12,595 research outputs found

    Higher physical fitness levels are associated with less language decline in healthy ageing

    Get PDF
    Healthy ageing is associated with decline in cognitive abilities such as language. Aerobic fitness has been shown to ameliorate decline in some cognitive domains, but the potential benefits for language have not been examined. In a cross-sectional sample, we investigated the relationship between aerobic fitness and tip-of-the-tongue states. These are among the most frequent cognitive failures in healthy older adults and occur when a speaker knows a word but is unable to produce it. We found that healthy older adults indeed experience more tip-of-the-tongue states than young adults. Importantly, higher aerobic fitness levels decrease the probability of experiencing tip-of-the-tongue states in healthy older adults. Fitness-related differences in word finding abilities are observed over and above effects of age. This is the first demonstration of a link between aerobic fitness and language functioning in healthy older adults

    Physical activity affects brain integrity in HIV+ individuals

    Get PDF
    Prior research has suggested benefits of aerobic physical activity (PA) on cognition and brain volumes in HIV uninfected (HIV−) individuals, however, few studies have explored the relationships between PA and brain integrity (cognition and structural brain volumes) in HIV-infected (HIV +) individuals. Seventy HIV + individuals underwent neuropsychological testing, structural neuroimaging, laboratory tests, and completed a PA questionnaire, recalling participation in walking, running, and jogging activities over the last year. A PA engagement score of weekly metabolic equivalent (MET) hr of activity was calculated using a compendium of PAs. HIV + individuals were classified as physically active (any energy expended above resting expenditure, n = 22) or sedentary (n = 48). Comparisons of neuropsychological performance, grouped by executive and motor domains, and brain volumes were completed between groups. Physically active and sedentary HIV + individuals had similar demographic and laboratory values, but the active group had higher education (14.0 vs. 12.6 years, p = .034). Physically active HIV + individuals performed better on executive (p = .040, unadjusted; p = .043, adjusted) but not motor function (p = .17). In addition, among the physically active group the amount of physical activity (METs) positively correlated with executive (Pearson’s r = 0.45, p = 0.035) but not motor (r = 0.21; p = .35) performance. In adjusted analyses the physically active HIV + individuals had larger putamen volumes (p = .019). A positive relationship exists between PA and brain integrity in HIV + individuals. Results from the present study emphasize the importance to conduct longitudinal interventional investigation to determine if PA improves brain integrity in HIV + individuals

    Interactive Effects of Physical Activity and APOE-Δ4 On White Matter Tract Diffusivity in Healthy Elders

    Get PDF
    Older adult apolipoprotein-E epsilon 4 (APOE-Δ4) allele carriers vary considerably in the expression of clinical symptoms of Alzheimer\u27s disease (AD), suggesting that lifestyle or other factors may offer protection from AD-related neurodegeneration. We recently reported that physically active APOE-Δ4 allele carriers exhibit a stable cognitive trajectory and protection from hippocampal atrophy over 18 months compared to sedentary Δ4 allele carriers. The aim of this study was to examine the interactions between genetic risk for AD and physical activity (PA) on white matter (WM) tract integrity, using diffusion tensor imaging (DTI) MRI, in this cohort of healthy older adults (ages of 65 to 89). Four groups were compared based on the presence or absence of an APOE-Δ4 allele (High Risk; Low Risk) and self-reported frequency and intensity of leisure time physical activity (PA) (High PA; Low PA). As predicted, greater levels of PA were associated with greater fractional anisotropy (FA) and lower radial diffusivity in healthy older adults who did not possess the APOE-Δ4 allele. However, the effects of PA were reversed in older adults who were at increased genetic risk for AD, resulting in significant interactions between PA and genetic risk in several WM tracts. In the High Risk-Low PA participants, who had exhibited episodic memory decline over the previous 18-months, radial diffusivity was lower and fractional anisotropy was higher, compared to the High Risk-High PA participants. In WM tracts that subserve learning and memory processes, radial diffusivity (DR) was negatively correlated with episodic memory performance in physically inactive APOE-Δ4 carriers, whereas DR was positively correlated with episodic memory performance in physically active APOE-Δ4 carriers and the two Low Risk groups. The common model of demyelination-induced increase in radial diffusivity cannot directly explain these results. Rather, we hypothesize that PA may protect APOE-Δ4 allele carriers from selective neurodegeneration of individual fiber populations at locations of crossing fibers within projection and association WM fiber tracts

    Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals.

    Get PDF
    Brain aging and aging-related neurodegenerative disorders are major health challenges faced by modern societies. Brain aging is associated with cognitive and functional decline and represents the favourable background for the onset and development of dementia. Brain aging is associated with early and subtle anatomo-functional physiological changes that often precede the appearance of clinical signs of cognitive decline. Neuroimaging approaches unveiled the functional correlates of these alterations and helped in the identification of therapeutic targets that can be potentially useful in counteracting age-dependent cognitive decline. A growing body of evidence supports the notion that cognitive stimulation and aerobic training can preserve and enhance operational skills in elderly individuals as well as reduce the incidence of dementia. This review aims at providing an extensive and critical overview of the most recent data that support the efficacy of non-pharmacological and pharmacological interventions aimed at enhancing cognition and brain plasticity in healthy elderly individuals as well as delaying the cognitive decline associated with dementia

    Exercise Training and Functional Connectivity Changes in Mild Cognitive Empairment and Healthy Elders

