all n = m, tn = tm and (t0 ) 1 = t0; such 

a sequence cannot have any convergent subsequence since d(tn, tm> = 1 /2, 

for n ;t m. The first five members of the sequence are given by: t0 =a, t 1 = 

ta, t 2 = r, t 3 = t(a + t), t 4 = a + ra. For higher 1nd1ces one defjnes by 

induction 

t4k + i = t t4k + i -1 if i = 1, 3, 

t4k + i = t4k + j -3 + t4k + i -5 if t = 0, 2. 

On the contrary, if t is not present in the signature then the space A00 can 
be compact as the theorem below shows. 

Theorem 2.6 [In the signature +, ., II, IL I. C... S, a (with a e A)] 
CO A is finite# (A 00,d) is compact. 
(ii) In fact, if A is finite then (A 00,d) must be topologically 

homeomorphlc to the Cantor set. 

Proof: (1) (4=) Assume on the contrary that A is infinite and let a1, ... ,a0 ,. .. 
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be an fnf1ni te lfst of patrwfse dtsttnct atoms fn A Then the sequence {~} 

cannot have any convergent subsequence s1nce d(an, am> = 112, for n ;I! m. 

Clearly, this 1s a contrad1ct1on. 
<=» Since t is not in the signature and A is finite each Arl is finite and 

hence compact. It follows that A 00 is compact (see [Du], page 429). 
(ii) This fs immediate from [R1], page 223. A more direct proof can be 

given along the following llnes. For each u e Aw let C(u) = {p e A00
: (p)0 = 

u, for some integer n > O} and let n(u) = the least n such that <u>n = u .. It 

can be shown that {CCu> : u e Awl 1s a fam1ly of nonempty subsets of A 00 

such that for all u, v e A00 exactly one of the following three conditions 
holds: C(u) ~ C(v) or C(v) ~ C(u) or C(u) and C(v) are disjoint. Moreover, 

each C(u) is the (finite) disjoint union of those sets C(v) such that n(v) = 

n<u> + 1 and <v>n(u) = u. Finally, the homeomorphism between A00 and the 

Cantor set can be constructed as in [Di], page 84. Details are left to the 

reader. 

3. SOLVING EQUATIONS WITH PARAMETERS 

Suppose that it is desired to flnd a solution to an equation of the form x = 
T(x). If T(x) is contractive (see idea 3.3 below) then for any element q e 

A00
, Hm ~00 Tn (q) is the unique solution of the equation x = T(x). 

However, if T(x) is not contractive then Banach's contraction principle 

does not apply. Thus, one is faced with the problem of finding solutions to 
x = T(x), for an arbitrary (not necessari1y contractive) operator T(x). 

Motivated by Banach's contraction principle one is tempted to prove that 

for any q e Aw, Jim n-+oo Tn (q) is a solution of the equation x = T(x). In 

fact, this trick works. An outline of the idea of the proof, due to [BK 1], is 

as follows. Let q e Aw. One shows by induction on m that the sequence 

{(Tn(q))m} is constant, for all but a finite number of n. This is done by 

induction on the construction of T; to handle the operation+, which is also 

the most difficult case, one needs to use Koenig's infinity lemma (i.e. any 

infinite, finite branching tree has an infinite branch). For details the 

reader should consult [BK 1l 
t> 

Now suppose that it is required to solve a fixed point equation x = T(x,p), 
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where p e A 00 1s a parameter and nx,y) fs an operator bunt-up from the 
variables x,y in the signature +, ·, II, IL f, q., a <with a e A). Depending on 
the topological propert1es of the space CA 00,d) and the structure of the 
operator Tone of the following three ideas can be used. 

