

A thread calculus with molecular dynamics

Citation for published version (APA):
Bergstra, J. A., & Middelburg, C. A. (2006). A thread calculus with molecular dynamics. (Computer science
reports; Vol. 0624). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/d0668572-9dd4-4985-a97f-e1771d1f1aa2

A Thread Calculus with Molecular Dynamics?

J.A. Bergstra1,2 and C.A. Middelburg3,1

1 Programming Research Group, University of Amsterdam,
P.O. Box 41882, 1009 DB Amsterdam, the Netherlands

2 Department of Philosophy, Utrecht University,
P.O. Box 80126, 3508 TC Utrecht, the Netherlands

3 Computing Science Department, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, the Netherlands

janb@science.uva.nl,keesm@win.tue.nl

Abstract. In a previous paper, we developed an algebraic theory of
threads, interleaving of threads, and interaction between threads and
services. In the current paper, we extend that theory with features of
molecular dynamics, a model of computation suitable for object-based
programs. In this model, threads interact with a service of which the
states resemble collections of molecules composed of atoms and com-
putations take place by means of actions which transform the struc-
ture of molecules like in chemical reactions. The features introduced in-
clude a feature to restrict the scope of names used in threads to refer
to molecules. Because that feature makes it troublesome to provide a
structural operational semantics, we construct a projective limit model
for the extended theory.

Keywords: thread calculus, thread algebra, molecular dynamics, restric-
tion, projective limit model.

1998 CR Categories: D.1.3, D.1.5, D.3.3, F.1.1, F.1.2, F.3.2.

1 Introduction

A thread is the behaviour of a deterministic sequential program under execu-
tion. Multi-threading refers to the concurrent existence of several threads in a
program under execution. Multi-threading is the dominant form of concurrency
provided by recent object-oriented programming languages such as Java [19] and
C# [20]. Arbitrary interleaving, on which theories about concurrent processes
such as ACP [5] are based, is not an appropriate abstraction when dealing with
multi-threading. In the case of multi-threading, some deterministic interleaving
strategy is used. In [8], we introduced a number of plausible deterministic inter-
leaving strategies for multi-threading. We proposed to use the phrase strategic
interleaving for the more constrained form of interleaving obtained by using such

? This research was partly carried out in the framework of the GLANCE-project
MICROGRIDS, which is funded by the Netherlands Organisation for Scientific Re-
search (NWO).

a strategy. We also introduced a feature for interaction of threads with services.
The algebraic theory of threads, multi-threading, and interaction of threads with
services is called thread algebra.

In the current paper, we extend thread algebra with features of molecular
dynamics, a model of computation suitable for object-based programs. In this
model, threads interact with a service of which the states resemble collections of
molecules composed of atoms and computations take place by means of actions
which transform the structure of molecules like in chemical reactions. The model
introduced in the current paper elaborates on the model described informally
in [2]. The additional features include a feature to restrict the scope of names
used in threads to refer to molecules. That feature, which has no counterpart
in [2], turns thread algebra into a calculus. Although it occurs in quite another
setting, it is reminiscent of restriction in the π-calculus [25].

In thread algebra, we abandon the point of view that arbitrary interleaving
is an appropriate abstraction when dealing with multi-threading. The following
points illustrate why that point of view is untenable: (a) whether the interleav-
ing of certain threads leads to deadlock depends on the interleaving strategy
used; (b) sometimes deadlock takes place with a particular interleaving strat-
egy whereas arbitrary interleaving would not lead to deadlock, and vice versa.
We give demonstrations of (a) and (b) in [8] and [12], respectively. The thread-
service dichotomy that we make in thread algebra is useful for the following
reasons: (a) for services, a state-based description is generally more convenient
than an action-based description whereas it is the other way round for threads;
(b) the interaction between threads and services is of an asymmetric nature.
In [12], evidence of both (a) and (b) is produced by the established connections
of threads and services with processes as considered in an extension of ACP with
conditions introduced in [11].

Although thread algebra is concerned with the constrained form of inter-
leaving found in multi-threading as provided by contemporary programming
languages, not all relevant details of multi-threading as provided by those lan-
guages can be modelled with thread algebra. The details concerned come up
where multi-threading is intertwined with object-orientation. The form of thread
forking where a unique identity object is associated with the thread being forked
off is an example of this. Setting up a framework in which such details can be
modelled as well is the main objective with which we have extended thread alge-
bra with features of molecular dynamics. The form of thread forking mentioned
above is modelled in this paper using the thread calculus developed. The feature
to restrict the scope of names used in threads to refer to molecules turns out to
be indispensable when modelling this form of thread forking.

Associating transition systems with closed terms over the signature of the full
thread calculus developed in this paper by means of structural operational se-
mantics is troublesome. The feature to restrict the scope of names used in threads
to refer to molecules complicate matters to such an extent that a structural op-
erational semantics would add at most marginally to a better understanding.
Therefore, we provide instead a projective limit model. In process algebra, pro-

2

jective limit models have been given for the first time by Bergstra and Klop [5].
Following [23], we make the domain of the projective limit model into a met-
ric space to show, using Banach’s fixed point theorem, that recursion equations
satisfying a guardedness condition have unique solutions. Metric spaces have
also been applied in concurrency theory by de Bakker and others to solve do-
main equations for process domains [17] and to establish uniqueness results for
recursion equations [16].

Thread forking is inherent in multi-threading. However, we will not introduce
thread interleaving and thread forking combined. Thread forking is presented at
a later stage as an extension. This is for expository reasons only. The formulations
of many results, as well as their proofs, would be complicated by introducing
thread forking at an early stage because the presence of thread forking would
be accountable to many exceptions in the results. In the set-up in which thread
forking is introduced later on, we can simply summarize which results need to
be adapted to the presence of thread forking and how.

Thread algebra is a design on top of an algebraic theory of the behaviour of
deterministic sequential programs under execution introduced in [6] under the
name basic polarized process algebra. Prompted by the development of thread
algebra, basic polarized process algebra has been renamed to basic thread alge-
bra.

This paper is organized as follows. First, we review basic thread algebra (Sec-
tion 2). After that, we extend basic thread algebra to a theory of threads, in-
terleaving of threads and interaction of threads with services (Sections 3 and 4)
and introduce recursion in this setting (Section 5). Next, we propose a state-
based approach to describe services (Section 6) and use it to describe services
for molecular dynamics (Section 7). We also discuss some syntactic issues con-
cerning molecular dynamics (Section 8). Then, we introduce a feature to restrict
the scope of names used in threads to refer to molecules (Section 9). Following
this, we introduce the approximation induction principle to reason about infinite
threads (Section 10). After that, we introduce a basic form of thread forking and
demonstrate how the restriction feature can be used to model a form of thread
forking found in object-oriented programming languages (Section 11). Next, we
construct the projective limit model for the thread calculus developed in this
paper (Sections 12–14). Then, we show that recursion equations satisfying a
guardedness condition have unique solutions in this model (Section 15). Follow-
ing this, we outline the adaptation of the projective limit model to the basic
form of thread forking introduced earlier (Section 16). Finally, we make some
concluding remarks (Section 17).

The proofs of the theorems and propositions for which no proof is given in
this paper can be found in [7]. In Sections 13–15, some familiarity with metric
spaces is assumed. The definitions of all notions concerning metric spaces that are
assumed known in those sections can be found in most introductory textbooks on
topology. We mention [15] as an example of an introductory textbook in which
those notions are introduced in an intuitively appealing way.

3

Table 1. Axiom of BTA

x E tauD y = x E tauD x T1

2 Basic Thread Algebra

In this section, we review BTA (Basic Thread Algebra), introduced in [6] under
the name BPPA (Basic Polarized Process Algebra). BTA is a form of process
algebra which is tailored to the description of the behaviour of deterministic
sequential programs under execution.

In BTA, it is assumed that there is a fixed but arbitrary set of basic actions
A with tau 6∈ A. We write Atau for A∪ {tau}. The signature of BTA consists of
the following constants and operators:

– the deadlock constant D;
– the termination constant S;
– for each a ∈ Atau, a binary postconditional composition operator E aD .

We use infix notation for postconditional composition. We introduce action pre-
fixing as an abbreviation: a ◦ p, where p is a term over the signature of BTA,
abbreviates pE aD p.

The intuition is that each basic action performed by a thread is taken as
a command to be processed by the execution environment of the thread. The
processing of a command may involve a change of state of the execution envi-
ronment. At completion of the processing of the command, the execution envi-
ronment produces a reply value. This reply is either T or F and is returned to
the thread concerned. Let p and q be closed terms over the signature of BTA
and a ∈ Atau. Then pE aD q will perform action a, and after that proceed as p
if the processing of a leads to the reply T (called a positive reply), and it will
proceed as q if the processing of a leads to the reply F (called a negative reply).
The action tau plays a special role. Its execution will never change any state and
always lead to a positive reply.

BTA has only one axiom. This axiom is given in Table 1. Using the abbrevia-
tion introduced above, axiom T1 can be written as follows: xE tauDy = tau◦x.

Henceforth, we will write BTA(A) for BTA with the set of basic actions A
fixed to be the set A.

As mentioned above, the behaviour of a thread depends upon its execution
environment. Each basic action performed by the thread is taken as a command
to be processed by the execution environment. At any stage, the commands
that the execution environment can accept depend only on its history, i.e. the
sequence of commands processed before and the sequence of replies produced for
those commands. When the execution environment accepts a command, it will
produce a positive reply or a negative reply. Whether the reply is positive or
negative usually depends on the execution history. However, it may also depend
on external conditions.

4

In the structural operational semantics of BTA, we represent an execution
environment by a function ρ : (A × {T,F})∗ → P(A × {T,F}) that satisfies
the following condition: (a, b) 6∈ ρ(α) ⇒ ρ(α y 〈(a, b)〉) = ∅ for all a ∈ A,
b ∈ {T,F} and α ∈ (A× {T,F})∗.4 We write E for the set of all those func-
tions. Given an execution environment ρ ∈ E and a basic action a ∈ A, the
derived execution environment of ρ after processing a with a positive reply,
written ∂

∂a

+

ρ, is defined by ∂
∂a

+

ρ(α) = ρ(〈(a,T)〉 y α); and the derived execution
environment of ρ after processing a with a negative reply, written ∂

∂a

−

ρ, is defined
by ∂

∂a

−

ρ(α) = ρ(〈(a,F)〉 y α).
The following transition relations on closed terms over the signature of BTA

are used in the structural operational semantics of BTA:

– a binary relation 〈 , ρ〉 a−→ 〈 , ρ′〉 for each a ∈ Atau and ρ, ρ′ ∈ E ;
– a unary relation ↓;
– a unary relation ↑;
– a unary relation l.

The four kinds of transition relations are called the action step, termination,
deadlock, and termination or deadlock relations, respectively. They can be ex-
plained as follows:

– 〈p, ρ〉 a−→ 〈p′, ρ′〉: in execution environment ρ, thread p can perform action a
and after that proceed as thread p′ in execution environment ρ′;

– p ↓: thread p cannot but terminate successfully;
– p ↑: thread p cannot but become inactive;
– p l: thread p cannot but terminate successfully or become inactive.

The termination or deadlock relation is an auxiliary relation needed when we
extend BTA in Section 3.

The structural operational semantics of BTA is described by the transition
rules given in Table 2. In this table a stands for an arbitrary action from A.

Bisimulation equivalence is defined as follows. A bisimulation is a symmetric
binary relation B on closed terms over the signature of BTA such that for all
closed terms p and q:

– if B(p, q) and 〈p, ρ〉 a−→ 〈p′, ρ′〉, then there is a q′ such that 〈q, ρ〉 a−→ 〈q′, ρ′〉
and B(p′, q′);

– if B(p, q) and p ↓, then q ↓;
– if B(p, q) and p ↑, then q ↑.

Two closed terms p and q are bisimulation equivalent, written p ↔ q, if there
exists a bisimulation B such that B(p, q).

4 We write 〈 〉 for the empty sequence, 〈d〉 for the sequence having d as sole element,
and αyβ for the concatenation of finite sequences α and β. We assume the usual laws
for concatenation of finite sequences. We write D∗ for the set of all finite sequences
with elements from set D, and D+ for the set of all non-empty finite sequences with
elements from set D.

5

Table 2. Transition rules of BTA

S ↓ D ↑ 〈x E tauD y, ρ〉 tau−−→ 〈x, ρ〉

〈x E aD y, ρ〉 a−→ 〈x, ∂
∂a

+

ρ〉
(a, T) ∈ ρ(〈 〉)

〈x Ea D y, ρ〉 a−→ 〈y, ∂
∂a

−

ρ〉
(a, F) ∈ ρ(〈 〉)

x ↓

x l

x ↑

x l

Bisimulation equivalence is a congruence with respect to the postconditional
composition operators. This follows immediately from the fact that the transition
rules for these operators are in the path format (see e.g. [1]). The axiom given
in Table 1 is sound with respect to bisimulation equivalence.

3 Strategic Interleaving of Threads

In this section, we take up the extension of BTA to a theory about threads and
multi-threading by introducing a very simple interleaving strategy.