    Get PDF
    Background: Effective interventions are needed to improve brain function in mild cognitive impairment (MCI), an early stage of Alzheimer’s disease (AD). The posterior cingulate cortex (PCC)/precuneus is a hub of the default mode network (DMN) and is preferentially vulnerable to disruption of functional connectivity in MCI and AD. Objective: We investigated whether 12 weeks of aerobic exercise could enhance functional connectivity of the PCC/precuneus in MCI and healthy elders. Methods: Sixteen MCI and 16 healthy elders (age range = 60–88) engaged in a supervised 12-week walking exercise intervention. Functional MRI was acquired at rest; the PCC/precuneus was used as a seed for correlated brain activity maps. Results: A linear mixed effects model revealed a significant interaction in the right parietal lobe: the MCI group showed increased connectivity while the healthy elders showed decreased connectivity. In addition, both groups showed increased connectivity with the left postcentral gyrus. Comparing pre to post intervention changes within each group, the MCI group showed increased connectivity in 10 regions spanning frontal, parietal, temporal and insular lobes, and the cerebellum. Healthy elders did not demonstrate any significant connectivity changes. Conclusion: The observed results show increased functional connectivity of the PCC/precuneus in individuals with MCI after 12 weeks of moderate intensity walking exercise training. The protective effects of exercise training on cognition may be realized through the enhancement of neural recruitment mechanisms, which may possibly increase cognitive reserve. Whether these effects of exercise training may delay further cognitive decline in patients diagnosed with MCI remains to be demonstrated

    Sex Differences in the Influence of Brain and Lifestyle Factors on Neurocognitive Aging

    Get PDF
    Declines in executive functioning (EF) are a hallmark of neurocognitive aging. Much research has focused on the impact of exercise, brain structure, and brain function on neurocognitive aging, yet their relative predictive weights had not been evaluated. Further, the impact of sex differences on the influence of these factors had not yet been investigated. Fifty-one older adults participated in this study evaluating the outcome of cardiorespiratory fitness (CRF), prefrontal cortex volume, and global efficiency of functional brain networks on EF. A stratified, multiple hierarchical regression was performed to identify the best predictors of EF for each sex. For females, a model containing solely CRF served as the best predictor of EF. A model containing both CRF and network efficiency best predicted EF in males. These results demonstrate that CRF and metrics of structural and functional brain health in older adulthood are independently associated with EF in a sex-dependent manner

    Semantic Memory Functional MRI and Cognitive Function After Exercise Intervention in Mild Cognitive Impairment

    Get PDF
    Mild cognitive impairment (MCI) is associated with early memory loss, Alzheimer\u27s disease (AD) neuropathology, inefficient or ineffective neural processing, and increased risk for AD. Unfortunately, treatments aimed at improving clinical symptoms or markers of brain function generally have been of limited value. Physical exercise is often recommended for people diagnosed with MCI, primarily because of its widely reported cognitive benefits in healthy older adults. However, it is unknown if exercise actually benefits brain function during memory retrieval in MCI. Here, we examined the effects of exercise training on semantic memory activation during functional magnetic resonance imaging (fMRI). Seventeen MCI participants and 18 cognitively intact controls, similar in sex, age, education, genetic risk, and medication use, volunteered for a 12-week exercise intervention consisting of supervised treadmill walking at a moderate intensity. Both MCI and control participants significantly increased their cardiorespiratory fitness by approximately 10% on a treadmill exercise test. Before and after the exercise intervention, participants completed an fMRI famous name discrimination task and a neuropsychological battery, Performance on Trial 1 of a list-learning task significantly improved in the MCI participants. Eleven brain regions activated during the semantic memory task showed a significant decrease in activation intensity following the intervention that was similar between groups (p-values ranged 0.048 to 0.0001). These findings suggest exercise may improve neural efficiency during semantic memory retrieval in MCI and cognitively intact older adults, and may lead to improvement in cognitive function. Clinical trials are needed to determine if exercise is effective to delay conversion to AD

    Neuroprotective Effects of Cardiorespiratory Fitness on White Matter Integrity and Cognition Across the Adult Lifespan

    Get PDF
    Objective: Cardiorespiratory fitness (CRF) is associated with decreased risk for cognitive decline. Accumulating evidence has linked CRF to more conserved white matter (WM) integrity and better cognitive performance in older adults. Additional research is needed to determine: (1) which WM tracts are most strongly related to CRF, (2) whether CRF-related benefits on WM translate to enhanced executive functioning (EF), and (3) if the neuroprotective effects of CRF are age-dependent. This study aimed to evaluate CRF as an intervention for modulating decreased WM integrity and EF in aging. Method: Participants were community-dwelling adults (N = 499; ages 20-85) from the open-access Nathan Kline Institute – Rockland Sample (NKIRS) with CRF (bike test), self-report of physical activity, diffusion tensor imaging (DTI), and EF data. Mixed-effect modeling tested the interaction between CRF and age on WM integrity (global and local microstructure). Significant WM tracts were retained for structural equation modeling to determine whether enhanced microstructure mediated a positive relationship between CRF and EF. Results: Among older participants (age 60), CRF was significantly related to stronger whole-brain (z-score slope = 0.11) and local WM integrity within five tracts (z-score slope range = 0.14 – 0.20). In support of the age-dependent hypothesis, the CRF–WM relationship was comparably weaker (z-score slopes 0.11) and more limited (one WM tract) in younger adults. CRF was more consistently related to WM than self-report of physical activity. Although CRF was linked to enhanced WM integrity, its potential benefits on EF were not directly observed. Conclusion: The findings highlight the importance of positive lifestyle factors, such as physical activity, in maintaining brain health in senescence. CRF may selectively preserve a collection of anterior and posterior WM connections related to visuomotor function
    • 

    corecore