Idea 3.1 Compactness Argument: 

For each positive integer n consider the fixed point equat1on x = 

TCx,Cp>n>· Each such equation has a solution in A 00 {by the existence 

theorem 1.1), say Xn, such that Xn = TCxn1(p)0 ). However, if A is compact 

then the sequence {xnl must have a convergent subsequence, say {xn(I<)}, 

such that Xn(k) converges to the Hm1t pofnt x e A 00
• But, 1t ts clear 

from the continuity of the operator T that x = limk ... 00 Xn(k) = Hmk ... 00 

TCxn(k), <P>nck» = TOimk-+oo Xn(k)> lfmk ... 00 <P>nck» = TCx,p). Thus, the 

llmit point x is the desired solution of the given fixed equation. 

The main Hmitation of thls method is that 1t works only tn 
the case where the topological space (A

00,d) is compact (th1s excludes 
the possib11ity of an tnfin1te set A of atoms or even using t tn the 
signature). 

Idea J.2 Density Argument: 

For each t e Aw let Tt be the operator obtained from T by subst1tut1ng 

each occurrence of y in TCx.y> by t. The solution of the equation x = 

T(x,t) is obtained as the lfmit of the sequence {T n t<a)}, where a E A is 
I 

a given fixed atom and T n t<a> fs the n-th iteration of the operator T t· 
I 

Le. it is defined inductively as fo11ows: T 1 ~a) = T t<a> and T n+ 1 ~a) = 
I I 

T t<T n t<a)). Let or : Aw ... A 00 be the function defined by t ... or {t) ... 
I 

limn-+00 T n,t<a). It can be shown that the function or is uniformly 

continuous. In fact the claim below states that or 1s non expansive. 

c1a1m: dCor<u>,crr<u» ~ dCu,v>. for all u, v e Aw· 
Proof of the cla1m: Us1ng the contfnu1ty of the distance function d 

one obta1ns that 
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d(or<u>,orCu)) = llmn-+00 d (T n u<a>. T n /a)) ~ d(u,v), , . 
wh1ch proves the claim. 

Thus, o1 is a uniformly continuous mapping from a dense subset Aw of 

A 00 into the complete metric space A 00
. It follows that o1 can be 

extended by continuity to a continuous mapping ~ : A 00 
-. A 00 (see 

[01]). Moreover. for any p e A 00 1t 1s true that <i>r<P> = 11mrr+oo or«P>0>. 

Now it is possible to f1nd a fixed point of the original equation. Indeed, 

or<<P>n> = TCor«P>n>. <P>n>· Ustng the cont1nutty of the operator T and 

passing to the limit as n-+00 it follows that wr<P> = T<wr(p), p), as 

desired. 

The mafn advantage of this method is that it allows the set A of atomic 
actions to be finite or infinite. In fact, one uses only the density of Aw 

On A00
) as well as the completeness of the metric space ( A00

, d). Its 
main disadvantage is that one must have a priori a uniform way of 
obtaining solutions of the equation x = T(x,t) (1.e. uniformly in t) as was 
the case above. 

Idea 3.3. Banactfs Contract1on Principle: 

Any operator TCx,p) (with parameter p in A00
) determines a continuous 

(in fact nonexpansive) mapping x-. TCx, p) from A00 into A00 Csee lemma 

2.4). In case it ts a contraction one can find fixed points by 1terat1ng 
the operator. Call the operator T contract1ve if for all x, y e A00

, 

d(T(x, p), TCy, p)) ~ ( t /2)d(x, y). It follows from Banach's Contract ton 

Prtnctple <see [DG]) that for any q eA00
, 11m rr+co r° Cq, p) 1s the un1que 

fixed point of the equation x = T(x, p) (the reader w111 benef1t from the 
dtscuss1on 1n [L] and [Ro]). 

