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This paper is concerned with a numerical scheme to solve a singularly perturbed
convection–diffusion problem. The solution of this problem exhibits the boundary layer
on the right-hand side of the domain due to the presence of singular perturbation
parameter ε. The scheme involves B-spline collocation method and appropriate piecewise-
uniform Shishkin mesh. Bounds are established for the derivative of the analytical solution.
Moreover, the present method is boundary layer resolving as well as second-order
uniformly convergent in the maximum norm. A comprehensive analysis has been given
to prove the uniform convergence with respect to singular perturbation parameter. Several
numerical examples are also given to demonstrate the efficiency of B-spline collocation
method and to validate the theoretical aspects.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Singularly perturbed convection–diffusion problems arise in various branches of science and engineering such as mod-
elling of water quality problems in river networks [2], fluid flow at high Reynolds numbers [10], convective heat transport
problem with large Péclet numbers [11], drift diffusion equation of semiconductor device modelling [21], electromagnetic
field problem in moving media [8], financial modelling [3] and turbulence model [16]. Normally, boundary and interior
layers are present in the solutions of such problems, when the singular perturbation parameter ε is small. These layers
are the thin region of the independent variable, where the gradient of the dependent variable is steep or unacceptably
large oscillations occur in the numerical solution as the singular perturbation parameter tends to zero. To resolve these
layers, two approaches have generally been considered. The first of these involves deriving a method which reflects the
nature of the solution in these layers. This method is referred to as fitted operator method. The second approach is to use
layer adapted mesh. This approach falls under the class of fitted mesh methods. Layer adapted meshes were first intro-
duced by Bakhvalov [1] in the context of reaction–diffusion problems. In the late 1970s and early 1980s, special meshes for
convection–diffusion problem were investigated by Gartland [7], Liseikin [17], Vulanović [31] and others in order to achieve
uniform convergence. The discussion livened up by the introduction of special piecewise uniform meshes by Shishkin [24].
Because of their simple structure, they have attracted much attention and are now widely referred to as Shishkin mesh.
Uniformly convergent numerical methods, independent of singular perturbation parameter, were developed over last 25
years (for more detailed discussion see [5,6,18,23] and references therein).

In this paper, we consider the following singularly perturbed convection–diffusion problem

Lu(x) ≡ −εu′′(x) + a(x)u′(x) + b(x)u(x) = f (x), x ∈ Ω = (0,1), (1.1a)

* Corresponding author.
E-mail addresses: kadal@iitk.ac.in (M.K. Kadalbajoo), vicky@iitk.ac.in (V. Gupta).
0022-247X/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2009.01.038

https://core.ac.uk/display/82612718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:kadal@iitk.ac.in
mailto:vicky@iitk.ac.in
http://dx.doi.org/10.1016/j.jmaa.2009.01.038


440 M.K. Kadalbajoo, V. Gupta / J. Math. Anal. Appl. 355 (2009) 439–452
with the boundary conditions

u(0) = A, u(1) = B, (1.1b)

where 0 < ε � 1 is a small perturbation parameter and A and B are given constants. Further, it is assumed that the functions
a(x), b(x) and f (x) are sufficiently smooth with

a(x) � α > 0, x ∈ Ω̄, (1.2)

b(x) � β > 0, x ∈ Ω̄. (1.3)

Under these conditions, singularly perturbed convection–diffusion problem (1.1) possesses a unique smooth solution with
boundary layer on the right side of the domain Ω̄ .

This type of problem has been extensively studied in the literature. O’Malley [19] examined the theoretical aspects,
such as existence, uniqueness, and asymptotic behavior of the solution. Various numerical methods based on fitted mesh
and the analysis of the uniform convergence with respect to ε have been considered in [5,6,18,23] (see also references
given there). A brief survey of numerical techniques for solving singularly perturbed ordinary differential equations is given
by Kadalbajoo and Patidar [13]. In this survey paper, they discussed some standard singular perturbation models and the
numerical methods developed by numerous researchers during 1984–2000.

Spline approximation method for numerical solutions of singulary perturbed two-point boundary value problems have
been studied by various researchers. Uzelac and Surla [29] constructed a uniformly accurate scheme using collocation with
classical quadratic polynomial splines on Shishkin meshes. Stojanović [26] introduced the spline collocation method for sin-
gular perturbation problem using piecewise quadratic interpolating polynomials as an approximate. Sakai and Usmani [27]
gave a concept of B-spline in terms of hyperbolic and trigonometric splines which are different from earlier ones. It is proved
that the hyperbolic and trigonometric B-splines are characterized by a convolution of some special exponential functions
and a characteristic function on the interval [0,1]. Again Sakai and Usmani [28], considered an application of simple expo-
nential splines to the numerical solution of singular perturbation problem. They found that computational effort involved in
their collocation method was less than that required for other exponential type splines. Kadalbajoo and Patidar [12] derived
uniformly convergent schemes of order two for these problems using splines in tension and splines in compression. Kadal-
bajoo and Aggarwal [14] gave the B-spline collocation method of order two with Shishkin mesh for self-adjoint singularly
perturbed two-point boundary value problem.