It is assumed that the collection of threads to be interleaved takes the form
of a sequence of threads, called a thread vector. Strategic interleaving operators
turn a thread vector of arbitrary length into a single thread. This single thread
obtained via a strategic interleaving operator is also called a multi-thread. For-
mally, however multi-threads are threads as well. In this paper, we only cover
the simplest interleaving strategy, namely cyclic interleaving. Cyclic interleaving
basically operates as follows: at each stage of the interleaving, the first thread
in the thread vector gets a turn to perform a basic action and then the thread
vector undergoes cyclic permutation. We mean by cyclic permutation of a thread
vector that the first thread in the thread vector becomes the last one and all
others move one position to the left. If one thread in the thread vector deadlocks,
the whole does not deadlock till all others have terminated or deadlocked. An
important property of cyclic interleaving is that it is fair, i.e. there will always
come a next turn for all active threads.

Other plausible interleaving strategies are treated in [8]. They can also be
adapted to the features of molecular dynamics that will be introduced in the
current paper. The strategic interleaving operator for cyclic interleaving is de-
noted by ‖. In [8], it was denoted by ‖

csi
to distinguish it from other strategic

interleaving operators.
The axioms for cyclic interleaving are given in Table 3. In CSI3, the auxiliary

deadlock at termination operator SD is used. This operator turns termination
into deadlock. Its axioms appear in Table 4. In Tables 3 and 4, a stands for an
arbitrary action from A.

Henceforth, we will write TA for BTA extended with the strategic interleaving
operator for cyclic interleaving, the deadlock at termination operator, and the

6

Table 3. Axioms for cyclic interleaving

‖(〈 〉) = S CSI1

‖(〈S〉 y α) = ‖(α) CSI2

‖(〈D〉 y α) = SD(‖(α)) CSI3

‖(〈tau ◦ x〉 y α) = tau ◦ ‖(α y 〈x〉) CSI4

‖(〈x Ea D y〉 y α) = ‖(α y 〈x〉) E aD ‖(α y 〈y〉) CSI5

Table 4. Axioms for deadlock at termination

SD(S) = D S2D1

SD(D) = D S2D2

SD(tau ◦ x) = tau ◦ SD(x) S2D3

SD(x Ea D y) = SD(x) Ea D SD(y) S2D4

axioms from Tables 3 and 4, and TA(A) for TA with the set of basic actions A
fixed to be the set A.

We can prove that each closed term over the signature of TA can be reduced
to a closed term over the signature of BTA.

Theorem 1 (Elimination). For all closed terms p over the signature of TA,
there exists a closed term q over the signature of BTA such that p = q is derivable
from the axioms of TA.

The following proposition, concerning the cyclic interleaving of a thread vec-
tor of length 1, is easily proved using Theorem 1.

Proposition 1. For all closed terms p over the signature of TA, the equation
‖(〈p〉) = p is derivable from the axioms of TA.

The equation ‖(〈p〉) = p from Proposition 1 expresses the obvious fact that in
the cyclic interleaving of a thread vector of length 1 no proper interleaving is
involved.

The following are useful properties of the deadlock at termination operator
which are proved using Theorem 1 as well.

Proposition 2. For all closed terms p1, . . . , pn over the signature of TA, the
following equations are derivable from the axioms of TA:

SD(‖(〈p1〉 y . . . y 〈pn〉)) = ‖(〈SD(p1)〉 y . . . y 〈SD(pn)〉) , (1)

SD(SD(p1)) = SD(p1) . (2)

The structural operational semantics of TA is described by the transition
rules given in Tables 2 and 5. In Table 5, a stands for an arbitrary action from
Atau.

7

Table 5. Transition rules for cyclic interleaving and deadlock at termination

x1 ↓, . . . , xk ↓, 〈xk+1, ρ〉
a−→ 〈x′

k+1, ρ
′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 a−→ 〈‖(α y 〈x′
k+1〉), ρ

′〉
(k ≥ 0)

x1 l, . . . , xk l, xl ↑, 〈xk+1, ρ〉
a−→ 〈x′

k+1, ρ
′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 a−→ 〈‖(α y 〈D〉 y 〈x′
k+1〉), ρ

′〉
(k ≥ l > 0)

x1 ↓, . . . , xk ↓

‖(〈x1〉 y . . . y 〈xk〉) ↓

x1 l, . . . , xk l, xl ↑

‖(〈x1〉 y . . . y 〈xk〉) ↑
(k ≥ l > 0)

〈x, ρ〉 a−→ 〈x′, ρ′〉

〈SD(x), ρ〉 a−→ 〈SD(x′), ρ′〉

x l

SD(x) ↑

Bisimulation equivalence is also a congruence with respect to the strategic
interleaving operator for cyclic interleaving and the deadlock at termination
operator. This follows immediately from the fact that the transition rules for
TA constitute a complete transition system specification in the relaxed panth
format (see e.g. [24]). The axioms given in Tables 3 and 4 are sound with respect
to bisimulation equivalence.

We have taken the operator ‖ for a unary operator of which the operand
denotes a sequence of threads. This matches well with the intuition that an
interleaving strategy such as cyclic interleaving operates on a thread vector. We
can look upon the operator ‖ as if there is actually an n-ary operator, of which
the operands denote threads, for every n ∈ N. From Section 12, we will freely
look upon the operator ‖ in this way for the purpose of more concise expression
of definitions and results concerning the projective limit model for the thread
calculus presented in this paper.

4 Interaction between Threads and Services

In this section, we extend the thread algebra introduced in Section 3 to a theory
that takes the interaction between threads and services into account.

It is assumed that there is a fixed but arbitrary set of foci F and a fixed
but arbitrary set of methods M. For the set of basic actions A, we take the
set FM = {f.m | f ∈ F ,m ∈ M}. Each focus plays the role of a name of a
service provided by the execution environment that can be requested to process
a command. Each method plays the role of a command proper. Performing a
basic action f.m is taken as making a request to the service named f to process
the command m.

For each f ∈ F , we introduce a thread-service composition operator /f .
These operators have a thread as first argument and a service as second ar-
gument. Intuitively, p /f H is the thread that results from processing all basic
actions performed by thread p that are of the form f.m by service H . When

8

Table 6. Axioms for thread-service composition

S /f H = S TSC1

D /f H = D TSC2

(tau ◦ x) /f H = tau ◦ (x /f H) TSC3

(x E g.mD y) /f H = (x /f H) E g.mD (y /f H) if f 6= g TSC4

(x E f.m D y) /f H = tau ◦ (x /f
∂

∂m
H) if H(〈m〉) = T TSC5

(x E f.m D y) /f H = tau ◦ (y /f
∂

∂m
H) if H(〈m〉) = F TSC6

(x E f.m D y) /f H = D if H(〈m〉) = R TSC7

a basic action f.m performed by thread p is processed by H , it is turned into
the action tau and postconditional composition is removed in favour of action
prefixing on the basis of the reply value produced by H .

A service is represented by a function H :M+ → {T,F,R} with the property
that H(α) = R ⇒H(α y 〈m〉) = R for all α ∈ M+ and m ∈ M. This function
is called the reply function of the service. We write RF for the set of all reply
functions. Given a reply function H ∈ RF and a method m ∈ M, the derived
reply function of H after processing m, written ∂

∂m
H , is defined by ∂

∂m
H(α) =

H(〈m〉 y α).
The connection between a reply function H and the service represented by

it can be understood as follows:

– If H(〈m〉) = T, the request to process commandm is accepted by the service,
the reply is positive and the service proceeds as ∂

∂m
H .

– If H(〈m〉) = F, the request to process commandm is accepted by the service,
the reply is negative and the service proceeds as ∂

∂m
H .

– If H(〈m〉) = R, the request to process command m is refused by the service.

Henceforth, we will identify a reply function with the service represented by it.
The axioms for the thread-service composition operators are given in Table 6.

In this table, f and g stand for arbitrary foci from F and m stands for an
arbitrary method from M. Axiom TSC3 expresses that the action tau is always
accepted. Axioms TSC5 and TSC6 make it clear that tau arises as the residue of
processing commands. Therefore, tau is not connected to a particular focus, and
is always accepted. Axiom TSC7 expresses that refusal of processing a command
leads to deadlock.

Henceforth, we write TAtsc for TA(FM) extended with the thread-service
composition operators and the axioms from Table 6.

We can prove that each closed term over the signature of TAtsc can be
reduced to a closed term over the signature of BTA(FM).

Theorem 2 (Elimination). For all closed terms p over the signature of TAtsc,
there exists a closed term q over the signature of BTA(FM) such that p = q is
derivable from the axioms of TAtsc.

9

Table 7. Transition rules for thread-service composition

〈x, ρ〉 tau−−→ 〈x′, ρ′〉

〈x /f H,ρ〉 tau−−→ 〈x′ /f H, ρ′〉

〈x, ρ〉
g.m
−−−→ 〈x′, ρ′〉

〈x /f H,ρ〉
g.m
−−−→ 〈x′ /f H,ρ′〉

f 6= g

〈x, ρ〉
f.m
−−−→ 〈x′, ρ′〉

〈x /f H,ρ〉 tau−−→ 〈x′ /f
∂

∂m
H,ρ′〉

H(〈m〉) 6= R, (f.m, H(〈m〉)) ∈ ρ(〈 〉)

〈x, ρ〉
f.m
−−−→ 〈x′, ρ′〉

x /f H ↑
H(〈m〉) = R

x ↓

x /f H ↓

x ↑

x /f H ↑

The following are useful properties of the deadlock at termination operator
in the presence of both cyclic interleaving and thread-service composition which
are proved using Theorem 2.

Proposition 3. For all closed terms p1, . . . , pn over the signature of TAtsc, the
following equations are derivable from the axioms of TAtsc:

SD(‖(〈p1〉 y . . . y 〈pn〉)) = ‖(〈SD(p1)〉 y . . . y 〈SD(pn)〉) , (1)

SD(SD(p1)) = SD(p1) , (2)

SD(p1 /f H) = SD(p1) /f H . (3)

The structural operational semantics of TAtsc is described by the transition
rules given in Tables 2, 5 and 7. In Table 7, f and g stand for arbitrary foci from
F and m stands for an arbitrary method from M.

Bisimulation equivalence is also a congruence with respect to the thread-
service composition operators. This follows immediately from the fact that the
transition rules for these operators are in the path format. The axioms given in
Table 6 are sound with respect to bisimulation equivalence.

We end this section with a precise statement of what we mean by a regular
service. Let H ∈ RF . Then the set ∆(H) ⊆ RF is inductively defined by the
following rules:

– H ∈ ∆(H);
– if m ∈ M and H ′ ∈ ∆(H), then ∂

∂m
H ′ ∈ ∆(H).

We say that H is a regular service if ∆(H) is a finite set.
In Section 5, we need the notion of a regular service in Proposition 6. In the

state-based approach to describe services that will be introduced in Section 6, a
service can be described using a finite set of states if and only if it is regular.

5 Recursion

We proceed to recursion in the current setting. In this section, T stands for either
BTA, TA, TAtsc or TCmd (TCmd will be introduced in Section 9). We extend

10

Table 8. Axioms for recursion

fixx(t) = t[fixx(t)/x] REC1

y = t[y/x] ⇒ y = fixx(t) if x guarded in t REC2

fixx(x) = D REC3

T with recursion by adding variable binding operators and axioms concerning
these additional operators. We will write T + REC for the resulting theory.

For each variable x, we add a variable binding recursion operator fixx to the
operators of T .

Let t be a term over the signature of T +REC. Then x is guarded in t if each
occurrence of x in t is within some subterm of the form t1 E aD t2.

Let t be a term over the signature of T + REC such that fixx(t) is a closed
term. Then fixx(t) stands for a solution of the equation x = t. We are only
interested in models of T + REC in which x = t has a unique solution if x is
guarded in t. If x is unguarded in t, then D is always one of the solutions of
x = t. We stipulate that fixx(t) stands for D if x is unguarded in t.

We add the axioms for recursion given in Table 8 to the axioms of T . In this
table, t stands for an arbitrary term over the signature of T + REC. The side-
condition added to REC2 restricts the terms for which t stands to the terms in
which x is guarded. For a fixed t such that fixx(t) is a closed term, REC1 expresses
that fixx(t) is a solution of x = t and REC2 expresses that this solution is the
only one if x is guarded in t. REC3 expresses that fixx(x) is the non-unique
solution D of the equation x = x.

Let t and t′ be terms over the signature of T + REC such that fixx(t) and
fixx(t′) are closed terms and t = t′ is derivable by either applying an axiom of T
in either direction or axiom REC1 from left to right. Then it is straightforwardly
proved, using the necessary and sufficient condition for preservation of solutions
given in [27], that x = t and x = t′ have the same set of solutions in any model
of T . Hence, if x = t has a unique solution, then x = t′ has a unique solution
and those solutions are the same. This justifies a weakening of the side-condition
of axiom REC2 in the case where fixx(t) is a closed term. In that case, it can
be replaced by “x is guarded in some term t′ for which t = t′ is derivable by
applying axioms of T in either direction and/or axiom REC1 from left to right”.