The three ideas considered above will be used extensively in the sequel in 
order to solve arbitrary systems of fixed point equations with 
parameters in A 00

• 
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4. EXISTENCE THEOREMS IN THE PROJECTIVE MODEL 

In this sect1on a proof of theorem 1.3 w111 be g1ven. F1rst the case or 
countable systems without parameters is handled; the general theorem 
will then follow by applying a compactness argument as in section 3. If 
the space A 00 is compact so is the Tychonoff product CA 00)Ci> of 
countably many copies of A00

• This can be seen by defining a new metric d1 
on (A00

)<i> as follows: d1Cx, y) = I0~ 1 2-n d(Xn, y0>, where, x = <xn: n ~ 1>, y 

= <Yn: n} 1 ><see [01]). To be more spec1f1c 1t can be shown that 

Lemma 4.1 [A 1s f1n1te] 
Every countable system I = {xk = T k(x 1,. .. ,xnck» : k > O} of f 1xed point 

equations has a solution in (A00)<il. 

Proof: Let a e A be an arbitrary but fixed atomic process. For each 
positive integer m consider the following finite system Im of m fixed 

point equations: 

Le. for each k = 1, ... ,m replace each occurrence of the variables 
><m+ 1, ... ,><n(k) in T k by the above atomic process a. Theorem t .1 implies that 

each system Im has a solution, say s1 rrr··sm m• such that for a11 k = 
I l 

1, ...• m. sk m = T k(s 1 m····sm m·a •... ,a). For each m Jet Sm denote the tnf 1n1te 
• • • 

sequence <s 1 m .... sm m•a •...• a, ... >. Since A00 is compact so is the Tychonoff 
• • 

product space (A00
)w. It follows that the sequence {sm} has a convergent 

subsequence, say sm( i) ._. u = <u 1 ..... um····» as i ._. oo. By the choice of the 

sequence Sm ft Is true that ror all Integers t and an k = 1 •...• mCO. 

' sk.m(O = T k(s 1 ,m(i)· .. •8mC0,m(i)•a, ... ,a). 
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Now ffx the integer k. Then there extsts an 1nteger 10 such that for all I ~ 

10, m<n ~ n(k). However, for each i } 10, m(O } n(k) and hence the above 

equation becomes 
sk,m( 1) = T k(s 1,m(1) ... ,Sn(k),m(1)). 

Using the continuity of T k and passing to the Hmit as i 4 oo one easily 

obta1ns that 
Uk = T k(u 1, ... ,Un(k»· 

This completes the proof of the lemma. 

Proof of theorem 1.l Let I = {xk = T k(x 1, ... ,xn(k)>P 1, ... ,Pm(k» : k > O} be 

the system of fixed point equations of theorem 1.3, where p1, ... ,Pm,... e A00 

are the given parameters. For each integer r consider the countably 
infinite system i: given by the equations below: 

r 
x 1 = T 1<x t, ... ,xn( 1)(P1>r, .. .,(pm( 1 Yr> 

Each Ir is a countable system of fixed point equations without 

parameters. Hence lemma 4.1 applies to each Ir. For each r, let sr = 

<s 1 f' ... ,sk r, ... > be a solution of the system Ir, Le. for a11 integers k, r, it 
I I 

fs true that sk,r=T k(s l ,r .... ,xn(k),r·<P 1>r .... ,<Pm(k»r>· Using the compactness 

of the Tychonoff product space (A 00)w, it follows that the sequence {sr} 

has a convergent subsequence, say srco .. u = <u1, ... ,uk, ... >, as 1 _.. 00• Let k 

be fixed. It fo11ows from the choice of the sequence {sr} that for all 

integers 1, sk,r(O = T k(s l ,r(O, ... ,xn(k),r(l ,,<p 1>rcn, ... ,(Pm<k>'r<D ). Pass1ng 

to the Hmlt as i--. co and using the continuity of the operator T k one eas11y 

obtains that uk = T k(u 1, ... ,un(k),P 1, ... ,Pmck»· This completes the proof of 

theorem 1.3. 
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Proof of theorem 1.4 Let I = {xk = T k<x 1, ... ,Xn,P 1, ... ,Pm) : k = 1, ... n} be the 

system of fixed point equations of theorem 1.4, where p1, ... ,Pm e A 00 are 

the given parameters. For each t 1, ... ,tm e A<J and each positive integer 1 = 
1, .... n define the funct1ons oi: <A<J)m ... A00