In this paper we propose and analyse B-spline collocation method to solve problem (1.1) with piecewise uniform Shishkin
mesh. The principal aim of this paper is to analyse the boundary layer behavior and to provide a layer-resolving parameter-
uniform method with sufficient accuracy. Spline collocation methods are more economical and straightforward to use, since
they require no numerical integrations as in finite element method or Galerkin approximate. Also, B-spline collocation
method in solving differential equations leads to banded matrices with a small number of bands, as opposed to the full
matrices one obtains using (say), polynomials, trigonometric functions, and other well-known nonpiecewise approximates.
Moreover, the present method does not require any information about the asymptotic approximation of the solution and is
easy to implement. In fact, we prove that the B-spline collocation method provides uniform convergence in ε.

The paper is structured as follows. Some analytical results for continuous problem, like comparison principle, stability
estimates and a priori bounds for the derivative of the exact solution of the problem (1.1) are presented in Section 2. In
Section 3, we introduce the nonuniform mesh of Shishkin type and use B-spline collocation method to solve singularly
perturbed two-point boundary value problem. In Section 4, we prove the main theoretical result, namely ε-uniform con-
vergence in the maximum norm. To demonstrate the applicability of the proposed method, some numerical examples have
been solved and the results are presented by using piecewise uniform mesh in Section 5. Finally, discussion and conclu-
sion is given at the end of the paper in Section 6. Throughout this paper, C denotes a generic positive constant that is
independent of singular perturbation parameter ε and mesh parameter N .

2. Continuous problem

In this section classical bounds for the solution of problem (1.1) and its derivative are derived. We first use the compari-
son principle to show that the solution of (1.1) is bounded. For any given function g(x) ∈ Ck(Ω̄) (k a non-negative integer),
‖g‖ is a global maximum norm over the domain Ω̄ given by

‖g‖ = max
x∈Ω̄

∣∣g(x)
∣∣.

The proof of the following comparison principle for the differential operator is standard.

Lemma 1 (Comparison Principle). Let y(x) ∈ C2(Ω̄) satisfying y(0) � 0, y(1) � 0, such that Ly(x) � 0, ∀x ∈ Ω . Then y(x) � 0,
∀x ∈ Ω̄.
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Lemma 1 implies the uniqueness of the solution and since the concerned problem is linear, existence of the solution
follows by its uniqueness. An immediate consequence of the comparison principle is the following stability estimate for the
solution u.

Lemma 2. If u(x) is the solution of the problem (1.1), then ∀ε > 0 we have

∥∥u(x)
∥∥ � ‖ f ‖

α
+ max

(|A|, |B|), ∀x ∈ Ω̄.

Proof. Let us consider the two barrier functions Ψ ±(x) defined by

Ψ ±(x) = x
‖ f ‖
α

+ max
(|A|, |B|) ± u(x).

Then we have

Ψ ±(0) = max
(|A|, |B|) ± u(0)

= max
(|A|, |B|) ± A, since u(0) = A

� 0,

Ψ ±(1) = ‖ f ‖
α

+ max
(|A|, |B|) ± u(1)

= ‖ f ‖
α

+ max
(|A|, |B|) ± B, since u(1) = B

� 0,

and

LΨ ±(x) = −ε
(
Ψ ±(x)

)′′ + a(x)
(
Ψ ±(x)

)′ + b(x)Ψ ±(x) = a(x)
‖ f ‖
α

+ b(x)

[
max

(|A|, |B|) + x‖ f ‖
α

]
± f (x).

Since a(x) � α > 0 and ‖ f ‖ � f (x), we have a(x)α−1‖ f ‖ ± f (x) � 0. Using this inequality, we get

LΨ ±(x) � 0, ∀x ∈ Ω.

Therefore, by the comparison principle (Lemma 1), we get Ψ ±(x) � 0, ∀x ∈ Ω̄ , giving the desired estimate. �
Further we derive the bounds for the solution u and its derivative by the following estimates.

Theorem 3. If u(x) is the solution of the boundary value problem (1.1) and a, b and f ∈ C2(Ω̄), then we have

∣∣u(i)(x)
∣∣ � C

[
1 + ε−i exp

(−α(1 − x)/ε
)]

, 0 � i � 3, x ∈ Ω̄.

Proof. First we shall show that

∣∣u(k)(x)
∣∣ � Cε−k for 1 � k � 3.

By the mean value theorem, there exists a point z ∈ (1 − ε,1), such that

u′(z) = u(1) − u(1 − ε)

ε
,

thus

∣∣εu′(z)
∣∣ � 2‖u‖. (2.1)

Integrating the differential equation (1.1a) from z to 1, we get

−εu′(1) + εu′(z) =
1∫

z

(
f (t) − a(t)u′(t) − b(t)u(t)

)
dt, (2.2)

where, right-hand side gives
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∣∣∣∣∣
1∫

z

(
f (t) − a(t)u′(t) − b(t)u(t)

)
dt

∣∣∣∣∣ � ‖ f ‖|1 − z| +
1∫

z

∣∣a(t)u′(t)
∣∣dt + ‖b‖‖u‖|1 − z|. (2.3)

Here

1∫
z

a(t)u′(t)dt = a(t)u(t)|1z −
1∫

z

a′(t)u(t)dt.