Theorem 1 states that the strategic interleaving operator for cyclic interleav-
ing and the deadlock at termination operator can be eliminated from closed terms
over the signature of TA. Theorem 2 states that beside that the thread-service
composition operators can be eliminated from closed terms over the signature of
TAtsc. These theorems do not state anything concerning closed terms over the
signature of TA+REC or closed terms over the signature of TAtsc+REC. The
following three propositions concern the case where the operand of the strategic
interleaving operator for cyclic interleaving is a sequence of closed terms over
the signature of BTA+REC of the form fixx(t), the case where the operand of

11

Table 9. Transition rules for recursion

〈t[fixx(t)/x], ρ〉 a−→ 〈x′, ρ′〉

〈fixx(t), ρ〉 a−→ 〈x′, ρ′〉

t[fixx(t)/x] ↓

fixx(t) ↓

t[fixx(t)/x] ↑

fixx(t) ↑ fixx(x) ↑

the deadlock at termination operator is such a closed term, and the case where
the first operand of a thread-service composition operator is such a closed term.

Proposition 4. Let t and t′ be terms over the signature of BTA+REC such
that fixx(t) and fixy(t′) are closed terms. Then there exists a term t′′ over the
signature of BTA+REC such that ‖(〈fixx(t)〉 y 〈fixy(t′)〉) = fixz(t

′′) is derivable
from the axioms of TA+REC.

Proposition 5. Let t be a term over the signature of BTA+REC such that
fixx(t) is a closed term. Then there exists a term t′ over the signature of BTA+
REC such that SD(fixx(t)) = fixy(t′) is derivable from the axioms of TA+REC.

Proposition 6. Let t be a term over the signature of BTA+REC such that
fixx(t) is a closed term. Moreover, let f ∈ F and let H ∈ RF be a regular
service. Then there exists a term t′ over the signature of BTA+REC such that
fixx(t) /f H = fixy(t

′) is derivable from the axioms of TAtsc+REC.

Propositions 4, 5 and 6 state that the strategic interleaving operator for cyclic
interleaving, the deadlock at termination operator and the thread-service com-
position operators can be eliminated from closed terms of the form ‖(〈fixx(t)〉 y

〈fixy(t′)〉), SD(fixx(t)) and fixx(t) /f H , where t and t′ are terms over the signa-
ture of BTA+REC and H is a regular service. Moreover, they state that the
resulting term is a closed term of the form fixz(t

′′), where t′′ is a term over the
signature of BTA+REC. Proposition 4 generalizes to the case where the operand
is a sequence of length greater than 2.

The transition rules for recursion are given in Table 9. In this table, x and
t stand for an arbitrary variable and an arbitrary term over the signature of
T + REC, respectively, such that fixx(t) is a closed term. In this table, a stands
for an arbitrary action from Atau.

The transition rules for recursion given in Table 9 are not in the path format.
They can be put in the generalized panth format from [24], which guarantees that
bisimulation equivalence is a congruence with respect to the recursion operators,
but that requires generalizations of many notions that are material to structural
operational semantics. The axioms given in Table 8 are sound with respect to
bisimulation equivalence.

6 State-Based Description of Services

In this section, we introduce the state-based approach to describe services that
will be used in Section 7 to describe services for molecular dynamics. This ap-
proach is similar to the approach to describe state machines introduced in [13].

In this approach, a service is described by

12

– a set of states S;
– an initial state s0 ∈ S;
– an effect function eff : M× S → S;
– a yield function yld : M× S → {T,F,R}.

The set S contains the states in which the service may be; and the functions eff
and yld give, for each method m and state s, the state and reply, respectively,
that result from processing m in state s.

We define a cumulative effect function ceff :M∗ → S in terms of s0 and eff
as follows:

ceff (〈 〉) = s0

ceff (α y 〈m〉) = eff (m, ceff (α)) .

We define a service H : M+ → {T,F,R} in terms of ceff and yld as follows:

H(α y 〈m〉) = yld(m, ceff (α)) .

We consider H to be the service described by S, s0, eff and yld .
Note that H(〈m〉) = yld(m, s0) and ∂

∂m
H is the service obtained by taking

eff (m, s0) instead of s0 as the initial state.

7 Services for Molecular Dynamics

In this section, we describe services which concerns molecular dynamics. The
services introduced here elaborates on an informal description of molecular dy-
namics given in [2].

The states of a service for molecular dynamics resemble collections of
molecules composed of atoms and the methods of this service transform the
structure of molecules like in chemical reactions. An atom can have fields and
each of those fields can contain an atom. An atom together with the ones it has
links to via fields can be viewed as a submolecule, and a submolecule that is
not contained in a larger submolecule can be viewed as a molecule. Thus, the
collection of molecules that make up the state of the service can be viewed as a
fluid. By means of methods, new atoms can be created, fields can be added to
and removed from atoms, and the contents of fields of atoms can be examined
and modified. A few methods use a spot to put an atom in or to get an atom
from. By means of methods, the contents of spots can be compared and modified
as well. Creating an atom is thought of as turning an element of a given set of
proto-atoms into an atom. If there are no proto-atoms left, then atoms can no
longer be created.

It is assumed that a set Spot of spots and a set Field of fields have been
given. It is also assumed that a countable set PAtom of proto-atoms such that
⊥ 6∈ PAtom and a bijection patom : [1, card(PAtom)] → PAtom have been given.
Although the set of proto-atoms may be infinite, there exists at any time only a
finite number of atoms. Each of those atoms has only a finite number of fields.
A modular dynamics service has the following methods:

13

– for each s ∈ Spot, a create atom method s !;
– for each s, s′ ∈ Spot, a set spot method s = s′;
– for each s,∈ Spot, a clear spot method s = 0;
– for each s, s′ ∈ Spot, an equality test method s == s′;
– for each s ∈ Spot, an undefinedness test method s == 0;
– for each s ∈ Spot and v ∈ Field, a add field method s / v;
– for each s ∈ Spot and v ∈ Field, a remove field method s \ v;
– for each s ∈ Spot and v ∈ Field, a has field method s | v;
– for each s ∈ Spot and v ∈ Field, a set field method s.v = s′;
– for each s ∈ Spot and v ∈ Field, a get field method s = s′.v.

We write Mmd for the set of all methods of a modular dynamics service. It is
assumed that Mmd ⊆ M.

The state of a modular dynamics service comprises the contents of all spots,
the fields of the existing atoms, and the contents of those fields. The methods of
a modular dynamics service can be explained as follows:

– s !: if an atom can be created, then the contents of spot s becomes a newly
created atom and the reply is T; otherwise, nothing changes and the reply
is F;

– s = s′: the contents of spot s′ becomes the contents of spot s too and the
reply is T;

– s = 0: the contents of spot s becomes undefined and the reply is T;
– s == s′: if the contents of spot s equals the contents of spot s′, then nothing

changes and the reply is T; otherwise, nothing changes and the reply is F;
– s == 0: if the contents of spot s is undefined, then nothing changes and the

reply is T; otherwise, nothing changes and the reply is F;
– s / v: if the contents of spot s is an atom and v is not yet a field of that

atom, then v is added (with undefined contents) to the fields of that atom
and the reply is T; otherwise, nothing changes and the reply is F;

– s\ v: if the contents of spot s is an atom and v is a field of that atom, then v
is removed from the fields of that atom and the reply is T; otherwise, nothing
changes and the reply is F;

– s | v: if the contents of spot s is an atom and v is a field of that atom, then
nothing changes and the reply is T; otherwise, nothing changes and the reply
is F;

– s.v = s′: if the contents of spot s is an atom and v is a field of that atom,
then the contents of spot s′ becomes the contents of that field and the reply
is T; otherwise, nothing changes and the reply is F;

– s = s′.v: if the contents of spot s′ is an atom and v is a field of that atom,
then the contents of that field becomes the contents of spot s and the reply
is T; otherwise, nothing changes and the reply is F.

In the explanation given above, wherever we say that the contents of a spot or
field becomes the contents of another spot or field, this is meant to imply that
the former contents becomes undefined if the latter contents is undefined.

14

Table 10. Effect function for a molecular dynamics service

eff (s !, (σ, α)) =

(σ ⊕ [s 7→ new (dom(α))], α ⊕ [new (dom(α)) 7→ []]) if new (dom(α)) 6= ⊥

eff (s !, (σ, α)) = (σ, α) if new (dom(α)) = ⊥

eff (s = s′, (σ, α)) = (σ ⊕ [s 7→ σ(s′)], α)

eff (s = 0, (σ, α)) = (σ ⊕ [s 7→ ⊥], α)

eff (s == s′, (σ, α)) = (σ, α)

eff (s == 0, (σ, α)) = (σ, α)

eff (s / v, (σ, α)) =

(σ, α ⊕ [σ(s) 7→ α(σ(s)) ⊕ [v 7→ ⊥]]) if σ(s) 6= ⊥∧ v 6∈ dom(α(σ(s)))

eff (s / v, (σ, α)) = (σ, α) if σ(s) = ⊥∨ v ∈ dom(α(σ(s)))

eff (s \ v, (σ, α)) = (σ, α ⊕ [σ(s) 7→ α(σ(s)) C− {v}]) if σ(s) 6= ⊥∧ v ∈ dom(α(σ(s)))

eff (s \ v, (σ, α)) = (σ, α) if σ(s) = ⊥∨ v 6∈ dom(α(σ(s)))

eff (s | v, (σ, α)) = (σ, α)

eff (s.v = s′, (σ, α)) =

(σ, α ⊕ [σ(s) 7→ α(σ(s)) ⊕ [v 7→ σ(s′)]]) if σ(s) 6= ⊥∧ v ∈ dom(α(σ(s)))

eff (s.v = s′, (σ, α)) = (σ, α) if σ(s) = ⊥∨ v 6∈ dom(α(σ(s)))

eff (s = s′.v, (σ, α)) = (σ ⊕ [s 7→ α(σ(s))(v)], α) if σ(s′) 6= ⊥ ∧ v ∈ dom(α(σ(s′)))

eff (s = s′.v, (σ, α)) = (σ, α) if σ(s′) = ⊥ ∨ v 6∈ dom(α(σ(s′)))

eff (m, (σ, α)) = (σ, α) if m 6∈ Mmd

The state-based description of a modular dynamics service is as follows:

S = {(σ, α) ∈ SS × AS | rng(σ) ⊆ dom(α) ∪ {⊥} ∧

∀a ∈ dom(α) • rng(α(a)) ⊆ dom(α) ∪ {⊥}} ,

where

SS = Spot → (PAtom ∪ {⊥})

AS =
⋃

A∈Pfin(PAtom)

(A →
⋃

F∈Pfin(Field)

(F → (PAtom ∪ {⊥}))) ;

s0 is some (σ, α) ∈ S; and eff and yld are defined in Tables 10 and 11. We use
the following notation for functions: [] for the empty function; [d 7→ r] for the
function f with dom(f) = {d} such that f(d) = r; f ⊕ g for the function h
with dom(h) = dom(f) ∪ dom(g) such that for all d ∈ dom(h), h(d) = f(d)

15

Table 11. Yield function for a molecular dynamics service

yld(s !, (σ, α)) = T if new (dom(α)) 6= ⊥

yld(s !, (σ, α)) = F if new (dom(α)) = ⊥

yld(s = s′, (σ, α)) = T

yld(s = 0, (σ, α)) = T

yld(s == s′, (σ, α)) = T if σ(s) = σ(s′)

yld(s == s′, (σ, α)) = F if σ(s) 6= σ(s′)

yld(s == 0, (σ, α)) = T if σ(s) = ⊥

yld(s == 0, (σ, α)) = F if σ(s) 6= ⊥

yld(s / v, (σ, α)) = T if σ(s) 6= ⊥ ∧ v 6∈ dom(α(σ(s)))

yld(s / v, (σ, α)) = F if σ(s) = ⊥ ∨ v ∈ dom(α(σ(s)))

yld(s \ v, (σ, α)) = T if σ(s) 6= ⊥ ∧ v ∈ dom(α(σ(s)))

yld(s \ v, (σ, α)) = F if σ(s) = ⊥ ∨ v 6∈ dom(α(σ(s)))

yld(s | v, (σ, α)) = T if σ(s) 6= ⊥ ∧ v ∈ dom(α(σ(s)))

yld(s | v, (σ, α)) = F if σ(s) = ⊥ ∨ v 6∈ dom(α(σ(s)))

yld(s.v = s′, (σ, α)) = T if σ(s) 6= ⊥ ∧ v ∈ dom(α(σ(s)))

yld(s.v = s′, (σ, α)) = F if σ(s) = ⊥ ∨ v 6∈ dom(α(σ(s)))

yld(s = s′.v, (σ, α)) = T if σ(s′) 6= ⊥ ∧ v ∈ dom(α(σ(s′)))

yld(s = s′.v, (σ, α)) = F if σ(s′) = ⊥ ∨ v 6∈ dom(α(σ(s′)))

yld(m, (σ, α)) = R if m 6∈ Mmd

if d 6∈ dom(g) and h(d) = g(d) otherwise; and f C− D for the function g with
dom(g) = dom(f) \D such that for all d ∈ dom(g), g(d) = f(d). The function
new : Pfin(PAtom) → (PAtom ∪ {⊥}) is defined by

new(A) = patom(m+ 1) if m < card(PAtom) ,

new(A) = ⊥ if m ≥ card(PAtom) ,

where m = max{n | patom(n) ∈ A}.
Let (σ, α) ∈ S, let s ∈ Spot, let a ∈ dom(α), and let v ∈ dom(α(a)). Then

σ(s) is the contents of spot s if σ(s) 6= ⊥, v is a field of atom a, and α(a)(v) is the
contents of field v of atom a if α(a)(v) 6= ⊥. The contents of spot s is undefined
if σ(s) = ⊥, and the contents of field v of atom a is undefined if α(a)(v) = ⊥.
Notice that dom(α) is taken for the set of all existing atoms. Therefore, the
contents of each spot, i.e. each element of rng(σ), must be in dom(α) if the
contents is defined. Moreover, for each existing atom a, the contents of each of
its fields, i.e. each element of rng(α(a)), must be in dom(α) if the contents is

16

r up

dn

up

dn

s up

dn

t

Fig. 1. Molecule yielded by thread P4

defined. The function new turns proto-atoms into atoms. After all proto-atoms
have been turned into atoms, new yields ⊥. This can only happen if the number
of proto-atoms is finite.

