1,821 research outputs found

    Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions

    Get PDF
    Accelerated life tests are used to explore the lifetime of extremely reliable items by subjecting them to elevated stress levels from stressors to cause early failures, such as temperature, voltage, pressure, and so on. The alpha power inverse Weibull (APIW) distribution is of great significance and practical applications due to its appealing characteristics, such as its flexibilities in the probability density function and the hazard rate function. We analyze the step stress partially accelerated life testing model with samples from the APIW distribution under adaptive type II progressively hybrid censoring. We first obtain the maximum likelihood estimates and two types of approximate confidence intervals of the distributional parameters and then derive Bayes estimates of the unknownparameters under different loss functions. Furthermore, we analyze three probable optimum test techniques for identifying the best censoring under different optimality criteria methods. We conduct simulation studies to assess the finite sample performance of the proposed methodology. Finally, we provide a real data example to further demonstrate the proposed technique

    On estimating parameters of a progressively censored lognormal distribution

    Get PDF
    [[abstract]]We consider the problem of making statistical inference on unknown parameters of a lognormal distribution under the assumption that samples are progressively censored. The maximum likelihood estimates (MLEs) are obtained by using the expectation-maximization algorithm. The observed and expected Fisher information matrices are provided as well. Approximate MLEs of unknown parameters are also obtained. Bayes and generalized estimates are derived under squared error loss function. We compute these estimates using Lindley's method as well as importance sampling method. Highest posterior density interval and asymptotic interval estimates are constructed for unknown parameters. A simulation study is conducted to compare proposed estimates. Further, a data set is analysed for illustrative purposes. Finally, optimal progressive censoring plans are discussed under different optimality criteria and results are presented.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]SCI[[ispeerreviewed]]Y[[booktype]]電子版[[countrycodes]]GB

    Statistical inference for dependent competing risks data under adaptive Type-II progressive hybrid censoring

    Full text link
    In this article, we consider statistical inference based on dependent competing risks data from Marshall-Olkin bivariate Weibull distribution. The maximum likelihood estimates of the unknown model parameters have been computed by using the Newton-Raphson method under adaptive Type II progressive hybrid censoring with partially observed failure causes. The existence and uniqueness of maximum likelihood estimates are derived. Approximate confidence intervals have been constructed via the observed Fisher information matrix using the asymptotic normality property of the maximum likelihood estimates. Bayes estimates and highest posterior density credible intervals have been calculated under gamma-Dirichlet prior distribution by using the Markov chain Monte Carlo technique. Convergence of Markov chain Monte Carlo samples is tested. In addition, a Monte Carlo simulation is carried out to compare the effectiveness of the proposed methods. Further, three different optimality criteria have been taken into account to obtain the most effective censoring plans. Finally, a real-life data set has been analyzed to illustrate the operability and applicability of the proposed methods

    Optimal Experimental Planning of Reliability Experiments Based on Coherent Systems

    Get PDF
    In industrial engineering and manufacturing, assessing the reliability of a product or system is an important topic. Life-testing and reliability experiments are commonly used reliability assessment methods to gain sound knowledge about product or system lifetime distributions. Usually, a sample of items of interest is subjected to stresses and environmental conditions that characterize the normal operating conditions. During the life-test, successive times to failure are recorded and lifetime data are collected. Life-testing is useful in many industrial environments, including the automobile, materials, telecommunications, and electronics industries. There are different kinds of life-testing experiments that can be applied for different purposes. For instance, accelerated life tests (ALTs) and censored life tests are commonly used to acquire information in reliability and life-testing experiments with the presence of time and resource limitations. Statistical inference based on the data obtained from a life test and effectively planning a life-testing experiment subject to some constraints are two important problems statisticians are interested in. The experimental design problem for a life test has long been studied; however, the experimental planning considering putting the experimental units into systems for a life-test has not been studied. In this thesis, we study the optimal experimental planning problem in multiple stress levels life-testing experiments and progressively Type-II censored life-testing experiments when the test units can be put into coherent systems for the experiment. Based on the notion of system signature, a tool in structure reliability to represent the structure of a coherent system, under different experimental settings, models and assumptions, we derive the maximum likelihood estimators of the model parameters and the expected Fisher information matrix. Then, we use the expected Fisher information matrix to obtain the asymptotic variance-covariance matrix of the maximum likelihood estimators when nn-component coherent systems are used in the life-testing experiment. Based on different optimality criteria, such as DD-optimality, AA-optimality and VV-optimality, we obtain the optimal experimental plans under different settings. Numerical and Monte Carlo simulation studies are used to demonstrate the advantages and disadvantages of using systems in life-testing experiments

    Inference for Step-Stress Partially Accelerated Life Test Model with an Adaptive Type-I Progressively Hybrid Censored Data

    Get PDF
    Consider estimating data of failure times under step-stress partially accelerated life tests based on adaptive Type-I hybrid censoring. The mathematical model related to the lifetime of the test units is assumed to follow Rayleigh distribution. The point and interval maximum-likelihood estimations are obtained for distribution parameter and tampering coefficient. Also, the work is conducted under a traditional Type-I hybrid censoring plan (scheme). A Monte Carlo simulation algorithm is used to evaluate and compare the performances of the estimators of the tempering coefficient and model parameters under both progressively hybrid censoring plans. The comparison is carried out on the basis of mean squared errors and bias

    Inference About The Generalized Exponential Quantiles Based On Progressively Type-Ii Censored Data

    Get PDF
    In this study, we are interested in investigating the performance of likelihood inference procedures for the ℎ quantile of the Generalized Exponential distribution based on progressively censored data. The maximum likelihood estimator and three types of classical confidence intervals have been considered, namely asymptotic, percentile, and bootstrap-t confidence intervals. We considered Bayesian inference too. The Bayes estimator based on the squared error loss function and two types of Bayesian intervals were considered, namely the equal tailed interval and the highest posterior density interval. We conducted simulation studies to investigate and compare the point estimators in terms of their biases and mean squared errors. We compared the various types of intervals using their coverage probability and expected lengths. The simulations and comparisons were made under various types of censoring schemes and sample sizes. We presented two examples for data analysis, one of them is based on simulated data set and the other one based on a real lifetime data. Finally, we compared the classical inference and the Bayesian inference procedures. We concluded that Bias and MSE for classical statistics estimators show bitter results than the Bayesian estimators. Also, Bayesian intervals which attain the nominal error rate have the best average widths. We presented our conclusions and discussed ideas for possible future research
    corecore