Taking modulus on both sides, we get

1∫
z

∣∣a(t)u′(t)
∣∣dt �

(
2‖a‖ + ‖a′‖|1 − z|)‖u‖. (2.4)

Now, combining the inequality (2.4) with inequality (2.3), and using Lemma 2 for the bounds on u and 0 � |1 − z| � 1, we
have

∣∣∣∣∣
1∫

z

(
f (t) − a(t)u′(t) − b(t)u(t)

)
dt

∣∣∣∣∣ � ‖ f ‖ + (
2‖a‖ + ‖a′‖ + ‖b‖)‖u‖. (2.5)

Using this inequality with inequalities (2.1) and (2.2), we get |u′(1)| � Cε−1, where C = ‖ f ‖ + (2 + 2‖a‖ + ‖a′‖ + ‖b‖)‖u‖.
Now using (2.2) with z = x ∈ Ω , we get

∣∣u′(x)
∣∣ � Cε−1, ∀x ∈ Ω,

where C = 2(‖ f ‖+ (1 + 2‖a‖+‖a′‖+ ‖b‖)‖u‖) is independent of ε. Similarly, for k = 2,3, one can easily obtain the bounds
by repeatedly differentiating of (1.1a) and using the bounds on u and u′ . Now we shall prove

∣∣u(i)(x)
∣∣ � C

[
1 + ε−i exp

(−α(1 − x)/ε
)]

, 0 � i � 3, x ∈ Ω̄.

We obtain these bounds by following the approach given in [15]. The proof follows by induction. From Lemmas 1 and 2 we
have

∣∣u(x)
∣∣ � C, ∀x ∈ Ω̄. (2.6)

Differentiating i times both side of the original equation Lu = f we have

Lu(i) = f i, 1 � i � 3,

where f0 = f and f i, 1 � i � 3, depends on u,a,b, f and their derivatives of order up to and including i. Using induction
hypotheses, the following estimates hold

∣∣u(i)(x)
∣∣ � C

[
1 + ε−i exp

(−α(1 − x)/ε
)]

, x ∈ Ω̄,

and
∣∣ f i(x)

∣∣ � C
[
1 + ε−i exp

(−α(1 − x)/ε
)]

, x ∈ Ω̄.

At the boundaries we have |u(i)(0)| � C(1 + ε−i exp(−α/ε)) � C(1 + ε−(i−1)), because e−α/ε � ε � 1, and |u(i)(1)| �
C(1 + ε−i). Therefore, we have

∣∣u(i)(0)
∣∣ � Cε−(i−1),

∣∣u(i)(1)
∣∣ � Cε−i . (2.7)

Let

θi(x) = 1

ε

1∫
x

f i(t)e−(A(x)−A(t))/ε dt,

where A(x) is the indefinite integral of a(x). The particular solution of the equation Lu(i) = f i is given by

u(i)
p (x) = −

1∫
x

θi(t)dt.

Therefore, its general solution can be written as
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u(i) = u(i)
p + u(i)

h ,

where the homogeneous solution u(i)
h satisfies

Lu(i)
h = 0, u(i)

h (0) = u(i)(0) − u(i)
p (0), u(i)

h (1) = u(i)(1).

Now introducing the function

φ(x) =
∫ 1

x e−A(t)/ε dt∫ 1
0 e−A(t)/ε dt

. (2.8)

It is clear that Lφ � 0, φ(0) = 1, φ(1) = 0 and 0 � φ(x) � 1. Then u(i)
h is given by

u(i)
h (x) = (

u(i)(0) − u(i)
p (0)

)
φ(x) + u(i)(1)

(
1 − φ(x)

)
.

Thus above leads to the expression for u(i+1) given by

u(i+1)(x) = u(i+1)
p + u(i+1)

h = θi(x) + (
u(i)(0) − u(i)

p (0) − u(i)(1)
)
φ′(x).

Bounds of a(x) lead to the estimate

∣∣φ′(x)
∣∣ � Cε−1e−α(1−x)/ε. (2.9)

Furthermore, using the estimate for f i and bounds of a(x) and then evaluating the integral, we have

∣∣θi(x)
∣∣ � C

(
1 + ε−(i+1)e−α(1−x)/ε). (2.10)

Since u(i)
p (0) = − ∫ 1

0 θi(t)dt , it follows that |u(i)
p (0)| � Cε−i . But

∣∣u(i+1)(x)
∣∣ �

∣∣θi(x)
∣∣ + (∣∣u(i)(0)

∣∣ + ∣∣u(i)
p (0)

∣∣ + ∣∣u(i)(1)
∣∣)∣∣φ′(x)

∣∣.
Therefore, from Eqs. (2.7), (2.9) (2.10) and above estimate for u(i)

p (0) we lead to

∣∣u(i+1)(x)
∣∣ � C

(
1 + ε−(i+1)e−α(1−x)/ε), x ∈ Ω̄,

which is the required estimate. �
For numerical analysis below we shall need a decomposition of the solution into regular and singular components. Using

the results in Lemma 1 and Lemma 2, we obtain the following estimates.

