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Abstract. A class of methods constructed to numerically approximate the solution of
two-point singularly perturbed boundary value problems of the form εu′′ + bu′ + cu = f

use exponentials to mimic exponential behavior of the solution in the boundary layer(s).
We refer to them as exponentially fitted methods. Such methods are usually exact on
polynomials of certain degree and some exponential functions. Shortly, they are exact on
exponential sums. It is often possible that consistency of the method follows from the
convergence of the interpolating function standing behind the method. Because of that,
we consider the interpolation error for exponential sums. The main result of the paper is
an error bound for interpolation by the exponential sum to the solution of the singularly
perturbed problem that does not depend on perturbation parameter ε when ε is small with
the respect to mesh width. The numerical experiment implies that the use of a dense mesh
in the boundary layer for small meshwidth results in ε-uniform convergence.
AMS subject classifications: 65L12, 11E23, 65L10, 65L20
Key words: difference scheme, tension spline, singular perturbation, ODE, interpolation,
exponential sum

1. Introduction

The main objective of this paper is interpolation by the exponential sum of the form

s(x) =

k−2
∑

ν=0

αix
i + αk−1e

−px/h.

Parameter p is a method defined parameter and it is not fitted to satisfy interpola-
tion conditions. A more general approach to interpolation by exponential sums is
considered in [1] and [9]. An interpolatory exponential sum is uniquely defined from
k interpolation conditions (cf. [1]).

In interpolation of sufficiently smooth function u at k equidistant points t1, . . . , tk
(ti+1 − ti = h), the interpolation error may be bounded [9] by

‖ u− s ‖∞ ≤ C1(p)h
k−1

∥

∥

∥

∥

h

p
u(k) + u(k−1)

∥

∥

∥

∥

∞

, and (1)

‖ u− s ‖∞ ≤ C2(p)h
k
∥

∥

∥
u(k) +

p

h
u(k−1)

∥

∥

∥

∞
. (2)
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Constants C1 and C2 depend on p, and they satisfy

lim
p→±∞

C1(p) = C∗
1 < ∞ and lim

p→0
C2(p) = C∗

2 < ∞.

So, bound (1) is appropriate for large values of p, while bound (2) is applicable to the
cases when p is small or moderate. These results are consistent with interpolation
error bounds for polynomials. This is not surprising, since the exponential sum
approaches the interpolation polynomial of order k when p tends to 0, and the
interpolation polynomial of order k − 1 when p tends to ±∞ (satisfying the first or
the last k − 1 interpolation conditions).

When u does not depend on p, or when u(k−1) and u(k) are bounded indepen-
dently on p, expression (1) gives a bound independent of p (for p large). But, there
are situations where function u depends on p. One example is the two-point singu-
larly perturbed boundary value problem

εu′′ + bu′ + cu = f (3)

u(0) = 0, u(1) = 0. (4)

Coefficient ε, called a perturbation parameter, is positive and small with respect to
b or c (0 < ε ≪ 1). Further, we assume that c satisfies c(x) ≤ 0 for all x ∈ [0, 1].

For b 6= 0, solution u exhibits steep exponential behavior at the one end of interval
[0, 1], or at both ends when b ≡ 0. This is known as boundary layer phenomena. For
b(x) < 0, asymptotic behavior of the solution of the singularly perturbed problem
(3) - (4) with respect to ε is described by (cf. [11])

|u(l)(x)| ≤ El

[

1 + ε−l exp

(

−bmin
1− x

ε

)]

, (5)

for l = 0, 1, 2, . . ., where
bmin = min

x∈[0,1]
|b(x)| (6)

and El are constants independent of ε and x. For b(x) > 0, we obtain an analogous
result by simple substitution x 7→ 1 − x. Solution u may be bounded in a similar
way when b ≡ 0.

For small perturbation parameter ε classical methods fail to give satisfactory
approximations, unless a mesh size is unrealistically large. This is the reason why
special methods are constructed for the singular perturbation problem. Best known
are methods based on fitted meshes and exponentially fitted difference schemes (cf.
[10, 11]). In this paper, we have in mind application to exponentially fitted methods.
Despite a long history of such methods, there are just a few results concerning an
approach by the interpolation error. Exponentially fitted difference schemes were
introduced by Il’in in 1969 [4]. After that, this approach has been used in many
papers to solve the singularly perturbed problem. There are, for example, also
exponentially fitted finite elements methods [3, 13] and exponentially fitted splines
(cf. [2]). An extensive overview of methods developed for singularly perturbed
problems may be found in [5].