: < t 1, ... ,tm > ... oi<t 1, ... ,tm> = 
Jimk_.00 oi k(t 1,. .. ,tm>, where the sequence o1 k(t 1, ... ,tm> is defined by , , 
induction on k as follows (for simpllcity putt = < t 1, ... ,tm >): 

<>\o (t) =a, (k = 1, ... ,n), 

CJ 1 k+ 1 (t) = T k+ 1<o 1 k (t), ... ,CJn k (0,t>, , , , 
0 1+ 1 k+ It>= T k+ 1<0 1 k+ 1 (t), ... ,o1 k+ 1 <t>,o1+ 1 k (t), ... ,O'n k (t),t), Ck 2 0), ' , , , ' 

where (n > 1 2 0) and a e A is a fixed atomic process (the existence of the 
Hmit limk-.oo a1 k<t 1, ... ,tm> will appear in a revised version of [BK1]). It ts , 
clear that for each i, k there exists an operator s1 k Cu 1, ... ,un,v 1, ... ,vm> , 
such that for a11 t, 

0 i,k+ 1<t> = 5 1,l<f.0 1, 1 (t), ... ,ai-1,k (t),a1,k+ 1 (t), ... ,<11.n (t),t). 

The proof is by induction on 1; for each 1 one proves the assertion above in 
succession for i = 1, i = 2, ... , i = n. Just llke in section 3 (using the last 
equation) it can be shown that the functions a1 are uniformly continuous, 

(in fact they are nonexpansive). Hence, each cr1 can be expanded to a 

uniformly continuous mapping w1: (A00)m ... A00
• The rest of the detaHs are 

as in 3.2 and are left to the reader. This completes the proof of theorem 
1.4. 

As an immediate coronary of theorem 1.4 one can also show that 

CoroHary 4.2 [Existence theorem for diagonal systems; A is arbitrary] 
Every countable diagona1 system I = {xk = T k(x 1, ... ,xk,p 1, ... ,Pm(k,> : k > O} 

or f1xed point equations with parameters p 1, ... ,Pm·· .. e A 00 has a solut1on in 

(A oo)<a>. 

Proof: By theorem 1.4, x 1 = T 1Cx 1,p v .. ,Pm( 1 y has a solution, say s 1. Apply 

theorem 1.4 once again to find a solution of x2 = TkCs 1,x2,p 1, ... ,pm(2», say 

s2. Pr.oceed in this fashion to obtain a solution <s 1,s2, ... > of the system I. 
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5. GUARDED EQUATIONS 

It w111 be proved 1n the seQuel that a suff1c1ent condttton for a ftxed potnt 
equation to have a un1que solut1on 1s the not1on of guardedness. Th1s w11t 
be made precise later. However, in order to obtain the most general 
definition of guardedness 1t wi11 be necessary to define the notion of 
guard (see also [H 1 ], page 28). 

Definition 5. 1 [In the signature+, ., II, IL I, q., 6, t, a (with a e A)] 
Call g e A00 a guard 1f and only 1f every finite branch of (the tree 
corresponding to) g has an edge wh1ch 1s Jabeled with an atom1c process 
other than t. 

The above definition arises from the following observation. To obtain a 
uniqueness theorem for fixed point equations one wants to consider fixed 
point equations of the form x = T(x) such that T(x) is a contraction. 
Clearly, by lemma 2.4, T(x) is not distance increasing (at least in the 
signature +, ., II. IL L <\i .s. t, a (a e A)). Since an operator T is built-up 
from the signature +, .• II. IL I. 2'i.i ,8, t, a (a e A)) and the variable x. it is 
apparent that one must at first search for a distance contraction 
principle for the nontrivial operators of minimal length; such terms are 
of the form gv, with g a parameter and v a variable (the operators tv, gllv, 
gU..v, glv etc, are also of minimal length but they will not be considered as 
guarded since they lead to fixed point equations which do not necessar11y 
have unique solutions.) Hence, one is lead to define g to be a guard if and 
only if for all x, y e A co. d(gx, gy) i ( 1 /2) d(x, y) (see definltion 5.1 and 
lemma 5.2.0. It fol1ows from Banach's contraction principle and the 
completeness of the space (A co. d) that the ftxed point equation v = gv has 
a unique fixed point, if g is a guard. It is now an immediate consequence of 
the definition that that the following result holds. 