Theorem 4. If solution u(x) of the problem (1.1) admits the decomposition u(x) = v(x) + w(x), then for all i,0 � i � 3, the regular
component v(x) satisfies

∣∣v(i)(x)
∣∣ � C

[
1 + ε−(i−2) exp

(−α(1 − x)/ε
)]

, ∀x ∈ Ω̄,

and the singular component w(x) satisfies

∣∣w(i)(x)
∣∣ � Cε−i exp

(−α(1 − x)/ε
)
, ∀x ∈ Ω̄.

Proof. The regular component v(x) can be written into three term asymptotic expansion as

v(x) = v0 + εv1 + ε2 v2, (2.11)

now, plugging the solution u = v + w into Eq. (1.1), we obtain the following relation

a(x)v ′
0(x) + b(x)v0(x) = f (x), v0(0) = u(0),

a(x)v ′
1(x) + b(x)v1(x) = v ′′

0(x), v1(0) = 0,

−εv ′
2(x) + a(x)v ′

2(x) + b(x)v2(x) = v ′′
1(x), v2(0) = 0, v2(1) = 0. (2.12)

Thus the smooth (regular) component v(x) is the solution of

Lv(x) = f (x), v(0) = u(0), v(1) = v0(1) + εv1(1),

and consequently, singular component w(x) is the solution of the homogeneous problem
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Lw(x) = 0, w(0) = 0, w(1) = u(1) − v(1). (2.13)

Since v0 is the solution of the reduced problem, which is the first order differential equation with bounded coefficient and
independent of ε, we have

∣∣v(i)
0

∣∣ � C, 0 � i � 3. (2.14)

Similarly, v1 is independent of ε and we have

∣∣v(i)
1

∣∣ � C, 0 � i � 3. (2.15)

Further, v2(x) is the solution of boundary value problem similar to the boundary value problem (1.1), therefore from Theo-
rem 3, we have

∣∣v(i)
2 (x)

∣∣ � C
(
1 + ε−ie−α(1−x)/ε), 0 � i � 3. (2.16)

Using Eqs. (2.14)–(2.16) with Eq. (2.11), we get desired bounds on regular component. To obtain the required bounds on the
singular component w(x), construct two barrier functions defined by

ψ±(x) = ∣∣w(1)
∣∣e−α(1−x)/ε ± w(x).

Clearly, ψ±(0) � 0, ψ±(1) � 0 and Lψ±(x) � 0. Comparison principle (Lemma 1) gives ψ±(x) � 0, ∀x ∈ Ω̄ , which gives

∣∣w(x)
∣∣ � Ce−α(1−x)/ε, ∀x ∈ Ω̄, (2.17)

where C = (|u(1)| + |v(1)|). Now w(x) can be defined as

w(x) = C1φ(x) + C2
(
1 − φ(x)

)
,

where function φ(x) is defined by Eq. (2.8) in Theorem 3. Using the values of φ(x) at x = 0 and x = 1, we get C1 = 0,
C2 = w(1) = u(1) − v(1). Thus

∣∣w ′(x)
∣∣ � C

∣∣φ′(x)
∣∣ � Cε−1e−α(1−x)/ε, ∀x ∈ Ω̄. (2.18)

Finally, the bounds for the second and third derivatives of w(x) can be estimated immediately from the estimates of w(x)
and w ′(x). This completes the proof. �
3. Discrete problem

In this section, we discretize boundary value problem (1.1) using B-spline collocation method on a piecewise uniform
mesh of Shishkin type. Shishkin mesh is introduced as follows.

3.1. Shishkin mesh

Shishkin mesh is a piecewise uniform mesh, condensing in the boundary layer region at x = 1. The piecewise uniform
mesh Ω̄N is designed by partitioning the interval Ω̄ = [0,1] into two subintervals Ω1 = [0,1 − τ ] and Ω2 = (1 − τ ,1] such
that Ω̄ = Ω1 ∪ Ω2, where the transition parameter τ is chosen such that

τ ≡ min

{
1

2
, Kε log N

}
, with K � 1

α
.