Error for interpolation by exponential sums to the solution of problem (3) - (4)
is studied in [13, 14]. In [14], Zadorin considered interpolation by the exponential
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sum at two points. In [13], Stynes and O’Riordan used exponentially fitted linear
splines in the finite elements method. The interpolation error for a linear spline is
indeed an interpolation error for the exponential sum of order two. Our goal is to
find error estimate for an arbitrary order of exponential sum, i.e., for interpolation
at arbitrary number of points.

When b(x) 6= 0, parameter p in the exponential part of approximation (i.e., in
exp(−px/h)) is chosen according to asymptotic expansion of the solution in the
boundary layer:

pi = h
b(xi)

ε
,

for some given point xi. There are other possibilities. For example, in collocation
by tension splines [8] parameter p is defined as

pi = h
b(xi) + sgn b(xi)

√

b(xi)2 − 4εc(xi)

2ε
.

For self-adjoint problem (b ≡ 0), pi is defined by

pi = ±h

√

−c(xi)

ε
,

and it is positive for xi ∈ [0, 1/2) and negative for xi ∈ [1/2, 1]

Hence, parameter p is proportional to ε−1 or to
√
ε−1 in a self-adjoint case. Since

for x = 1 (5) gives that |u(l)(1)| ≤ C(1+ε−l), error estimate (1) is not ε independent
or bounded for small ε.

An important property of methods for singularly perturbed problems is eventual
independence of the convergence of perturbation parameter ε. Such convergence is
called ε-uniform convergence. In other words, if we assume that a method is defined
on a mesh (xi)i with mesh width h, then a method is ε-uniform convergent if there
exist constants C and m, independent of ε, such that solution u of problem (3) - (4)
and its approximation at mesh points ui satisfy

max
ε∈[0,1]

|u(xi)− ui| ≤ Chm

for all i. In this paper, we are going to prove weaker property of interpolation by a
exponential sum. We will show that exponential sum s that interpolates the solution
of problem (3) - (4) at k points satisfies

|u(r)(x)− s(r)(x)| ≤ Chk−1−r,

when mesh width h satisfies h ≥ 4(k−1)ε ln(1/ε). A numerical example will illustrate
that the application of a dense mesh on interval [0, 4(k − 1)ε ln(1/ε)] results in the
same bound for small h.

2. Interpolation error bound

Now, we revisit results on the interpolation error bound from [9] and apply them to
the solution of singularly perturbed boundary value problem (3) - (4).
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Theorem 1. Let u be a solution of singularly perturbed boundary value problem (3)
- (4), and let (xi)

n
0 be an equidistant sequence of points (0 = x0 < x1 < . . . < xn = 1,

h = xi − xi−1) for arbitrary chosen integer n satisfying

h ≥ 4(k − 1)ε ln(1/ε)/bmin, (7)

where constant bmin is defined by (6). Further, assume that

1. Functions b, c and f are sufficiently smooth such that u ∈ Ck(0, 1);

2. b(x) 6= 0 and c(x) ≤ 0 for all x ∈ [0, 1];

3. Parameter p from the exponential part of the exponential sum is of the same
sign as function b and satisfies K ≤ h/(|p|ε) ≤ b−1

min for some positive constant
K.

Then, the exponential sum s of order k (k ≥ 2) that interpolates solution u at k
consecutive mesh points (denoted by (ti)

k
1) satisfies

|u(r)(x) − s(r)(x)| ≤ Rhk−1−r, r = 0, 1, . . . , k − 1,

for all x ∈ [t1, tk−1] when b(x) < 0 or all x ∈ [t2, tk] when b(x) > 0. Constant R is
independent of h and ε.

Further,

lim
ε→0

|u(r)(x)− s(r)(x)| ≤ Rhk−1−r, r = 0, 1, . . . , k − 1,

for all x ∈ [t1, tk) when b(x) < 0 or all x ∈ (t1, tk] when b(x) > 0.