lemma 5.2 [In the signature+, ., II. IL L q., 6, t, a (with a e A) 1 
( i) g is a guard ~ d(gx, gy) i ( 1 /2)d(x, y), for all x, y e A 00

• 

(ii) If 91, 92 E A00 are guards then so are g1 + g2, g1 x (for any x e Aero), 

91 II 92· 91 U.. 92. g 1 I 92, C.. Cg 1>· 

Proo(; (i) (~)Assume g is not a guard. Then g has a finite branch a11 of 
whose edges are JabeJed with t. It foJJows from the definition of (.)n and 
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axiom A4 (on left distributivity) that the inequallty d(gx, gy) ~ ( 1 /2)d(x, y) 

cannot be true for all x. y EA 00
• a contradiction. 

(-*) If g has no f1n1te branch then gx =g. for all x e A00
• and hence d(gx. gy) 

= o, for all x, ye A 00
. Assume that g has finite branches. Since in forming 

the product gx the process x can only be appended on f1nite branches of g 
it is clear that d(gx, gy) ~ ( 1 /2)d(x, y), for all x, ye A 00

• 

(10 This is straightforward by considering the graphs corresponding to 
the processes 91 + 92, g 1 x (for any x e A 

00
), 91 II 92, 91 ll 92, g 1 I g2, ~(g 1>· 

It is now possible to define the notion of guarded operators. 

Definition 5.3 [In the signature +, ., II, ll, L ~, 6, t, a (with a e A)] 
Let T(v 1, ... ,vn, p 1 ..... Pm> be an operator with variables v 1 ..... vn and 

parameters p 1, ... ,Pm E A 00
• Call T guarded if the following conditions hoJd: 

(1) T = p, where p e Aw u {p 1, ... ,pm} is a guard. 

(t D T = pv i• where p e Aw u {p 1, ... ,pm} is a guard. 

(111) T = T 1 · T 2, where T 1 is guarded. 

(iv) T = T 1 + T 2 or T 1 II T 2 or T 1 lL T 2 or T 1 I T 2, where both 

operators T 1, T 2 are guarded. 

(v) T = ~ CT 1>, where T 1 is guarded. 

Remark: As in [BBK] one might be tempted to define T(v 1, ... ,vn,Pt, ... ,Pm> 

guarded if for any occurrence of a variable vi in T, the operator T has a 

subterm of the form pS, where p e Aw u {p 1, ... ,Pml is a guard, and this 

occurrence of v1 occurs in S. However, it can be shown by induction on the 

construction of operators that every operator guarded in th1s sense w111 
also be guarded in the sense of definition 5.3. 

The next result will be useful in the seque1. 

lemma 5.4 [In the signature+, ., II, ll, L ~' 6, t, a (with a e A)] 
For any guarded operator T(v 1, ... ,vn,P 1, ... ,Pm> with variables v 1, ... ,vn and 

parameters p 1,. .. ,Pm e A 00 and any x 1,. .. ,xn e A 00
, T( x 1, ... ,xn, p 1, .. .,Pm) is a 

guard. 
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Proof: The proof is by induction on the construction of Tusing part (10 of 
lemma 5.2. 

6. UNIQUENESS THEOREMS IN THE PROJECTIVE MODEL 

The main lemma used in proving the uniqueness of the solutions of a 
system of guarded fixed point specifications is given below. 