It is assumed that N = 2r, where r � 2 is an integer. This ensures that there is at least one point in the boundary layer
region. Moreover, mesh spacing is defined by

h̃ =
{

h1 = hi = 2(1 − τ )/N, if i = 1,2, . . . , N/2,

h2 = hi = 2τ/N, if i = N/2 + 1, . . . , N,
(3.1)

where N is the number of discretization points and the set of mesh points Ω̄N = {xi}N
i=0 with

xi =
{(

2(1 − τ )/N
)
i, if i = 0,1,2, . . . , N/2,

(1 − τ ) + (2τ/N)(i − N/2), if i = N/2 + 1, . . . , N.
(3.2)

Thus, a uniform mesh is placed on each of these subintervals.
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3.2. Methodology of B-spline collocation

We assume X is a linear subspace of L2(Ω̄), the space of all square integrable functions defined on Ω̄ . For i = −1,0,

. . . , N + 1, the cubic B-splines are defined by [22]:

φi(x) = 1

h̃3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x − xi−2)
3, xi−2 � x � xi−1,

h̃3 + 3h̃2(x − xi−1) + 3h̃(x − xi−1)
2 − 3(x − xi−1)

3, xi−1 � x � xi ,
h̃3 + 3h̃2(xi+1 − x) + 3h̃(xi+1 − x)2 − 3(xi+1 − x)3, xi � x � xi+1,
(xi+2 − x)3, xi+1 � x � xi+2,
0, otherwise.

(3.3)

Each basis functions φi(x) is twice continuously differentiable, piecewise cubic on the partition Ω̄N : −1 = x0 < x1 < x2 <

· · · < xN = 1 and φi(x) ∈ X . Let β = {φ−1, φ0, . . . , φN+1} and let Φ3(Ω̄N ) = span β. It has already been proven that all φi(x)
are linearly independent, thus Φ3(Ω̄N ) is (N + 3)-dimensional. Readers can find detailed description of B-spline functions
in [20,22,25]. Let L be a linear operator whose domain is X and whose range is also in X . Let Φ3(Ω̄N ) be an (N + 3)-
dimensional subspace of X . Now suppose the approximate solution of Eq. (1.1) is given by

U (x) =
N+1∑
i=−1

ciφi(x), (3.4)

where ci are unknown real coefficients and φi(x) are cubic B-spline functions. Here we have introduced two extra cubic
B-splines, φ−1 and φN+1 to satisfy the boundary conditions. Furthermore, it is required that the approximate solution U (x)
satisfies the given problem (1.1) at mesh points Ω̄N as well as boundary conditions at x = x0 and x = xN . Therefore, we have

LU (xi) = f (xi), 0 � i � N , (3.5)

and

U (x0) = A, U (xN ) = B. (3.6)

Solving the collocation equations (3.5), we obtain a system of (N + 1) linear equations in (N + 3) unknowns

ci−1
(−εφ′′

i−1(xi) + aiφ
′
i−1(xi) + biφi−1(xi)

) + ci
(−εφ′′

i (xi) + aiφ
′
i(xi) + biφi(xi)

)
+ ci+1

(−εφ′′
i+1(xi) + aiφ

′
i+1(xi) + biφi+1(xi)

) = f i, 0 � i � N . (3.7)

Furthermore, putting the values of B-spline functions φi and of derivatives at mesh points Ω̄N , we get

(−6ε − 3aih̃ + bih̃
2)ci−1 + (

12ε + 4bih̃
2)ci + (−6ε + 3aih̃ + bih̃

2)ci+1 = f ih̃
2, 0 � i � N . (3.8)

The given boundary conditions become

c−1 + 4c0 + c1 = A, (3.9)

and

cN−1 + 4cN + cN+1 = B. (3.10)

Thus by Eqs. (3.8), (3.9) and (3.10) we obtain a (N + 3) × (N + 3) system with (N + 3) unknowns {c−1, c0, . . . , cN+1}.
Eliminating c−1 from first equation of (3.8) and from Eq. (3.9), we find

(36ε + 12a0h̃)c0 + 6a0h̃c1 = f0h̃2 − A
(−6ε − 3a0h̃ + b0h̃2). (3.11)

Similarly, eliminating cN+1 from the last equation of (3.8) and from (3.10), we get

−6aNh̃cN−1 + (36ε − 12aNh̃)cN = f N h̃2 − B
(−6ε + 3aNh̃ + bNh̃2). (3.12)

Thus, we obtain a system of (N + 1) linear equations in (N + 1) unknowns

T xN = dN , (3.13)

where T is the matrix of the corresponding system and xN = (c0, c1, . . . , cN)T are the unknown real coefficients. The ele-
ments of the matrix T are given by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0,0 = 36ε + 12a0h̃,

t0,1 = 6a0h̃,

ti,i+1 = −6ε + 3aih̃ + bih̃
2, i = 1,2, . . . , N − 1,

ti,i = 12ε + 4bih̃
2, i = 1,2, . . . , N − 1,

ti,i−1 = −6ε − 3aih̃ + bih̃
2, i = 1,2, . . . , N − 1,

tN,N−1 = −6aNh̃,

tN,N = 36ε − 12aNh̃,

ti, j = 0, ∀|i − j| > 1.

(3.14)

The entries of right-hand side column vector dN are given by⎧⎪⎨
⎪⎩

dN
0 = f0h̃2 − A

(−6ε − 3a0h̃ + b0h̃2
)
,

dN
i = f ih̃2, i = 1,2, . . . , N − 1,

dN
N = f N h̃2 − B

(−6ε + 3aNh̃ + bNh̃2
)
.