Proof. Let u be a solution of boundary value problem (3) - (4) and let s be the
exponential sum that interpolates u at k mesh points t1, . . . , tk. Then, by e we
denote the error function

e := u− s.

To shorten the notation, we define a differential operator

(Lku) (x) := u(k)(x) +
p

h
u(k−1)(x).

Now, error function e is the solution of the multipoint problem for ODE:

Lke = Lku, (8)

e(tj) = 0, j = 1, . . . , k. (9)

In the proof, we consider a case when b(x) < 0. Substitution 1 − x 7→ x simply
extends results to the case when b is positive. Hence, we consider the case with a
boundary layer on the right-hand side of segment [0, 1] and negative parameter p.

First, we consider the case when tk < 1. Function

eP (t) :=

∫ t

tk

∫ z1

tk

. . .

∫ zk−2

tk

∫ zk−1

tk

e−p(zk−1−zk)/h (Lku) (zk)dzk . . . dz1 (10)
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satisfies
LkeP = Lku,

i.e., it is a particular integral for problem (8) - (9). The r-th derivative (r = 0, . . . , k−
1) of particular integral (10) is given by

e
(r)
P (t) =

∫ t

tk

∫ zr+1

tk

. . .

∫ zk−2

tk

∫ zk−1

tk

e−p(zk−1−zk)/h (Lku) (zk)dzk . . . dzr+1.

We start with the bound for |Lku|. Note that condition (7) is equivalent to

e−bminh/ε ≤ ε4(k−1).

Applying this to bound (5), we obtain

exp

(

−bmin
1− z

ε

)

≤ exp

(

−bmin
1− tk

ε

)

≤ exp

(

−bmin
h

ε

)

≤ ε4(k−1), (11)

because of z ≤ tk < 1, i.e., z − 1 ≤ tk − 1 ≤ −h. Now, for l = k − 1, k and
C = max{Ek−1, Ek}, bound (5) reads

|u(l)(z)| ≤ C(1 + ε−l+4(k−1)) ≤ 2C, (12)

and
∣

∣

∣

∣

h

p
(Lku) (z)

∣

∣

∣

∣

=

∣

∣

∣

∣

h

p
u(k)(z) + u(k−1)(z)

∣

∣

∣

∣

≤ 2C
h

|p| + 2C ≤ 2C(b−1
minε+ 1) ≤ C̃, (13)

for some constant C̃ independent of ε.
For t ≤ tk, zk−1 ≤ tk holds and

∣

∣

∣

∣

∫ zk−1

tk

p

h
e−p(zk−1−zk)/hdzk

∣

∣

∣

∣

= 1− e−p(zk−1−tk)/h ≤ 1.

So, since tk < 1, (13) implies
∣

∣

∣

∣

∫ zk−1

tk

e−p(zk−1−zk)/h (Lku) (zk)dzk

∣

∣

∣

∣

≤ C̃

and

∣

∣

∣
e
(r)
P (t)

∣

∣

∣
≤ C̃

∣

∣

∣

∣

∫ t

tk

∫ zr+1

tk

. . .

∫ zk−2

tk

dzk−1 . . . dzr+1

∣

∣

∣

∣

≤ C̃
|t− tk|k−1−r

(k − 1− r)!
≤ Crh

k−1−r, (14)

where Cr is a constant independent of h.
In the next step, we consider the homogeneous problem

LkeH = 0

eH(tj) = −eP (tj), j = 1, . . . , k. (15)
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Solution eH is an exponential sum that interpolates −eP , so it can be written as

eH(t) =
k−1
∑

ν=1

αν
1

(ν − 1)!

(

t− t1
h

)ν−1

+ αke
−p(t−tk)/h. (16)

Coefficients αν are determined by interpolation conditions (15). Therefore, they
are the solution of equation

Aα = b, (17)

where aj ν = (j − 1)ν−1/(ν − 1)!, ν = 1, . . . , k − 1, aj k = exp(−p(tj − tk)/h) and
bj = −eP (tj) for j = 1, . . . , k.

Limit limε→0 A = limp→−∞ A exists and

Ā := lim
p→−∞

A =

[

B 0

cT 1

]

.

B is a Vandermonde matrix defined by points 0, . . . , k − 2, while

cν =
(k − 1)ν−1

(ν − 1)!
.

Therefore, Ā is regular:

Ā−1 =

[

B−1 0

−cTB−1 1

]

.