Lemma 6.1 [In the signature+,., II. IL L a... 5, t, a Cw1th a e A) 1 
For any guarded operator T(v 1, ... ,vn,P 1, ... ,Pm> with variables v 1, ... ,vn and 

parameters p 1,. .. ,Pm e A 00 and any x 1, ... ,xn, y 1, ... ,yn e A 00
• one can prove that 

d(T(x 1, ... ,Xn, p 1, ... ,pm), T<y 1, ... ,yn, p 1, ... ,Pm> ~ ( 1 /2) max {d(x 1,y 1>, ... , d(Xn,Yn>l. 

Proof: Let x, y, p be abbreviations for the sequences x1, ... ,xn, y1, ... ,yn, 

p1, ... ,Pm respectively. The proof is by induction on the construction of the 

operator T. The result 1s clear if T is one of the forms p or pv1. If T 1s of 

one of the forms T 1 + T 2, T 1 II T 2, T 1 lL T 2, T 1 I T 2, then by definition of 

guardedness both T 1, T 2 must be guarded. Hence 1t follows by the induction 

hypothesis that 
d(T(x, p), T(y, p)) ~ max {d(T 1Cx, p), T 1Cy, p)), d(T 2<x, p), T 2<Y. p))} 

~ ( 1 /2) max {d(x 1,y 1>, .. ., d(xn,Yn>l· 

The case T = a.. CT 1> is similar. It remains to consider the case T = T 1 · T 2, 

where T 1 is (but T 2 does not have to be) guarded. Now, it is clear that 

d(T(x, p), TCy, p)) = dCT 1Cx, p)T 2Cx, p)), T 1Cy, p)T 2Cy, p)) 

= d(g tU 1• 92U2), 

where g 1 = T 1cx. p), u 1 = T 2cx, p), g2 = T 1cy, p), u2 = T 2cy, p). However, 

lemma 5.4 implies that both g1, g2 are guards. Hence, the result wlll 

follow from the following claim: 

Assuming the claim the remaining proof is easy. Indeed, using lemma 2.4 
and the induction hypothesis: 
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d(T(x1 p), T(y, p)) = d(g 1U 11 Q2U2) 

~ max {d(g 1, g2>1 ( 1 /2) d(u 1, u2>l 

~ max {d(T 1cx, p)1 T 1cy, p)), ( 1/2)d(T2<x1 P>1 T 2Cy1 p))} 

~ ( 1 /2) max {d(x 1,y 1>. ... , d(Xn1Yn>l. 

Proof of the cla1m: Us1ng part (1) of 1emma 5.2 and the fact that d 1s an 
ultrametr1c 1t 1s easy to show that 

d(g 1U 11 92U2) { max {d(g 1U 11 g 1u2>1 d(g 1U21 g2u2)} 

~ max {( 112) d(u 11 u2>, d(g 11 92H­

This comp1etes the proof of the lemma. 

Theorem 6.2 [Un1queness theorem, in:+,., II, IL L I\, S, t, a (w1th a e A)] 
Let 2 = fv1 = T1cv1, P1> : 1 e I} be an arb1trary system of guarded f1xed 

point specifications such each Vi (respectively P1) is a finite set of 

variables (respectively parameters in A00
) such that {v1 : 1 e I}= U{Vi : i e 

I}. Then 2 has a unique fixed point in (A 00)1. 

Proof: Consider the metric space (E 1 0) = ((A 00)1, 0), where the metric O 
is defined as follows: O(X,Y) =sup {dCx1, Yi): i e I}, for X = <xi: i e I>, Y = 
<y1 : 1 E I>. The proof uses the following 

C1aim: (E, 0) is a complete metric space. 