(3.15)

It is easily seen that collocation matrix T is strictly diagonally dominant and hence nonsingular. Therefore, we can solve
the linear system (3.13) uniquely for real unknowns c0, c1, . . . , cN and then using the boundary conditions (3.9), (3.10) we
obtain c−1 and cN+1. Hence the method of collocation using a basis of cubic B-splines applied to problem (1.1) has a unique
solution U (x) given by (3.4).

4. Stability and convergence analysis

In this section we give the stability estimate for the approximate solution U and ε-uniform convergence estimate in the
maximum norm and conclude that the present B-spline collocation method has a uniform convergence of order two with
Shishkin mesh.

Lemma 5. The third degree B-splines {φ−1, φ0, . . . , φN+1} satisfy the following inequality

N+1∑
i=−1

∣∣φi(x)
∣∣ � 10, 0 � x � 1.

Proof. The proof easily follows by the definition of third degree B-spline given by Eq. (3.3). �
Now we shall prove the following stability estimate for the collocation approximate U (x) to the solution u(x) of the

problem (1.1).

Theorem 6. If U (x) be the cubic B-spline collocation approximate from the space of cubic splines Φ3(Ω̄N ) to the solution u(x) of the
problem (1.1), then for sufficiently small value of h̃ and ε, we have

∣∣U (x)
∣∣ � C, x ∈ Ω̄.

Proof. In the previous section, we see that T is strictly diagonally dominant. Therefore, by a result in [30], for sufficiently
small value of h̃ and ε, we have

∥∥T −1
∥∥ � 1

min(2βh̃2,36ε + 6αh̃)
� C

h̃2
,

where

ai � α > 0, bi � β > 0, 0 � i � N.

Thus
∥∥xN

∥∥ �
∥∥T −1

∥∥∥∥dN
∥∥ � C .

Due to boundary conditions, the coefficients c−1 and cN+1 are also bounded. Therefore,

∣∣U (x)
∣∣ =

∣∣∣∣∣
N+1∑
i=−1

ciφi(x)

∣∣∣∣∣ �
N+1∑
i=−1

|ci |
∣∣φi(x)

∣∣, x ∈ Ω̄,

� max |ci |
N+1∑ ∣∣φi(x)

∣∣, x ∈ Ω̄.
i=−1
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Since, by Lemma 5, we have

N+1∑
i=−1

∣∣φi(x)
∣∣ � 10, x ∈ Ω̄,

it follows that

∣∣U (x)
∣∣ � C, x ∈ Ω̄. �

Now, ε-uniform convergence estimate is given in the following theorem.

Theorem 7. Let a(x) � α > 0, b(x) � β > 0 and f (x) be sufficiently smooth function so that u ∈ C4[0,1] be the solution of prob-
lem (1.1), and let U be the cubic B-spline collocation approximate on the piecewise uniform mesh. Then for sufficiently large value of N
(independent of ε), error component satisfies the following error estimate

sup
0<ε�1

‖U − u‖Ω̄ � C N−2(log N)2.

Proof. The solution U of the discrete problem is decomposed into the smooth component V and singular component W ,
as in the case of continuous problem. Thus

U = V + W ,

where V is the solution of the inhomogeneous problem given by

LV = f , V (0) = v(0), V (1) = v(1),

and W is the solution of the homogeneous problem

LW = 0, W (0) = w(0), W (1) = w(1).

Thus the error can be written in the form

U − u = (V − v) + (W − w).

Here we use de Boor [4] and Hall [9] spline interpolation error estimates to derive ε-uniform error estimate. By using de
Boor–Hall error estimates and matrix analysis and simplifying, we are lead to the following ε-uniform error estimate

sup
0<ε�1

‖U − u‖Ω̄ � Ch2
c max

Ω̄
|u′′|, (4.1)

where hc = max{h1,h2}. Noe the ε-uniform convergence estimate is obtained on each subinterval Ωi = (xi−1, xi), ∀i =
1,2 . . . , N, separately. Each finite subinterval Ωi is covered by four cubic B-spline basis functions, therefore the B-spline
collocation approximation U of u, on Ωi , is given by

U = ci−2φi−2 + ci−1φi−1 + ciφi + ci+1φi+1.

It is obvious that on Ωi

∣∣U (x)
∣∣ � max

Ωi

∣∣u(x)
∣∣. (4.2)

By ε-uniform error estimate (4.1), it is easy to see that

∣∣U (x) − u(x)
∣∣ � Ch2

i max
Ωi

∣∣u′′(x)
∣∣. (4.3)

By Theorem 3, the following estimates holds for the solution u of (1.1) and its derivatives

∣∣u(k)(x)
∣∣ � Cε−k, for 0 � k � 3.