We write MDS for the set of all modular dynamics services and MDS 0 for
the modular dynamics service where s0 is the unique (σ, α) ∈ S such that α = [].

We conclude this section with a simple example of the use of the methods
of molecular dynamics services. In this example, we will write f(m) instead of
f.m. The reasons for this change of notation will be explained in Section 8.

Example 1. Consider the threads

Pn+1 = md(r !) ◦ md(t = r) ◦Qn

where

Q0 = S ,

Qi+1 = md(s = t) ◦ md(t !) ◦ md(s / up) ◦ md(t / dn) ◦

md(s.up = t) ◦ md(t.dn = s) ◦Qi .

The processing of all basic actions performed by thread P4 by service MDS 0

yields the molecule depicted in Figure 1.

8 Syntactic Issues

In this short section, we treat some syntactic issues concerning molecular dy-
namics.

The notation for the methods of molecular dynamics services introduced in
Section 7 has a rather mathematical style. The mathematical style fits in with
the mathematical nature of the thread calculus being developed in this paper.
However, it makes the notation f.m less suitable in the case where m is a method
of molecular dynamics services. Therefore, we will henceforth write f(m) instead
of f.m if m ∈ Mmd.

A less mathematical style fits in with a program notation for threads, such as
the one provided by program algebra [6]. If a less mathematical style is desirable,
we propose to use the following notation:

17

CA:s instead of s !;
SS:s:s′ instead of s = s′;
CS:s instead of s = 0;
ET:s:s′ instead of s == s′;
UT:s instead of s == 0;

AF:s:v instead of s / v;
RF:s:v instead of s \ v;
HF:s:v instead of s | v;
SF:s:v:s′ instead of s.v = s′;
GF:s:s′:v instead of s = s′.v.

9 A Thread Calculus with Molecular Dynamics

In this section, TCmd is introduced. TCmd is a version of TAtsc with built-in
features of molecular dynamics and additional operators to restrict the use of
spots. Because spots are means of access to atoms, restriction of their use can
be needed.

Like in TAtsc, it is assumed that there is a fixed but arbitrary set of foci
F and a fixed but arbitrary set of methods M. In addition, it is assumed that
Mmd ⊆ M, spots do not occur in m ∈ M if m 6∈ Mmd, and H(〈m〉) = R

for all m ∈ Mmd if H 6∈ MDS . These additional assumptions express that
the methods of molecular dynamics services are supposed to be built-in and
that those methods cannot be processed by other services. The last assumption
implies that access to atoms is supposed to be provided by molecular dynamics
services only. The operators introduced below to restrict the use of spots are not
very useful if Spot is a finite set. Therefore, it is also assumed that Spot is an
infinite set.

Where restriction of their use is concerned, spots are thought of as names by
which atoms are located. Restriction of the use of spots serves a similar purpose
as restriction of the use of names in the π-calculus [25].

For each f ∈ F and s ∈ Spot, we add a restriction operator localfs to the
operators of TAtsc.

Let f ∈ F , s ∈ Spot and p be a term over the signature of TCmd. Then
localfs (p) restricts s for use in p, i.e. it makes s local to p, where basic actions of
the form f.m are concerned. In that way, s is available to access some atom via
f to p only. The availability of s to access some atom via a focus other than f
is not restricted.

The restriction operators of TCmd are name binding operators of a special
kind. In localfs (p), the occurrence of s in the subscript is a binding occurrence,
but the scope of that occurrence is not simply p: an occurrence of s in p lies
within the scope of the binding occurrence if and only if that occurrence is in a
basic action of the form f.m. As a result, the set of free names of a term, the
set of bound names of a term, and substitutions of names for free occurrences
of names in a term always have a bearing on some focus. Spot s is a free name
of term p with respect to focus f if there is an occurrence of s in p that is in a
basic action of the form f.m that is not in a subterm of the form localfs (p′). Spot
s is a bound name of term p with respect to focus f if there is an occurrence of
s in p that is in a basic action of the form f.m that is in a subterm of the form
localfs (p′). The substitution of spot s′ for free occurrences of spot s with respect
to focus f in term p replaces in p all occurrences of s in basic actions of the form
f.m that are not in a subterm of the form localfs (p′) by s′.

18

Table 12. Axioms for restriction

local
f
s (t) = local

f

s′
(t[s′/s]f) if s′ 6∈ fnf (t) R1

local
f
s (S) = S R2

local
f
s (D) = D R3

local
f
s (tau ◦ x) = tau ◦ local

f
s (x) R4

local
f
s (x E g.mD y) = local

f
s (x) E g.mD local

f
s (y) if f 6= g R5

local
f
s (x E f.m D y) = local

f
s (x) E f.m D local

f
s (y) if s 6∈ n(m) R6

‖(〈local
f
s (x)〉 y α) = local

f
s (‖(〈x〉 y α)) if s 6∈ fnf (α) R7

SD(local
f
s (x)) = local

f
s (SD(x)) R8

local
f
s (x) /g H = local

f
s (x /g H) if f 6= g R9

local
f
s (x) /f H = x /f H if H(〈s == 0〉) 6= F R10

local
f
s (local

g

s′
(x)) = local

g

s′
(local

f
s (x)) R11

In Appendix A, fnf (p), the set of free names of term p with respect to focus
f , bnf (p), the set of bound names of term p with respect to focus f , and p[s′/s]f ,
the substitution of name s′ for free occurrences of name s with respect to focus
f in term p, are defined. We will write n(m), where m ∈ M, for the set of all
names occurring in m.

Par abus de langage, we will henceforth refer to term p as the scope of the
binding occurrence of s in localfs (p).

The axioms for restriction are given in Table 12. In this table, s and s′

stand for arbitrary spots from Spot, and t stands for an arbitrary term over
the signature of TCmd. The crucial axioms are R1, R7, R9 and R10. Axiom
R1 asserts that alpha-convertible restrictions are equal. Axiom R7 expresses
that, in case the scope of a restricted spot is a thread in a thread vector, the
scope can safely be extended to the strategic interleaving of that thread vector
if the restricted spot is not freely used by the other threads in the thread vector
through the focus concerned. Axiom R9 expresses that, in case the scope of a
restricted spot is a thread that is composed with a service and the foci concerned
are different, the scope can safely be extended to the thread-service composition.
Axiom R10 expresses that, in case the scope of a restricted spot is a thread that
is composed with a service and the foci concerned are equal, the restriction can
be raised if the contents of the restricted spot is undefined – indicating that it
is not in use by any thread to access some atom.

Axiom R1, together with the assumption that Spot is infinite, has far-reaching
consequences: in case axiom R7 or axiom R10 cannot be applied directly because
the condition on the restricted spot is not satisfied, it can always be applied after
application of axiom R1.

Next we give a simple example of the use of restriction.

19

Example 2. In the expressions pE md(s.v = s′.w) Dq and pE md(s.v.w = s′) Dq,
where p and q are terms over the signature of TCmd, a get field method is
combined in different ways with a set field method. This results in expressions
that are not terms over the signature of TCmd. However, these expressions could
be considered abbreviations for the following terms over the signature of TCmd:

local
md

s′′ (md(s′′ = s′.w) ◦ (pE md(s.v = s′′) D q)) ,

local
md

s′′ (md(s′′ = s.v) ◦ (pE md(s′′.w = s′) D q)) ,

where s′′ 6∈ fnmd(p) ∪ fnmd(q). The importance of the use of restriction here is
that it prevents interference by means of s′′ in the case where interleaving is
involved, as illustrated by the following derivable equations:

‖(〈md(s′′ = s′.w) ◦ (pE md(s.v = s′′) D q)〉 y 〈md(s′′ = 0) ◦ S〉)

= md(s′′ = s′.w) ◦ md(s′′ = 0) ◦ (pE md(s.v = s′′) D q) ,

‖(〈localmd

s′′ (md(s′′ = s′.w) ◦ (pE md(s.v = s′′) D q))〉 y 〈md(s′′ = 0) ◦ S〉)

= localmd

s′′′(md(s′′′ = s′.w) ◦ md(s′′ = 0) ◦ (pE md(s.v = s′′′) D q)) ,

where s′′′ 6∈ fnmd(p) ∪ fnmd(q) ∪ {s′′}. The first equation shows that there is
interference if restriction is not used, whereas the second equation shows that
there is no interference if restriction is used. Notice that derivation of the second
equation requires that axiom R1 is applied before axiom R7 is applied.

Not every closed term over the signature of TCmd can be reduced to a closed
term over the signature of BTA(FM), e.g. a term of the form localfs (pE f.mDq),
where p and q are closed terms over the signature of BTA(FM), cannot be
reduced further if s ∈ n(m). To elaborate on this remark, we introduce the
notion of a basic term. The set B of basic terms is inductively defined by the
following rules:

– S,D ∈ B;
– if p ∈ B, then tau ◦ p ∈ B;
– if f ∈ F , m ∈ M and p, q ∈ B, then pE f.mD q ∈ B;
– if f ∈ F , m ∈ M, s ∈ n(m) and p, q ∈ B, then localfs (pE f.mD q) ∈ B.

We can prove that each closed term over the signature of TCmd can be reduced
to a term from B.

Theorem 3 (Elimination). For all closed terms p over the signature of TCmd,
there exists a term q ∈ B such that p = q is derivable from the axioms of TCmd.

Proof. The proof follows the same line as the proof of Theorem 2 presented
in [7]. This means that it is a proof by induction on the structure of p in which
some cases boil down to proving a lemma by some form of induction or another,
mostly structural induction again. Here, we have to consider the additional case

20

p ≡ localfs (p′), where we can restrict ourselves to basic terms p′. This case
is easily proved by structural induction using axioms R2–R6 and R11. In the
case p ≡ ‖(〈p′1〉 y . . . y 〈p′n〉), where we can restrict ourselves to basic terms
p′1, . . . , p

′
n, we have to consider the additional case p′1 ≡ localfs (p′′1 E f.mD p′′′1)

with s ∈ n(m). After applying axioms R1 and R7 at the beginning, this case
goes analogous to the case p′1 ≡ p′′1 E f.mD p′′′1 . In the case p ≡ SD(p′), where
we can restrict ourselves to basic terms p′, we have to consider the additional
case p′ ≡ localfs (p′′ E f.mD p′′′) with s ∈ n(m). After applying axiom R8 at
the beginning, this case goes analogous to the case p′ ≡ p′′ E f.mD p′′′. In the
case p ≡ p′ /f H , where we can restrict ourselves to basic terms p′, we have to

consider the additional case p′ ≡ localfs (p′′ E f.mD p′′′) with s ∈ n(m). After
applying axiom R9 or axioms R1 and R10, this case goes analogous to the case
p′ ≡ p′′ E f.mD p′′′. ut

The following proposition, concerning the cyclic interleaving of a thread vector
of length 1 in the presence of thread-service composition and restriction, is easily
proved using Theorem 3.

Proposition 7. For all closed terms p over the signature of TCmd, the equation
‖(〈p〉) = p is derivable from the axioms of TCmd.

Proof. The proof follows the same line as the proof of Proposition 1 presented
in [7]. This means that it is a rather trivial proof by induction on the structure
of p. Here, we have to consider the additional case p ≡ localfs (p′E f.mDp′′) with
s ∈ n(m). This case goes similar to the case p ≡ p′ E f.mD p′′. Axioms R1 and
R7 are applied at the beginning and at the end. ut

The following are useful properties of the deadlock at termination operator in the
presence of thread-service composition and restriction which are proved using
Theorem 3.

