133 research outputs found

    Numerical solution of singularly perturbed convection–diffusion problem using parameter uniform B-spline collocation method

    Get PDF
    AbstractThis paper is concerned with a numerical scheme to solve a singularly perturbed convection–diffusion problem. The solution of this problem exhibits the boundary layer on the right-hand side of the domain due to the presence of singular perturbation parameter ɛ. The scheme involves B-spline collocation method and appropriate piecewise-uniform Shishkin mesh. Bounds are established for the derivative of the analytical solution. Moreover, the present method is boundary layer resolving as well as second-order uniformly convergent in the maximum norm. A comprehensive analysis has been given to prove the uniform convergence with respect to singular perturbation parameter. Several numerical examples are also given to demonstrate the efficiency of B-spline collocation method and to validate the theoretical aspects

    Fitted non-polynomial spline method for singularly perturbed differential difference equations with integral boundary condition

    Get PDF
    The aim of this paper is to present fitted non-polynomial spline method for singularly perturbed differential-difference equations with integral boundary condition. The stability and uniform convergence of the proposed method are proved. To validate the applicability of the scheme, two model problems are considered for numerical experimentation and solved for different values of the perturbation parameter, ε and mesh size, h. The numerical results are tabulated in terms of maximum absolute errors and rate of convergence and it is observed that the present method is more accurate and uniformly convergent for h ≥ ε where the classical numerical methods fails to give good result and it also improves the results of the methods existing in the literature

    Fourth order compact finite difference method for solving singularly perturbed 1D reaction diffusion equations with dirichlet boundary conditions

    Get PDF
    A numerical method based on finite difference scheme with uniform mesh is presented for solving singularly perturbed two-point boundary value problems of 1D reaction-diffusion equations. First, the derivatives of the given differential equation is replaced by the finite difference approximations and then, solved by using fourth order compact finite difference method by taking uniform mesh. To demonstrate the efficiency of the method, numerical illustrations have been given. Graphs are also depicted in support of the numerical results. Both the theoretical and computational rate of convergence of the method have been examined and found to be in agreement. As it can be observed from the numerical results presented in tables and graphs, the present method approximates the exact solution very well.Keywords: Singular perturbation, Compact finite difference method, Reaction diffusion

    Hybrid Algorithm for Singularly Perturbed Delay Parabolic Partial Differential Equations

    Get PDF
    This study aims at constructing a numerical scheme for solving singularly perturbed parabolic delay differential equations. Taylor’s series expansion is applied to approximate the shift term. The obtained result is approximated by using the implicit Euler method in the temporal discretization on a uniform step size with the hybrid numerical scheme consisting of the midpoint upwind method in the outer layer region and the cubic spline method in the inner layer region on a piecewise uniform Shishkin mesh in the spatial discretization. The constructed scheme is an ε−uniformly convergent accuracy of order one. Some test examples are considered to testify the theoretical investigations

    A Numerical scheme to Solve Boundary Value Problems Involving Singular Perturbation

    Get PDF
    نستخدم المصفوفات العملياتية لمشتقات وانج-بول متعددة الحدود في هذه الدراسة لحل المعادلات التفاضلية الشاذه المضطربة من الدرجة الثانية (WPSODEs) ذات الشروط الحدية. باستخدام مصفوفة كثيرات حدود وانج-بول، يمكن تحويل مشكلة الاضطراب الرئيسية الشاذ إلى أنظمة معادلات جبرية خطية. كما يمكن الحصول على معاملات الحل التقريبي المطلوبة عن طريق حل نظام المعادلات المذكور. وتم استخدام أسلوب الخطاء المتبقي أيضًا لتحسين الخطأ، كما تمت مقارنة النتائج بالطرق المنشورة في عدد من المقالات العلمية. استُخدِمت العديد من الأمثلة لتوضيح موثوقية وفائدة مصفوفات وانج بول العملياتية. طريقة وانج بول لديها القدرة على تحسين النتائج عن طريق تقليل درجة الخطأ بين الحلول التقريبية والدقيقة. أظهرت سلسلة وانج-بول فائدتها في حل أي نموذج واقعي كمعادلات تفاضلية من الدرجة الأولى أو الثانيةThe Wang-Ball polynomials operational matrices of the derivatives are used in this study to solve singular perturbed second-order differential equations (SPSODEs) with boundary conditions. Using the matrix of Wang-Ball polynomials, the main singular perturbation problem is converted into linear algebraic equation systems. The coefficients of the required approximate solution are obtained from the solution of this system. The residual correction approach was also used to improve an error, and the results were compared to other reported numerical methods. Several examples are used to illustrate both the reliability and usefulness of the Wang-Ball operational matrices. The Wang Ball approach has the ability to improve the outcomes by minimizing the degree of error between approximate and exact solutions. The Wang-Ball series has shown its usefulness in solving any real-life scenario model as first- or second-order differential equations (DEs)

    On Ɛ-uniform convergence of exponentially fitted methods

    Get PDF
    A class of methods constructed to numerically approximate solution of two-point singularly perturbed boundary value problems of the form varepsilonu2˘72˘7+bu2˘7+cu=fvarepsilon u\u27\u27 + b u\u27 + c u = f use exponentials to mimic exponential behavior of the solution in the boundary layer(s). We refer to them as exponentially fitted methods. Such methods are usually exact on polynomials of certain degree and some exponential functions. Shortly, they are exact on exponential sums. It is often possible that consistency of the method follows from the convergence of interpolating function standing behind the method. Because of that, we consider interpolation error for exponential sums. A main result of the paper is an error bound for interpolation by exponential sum to the solution of singularly perturbed problem that does not depend on perturbation parameter varepsilonvarepsilon when varepsilonvarepsilon is small with the respect to mesh width. Numerical experiment implies that the use of dense mesh in the boundary layer for small meshwidth results with varepsilonvarepsilon-uniform convergence

    Higher order numerical methods for singular perturbation problems

    Get PDF
    Philosophiae Doctor - PhDIn recent years, there has been a great interest towards the higher order numerical methods for singularly perturbed problems. As compared to their lower order counterparts, they provide better accuracy with fewer mesh points. Construction and/or implementation of direct higher order methods is usually very complicated. Thus a natural choice is to use some convergence acceleration techniques, e.g., Richardson extrapolation, defect correction, etc. In this thesis, we will consider various classes of problems described by singularly perturbed ordinary and partial differential equations. For these problems, we design some novel numerical methods and attempt to increase their accuracy as well as the order of convergence. We also do the same for existing numerical methods in some instances. We find that, even though the Richardson extrapolation technique always improves the accuracy, it does not perform equally well when applied to different methods for certain classes of problems. Moreover, while in some cases it improves the order of convergence, in other cases it does not. These issues are discussed in this thesis for linear and nonlinear singularly perturbed ODEs as well as PDEs. Extrapolation techniques are analyzed thoroughly in all the cases, whereas the limitations of the defect correction approach for certain problems is indicated at the end of the thesis.South Afric

    Numerical Treatment of Non-Linear singular pertubation problems

    Get PDF
    Magister Scientiae - MScThis thesis deals with the design and implementation of some novel numerical methods for non-linear singular pertubations problems (NSPPs). It provide a survey of asymptotic and numerical methods for some NSPPs in the past decade. By considering two test problems, rigorous asymptotic analysis is carried out. Based on this analysis, suitable numerical methods are designed, analyzed and implemented in order to have some relevant results of physical importance. Since the asymptotic analysis provides only qualitative information, the focus is more on the numerical analysis of the problem which provides the quantitative information.South Afric
    corecore