Proof of the claim: Let {Xn} be a Cauchy sequence in (E, 0). Let X0 = 

<xn 1 : 1 e I>. Given e > o, let n0 be an integer such that for all n, m } n0, , 
D<Xn, Xm> = sup {d(Xn 1, Xm 1>: 1 e I} ~ €. , , 

It follows that for each i e I the sequence {xn 11 is a Cauchy sequence in 
I 

the metric space (A 00
, d). By completeness of thls last metric space, for 

each i e I, the sequence {xn 1} has a limit point, say x1. Put X = <xi : i e I>. It 
I 

remains to show that the sequence {Xn} converges to X in the metric D. 

Indeed, let e > o be given and let n0 be such that for all n, m } n0, 

' sup {d(xn 1, Xm 1) : i e I} ~ e. , , 
Fix i e I. Then d(xn i' Xm 1> ~ e, for all n, m} n0. Next, pass to the limlt as 

J , 
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m .... co and use the continuity of d to conclude that d(xn 1, x1) ~ e, for all n , 
} n0. It fo11ows that D(Xn, X) ~ e, for all n } n0. Thls completes the proof 
of the claim. 

To finish the proof of the theorem notice that the function T : E .... E 
defined by: 

X-+ T(X) = <T 1CX1 1 Pi): i e I>, 

where for each i e I, Xi = {xk: vk e v1}, is a contraction. Indeed, 
D(T(X), T(Y)) ~ 

sup {d<T1<X1, P1), T1<Y1, P1>: i EI}~ 

( 1 /2) sup {d(xi, y1> : 1 e I} !. 
( 1 /2) D(X, Y). 

Clearly, thls is an immediate consequence of lemma 6.1 using the 
hypothesis {v1 : i e I} = u{V 1 : i e I}. Thls completes the proof of the 

theorem. 

It is essential to note that the abstraction operator t 1 (see [BK] for the 
appropriate def1n1tfon) 1s not 1n the signature of the statement of 
theorem 6.2. 

Example 6.J (C. AR. Hoare, J. W. Klop) 
Equation x = at{a} (x) has more than one solution in {a, b}00

, e.g. any x of 
the form x = ay, where y satisfies y = t{a} (y). 

The last part of this section wi11 be dedicated to the converse of the 
uniqueness theorem. 

Proof of theorem 1.6 Without Joss of generaHty it can be assumed that 
II does not occur in the operator T (this is because x II y = y IL x + x IL y., by 
axiom CM1 ). It is clear that T(x) must be a sum of terms of the following 
form: 

CO a t 1Cx), 

(ii) x IL t2(X), 

(iii) x t3(x), 



(iv) a, 

(v) x. 
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where the atoms a 1n (1) and (iv) range over a f1n1te subset B of A and 
t 1<x>, t2Cx), t3Cx) are operators (and some category of summands might be 

m1ss1ng from the sum above). W1thout loss of general1ty 1t can be assumed 
that at least one of the terms tn (10, (110 or <v> occurs as a summand of 
T(x). It is clear that for all x e A00

, 

<Hx)) 1 = IaeB a + <x> 1· 

It fs now easy to show by 1nductton on n} 1, that for all x e A00
, 

(Tn(x)) 1 = IaeB a + (x) 1· 

For any q e Aw let l(Q) = 1tmfr-t00 Tn(Q) be the fixed point of x = T(x) 

obtained from q by iterating the operator T (see [BK 1 ]). It is clear that for 
any q E A00

, 

(l(Q))1 = IaeB a+ (q)l. 

It follows that in order to obtain two different fixed point of x = T(x) one 
must find two terms p, q e A<..> such that 

I aeB a + (p) 1 ~ IaeB a + < q) 1· 

If B ;z! 0 then the above observation would imply that x = T(x) has at least 
two solutions, namely p = IaeB a and q = b, with b e A-B, which is a 

contradiction. Hence it can be assumed that B = 0. If A had at least two 
distinct atoms, say a, b, then by the above observation Ha) and l(b) would 
be two distinct solutions of x = T(x), which is also a contradiction. 