Since A is regular for all ε ∈ [0, 1], matrix A−1 is bounded independently of ε
(‖ A−1 ‖∞≤ K1). The bound does not depend on h, because matrix A does not
depend on h either.

Differentiation of (16) yields

|e(r)H (t)| ≤ ‖α‖∞
1

hr

(

k−1−r
∑

ν=1

[(t− t1)/h]
ν−1

(ν − 1)!
+ |p|re−p(t−tk)/h

)

. (18)

For t ≤ tk−1, 0 ≥ t− tk ≥ tk−1 − tk = −h holds. Now, bounds on p give

hbmin

ε
≤ |p| = −p ≤ h

Kε
.

Therefore, for r = 0, 1, . . . , k − 1

|p|re−p(t−tk)/h ≤ hr

Kr
ε−re−bminh/ε ≤ hr

Kr
ε4(k−1)−r ≤ 1

Kr
,

because of 4(k − 1)− r ≥ 3(k − 1) ≥ 0.
Hence, from

‖α‖∞ ≤ ‖A−1‖∞‖b‖∞
and

‖b‖∞ = max
i

|eP (ti)| ≤ C0h
k−1,
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we obtain that

|e(r)H (t)| ≤ C0K1

(

k−1−r
∑

ν=1

(k − 1)ν−1

(ν − 1)!
+

1

Kr

)

hk−1−r , (19)

for t ≤ tk−1.
The bound for the error function follows from e = eP + eH .
Note that the above result also covers the limiting case when ε → 0 for t ∈

[t1, tk−1]. When t ∈ (tk−1, tk), the bound for e
(r)
P does not depend on ε, so the same

bound holds for ε → 0. Since ‖α‖∞ is also bounded independently of ε, from (18)

it follows that e
(r)
H is bounded by

lim
ε→0

|e(r)H (t)| ≤ C0K1

(

k−1−r
∑

ν=1

(k − 1)ν−1

(ν − 1)!

)

hk−1−r, (20)

for t < tk.
When s interpolates u at tk = 1, we first consider behavior of the error in interval

[t1, tk−1]. Let us define X = (tk−1 + tk)/2. We define a particular integral as

eP (t) :=

∫ t

X

∫ z1

X

. . .

∫ zk−2

X

∫ zk−1

X

e−p(zk−1−zk)/h (Lku) (zk)dzk . . . dz1. (21)

As in (11), taking into account that 1−X = h/2, we obtain

exp

(

−bmin
1− z

ε

)

≤ exp

(

−bmin
1−X

ε

)

= exp

(

−bmin
h

2ε

)

≤ ε2(k−1).

Now bounds (12) and, consequently, (13) hold. Since t ≤ zk−1 ≤ X , we obtain that
∣

∣

∣

∣

∫ zk−1

X

p

h
e−p(zk−1−zk)/hdzk

∣

∣

∣

∣

= 1− e−p(zk−1−X)/h ≤ 1.

Similar argumentation as in (14) yields
∣

∣

∣
e
(r)
P (t)

∣

∣

∣
≤ Crh

k−1−r,

when t ∈ [t1, tk−1].
When t = tk = 1, for z ∈ [X, 1] we obtain

|u(l)(z)| ≤ C

[

1 + ε−l exp

(

−bmin
1− z

ε

)]

≤ C
(

1 + ε−l
)

,

for l = k − 1, k and C = max{Ek−1, Ek}. Since h/(|p|ε) is bounded by b−1
min and

ε ≤ 1, the bound for Lku is given by
∣

∣

∣

∣

h

p
(Lku) (z)

∣

∣

∣

∣

=

∣

∣

∣

∣

h

p
u(k)(z) + u(k−1)(z)

∣

∣

∣

∣

≤ C

[

h

p
+

h

p
ε−k + 1 + ε−k+1

]

≤ C
[

b−1
minε+ b−1

minε ε
−k + 1 + ε−k+1

]

≤ 2C
(

b−1
min + 1

)

ε−k+1 =: C̄ε−k+1.
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Taking into account that
∣

∣

∣

∣

∫ zk−1

X

p

h
e−p(zk−1−zk)/hdzk

∣

∣

∣

∣

= e−p(zk−1−X)/h − 1 ≤ e−p(1−X)/h = e−p/2,

we obtain that

|e(r)P (tk)| ≤ C̄ε−k+1e−p/2

∫ t

X

∫ zr+1

X

. . .