Therefore, from Eq. (4.3), we have

∣∣U (x) − u(x)
∣∣ � C

h2
i

ε2
. (4.4)

Furthermore, using Eqs. (4.2) and (4.3), on Ωi , we have
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∣∣U (x) − u(x)
∣∣ = ∣∣V (x) + W (x) − v(x) − w(x)

∣∣
�

∣∣V (x) − v(x)
∣∣ + ∣∣W (x)

∣∣ + ∣∣w(x)
∣∣

� Ch2
i max

Ωi

∣∣v ′′(x)
∣∣ + 2 max

Ωi

∣∣w(x)
∣∣

� C
(
h2

i + e−α(1−xi)/ε
)
, (4.5)

since, by Theorem 4, we have |v ′′(x)| � C[1+exp(−α(1− x)/ε)] � C and |w(x)| � C exp(−α(1− x)/ε), ∀x ∈ Ω̄. The required
ε-uniform estimate depends on weather Kε log N � 1/2 or Kε log N � 1/2. In the first case mesh is uniform with mesh
spacing hi = 1/N and 1/ε � C log N . Using this argument in Eq. (4.4), we easily obtain desired ε-uniform estimates.

In the second case Kε log N � 1/2, so we have transition parameter τ = Kε log N . In this case mesh is piecewise uniform
and hi = 2τ/N for i satisfying N/2 + 1 � i � N in the boundary layer region. Therefore

hi

ε
= 2τ

Nε
= C N−1 log N, N/2 + 1 � i � N.

The result immediately follows combining this with Eq. (4.4). On the other hand, if i satisfies 1 < i � N/2 in no boundary
layer region, then τ � 1 − xi and therefore

e−α(1−xi)/ε � e−ατ/ε = e−αK log N = N−αK = N−2,

whenever K = 2/α in the definition of transition parameter τ . Using this in (4.5), we get the required estimates. Hence the
method is uniformly convergent of order two in the discrete maximum norm. �
5. Numerical examples and results

Two numerical examples are considered and solved to demonstrate the applicability of proposed method.

Example 1. This example corresponds to the following singularly-perturbed homogeneous boundary value problem:

−εu′′(x) + u′(x) + (1 + ε)u(x) = 0, x ∈ (0,1), (5.1a)

u(0) = 1 + exp
[−(1 + ε)/ε

]
, u(1) = 1 + [

1/exp(1)
]
. (5.1b)

Its exact solution is given by

u(x) = exp
[
(1 + ε)(x − 1)/ε

] + exp(−x). (5.2)

Since the problem has an analytical solution, therefore, for every ε the computed maximum pointwise errors are estimated
by

E N
ε = max

xi∈Ω̄N

∣∣u(xi) − U N (xi)
∣∣, (5.3)

where U N denotes the numerical solution obtained by using N finite elements. The ε-uniform maximum pointwise error is
estimated as

E N = max
ε

E N
ε . (5.4)

Furthermore, the numerical order of convergence is obtained by

pε,N = log(E N
ε /E2N

ε )

log 2
. (5.5)

The estimated maximum pointwise error and the numerical order of convergence are presented in Table 1 with piecewise
uniform mesh.

Example 2. Now we consider the following nonhomogeneous singularly perturbed boundary value problem:

−εu′′(x) + u′(x) + u(x) = cosπx, x ∈ (0,1), (5.6a)

u(0) = 0, u(1) = 0, (5.6b)

which has the analytical solution given by

u(x) = a cosπx + b sinπx + Aeλ0x + Be−λ1(1−x), (5.7)



M.K. Kadalbajoo, V. Gupta / J. Math. Anal. Appl. 355 (2009) 439–452 449
Table 1
Maximum pointwise errors and order of convergence for Example 1.

ε ↓ N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

100 2.3803E−4 5.9435E−5 1.4854E−5 3.7133E−6 9.284E−7 2.321E−7 5.8022E−8
2.0018 2.0004 2.0001 1.9999 2.0000 2.0001

10−2 2.9793E−2 1.1024E−2 3.1798E−3 1.2252E−3 4.1518E−4 1.3191E−4 4.4547E−5
1.4343 1.7936 1.3759 1.5612 1.6542 1.5661

10−4 3.2912E−2 1.4195E−2 6.3383E−3 2.9970E−3 1.4339E−3 6.8495E−4 3.2200E−4
1.2133 1.1632 1.0806 1.0636 1.0659 1.0889

10−6 3.2918E−2 1.4156E−2 6.2306E−3 2.8522E−3 1.3590E−3 6.7467E−4 3.4811E−4
1.2174 1.1840 1.1273 1.0605 1.0103 0.9546

10−8 3.2918E−2 1.4156E−2 6.2292E−3 2.8489E−3 1.3518E−3 6.6094E−4 3.2841E−4
1.2175 1.1843 1.1287 1.0755 1.0323 1.0090

10−10 3.2918E−2 1.4156E−2 6.2291E−3 2.8488E−3 1.3517E−3 6.6079E−4 3.2810E−4
1.2175 1.1843 1.1287 1.0756 1.0326 1.0101

10−12 3.2925E−2 1.4175E−2 6.2236E−3 2.8524E−3 1.3544E−3 6.6086E−4 3.2835E−4
1.2159 1.1875 1.1256 1.0746 1.0352 1.0091

Table 2
Maximum pointwise errors and order of convergence for Example 2.