Hence, without loss of generality, it can be assumed that A consists of a 
single atom, say a, and the operator T(x) is atom-free (1.e. the atom a does 
not occur 1n T). Hence. the operator T(x) 1s a f1ntte sum of terms of the 
form (10, (ff D and <v>. It w111 be shown that 1n fact the summand x cannot 
occur in T(x). Let x be a fixed point of the operator T. Clearly, (y) 1 = a, for 

all y e A 00 (s1nce A = {a}). Moreover, <x>2 equals a sum cons1st1ng of 

summands of the form: 
<x>21 «x>2<t2<x»1>2 = ((x)2 a)2, «x>2 IL Ct3Cx»1>2 = «x>21La>2· 

It follows that for p = a2 and q = a + a2 one can prove by induction on n 
that 

• (Tn(p))2 = a2 and (Tn(q))2 =a + a2. 

In this way one obtains two d1st1nct fixed points l(p), l(q) of T(x), since 
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(1(p))2 = a2, (1(q))2 =a+ a2, which is a contradiction. 

It follows that T(x) is a sum of operators of the form (ii) or (iii). In this 
case it will be shown that the unique solution of x = T(x) must be aw. 
Hence, there 1s a guarded operator S(x). namely S(x) = ax. such that x = 
T(x). x = S(x) have exactly the same fixed po1nt. Let x e A00 be a f1xed point 
of T. It wlll be shown by induction on n > 0 that <x>n =an. Since A= {a}, the 

result 1s clear for n = 1. Assume 1t ts true for n > O; to prove it for n+ 1. 
Indeed, <x>n+ 1 ts a sum of terms of the form 

«x>n+ 1<t2<x»n>n+ 11 «x>n+ 1 IL <t3Cx»n>n+ 1· 

By induction hypothesis <x>n = an. However it is easy to show that every 

tree t e {alw all of whose branches have length > n must satisfy Ct>n+ 1 = 

an+ 1. In particular <x>n+ 1 = an+ 1, and the proof of the claim is complete. 

Thts completes the proof of the theorem. 

An immediate consequence of the proof of theorem 1.6 is the following 

Corollary 6.4 [In the signature+.·. II, IL a (with a EA)] 
If the operator T(x) is atom-free and the equation x = T{x) has a unique 
solution in {a}00 then its unique solution must be aw. 

Example 6.5 
Some examples of atom-free polynomial operators with unique solutions 
in {a}00 are: x = xn. with n > 1, or x = x II x, etc. (If in addition, the atom 8 
were present in the signature then 8 would also be a solution of x = xn.) 

7. DISCUSSION AND OPEN PROBLEMS 

The proofs of theorems 1.3, 1.4 and t .5 are signature-free. In fact they 
depend only on the statements of theorems 1.1 and 1.2 and the topological 
properties of A 00 (compactness of A 00

, if A is finite, completeness and the 
density of Aw in A 00

). However, the proof of theorem 1. 1 is rather 

combirfatorial in nature. It would be useful if one could prove theorem 1.1 
using theorem 2.2. 11 and an appropriate fixed point theorem for the Cantor 
set, because the proof would be topological and hence extendible to bigger 
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signatures. Theorem 1.4 does not seem to be the most general result one 
might hope to prove. For example. 1t is not known if the theorem is true 
for 1nf1nite systems, with a not necessar11y finite alphabet A Cas is the 
case in theorem 1.3). 

Theorem 1.6 is only an attempt to justify the fact that guarded equations 
are the only ones which have unique fixed points. However, it is not known 
if the result is true for systems of arbitrarny many equations or even in 
bigger signatures. The proof given here is combinatorial in nature and 
hence 1ts d1rect extension to arbitrary systems would most likely be 
quite complex. It might be possible however to give a proof using results 
from the theory of metric spaces (see [DG]). For example, 1t can be shown 
that if for an n >O, Tn(x) has at most one fixed point (notice that no 
existence of the fixed point of the operator Tn(x) is asserted) then T(x) 
must have exactly one fixed point (see [B]). A similar result can also be 
proved using the deeper result given in lJJ. 
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