∫ zk−2

X

dzk−1 . . . dzr+1

≤ C̄rε
−k+1e−p/2hk−1−r.

For tk = 1 we modify function eH given by (16):

eH(t) =

k−1
∑

ν=1

αν
1

(ν − 1)!

(

t− t1
h

)ν

+ αkε
−k+1e−p/2e−p(t−tk)/h. (22)

Interpolation conditions (4) give a system similar to (17) with the only difference
in the last equation due to a different definition of exponential sum eH . But, after
dividing the last equation by ε−k+1e−p/2, we obtain

A1α = c,

where matrix A1 is similar to A from (17). The difference is in the last column:

a
(1)
j k = ε−k+1e−p/2e−p(tj−tk)/h,

for j = 1, . . . , k − 1. Because of the normalization, a
(1)
k k = 1, vector c also differs

from vector b in the last entry:

ck = −eP (tk)/(ε
−k+1e−p/2).

Note that
|ck| ≤ max{C̄0, C0}hk−1−r.

Matrix

Ā1 := lim
p→−∞

A1 =

[

B 0

0T 1

]

is regular. As in the case for tk < 1, we conclude that there exists constant K2

independent of ε such that ‖ Ā ‖∞≤ K2.
Taking into account that

∣

∣

∣

∣

dr

dtr
ε−k+1e−p/2e−p(t−tk)/h

∣

∣

∣

∣

= |αk| ε−k+1
∣

∣

∣

p

h

∣

∣

∣

r

e−p/2e−p(t−tk)/h

≤ |αk| ε−k+1K−rε−re−p/2e−p(tk−1−tk)/h

= |αk|K−rε−k+1−rep/2

≤ |αk|K−rε−k+1−re−hbmin/(2ε)

≤ |αk|K−rε−k+1−r+2(k−1)

≤ |αk|K−r,
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for t ≤ tk−1, we easily obtain that bound (19) is valid in this case, too. The bound
for e(r) follows from e = eP + eH , again.

Limit behavior of the error on the interval (tk−1, tk) for tk = 1 is analyzed in
a similar way. Instead of X = (tk−1 + tk)/2, for given t ∈ (tk−1, tk) we choose an
arbitrary X satisfying tk−1 < X < tk = 1. With X defined in this way, we use
particular integral (21). Since for t < z < X

exp

(

−bmin
1− z

ε

)

≤ exp

(

−bmin
1−X

ε

)

,

it follows that

lim
ε→0

∣

∣

∣

∣

h

p
u(k)(z)

∣

∣

∣

∣

= 0 and lim
ε→0

∣

∣

∣
u(k−1)(z)

∣

∣

∣
≤ C.

Therefore,

lim
ε→0

∣

∣

∣

∣

h

p
(Lku) (z)

∣

∣

∣

∣

≤ C.

Now, it can be easily verified that

lim
ε→0

∣

∣

∣
e
(r)
P (t)|

∣

∣

∣
≤ Crh

k−1−r.

For t > X we obtain
∣

∣

∣

∣

∫ zk−1

X

p

h
e−p(zk−1−zk)/hdzk

∣

∣

∣

∣

≤ e−p(1−X)/h,

and

|e(r)P (t)| ≤ C̃ε−k+1e−p(1−X)/hhk−1−r.

The solution of homogenous problem eH is modified according to asymptotic behav-
ior, similarly to (22):

eH(t) =

k−1
∑

ν=1

αν
1

(ν − 1)!

(

t− t1
h

)ν

+ αkε
−k+1e−p(1−X)/he−p(t−tk)/h.

Applying the same argumentation as before, we obtain

lim
ε→0

∣

∣

∣
e
(r)
H (t)|

∣

∣

∣
≤ ˜̃Chk−1−r

for t < x. Since t is arbitrarily chosen, the result is valid for all t < tk = 1.