Proposition 8. For all closed terms p1, . . . , pn over the signature of TCmd, the
following equations are derivable from the axioms of TCmd:

SD(‖(〈p1〉 y . . . y 〈pn〉)) = ‖(〈SD(p1)〉 y . . . y 〈SD(pn)〉) , (1)

SD(SD(p1)) = SD(p1) , (2)

SD(p1 /f H) = SD(p1) /f H . (3)

Proof. The proof follows the same line as the proof of Proposition 3 presented
in [7]. This means that equation (1) is proved by induction on the sum of the
depths plus one of p1, . . . , pn and case distinction on the structure of p1, and that
equations (2) and (3) are proved by induction on the structure of p1. For each of
the equations, we have to consider the additional case p1 ≡ localfs (p′1 E f.mDp′′1)
with s ∈ n(m). For each of the equations, this case goes similar to the case
p1 ≡ p′1 E f.mD p′′1 . In case of equation (1), axioms R1 and R7 are applied at
the beginning and at the end. In case of equation (2), axiom R8 is applied at
the beginning and at the end. In case of equation (3), axiom R9 or axioms R1
and R10 are applied at the beginning and at the end. ut

21

Table 13. Approximation induction principle

∧
n≥0 πn(x) = πn(y) ⇒ x = y AIP

Proposition 9. Let t be a term over the signature of BTA+REC such that
fixx(t) is a closed term. Then there exists a term t′ over the signature of BTA+
REC such that localfs (fixx(t)) = fixy(t

′) is derivable from the axioms of TCmd+
REC provided for all actions g.m occurring in t either f 6= g or s 6∈ n(m).

Proof. The proof follows the same line as the proofs of Propositions 4–6 pre-
sented in [7]. ut

We refrain from providing a structural operational semantics of TCmd. In
the case where we do not deviate from the style of structural operational seman-
tics adopted for BTA, TA and TAtsc, the obvious way to deal with restriction
involves the introduction of bound actions, together with a scope opening tran-
sition rule (for restriction) and a scope closing transition rule (for thread-service
composition), like in [25]. This would complicate matters to such an extent that
a structural operational semantics of TCmd would add at most marginally to a
better understanding. Therefore, we provide instead a projective limit model of
TCmd in Section 12.

10 Approximation Induction Principle

Each closed term over the signature of TCmd denotes a finite thread, i.e. a thread
of which the length of the sequences of actions that it can perform is bounded.
However, not each closed term over the signature of TCmd+REC denotes a finite
thread: recursion gives rise to infinite threads. Closed terms over the signature
of TCmd+REC that denote the same infinite thread cannot always be proved
equal by means of the axioms of TCmd+REC. In this section, we introduce the
approximation induction principle to reason about infinite threads.

The approximation induction principle, AIP in short, is based on the view
that two threads are identical if their approximations up to any finite depth are
identical. The approximation up to depth n of a thread is obtained by cutting
it off after performing a sequence of actions of length n.

AIP is the infinitary conditional equation given in Table 13. Here, follow-
ing [6], approximation of depth n is phrased in terms of a unary projection
operator πn. The axioms for the projection operators are given in Table 14. In
this table, a stands for an arbitrary member of Atau and s stands for an arbitrary
member of Spot.

Let T stand for either TCmd or TCmd+REC. Then we will write T+AIP for
T extended with the projections operators πn and the axioms P0–P4 and axiom
AIP.

AIP holds in the projective limit models for TCmd and TCmd+REC that
will be constructed in Sections 12 and 14, respectively. Axiom REC2 is derivable
from the axioms of TCmd, axiom REC1 and AIP.

22

Table 14. Axioms for projection operators

π0(x) = D P0

πn+1(S) = S P1

πn+1(D) = D P2

πn+1(x E aD y) = πn(x) Ea D πn(y) P3

πn+1(local
f
s (x)) = local

f
s (πn+1(x)) P4

Table 15. Additional axiom for thread forking

‖(〈x E nt(z) D y〉 y α) = tau ◦ ‖(α y 〈z〉 y 〈x〉) CSI6

local
f
s (x E nt(z)D y) = local

f
s (x) E nt(local

f
s (z))D local

f
s (y) R12

πn+1(x E nt(z) D y) = πn(x) E nt(πn(z)) D πn(y) P5

11 Thread Forking and Restriction

In this section, we use restriction to model a form of thread forking found in
object-oriented programming languages. For that purpose, we have to adapt the
strategic interleaving operator for cyclic interleaving such that it supports a basic
form of thread forking. We will do so like in [8].

We add the ternary forking postconditional composition operator E nt() D

to the operators of TCmd. Like action prefixing, we introduce forking prefixing
as an abbreviation: nt(p) ◦ q, where p and q are terms over the signature of
TCmd with thread forking, abbreviates qE nt(p) D q. Henceforth, the postcondi-
tional composition operators introduced in Section 2 will be called non-forking
postconditional composition operators.

The forking postconditional composition operator has the same shape as non-
forking postconditional composition operators. Formally, no action is involved
in forking postconditional composition. However, for an operational intuition, in
pE nt(r) Dq, nt(r) can be considered a thread forking action. It represents the act
of forking off thread r. Like with real actions, a reply is produced. We consider
the case where forking off a thread will never be blocked or fail. In that case, it
always produces a positive reply. The action tau arises as a residue of forking off
a thread. In [8], we treat several interleaving strategies for threads that support
a basic form of thread forking. All of them deal with cases where forking may be
blocked and/or may fail. We believe that perfect forking is a suitable abstraction
when illustrating the use of restriction. In [8], nt(r) was formally considered a
thread forking action. We experienced afterwards that this leads to unnecessary
complications in expressing definitions and results concerning the projective limit
model for the thread algebra developed in this paper (see Section 12).

The axioms for TCmd with thread forking, written TCtf
md, are the axioms of

TCmd and axioms CSI6 and R12 from Table 15. The axioms for TCmd+AIP

23

Table 16. Additional transition rules for thread forking

〈x E nt(p)D y, ρ〉
nt(p)
−−−→ 〈x, ρ〉

x1 ↓, . . . , xk ↓, 〈xk+1, ρ〉
nt(y)
−−−→ 〈x′

k+1, ρ
′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 tau−−→ 〈‖(α y 〈y〉 y 〈x′
k+1〉), ρ

′〉
(k ≥ 0)

x1 l, . . . , xk l, xl ↑, 〈xk+1, ρ〉
nt(y)
−−−→ 〈x′

k+1, ρ
′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 tau−−→ 〈‖(α y 〈D〉 y 〈y〉 y 〈x′
k+1〉), ρ

′〉
(k ≥ l > 0)

with thread forking, written TCtf
md+AIP, are the axioms of TCmd and axioms

CSI6, R12 and P5 from Table 15.
Not all results concerning the strategic interleaving operator for cyclic inter-

leaving go through if this basic form of thread forking is added. Theorem 3 goes
through if we add the following rule to the inductive definition of B given in
Section 9: if p, q, r ∈ B, then pE nt(r) Dq ∈ B. Proposition 7 and the first part of
Proposition 8 go through for closed terms in which the forking postconditional
composition operator does not occur only. Proposition 4 goes through for terms
in which the forking postconditional composition operator does not occur. It is
an open problem whether Proposition 4 goes through for terms in which the
forking postconditional composition operator does occur.

The transition rules for cyclic interleaving with thread forking are given
in Tables 5 and 16. Here, we use a binary relation 〈 , ρ〉 α−→ 〈 , ρ′〉 for each
α ∈ Atau ∪ {nt(p) | p closed term over signature of TCtf

md} and ρ, ρ′ ∈ E . Bisimu-
lation equivalence is a congruence with respect to cyclic interleaving with thread
forking. The transition labels containing terms do not complicate matters be-
cause there are no volatile operators involved (see e.g. [26]).

We introduce expressions of the form pE nt(s, s′, r) D q, where p, q and r are
terms over the signature of TCtf

md such that s 6∈ fnmd(p) ∪ fnmd(q).
The intuition is that p E nt(s, s′, r) D q will not only fork off thread r, like

pE nt(r) D q, but will also have the following side-effect: a new atom is created
which is made accessible by means of spot s to the thread being forked off and
by means of spot s′ to the thread forking off. The new atom serves as a unique
identity object associated with the thread being forked off. The spots s and s′

serve as the names available in the thread being forked off and the thread forking
off, respectively, to refer to that identity object. The spot s corresponds to the
self-reference this from Java. The important issue is that s is meant to be locally
available only.

An expression of the form pE nt(s, s′, r) D q, where p, q and r are as above,
can be considered an abbreviation for the following term over the signature of
TCtf

md:

localtfs (tf(s !) ◦ tf(s′ = s) ◦ (pE nt(r) D q)) ,

24

where tf is the focus of the molecular dynamics service that is used in thread
forking. Restriction is used here to see to it that s does not become globally
available.

12 Projective Limit Model for TCmd

In this section, we construct a projective limit model for TCmd. In this model,
which covers finite and infinite threads, threads are represented by infinite se-
quences of finite approximations.

To express definitions more concisely, the interpretations of the constants
and operators from the signature of TCmd in the initial model of TCmd and
the projective limit model of TCmd are denoted by the constants and operators
themselves. The ambiguity thus introduced could be obviated by decorating the
symbols, with different decorations for different models, when they are used
to denote their interpretation in a model. However, in this paper, it is always
immediately clear from the context how the symbols are used. Moreover, we
believe that the decorations are more often than not distracting. Therefore, we
leave it to the reader to mentally decorate the symbols wherever appropriate.

The projective limit construction is known as the inverse limit construction
in domain theory, the theory underlying the approach of denotational semantics
for programming languages (see e.g. [28]). In process algebra, this construction
has been applied for the first time by Bergstra and Klop [5].

We will write Aω for the domain of the initial model of TCmd. Aω consists of
the equivalence classes of terms from B with respect to the equivalence induced
by the axioms of TCmd. In other words, modulo equivalence, Aω is B. Henceforth,
we will identify terms from B with their equivalence class where elements of Aω

are concerned.
Each element of Aω represents a finite thread, i.e. a thread of which the

length of the sequences of actions that it can perform is bounded. Below, we will
construct a model that covers infinite threads as well. In preparation for that, we
define for all n a function that cuts off finite threads from Aω after performing
a sequence of actions of length n.

For all n ∈ N, we have the projection function πn : Aω → Aω, inductively
defined by

π0(p) = D ,

πn+1(S) = S ,

πn+1(D) = D ,

πn+1(pE aD q) = πn(p) E aD πn(q) ,

πn+1(localfs (p)) = localfs (πn+1(p)) .

For p ∈ Aω, πn(p) is called the n-th projection of p. It can be thought of as an
approximation of p. If πn(p) 6= p, then πn+1(p) can be thought of as the closest

25

better approximation of p. If πn(p) = p, then πn+1(p) = p as well. For all n ∈ N,
we will write An for {πn(p) | p ∈ Aω}.

The semantic equations given above to define the projection functions have
the same shape as the axioms for the projection operators introduced in Sec-
tion 10. We will come back to this at the end of Section 14.

The properties of the projection operations stated in the following two lem-
mas will be used frequently in the sequel.

Lemma 1. For all p ∈ Aω and n,m ∈ N, πn(πm(p)) = πmin{n,m}(p).

Proof. This is easily proved by induction on the structure of p. ut

Lemma 2. For all p1, . . . , pm ∈ Aω and n ∈ N:

πn(‖(〈p1〉 y . . . y 〈pm〉)) = ‖(〈πn(p1)〉 y . . . y 〈πn(pm)〉) , (1)

πn(SD(p1)) = SD(πn(p1)) , (2)

πn(p1 /f H) = πn(p1) /f H . (3)

Proof. Equation 1 is straightforwardly proved by induction on n +m and case
distinction on the structure of p1. Equations 2 and 3 are easily proved by induc-
tion on the structure of p1. ut

In the projective limit model, which covers finite and infinite threads, threads
are represented by projective sequences, i.e. infinite sequences (pn)n∈N

of elements
of Aω such that pn ∈ An and pn = πn(pn+1) for all n ∈ N. In other words, a
projective sequence is a sequence of which successive components are successive
projections of the same thread. The idea is that any infinite thread is fully
characterized by the infinite sequence of all its finite approximations. We will
write A∞ for {(pn)n∈N

|
∧

n∈N
(pn ∈ An ∧ pn = πn(pn+1))}.

The projective limit model of TCmd consists of the following:

– the set A∞, the domain of the projective limit model;
– an element of A∞ for each constant of TCmd;
– an operation on A∞ for each operator of TCmd;

where those elements of A∞ and operations on A∞ are defined as follows:

S = (πn(S))n∈N
,

D = (πn(D))n∈N
,

(pn)n∈N
E aD (qn)n∈N

= (πn(pn E aD qn))n∈N
,

‖(〈(p1n)n∈N
〉 y . . . y 〈(pmn)n∈N

〉) = (πn(‖(〈p1n〉 y . . . y 〈pmn〉)))n∈N
,

SD((pn)n∈N
) = (πn(SD(pn)))n∈N

,

(pn)n∈N
/f H = (πn(pn /f H))

n∈N
,

localfs ((pn)n∈N
) = (πn(localfs (pn)))n∈N

.

