175,898 research outputs found

    Electrode level Monte Carlo model of radiation damage effects on astronomical CCDs

    Full text link
    Current optical space telescopes rely upon silicon Charge Coupled Devices (CCDs) to detect and image the incoming photons. The performance of a CCD detector depends on its ability to transfer electrons through the silicon efficiently, so that the signal from every pixel may be read out through a single amplifier. This process of electron transfer is highly susceptible to the effects of solar proton damage (or non-ionizing radiation damage). This is because charged particles passing through the CCD displace silicon atoms, introducing energy levels into the semi-conductor bandgap which act as localized electron traps. The reduction in Charge Transfer Efficiency (CTE) leads to signal loss and image smearing. The European Space Agency's astrometric Gaia mission will make extensive use of CCDs to create the most complete and accurate stereoscopic map to date of the Milky Way. In the context of the Gaia mission CTE is referred to with the complementary quantity Charge Transfer Inefficiency (CTI = 1-CTE). CTI is an extremely important issue that threatens Gaia's performances. We present here a detailed Monte Carlo model which has been developed to simulate the operation of a damaged CCD at the pixel electrode level. This model implements a new approach to both the charge density distribution within a pixel and the charge capture and release probabilities, which allows the reproduction of CTI effects on a variety of measurements for a large signal level range in particular for signals of the order of a few electrons. A running version of the model as well as a brief documentation and a few examples are readily available at http://www.strw.leidenuniv.nl/~prodhomme/cemga.php as part of the CEMGA java package (CTI Effects Models for Gaia).Comment: Accepted by MNRAS on 13 February 2011. 15 pages, 7 figures and 5 table

    Fast Spectral Variability from Cygnus X-1

    Full text link
    We have developed an algorithm that, starting from the observed properties of the X-ray spectrum and fast variability of an X-ray binary allows the production of synthetic data reproducing observables such as power density spectra and time lags, as well as their energy dependence. This allows to reconstruct the variability of parameters of the energy spectrum and to reduce substantially the effects of Poisson noise, allowing to study fast spectral variations. We have applied the algorithm to Rossi X-ray Timing Explorer data of the black-hole binary Cygnus X-1, fitting the energy spectrum with a simplified power law model. We recovered the distribution of the power law spectral indices on time-scales as low as 62 ms as being limited between 1.6 and 1.8. The index is positively correlated with the flux even on such time-scales.Comment: 14 pages, 19 figures, accepted by MNRA

    Multiple field-of-view MCAO for a Large Solar Telescope: LOST simulations

    Full text link
    In the framework of a 4m class Solar Telescope we studied the performance of the MCAO using the LOST simulation package. In particular, in this work we focus on two different methods to reduce the time delay error which is particularly critical in solar adaptive optics: a) the optimization of the wavefront reconstruction by reordering the modal base on the basis of the Mutual Information and b) the possibility of forecasting the wavefront correction through different approaches. We evaluate these techniques underlining pros and cons of their usage in different control conditions by analyzing the results of the simulations and make some preliminary tests on real data.Comment: 10 pages, 5 figures to be published in Adaptive Optics Systems II (Proceedings Volume) Proceedings of SPI

    Statistical Time Series Models of Pilot Control with Applications to Instrument Discrimination

    Get PDF
    A general description of the methodology used in obtaining the transfer function models and verification of model fidelity, frequency domain plots of the modeled transfer functions, numerical results obtained from an analysis of poles and zeroes obtained from z plane to s-plane conversions of the transfer functions, and the results of a study on the sequential introduction of other variables, both exogenous and endogenous into the loop are contained
    • …
    corecore