Remark 1. The result of Theorem 1 can be easily extended to a non-equidistant
mesh. One should define hi = xi+1 − xi and h = maxi hi. Instead of h in (7),
there would be hi. Also, in assumption 3, from Theorem, hi should be used, while all
bounds stand with term h. A proof of this more general case is essentially the same,
but with more technical details because of a more complex structure of the mesh.
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An assumption on p in Theorem 1 may also be weakened. Namely, there is no
need to impose restriction 3 when all interpolation points lie outside the boundary
layer. But, this would lead to a more extensive proof without practical benefit since
outside the boundary layer exponential fitting is used as stated in the theorem or
it is not used at all, i.e., polynomials are used. Therefore, in the following corollary
we comment interpolation by polynomials outside the boundary layer.

Corollary 1. Let functions b, c and f satisfy conditions of Theorem 1 and let u
be a solution of singularly perturbed boundary value problem (3) - (4). Further, for
given sequence of points (ti)

k
1 , (0 ≤ t1 < . . . < tk ≤ 1, hi = ti+1 − ti, h = maxi hi)

satisfying
1− tk ≥ kε ln(1/ε)/bmin (23)

when b(x) < 0 or
t1 ≥ kε ln(1/ε)/bmin (24)

when b(x) > 0, let P be a polynomial of order k (k ≥ 2) that interpolates solution
u at (ti)

k
1 . Then there exists some constant R, independent of h and ε, that the

following estimate holds

|u(r)(x)− p(r)(x)| ≤ Rhk−r r = 0, 1, . . . , k − 1,

for all x ∈ [t1, tk].

Proof. Just note that condition (23) applied to (5) implies |u(k)(z)| ≤ 2Ek, for
z ∈ [t1, tk]. Now, standard results for the interpolation error for polynomials give
the assertion of the corollary.

Remark 2. If p is chosen as p = b(0)h/ε for b(x) > 0 or p = b(1)h/ε for b(x) < 0,
then condition (7) may be substituted by h ≥ 4(k−2)ε ln(1/ε)/bmin. Namely, Kellogg
and Tsan [6] proved that solution u is of the form u(x) = z(x)+γ exp(b(1)(1−x)/ε)
when b(x) < 0. Function z satisfies

|z(l)(x)| ≤ El

[

1 + ε1−l exp

(

−bmin
1− x

ε

)]

.

Since (Lku) = (Lkz), the above bound can be used in the proof instead of bound
(5). Note that for k = 2 there is no restriction on h. This is in agreement with
results from [14] where ε-uniform bound is obtained for interpolation in two points.
The exponentially fitted finite elements method considered in [13] is also ε-uniform
convergent.

3. On ε-uniform convergence

To illustrate results from the paper, we choose the solution of singularly perturbed
problem

εu′′ + 2(1− x)u′ − 2u = (ε− 2x)ex,

with boundary conditions

u(0) = 2 and u(1) = e−1/ε + e.
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Figure 1: Interpolation error to the solution of singularly perturbed problem (25) for exponential
sums of different order k in dependence on mesh size h = 1/N (x1 = 0.5, perturbation parameter
ε = 10−4)

Function
u(x) = e−(2x−x2)/ε + ex (25)

is a solution of the boundary value problem. This solution has a boundary layer
near point x = 0.

The basic idea of the experiment is to divide interval [0, 1] into N equal parts
and interpolate function u at k consecutive points. We choose one set of k points
outside the boundary layer, in the middle of considered interval: x1 = 0.5. Another
set of points, more interesting, is in the boundary layer: x1 = 0. To determine the
interpolation error we use a dense mesh on each of subintervals [ti, ti+1].

We start with an analysis of the interpolation error outside the boundary layer,
so we fix x1 = 0.5. The interpolation error of the exponential sum for different
mesh sizes h = 1/N is shown in Figure 1. We present errors for methods given by
k = 3, 5, 7, 9, 11. Initial behavior of the error is in accordance with Theorem 1, i.e.,
the error is of size hk−1 when h > ε. For h < ε, order of convergence increases, as
expected from (2). This may be clearly seen from Figure 2, where numerical orders
of convergence are shown. The error is bounded by term Chk−1 independently of ε.
This may be seen from Figure 3. There is shown error for the three-point method
(k = 3) and for different values of perturbation parameter ε. All error curves are
bounded by the curve for smallest value of ε (ε = 10−9).

Behavior of the interpolation error in the boundary layer is totally different, as
may be seen in Figure 4. Behavior for large values of mesh width h is described by
Theorem 1. But, at the certain point, the error starts to increase. When h < ε, the
error decreases with the order of convergence given by (2).