Using Lemmas 1 and 2, we easily prove for (pn)n∈N
, (qn)n∈N

∈ A∞ and
(p1n)n∈N

, . . . , (pmn)n∈N
∈ A∞:

26

– πn(πn+1(pn+1 E aD qn+1)) = πn(pn E aD qn);
– πn(πn+1(‖(〈p1n+1〉 y . . . y 〈pmn+1〉))) = πn(‖(〈p1n〉 y . . . y 〈pmn〉));
– πn(πn+1(SD(pn+1))) = πn(SD(pn));
– πn(πn+1(pn+1 /f H)) = πn(pn /f H);

– πn(πn+1(localfs (pn+1))) = πn(localfs (pn)).

From this and the definition of An, it follows immediately that the operations
defined above are well-defined, i.e. they always yield elements of A∞.

The initial model can be embedded in a natural way in the projective limit
model: each p ∈ Aω corresponds to (πn(p))n∈N

∈ A∞. We extend projection to
an operation on A∞ by defining πm((pn)n∈N

) = (p′n)n∈N
, where p′n = pn if n < m

and p′n = pm if n ≥ m. That is, πm((pn)n∈N
) is pm embedded in A∞ as described

above. Henceforth, we will identify elements of Aω with their embedding in A∞

where elements of A∞ are concerned.

13 Metric Space Structure for Projective Limit Model

Following [23] to some extent, we make A∞ into a metric space to establish,
using Banach’s fixed point theorem, that every guarded operation φ :A∞ → A∞

has a unique fixed point. This is relevant to the expansion of the projective limit
model of TCmd to the projective limit model of TCmd+REC in Section 14.

An m-ary operation φ on A∞ is a guarded operation if for all p1, . . . , pm,
p′1, . . . , p

′
m ∈ A∞ and n ∈ N:

πn(p1) = πn(p′1) ∧ . . . ∧ πn(pm) = πn(p′m)

⇒ πn+1(φ(p1, . . . , pm)) = πn+1(φ(p′1, . . . , p
′
m)) .

We say that φ is an unguarded operation if φ is not a guarded operation.
The notion of guarded operation, which originates from [29], supersedes the

notion of guard used in [23].
In the remainder of this section, as well as in Sections 14 and 15, we assume

known the notions of metric space, completion of a metric space, dense subset
in a metric space, continuous function on a metric space, limit in a metric space
and contracting function on a metric space, and Banach’s fixed point theorem.
The definitions of the above-mentioned notions concerning metric spaces and
Banach’s fixed point theorem can, for example, be found in [15]. In this paper,
we will consider ultrametric spaces only. A metric space (M,d) is an ultrametric
space if for all p, p′, p′′ ∈M , d(p, p′) ≤ max{d(p, p′′), d(p′′, p′)}.

We define a distance function d :A∞ ×A∞ → R by

d(p, p′) = 2−min{n∈N|πn(p)6=πn(p′)} if p 6= p′ ,

d(p, p′) = 0 if p = p′ .

It is easy to verify that (A∞, d) is a metric space. The following theorem
summarizes the basic properties of this metric space.

27

Theorem 4.

1. (A∞, d) is an ultrametric space;
2. (A∞, d) is the metric completion of the metric space (Aω , d

′), where d′ is the
restriction of d to Aω;

3. Aω is dense in A∞;
4. the operations πn :A∞ → An are continuous;
5. for all p ∈ A∞ and n ∈ N, d(πn(p), p) < 2−n, hence limn→∞ πn(p) = p.

Proof. These properties are general properties of metric spaces constructed in
the way pursued here. Proofs of Properties 1–3 can be found in [29]. A proof
of Property 4 can be found in [18]. Property 5 is proved as follows. It follows
from Lemma 1, by passing to the limit and using that the projection operations
are continuous and Aω is dense in A∞, that πn(πm(p)) = πmin{n,m}(p) for p ∈
A∞ as well. Hence, min{m ∈ N | πm(πn(p)) 6= πm(p)} > n, and consequently
d(πn(p), p) < 2−n. ut

The basic properties given above are used in coming proofs.
The properties of the projection operations stated in the following two lem-

mas will be used in the proofs of Theorems 5 and 6 given below.

Lemma 3. For all p ∈ A∞ and n,m ∈ N, πn(πm(p)) = πmin{n,m}(p).

Proof. As mentioned above in the proof of Theorem 4, this lemma follows from
Lemma 1 by passing to the limit and using that the projection operations are
continuous and Aω is dense in A∞. ut

Lemma 4. For all p1, . . . , pm ∈ A∞ and n ∈ N:

πn(p1 E aD p2) = πn(πn(p1) E aD πn(p2)) , (1)

πn(‖(〈p1〉 y . . . y 〈pm〉)) = πn(‖(〈πn(p1)〉 y . . . y 〈πn(pm)〉)) , (2)

πn(SD(p1)) = πn(SD(πn(p1))) , (3)

πn(p1 /f H) = πn(πn(p1) /f H) , (4)

πn(localfs (p1)) = πn(localfs (πn(p1))) . (5)

Proof. It is enough to prove Equations 1–5 for p1, . . . , pm ∈ Aω. The lemma
will then follow by passing to the limit and using that πn is continuous and Aω

is dense in A∞. Equations 1 and 5 follow immediately from Lemma 1 and the
definition of πn. Equations 2–4 follow immediately from Lemmas 1 and 2. ut

In the terminology of metric topology, the following theorem states that all
operations in the projective limit model of TCmd are non-expansive. This implies
that they are continuous, with respect to the metric topology induced by d, in
all arguments.

28

Theorem 5. For all p1, . . . , pm, p
′
1, . . . , p

′
m ∈ A∞:

d(p1 E aD p2, p
′
1 E aD p′2) ≤ max{d(p1, p

′
1), d(p2, p

′
2)} , (1)

d(‖(〈p1〉 y . . . y 〈pm〉), ‖(〈p′1〉 y . . . y 〈p′m〉))
≤ max{d(p1, p

′
1), . . . , d(pm, p

′
m)} ,

(2)

d(SD(p1), SD(p′1)) ≤ d(p1, p
′
1) , (3)

d(p1 /f H, p
′
1 /f H) ≤ d(p1, p

′
1) , (4)

d(localfs (p1), localfs (p′1)) ≤ d(p1, p
′
1) . (5)

Proof. Let ki = min{n ∈ N | πn(pi) 6= πn(p′i)} for i = 1, 2, and let k =
min{k1, k2}. Then for all n ∈ N, we have n < k iff πn(p1) = πn(p′1) and πn(p2) =
πn(p′2). From this and Lemma 4, it follows immediately that πk−1(p1 E aDp2) =
πk−1(p

′
1 E aD p′2). Hence, k ≤ min{n ∈ N | πn(p1 E aD p2) 6= πn(p′1 E aD p′2)},

which completes the proof for the postconditional composition operators. The
proof for the other operators go analogously. ut

The notion of guarded operation is defined without reference to metric prop-
erties. However, being a guarded operation coincides with having a metric prop-
erty that is highly relevant to the issue of unique fixed points: an operation on
A∞ is a guarded operation iff it is contracting. This is stated in the following
lemma.

Lemma 5. An m-ary operation φ on A∞ is a guarded operation iff for all
p1, . . . , pm, p

′
1, . . . , p

′
m ∈ A∞:

d(φ(p1, . . . , pm), φ(p′1, . . . , p
′
m)) ≤ 1

2 · max{d(p1, p
′
1), . . . , d(pm, p

′
m)} .

Proof. Let ki = min{n ∈ N | πn(pi) 6= πn(p′i)} for i = 1, . . . ,m, and let k =
min{k1, . . . , km}. Then for all n ∈ N, n < k iff πn(p1) = πn(p′1) and . . . and
πn(pm) = πn(p′m). From this, the definition of a guarded operation and the
definition of π0, it follows immediately that φ is a guarded operation iff for
all n < k + 1, πn(φ(p1, . . . , pm)) = πn(φ(p′1, . . . , p

′
m)). Hence, φ is a guarded

operation iff k + 1 ≤ min{n ∈ N | πn(φ(p1, . . . , pm)) 6= πn(φ(p′1, . . . , p
′
m))},

which completes the proof. ut

We write φn, where φ is a unary operation on A∞, for the unary operation on A∞

that is defined by induction on n as follows: φ0(p) = p and φn+1(p) = φ(φn(p)).
We have the following important result about guarded operations.

Theorem 6. Let φ:A∞ → A∞ be a guarded operation. Then φ has a unique fixed
point, i.e. there exists a unique p ∈ A∞ such that φ(p) = p, and (πn(φn(D)))n∈N

is the unique fixed point of φ.

Proof. We have from Theorem 4.2 that (A∞, d) is a complete metric space
and from Lemma 5 that φ is contracting. From this, we conclude by Banach’s
fixed point theorem that φ has a unique fixed point. It is easily proved by in-
duction on n, using Lemma 3 and the definition of guarded operation, that

29

πn(πn+1(φ
n+1(D))) = πn(φn(D)). From this and the definition of An, it follows

that (πn(φn(D)))n∈N
is an element of A∞. Moreover, it is easily proved by case

distinction between n = 0 and n > 0, using this equation, Lemma 3 and the
definition of guarded operation, that πn(φ(πn(φn(D)))) = πn(πn(φn(D))). From
this, it follows that (πn(φn(D)))n∈N

is a fixed point of φ by passing to the limit
and using that φ is continuous and Aω is dense in A∞ (recall that contracting
operations are continuous). Because φ has a unique fixed point, (πn(φn(D)))n∈N

must be the unique fixed point of φ. ut

14 Projective Limit Model for TCmd+REC

The projective limit model for TCmd+REC is obtained by expansion of the
projective limit model for TCmd with a single operation fix :(A∞ →1 A∞) → A∞

for all the recursion operators.5

The operation fix differs from the other operations by taking functions from
A∞ to A∞ as argument. In agreement with that, for a given assignment in A∞

for variables, the operand of a recursion operator is interpreted as a function from
A∞ to A∞. If the recursion operator fixx is used, then variable x is taken as the
variable representing the argument of the function concerned. The interpretation
of terms over the signature of TCmd+REC will be formally defined in Section 15.

The operation fix is defined as follows:

fix(φ) = (πn(φn(D)))n∈N
if φ is a guarded operation,

fix(φ) = (πn(D))n∈N
if φ is an unguarded operation.

From Theorem 6, we know that every guarded operation φ : A∞ → A∞ has
only one fixed point and that (πn(φn(D)))n∈N

is that fixed point. The justifica-
tion for the definition of fix for unguarded operations is twofold:

– a function φ from A∞ to A∞ that is representable by a term over the signa-
ture of TCmd+REC is an unguarded operation only if D is one of the fixed
points of φ;

– if D is a fixed point of a function φ from A∞ to A∞, then (πn(D))n∈N
=

(πn(φn(D)))n∈N
.

This implies that, for all function φ from A∞ to A∞ that are representable by a
term over the signature of TCmd+REC, fix yields a fixed point. Actually, it is the
least fixed point with respect to the approximation relation v that is introduced
in Appendix B. There may be unguarded operations in A∞ →1 A∞ for which D

is not a fixed point. However, those operations are not representable by a term
over the signature of TCmd+REC.

It is straightforward to verify that, for every guarded operation φ:A∞ → A∞,
(πn(φn(D)))n∈N

= (πn(φk(n)(D)))n∈N
, where k(n) = min{k | πn(φk(D)) =

5 Given metric spaces (D, d) and (D′, d′), we write D →1 D′ for the set of all non-
expansive functions from (D, d) to (D′, d′).

30

πn(φk+1(D))}. The right-hand side of this equation is reminiscent of the def-
inition of the operation introduced in [4] for the selection of a fixed point in a
projective limit model for PA, a subtheory of ACP [5] without communication.

We define a distance function δ : (A∞ →1 A∞) × (A∞ →1 A∞) → R by

δ(φ, ψ) =
⊔
{d(φ(p), ψ(p)) | p ∈ A∞} .

The distance function δ is well-defined because for all p, p′ ∈ A∞, δ(p, p′) ≤ 2−1.
It is easy to verify that (A∞ →1 A∞, δ) is an ultrametric space.

The following theorem states that fix is non-expansive for guarded operations.

Theorem 7. For all φ, ψ ∈ A∞ →1 A∞ that are guarded operations:

d(fix(φ), fix(ψ)) ≤ δ(φ, ψ) .

Proof. Let p = fix(φ) and q = fix(ψ). Then φ(p) = p, ψ(q) = q and also
d(φ(p), ψ(q)) = d(p, q). We have d(φ(p), φ(q)) ≤ 1

2 · d(p, q) by Lemma 5 and
d(φ(q), ψ(q)) ≤ δ(φ, ψ) by the definition of δ. It follows that d(φ(q), ψ(q)) ≤
max{ 1

2 ·d(p, q), δ(φ, ψ)}. Hence, because d(φ(p), ψ(q)) = d(p, q), we have d(p, q) ≤
δ(φ, ψ). That is, d(fix(φ), fix(ψ)) ≤ δ(φ, ψ). ut

Projective limit models of TCmd+AIP and TCmd+REC+AIP are simply
obtained by expanding the projective limit models of TCmd and TCmd+REC
with the projection operations πn :A∞ → A∞ defined at the end of Section 12.