ε ↓ N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

100 1.2470E−4 3.1343E−5 7.8378E−6 1.9603E−6 4.901E−7 1.225E−7 3.06E−8
1.9923 1.9996 1.9994 1.9999 2.0003 2.0012

10−2 3.7653E−2 1.6438E−2 6.6001E−3 2.4825E−3 6.4332E−4 1.6137E−4 4.0214E−5
1.1957 1.3165 1.4107 1.9482 1.9952 2.0046

10−4 4.8420E−2 2.4642E−2 1.2649E−2 6.5826E−3 3.3112E−3 1.6136E−3 7.6340E−4
0.9745 0.9621 0.9483 1.0810 0.9474 1.0798

10−6 4.8444E−2 2.4538E−2 1.2364E−2 6.2130E−3 3.1264E−3 1.5893E−3 8.2601E−4
0.9812 0.9889 0.9927 0.9908 0.9761 0.9442

10−8 4.8444E−2 2.4537E−2 1.2360E−2 6.2044E−3 3.1086E−3 1.5561E−3 7.7904E−4
0.9814 0.9893 0.9943 0.9970 0.9983 0.9982

10−10 4.8444E−2 2.4537E−2 1.2360E−2 6.2043E−3 3.1084E−3 1.5558E−3 7.7828E−4
0.9814 0.9893 0.9943 0.9971 0.9985 0.9993

10−11 4.8444E−2 2.4537E−2 1.2360E−2 6.2043E−3 3.1083E−3 1.5557E−3 7.7827E−4
0.9814 0.9893 0.9943 0.9971 0.9985 0.9993

10−12 4.8443E−2 2.4536E−2 1.2359E−2 6.2036E−3 3.1076E−3 1.5550E−3 7.7752E−4
0.9814 0.9893 0.9944 0.9973 0.9989 1.0000

where λ0(x) < 0 and λ1(x) > 0 are the real solutions of the characteristic equation

−ελ2(x) + λ(x) + 1 = 0,

and

a = επ2 + 1

π2 + (επ2 + 1)2
, b = π

π2 + (επ2 + 1)2
, A = −a

1 + e−λ1

1 − eλ0−λ1
, B = a

1 + eλ0

1 − eλ0−λ1
.

The maximum pointwise and ε-uniform maximum pointwise errors and numerical order of convergence are calculated
as in Example 1. The numerical results are displayed in Table 2 with piecewise uniform mesh.

6. Discussions and conclusions

A parameter uniform numerical method based on B-spline collocation with piecewise uniform mesh is presented to solve
the boundary value problems for singularly perturbed differential equations of the convection–diffusion type. The solution
of the problem exhibits the boundary layer on the right side of the domain. The width τ of boundary layer region plays an
important role to solve singular perturbation problem, therefore transition parameter τ has to be defined with some care.
The theoretical analysis is presented to show that the proposed method is parameter uniform of order two, i.e., the method
converges independently of the singular perturbation parameter ε.

Numerical results presented in Tables 1 and 2 clearly indicate that the proposed method with Shishkin mesh is indepen-
dent of mesh size h̃ and singular perturbation parameter ε, and parameter uniform. To further corroborate the applicability
of the proposed method, numerical solution profiles have been plotted in Figs. 1–4 for Examples 1 and 2 for the exact so-
lution versus computed solution obtained at the value of ε = 2−6, 2−8 and N = 32, 64 for uniform and piecewise uniform
mesh respectively. It has been seen that exact and numerical solutions with uniform mesh are identical for most of the
region of the domain except in the boundary layer regions. To control these deviations in the boundary layer region, we use
Shishkin mesh to take more mesh points in the boundary layer region and the resulting behavior is seen in Figs. 1–4 with
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Fig. 1. Exact and approximate solutions of Example 1 for ε = 2−6 and N = 32 with (a) uniform mesh and (b) nonuniform mesh.

Fig. 2. Exact and approximate solutions of Example 1 for ε = 2−8 and N = 64 with (a) uniform mesh and (b) nonuniform mesh.

Fig. 3. Exact and approximate solutions of Example 2 for ε = 2−6 and N = 32 with (a) uniform mesh and (b) nonuniform mesh.



M.K. Kadalbajoo, V. Gupta / J. Math. Anal. Appl. 355 (2009) 439–452 451
Fig. 4. Exact and approximate solutions of Example 2 for ε = 2−8 and N = 64 with (a) uniform mesh and (b) nonuniform mesh.

nonuniform mesh. Also, it can be noticed that maximum pointwise errors arise near the transition point due to the abrupt
changes in the mesh size.

Thus the present method is second order accurate and numerical results support the theoretical estimates. The proposed
algorithms gives, in fact, more accurate results than many of other boundary layer resolving finite difference methods.
Here we see that such collocation methods are closely related to Galerkin methods, hence to finite-element methods, but
are much easier and more efficient in computation than Galerkin methods. The collocation matrix involves no numerical
quadrature, which both increase the operation count and may result in some loss of accuracy to the matrix approximations.
Therefore the collocation system is set up rather easily. Also this method ensure that the solution is, at least, continuous in
the domain Ω̄ , whereas the finite difference methods give the solution only at the chosen mesh points.
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