Such behavior is not unexpected. In [12], Shishkin proved that difference schemes
on equidistant meshes can not be ε-uniform convergent. To resolve this problem,
we computed, for different values of ε, transition point σ, the value of h when the
error starts to increase. This is done for a different order of exponential sums. The
result is shown in Figure 5. It is evident that σ = Dkε ln(1/ε) with constant Dk
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Figure 2: Numerical order of convergence for interpolation by exponential sums of order k (x1 =
0.5, perturbation parameter ε = 10−4)
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Figure 3: Interpolation error to the solution of singularly perturbed problem (25) for exponential
sum of different order 3 for different values of perturbation parameter ε (x1 = 0.5)

independent of ε. Actually, in our example, σ ≈ 0.36(k − 1)ε ln(1/ε). This finding
approves that the condition on mesh-width h from Theorem 1 is quite sharp. Further
investigation shows that anomaly in convergence is present only on interval [0, σ∗],
where

σ∗ = (k − 1)ε ln(1/ε)/bmin.

Since we consider interval [0, (k − 1)h], for the value of bmin we actually used |b(0)|.
A similar definition of the transition point is used in the exponentially fitted finite
elements method [13] with σ∗ = 2ε ln(1/ε)/bmin. For definition of Shishkin mesh,
σ∗ = Cpε ln(1/h)/bmin is used, where constant Cp satisfies Cp ≥ p for the methods
of order p (cf. [11, 7]). In our case, p = k− 1. This definition of the transition point
is also similar to our definition.

In order to resolve a problem with convergence, we start from the observation
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Figure 4: Interpolation error to the solution of singularly perturbed problem (25) for the exponential
sums of different order k in dependence of mesh size h = 1/N (x1 = 0, perturbation parameter
ε = 10−4)

that the error decreases for h < ε and that the error is approximately the same
for h = σ and h = σ2. So, we have to avoid usage of h ∈ [σ2, σ] in the boundary
layer. A simple solution is to use a dense mesh on interval [0, σ] for h ≤ σ. A
choice of an equidistant mesh of size O(N) will guarantee required properties. The
obtained mesh is a Shiskin type mesh with a different transition point and a different
mesh size in the boundary layer. For exponential sums of order 3, 5, 9, 7 and 11,
we experimentally determined that good behavior of error is obtained by using of
1/16N , 7/4N , 13/2N , 29/2N and 26N mesh points in the interval [0, σ]. The
interpolation error for this strategy is shown in Figure 6.
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Figure 5: Dependence of transition point σ on perturbation parameter ε
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Figure 6: Interpolation error to the solution of singularly perturbed problem (25) with a dense
mesh in the boundary layer for exponential sums of different order k in dependence on mesh size
h = 1/N (x1 = 0, perturbation parameter ε = 10−4)

4. Conclusion

Among numerical methods for singularly perturbed problem (3) - (4), a special
advantage is given to those that are ε-uniform convergent. For example, a lot of
methods based on adapted meshes (such as a Shishkin mesh) are ε-uniform con-
vergent. Exponentially fitted methods that are proved to be ε-uniform convergent
are rare, although sometimes numerical evidence suggests the existence of ε-uniform
convergence.

If the method is exact on polynomials of certain degree and some exponential
functions, it is exact on exponential sums. In such case, it could be possible that
the consistency of the method is connected to the convergence of the interpolating
function standing behind the method. We hope that the main finding of this pa-
per opens a possibility that much more exponentially fitted methods are ε-uniform
convergent.

We prove that exponential sums give O(hk−1) approximation to the solution of
the singularly perturbed boundary value problem when h si relatively large (h ≥
4(k− 1)ε ln(1/ε)). A numerical experiment illustrates that this bound is sharp since
the interpolation error starts to increase for smaller h. An application of the mesh
that is dense in the boundary layer leads to the same rate of convergence for small
h. A method defined in such way would be ε-uniform convergent. It is notable that
the interpolation error is already small for h = (k − 1)ε ln(1/ε). In our example, it
ranges from 5.8 · 10−8 for k = 3 to 2.4 · 10−27 for k = 11. An application of small h
and the dense mesh is needed only if higher accuracy is required.
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