15 Guarded Recursion Equations

In this section, following [23] to some extent, we introduce the notions of guarded
term and guarded recursion equation and show that every guarded recursion
equation has a unique solution in A∞.

Supplementary, in Appendix B, we make A∞ into a complete partial ordered
set and show, using Tarski’s fixed point theorem, that every recursion equation
has a least solution in A∞ with respect to the partial order relation concerned.

It is assumed that there is a fixed but arbitrary set of variables X .
Let P ⊆ A∞ and let X ⊆ X . Then we will write TP for the set of all terms

over the signature of TCmd+REC with parameters from P and T X
P for the set

of all terms from TP in which no other variables than the ones in X have free
occurrences.6

The interpretation function [[]] : TP → ((X → A∞) → A∞) of terms with
parameters from P ⊆ A∞ is defined as follows:

6 A term with parameters is a term in which elements of the domain of a model are
used as constants naming themselves. For a justification of this mix-up of syntax
and semantics in case only one model is under consideration, see e.g. [21].

31

[[x]](ρ) = ρ(x) ,

[[p]](ρ) = p ,

[[S]](ρ) = S ,

[[D]](ρ) = D ,

[[t1 E aD t2]](ρ) = [[t1]](ρ) E aD [[t2]](ρ) ,

[[‖(〈t1〉 y . . . y 〈tn〉)]](ρ) = ‖(〈[[t1]](ρ)〉 y . . . y 〈[[tn]](ρ)〉) ,

[[SD(t)]](ρ) = SD([[t]](ρ)) ,

[[t /f H]](ρ) = [[t]](ρ) /f H ,

[[localsf (t)]](ρ) = localsf ([[t]](ρ)) ,

[[fixx(t)]](ρ) = fix(φ) ,

where φ : A∞ → A∞ is defined by φ(p) = [[t]](ρ⊕ [x 7→ p]) .

The property stated in the following lemma will be used in the proof of
Lemma 7 given below.

Lemma 6. Let P ⊆ A∞, let t ∈ TP , let x ∈ X , let p ∈ P , and let ρ : X → A∞.
Then [[t]](ρ⊕ [x 7→ p]) = [[t[p/x]]](ρ).

Proof. This is easily proved by induction on the structure of t. ut

Let x1, . . . , xn ∈ X , let X ⊆ {x1, . . . , xn}, let P ⊆ A∞, and let t ∈ T X
P . More-

over, let ρ : X → A∞. Then the interpretation of t with respect to x1, . . . , xn,
written [[t]]x1,...,xn , is the unique function φ : A∞n → A∞ such that for all
p1, . . . , pn ∈ A∞, φ(p1, . . . , pn) = [[t]](ρ⊕ [x1 7→ p1] ⊕ . . .⊕ [xn 7→ pn]).

The interpretation of t with respect to x1, . . . , xn is well-defined because it
is independent of the choice of ρ.

The notion of guarded term defined below is suggested by the fact, stated in
Lemma 5 above, that an operation on A∞ is a guarded operation iff it is con-
tracting. The only guarded operations, and consequently contracting operations,
in the projective limit model of TCmd+REC are the postconditional composition
operations. Based upon this, we define the notion of guarded term as follows.

Let P ⊆ A∞. Then the set GP of guarded terms with parameters from P is
inductively defined as follows:

– if p ∈ P , then p ∈ GP ;
– S,D ∈ GP ;
– if a ∈ A and t1, t2 ∈ TP , then t1 E aD t2 ∈ GP ;
– if t1, . . . , tl ∈ GP , then ‖(〈t1〉 y . . . y 〈tl〉) ∈ GP ;
– if t ∈ GP , then SD(t) ∈ GP ;
– if f ∈ F , H ∈ RF and t ∈ GP , then t /f H ∈ GP ;
– if f ∈ F , s ∈ Spot and t ∈ GP , then local

s
f (t) ∈ GP ;

– if x ∈ X and t ∈ GP , then fixx(t) ∈ GP .

32

It is easy to show that t ∈ GP iff all variables that have occurrences in t are
guarded in t. The inductive definition of guarded terms given above is more
convenient in proofs.

The following lemma states that guarded terms represent operations on A∞

that are contracting.

Lemma 7. Let x1, . . . , xn ∈ X , let X ⊆ {x1, . . . , xn}, let P ⊆ A∞, and let
t ∈ T X

P . Then t ∈ GP only if for all p1, . . . , pn, p
′
1, . . . , p

′
n ∈ A∞:

d([[t]]
x1,...,xn(p1, . . . , pn), [[t]]

x1,...,xn(p′1, . . . , p
′
n))

≤ 1
2 · max{d(p1, p

′
1), . . . , d(pn, p

′
n)} .

Proof. This is easily proved by induction on the structure of t using Theorems 5
and 7, Lemmas 5 and 6, and the fact that the postconditional composition
operations are guarded operations. ut

A recursion equation is an equation x = t, where x ∈ X and t ∈ T {x}
P for

some P ⊆ A∞. A recursion equation x = t is a guarded recursion equation if
t ∈ GP for some P ⊆ A∞. Let x = t be a recursion equation. Then p ∈ A∞ is a
solution of x = t if [[t]]

x
(p) = p.

We have the following important result about guarded recursion equations.

Theorem 8. Every guarded recursion equation has a unique solution in the
projective limit model for TCmd+REC.

Proof. Let x ∈ X , let P ⊆ A∞, and let t ∈ T {x}
P be such that t ∈ GP . We have

from Theorem 4.2 that (A∞, d) is a complete metric space and from Lemma 7
that [[t]]

x
is contracting. From this, we conclude by Banach’s fixed point theorem

that [[t]]
x

has a unique fixed point. Hence, the guarded recursion equation x = t
has a unique solution. ut

The projection operations and the distance function as defined in this paper
match well with our intuitive ideas about finite approximations of threads and
closeness of threads, respectively. The suitability of the definitions given in this
paper is supported by the fact that guarded operations coincide with contracting
operations. However, it is not at all clear whether adaptations of the definitions
are feasible and will lead to different uniqueness results.

16 Projective Limit Model for TCmd with Thread Forking

The construction of the projective limit model for TCtf
md follows the same line

as the construction of the projective limit model for TCmd. In this section, the
construction of the projective limit model for TCtf

md is outlined.
Recall that the basic terms of TCtf

md include closed terms pE nt(r) Dq, where
p, q and r are basic terms (see Section 11). The domain A′

ω of the initial model
of TCtf

md consists of the equivalence classes of basic terms of TCtf
md.

33

The projection functions πn : A′
ω → A′

ω are the extensions of the projection
functions πn :Aω → Aω inductively defined by the equations given for πn :Aω →
Aω in Section 12 and the following equation:

πn+1(pE nt(r) D q) = πn(p) E nt(πn(r)) D πn(q) .

For all n ∈ N, we will write A′
n for {πn(p) | p ∈ A′

ω}. Moreover, we will write
A′∞ for {(pn)n∈N

|
∧

n∈N
(pn ∈ A′

n ∧ pn = πn(pn+1))}.
Lemmas 1 and 2 go through for A′

ω.
The projective limit model of TCtf

md consists of the following:

– the set A′∞, the domain of the projective limit model;
– an element of A′∞ for each constant of TCtf

md;
– an operation on A′∞ for each operator of TCtf

md.

Those elements of A′∞ and operations on A′∞, with the exception of the op-
eration associated with the forking postconditional composition operator, are
defined as in the case of the projective limit model for TCmd. The ternary oper-
ation on A′∞ associated with the forking postconditional composition operator
is defined as follows:

(pn)n∈N
E nt((rn)n∈N

) D (qn)n∈N
= (πn(pn E nt(rn) D qn))n∈N

.

Using Lemma 1, we easily prove that, for (pn)n∈N
, (qn)n∈N

, (rn)n∈N
∈ A′∞,

πn(πn+1(pn+1 E nt(rn+1) D qn+1)) = πn(pn E nt(rn) D qn). From this and the
definition of A′

n, it follows immediately that the operation defined above always
yield elements of A′∞.

Lemma 3 goes through for A′∞. Lemma 4 goes through for A′∞ as well; and
we have in addition that for all p1, p2, p3 ∈ A′∞ and n ∈ N:

πn(p1 E nt(p3) D p2) = πn(πn(p1) E nt(πn(p3)) D πn(p2)) .

Theorem 5 goes through for A′∞; and we have in addition that for all p1, p2, p3,
p′1, p

′
2, p

′
3 ∈ A′∞:

d(p1 E nt(p3) D p2, p
′
1 E nt(p′3) D p′2) ≤ max{d(p1, p

′
1), d(p2, p

′
2), d(p3, p

′
3)} .

Lemma 5 and Theorem 6 go through for A′∞. Theorem 7 goes through for A′∞

as well.
The interpretation function [[]] of terms with parameters from P is now

defined by the equations given for [[]] in Section 15 and the following equation:

[[t1 E nt(t3) D t2]](ρ) = [[t1]](ρ) E nt([[t3]](ρ)) D [[t2]](ρ) .

The set GP of guarded terms with parameters from P is now inductively defined
by the rules given for GP in Section 15 and the following rule:

– if t1, t2, t3 ∈ TP , then t1 E nt(t3) D t2 ∈ GP .

Lemmas 6 and 7 and Theorem 8 go through for A′∞.
It is easily proved that the projective limit model for TCmd is a substructure

of the restriction of the projective limit model for TCtf
md to the signature of

TCmd.

34

17 Conclusions

In this paper, we have carried on the line of research with which we made a
start in [8]. We pursue with this line of research the object to develop a the-
ory about threads, multi-threading and interaction of threads with services that
is useful for (a) gaining insight into the semantic issues concerning the multi-
threading related features found in contemporary programming languages such
as Java and C#, and (b) simplified formal description and analysis of programs
in which multi-threading is involved. In this paper, we have extended the theory
with features that allow for details of multi-threading that come up where it is
intertwined with object-orientation to be dealt with. We regard this extension as
just a step towards attaining the above-mentioned object. It is likely that appli-
cations of the theory developed so far will make clear that further developments
are needed.

There is another line of research that emanated from the work presented
in [8]. That line of research concerns the development of a formal approach to
design new micro-architectures. The approach should allow for the correctness
of new micro-architectures and their anticipated speed-up results to be verified.
In [9, 10], we demonstrate the feasibility of an approach that involves the use of
thread algebra. The line of research concerned is carried out in the framework of
a project investigating micro-threading [14, 22], a technique for speeding up in-
struction processing on a computer which requires that programs are parallelized
by judicious use of thread forking.

The work presented in this paper, was partly carried out in the framework
of that project as well. For programs written in programming languages such as
Java and C#, compilers will have to take care of the parallelization. In ongoing
work, we are investigating parallelization for simple programs, which are close
to machine language programs. That work has convinced us that it is desirable
to have available an extension of thread algebra like the one presented in this
paper when developing parallelization techniques for the compilers referred to
above.

It is worth mentioning that the applications of thread algebra exceed the
domain of single multi-threaded programs. In [12], we extend the theory with
features to cover systems that consist of several multi-threaded programs on
various hosts in different networks. To demonstrate its usefulness, we employ
the extended theory to develop a simplified, formal representation schema of the
design of such systems and to verify a property of all systems designed according
to that schema.

A Free and Bound Names, Substitution

In this appendix, we define fnf (p), the set of free names of term p with respect
to focus f , bnf (p), the set of bound names of term p with respect to focus f ,
and p[s′/s]f , the substitution of name s′ for free occurrences of name s with
respect to focus f in term p. In Table 17, fnf (p) and bnf (p) are defined, and in

35

Table 17. Definition of fnf (p) and bnf (p)

fnf (S) = ∅

fnf (D) = ∅

fnf (tau ◦ t) = fnf (t)

fnf (t E g.mD t′) = fnf (t) ∪ fnf (t′) if f 6= g

fnf (t E f.m D t′) = fnf (t) ∪ fnf (t′) ∪ n(m)

fnf (‖(α)) = fnf (α)

fnf (SD(t)) = fnf (t)

fnf (t /g H) = fnf (t)

fnf (local
g
s(t)) = fnf (t) if f 6= g

fnf (local
f
s (t)) = fnf (t) \ {s}

fnf (〈 〉) = ∅

fnf (〈t〉 y α) = fnf (t) ∪ fnf (α)

bnf (S) = ∅

bnf (D) = ∅

bnf (tau ◦ t) = bnf (t)

bnf (t E g.mD t′) = bnf (t) ∪ bnf (t′)

bnf (‖(α)) = bnf (α)

bnf (SD(t)) = bnf (t)

bnf (t /g H) = bnf (t)

bnf (local
g
s(t)) = bnf (t) if f 6= g

bnf (local
f
s (t)) = bnf (t) ∪ {s}

bnf (〈 〉) = ∅

bnf (〈t〉 y α) = bnf (t) ∪ bnf (α)

Table 18. Definition of p[s′/s]f

S[s′/s]f = S

D[s′/s]f = D

(tau ◦ t)[s′/s]f = tau ◦ (t[s′/s]f)

(t E g.m D t′)[s′/s]f = (t[s′/s]f) E g.mD (t′[s′/s]f) if f 6= g

(t E f.m D t′)[s′/s]f = (t[s′/s]f) E f.m[s′/s] D (t′[s′/s]f)

‖(α)[s′/s]f = ‖(α[s′/s]f)

SD(t)[s′/s]f = SD(t[s′/s]f)

(t /g H)[s′/s]f = (t[s′/s]f) /g H

local
g

s′′
(t)[s′/s]f = local

g

s′′
(t[s′/s]f) if f = g ⇒ (s 6= s′′ ∧ s′ 6= s′′)

local
f

s′′
(t)[s′/s]f = local

f

s′′′
((t[s′′′/s′′]f)[s′/s]f) if (s 6= s′′ ∧ s′ = s′′)

(s′′′ 6∈ fnf (t) ∪ bnf (t) ∪ {s, s′})

local
f
s (t)[s′/s]f = local

f
s (t)

〈 〉[s′/s]f = 〈 〉

(〈t〉 y α)[s′/s]f = 〈t[s′/s]f 〉 y (α[s′/s]f)

Table 18, p[s′/s]f is defined. We write m[s′/s], where m ∈ M, for the result of
replacing in m all occurrences of s by s′.

36

B CPO Structure for Projective Limit Model

In this appendix, we make A∞ into a complete partial ordering (cpo) to establish
the existence of least solutions of recursion equations using Tarski’s fixed point
theorem.

The approximation relation v ⊆ Aω × Aω is the smallest partial ordering
such that for all p, p′, q, q′ ∈ Aω:

– D v p;
– p v p′ ⇒ tau ◦ p v tau ◦ p′;
– for all f ∈ F and m ∈ M, p v p′ ∧ q v q′ ⇒ pE f.mD q v p′ E f.mD q′;
– for all f ∈ F , m ∈ M and s ∈ n(m), p v p′ ∧ q v q′ ⇒ localfs (pE f.mD q) v

local
f
s (p′ E f.mD q′).

The approximation relation v ⊆ A∞ ×A∞ is defined component-wise:

(pn)n∈N
v (qn)n∈N

⇔∀n ∈ N • pn v qn .

The approximation relation v on An is simply the restriction of v on Aω to An.
The following proposition states that any p ∈ Aω is finitely approximated by

projection.

Proposition 10. For all p ∈ Aω:

∃n ∈ N • (∀k < n • πk(p) v πk+1(p) ∧ ∀l ≥ n • πl(p) = p) .

Proof. The proof follows the same line as the proof of Proposition 1 from [3].
This means that it is a rather trivial proof by induction on the structure of
p. Here, we have to consider the additional case p ≡ localfs (p′ E aD p′′) with
s ∈ n(m). This case goes analogous to the case p ≡ p′ E aD p′′. ut

The properties stated in the following lemma will be used in the proof of
Theorem 9 given below.

Lemma 8. For all n ∈ N:

1. (An,v) is a cpo;
2. πn is continuous;
3. for all p ∈ Aω:

(a) πn(p) v p;
(b) πn(πn(p)) = πn(p);
(c) πn+1(πn(p)) = πn(p).

Proof. The proof follows similar lines as the proof of Proposition 2 from [3]. For
property 1, we now have to consider directed sets that consist of D, postcon-
ditional compositions and restrictions of postconditional compositions instead
of D and postconditional compositions. However, the same reasoning applies.
For property 2, we now have to use induction on the structure of the elements
of Aω and distinction between the cases n = 0 and n > 0 for postconditional

37

compositions. Due to the presence of restrictions, we cannot use induction on n
and case distinction on the structure of the elements of Aω like in [3]. However,
the crucial details of the proof remain the same. Like in [3], property 3a follows
immediately from Proposition 10. Properties 3b and 3c follow immediately from
Lemma 1. ut

The following theorem states some basic properties of the approximation
relation v on A∞.

Theorem 9. (A∞,v) is a cpo with
⊔
P = (

⊔
{πn(p) | p ∈ P})n∈N

for all di-
rected sets P ⊆ A∞. Moreover, up to (order) isomorphism Aω ⊆ A∞.

Proof. The proof follows the same line as the proof of Theorem 1 from [3]. That
is, using general properties of the projective limit construction on cpos, the first
part follows immediately from Lemmas 8.1 and 8.2, and the second part follows
easily from Proposition 10 and Lemma 8.3. ut

Another important property of the approximation relation v on A∞ is stated
in the following theorem.

Theorem 10. The operations from the projective limit model of TCmd are con-
tinuous with respect to v.

Proof. The proof begins by establishing the monotonicity of the operations on
Aω. For the postconditional composition operations, this follows immediately
from the definition of v onAω . For the cyclic interleaving operation, it is straight-
forwardly proved by induction on the sum of the depths plus one of the threads
in the thread vector and case distinction on the structure of the first thread
in the thread vector. For the deadlock at termination operation, the thread-
service composition operations and the restriction operations, it is easily proved
by structural induction. Then the monotonicity of the operations on A∞ follows
from their monotonicity on Aω , the monotonicity of the projection operations
and the definition of v on A∞.

What remains to be proved is that least upper bounds of directed sets are
preserved by the operations. We will show how the proof goes for the postcon-
ditional composition operations. The proofs for the other kinds of operations go
similarly. Let P,Q ⊆ A∞ be directed sets. Then, for all n ∈ N, {πn(p) | p ∈ P},
{πn(q) | q ∈ Q}, {πn(p) E aD πn(q) | p ∈ P ∧ q ∈ Q} ⊆ An are directed sets
by the monotonicity of πn. Moreover, it is easily proved by induction on n, us-
ing the definition of v on An, that these directed sets are finite. This implies
that they have maximal elements. From this, it follows by the monotonicity of

E aD that, for all n ∈ N, (
⊔
{πn(p) | p ∈ P}) E aD (

⊔
{πn(q) | q ∈ Q}) =⊔

{πn(p) E aD πn(q) | p ∈ P ∧ q ∈ Q}. From this, it follows by the property of
lubs of directed sets stated in Theorem 9 and the definition of πn+1 that, for all
n ∈ N, πn+1((

⊔
P) E aD (

⊔
Q)) = πn+1(

⊔
{pE aD q | p ∈ P ∧ q ∈ Q}). Because

π0((
⊔
P)E aD(

⊔
Q)) = D = π0(

⊔
{pE aDq | p ∈ P ∧q ∈ Q}), also for all n ∈ N,

πn((
⊔
P)E aD(

⊔
Q)) = πn(

⊔
{pE aDq | p ∈ P∧q ∈ Q}). From this, it follows by

the definition of v on A∞ that (
⊔
P)E aD(

⊔
Q) =

⊔
{pE aDq | p ∈ P ∧q ∈ Q}.

ut

38

We have the following result about fixed points.

Theorem 11. Let x be a variable, and let t be a term over the signature of
TCmd in which no other variables than x have free occurrences. Then [[t]]

x
has a

least fixed point with respect to v, i.e. there exists a p ∈ A∞ such that [[t]]x(p) = p
and, for all q ∈ A∞, [[t]]

x
(q) = q implies p v q.

Proof. We have from Theorem 9 that (A∞,v) is a cpo and, using Theorem 10, it
is easily proved by induction on the structure of t that [[t]]

x
is continuous. From

this, we conclude by Tarski’s fixed point theorem that [[t]]x has a least fixed point
with respect to v. ut

Hence, every recursion equation in which no recursion operator occurs has a
least solution in the projective limit model for TCmd.

According to Tarski’s fixed point theorem, the least fixed point of a con-
tinuous operation φ : A∞ → A∞ is

⊔
{φn(D) | n ∈ N}. It is well-known that

the restriction to continuous functions of the operation fixl :(A
∞ → A∞) → A∞

defined by fixl(φ) =
⊔
{φn(D) | n ∈ N} is continuous. Moreover, for all functions

φ:A∞ → A∞ that are representable by a term over the signature of TCmd+REC,
fix(φ) = fixl(φ). This brings us to the following corollary of Theorem 11.

Corollary 1. Let x be a variable, and let t be a term over the signature of
TCmd+REC in which no other variables than x have free occurrences. Then
[[t]]

x
has a least fixed point with respect to v.

Hence, every recursion equation has a least solution in the projective limit model
for TCmd+REC.

References

1. L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In
J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra,
pages 197–292. Elsevier, Amsterdam, 2001.

2. J. A. Bergstra and I. Bethke. Molecular dynamics. Journal of Logic and Algebraic

Programming, 51:193–214, 2002.
3. J. A. Bergstra and I. Bethke. Polarized process algebra and program equivalence.

In J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors, Pro-

ceedings 30th ICALP, volume 2719 of Lecture Notes in Computer Science, pages
1–21. Springer-Verlag, 2003.

4. J. A. Bergstra and J. W. Klop. Fixed point semantics in process algebra. CWI
Report IW 206/82, Centre for Mathematics and Computer Science, August 1982.

5. J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1/3):109–137, 1984.

6. J. A. Bergstra and M. E. Loots. Program algebra for sequential code. Journal of

Logic and Algebraic Programming, 51(2):125–156, 2002.
7. J. A. Bergstra and C. A. Middelburg. A thread algebra with multi-level strategic

interleaving. To appear in Theory of Computing Systems, 2006.
8. J. A. Bergstra and C. A. Middelburg. Thread algebra for strategic interleaving.

Computer Science Report 04-35, Department of Mathematics and Computer Sci-
ence, Eindhoven University of Technology, November 2004.

39

9. J. A. Bergstra and C. A. Middelburg. Maurer computers with single-thread con-
trol. Computer Science Report 05-17, Department of Mathematics and Computer
Science, Eindhoven University of Technology, June 2005.

10. J. A. Bergstra and C. A. Middelburg. Maurer computers for pipelined instruction
processing. Computer Science Report 06-12, Department of Mathematics and
Computer Science, Eindhoven University of Technology, March 2006.

11. J. A. Bergstra and C. A. Middelburg. Splitting bisimulations and retrospective
conditions. Information and Computation, 204:1083–1138, 2006.

12. J. A. Bergstra and C. A. Middelburg. Thread algebra with multi-level strategies.
Fundamenta Informaticae, 71(2/3):153–182, 2006.

13. J. A. Bergstra and A. Ponse. Combining programs and state machines. Journal

of Logic and Algebraic Programming, 51(2):175–192, 2002.
14. A. Bolychevsky, C. R. Jesshope, and V. Muchnick. Dynamic scheduling in RISC

architectures. IEE Proceedings Computers and Digital Techniques, 143(5):309–317,
1996.

15. F. H. Croom. Principles of Topology. Saunders College Publishing, Philadelphia,
1989.

16. J. W. de Bakker, J. A. Bergstra, J. W. Klop, and J.-J. Ch. Meyer. Linear time and
branching time semantics for recursion with merge. Theoretical Computer Science,
34:135–156, 1984.

17. J. W. de Bakker and J. I. Zucker. Processes and the denotational semantics of
concurrency. Information and Control, 54(1/2):70–120, 1982.

18. J. Dugundji. Topology. Allyn and Bacon, Boston, 1966.
19. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.

Addison-Wesley, Reading, MA, second edition, 2000.
20. A. Hejlsberg, S. Wiltamuth, and P. Golde. C# Language Specification. Addison-

Wesley, Reading, MA, 2003.
21. W. A. Hodges. Model Theory, volume 42 of Encyclopedia of Mathematics and Its

Applications. Cambridge University Press, Cambridge, 1993.
22. C. R. Jesshope and B. Luo. Micro-threading: A new approach to future RISC. In

Australian Computer Architecture Conference 2000, pages 34–41. IEEE Computer
Society Press, 2000.

23. E. Kranakis. Fixed point equations with parameters in the projective model.
Information and Computation, 75(3):264–288, 1987.

24. C. A. Middelburg. An alternative formulation of operational conservativity with
binding terms. Journal of Logic and Algebraic Programming, 55(1/2):1–19, 2003.

25. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part II.
Information and Computation, 100:41–77, 1992.

26. M. R. Mousavi, M. J. Gabbay, and M. A. Reniers. SOS for higher order processes.
In M. Abadi and L. de Alfaro, editors, CONCUR 2005, volume 3653 of Lecture

Notes in Computer Science, pages 308–322. Springer-Verlag, 2005.
27. A. Ponse and Y. S. Usenko. Equivalence of recursive specifications in process

algebra. Information Processing Letters, 80:59–65, 2001.
28. D. A. Schmidt. Denotational Semantics: A Methodology for Language Develop-

ment. Allyn and Bacon, Boston, 1986.
29. V. Stoltenberg-Hansen and J. V. Tucker. Algebraic and fixed point equations over

inverse limits of algebras. Theoretical Computer Science, 87:1–24, 1991.

40

