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                                                   ABSTRACT 

 
RIHAN, RASHA, ADNAN, Masters : June : 2019, Applied Statistics 

Title: INFERENCE ABOUT THE GENERALIZED EXPONENTIAL QUANTILES 

BASED on PROGRESSIVELY CENSORED DATA 

Supervisor of Thesis: Prof. Dr. Ayman Suleiman Bakleezi. 

 In this study, we are interested in investigating the performance of likelihood 

inference procedures for the 𝑝𝑡ℎ quantile of the Generalized Exponential distribution based 

on progressively censored data. The maximum likelihood estimator and three types of 

classical confidence intervals have been considered, namely asymptotic, percentile, and 

bootstrap-t confidence intervals. We considered Bayesian inference too. The Bayes 

estimator based on the squared error loss function and two types of Bayesian intervals were 

considered, namely the equal tailed interval and the highest posterior density interval. We 

conducted simulation studies to investigate and compare the point estimators in terms of 

their biases and mean squared errors. We compared the various types of intervals using 

their coverage probability and expected lengths. The simulations and comparisons were 

made under various types of censoring schemes and sample sizes. We presented two 

examples for data analysis, one of them is based on simulated data set and the other one 

based on a real lifetime data. Finally, we compared the classical inference and the Bayesian 

inference procedures. We concluded that Bias and MSE for classical statistics estimators 

show bitter results than the Bayesian estimators. Also, Bayesian intervals which attain the 

nominal error rate have the best average widths. We presented our conclusions and 

discussed ideas for possible future research.  



  
   

iv 
 

DEDICATION 

 

 

 

 

 

 

This thesis is dedicated to my family. 

For their infinite love, care, and inspiration throughout the years. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
   

v 
 

ACKNOWLEDGMENTS 

  “All praises and thanks to Allah on what we got and without his gaudiness, we 

wouldn’t get to this!” I would like to express my thankful to all my family and friends for 

their patient and encouragement they offered me throughout my entire study. I would like 

to express my appreciation to my supervisor Prof. Dr. Ayman Bakleezi for his patient and 

support, as well as his useful comments, observations, and follow-up throughout the 

duration of learning and working on this master thesis. Furthermore, I would like to thank 

Dr. Faiz Elfaki and Dr. Saddam Abbasi not for only serving on my thesis dissertation 

committee, but also for teaching me statistical courses during my years of study. And all 

thanks and appreciation to all the doctors who taught me the science during my studies for 

the master and bachelor coursework. Last, but not least I would like to express my thanks 

and gratitude to all my teachers who contributed to my education throughout my years of 

study.   

 

 

  



  
   

vi 
 

TABLE OF CONTENTS 

DEDICATION ................................................................................................................... iv 

ACKNOWLEDGMENTS .................................................................................................. v 

LIST OF TABLES ........................................................................................................... viii 

LIST OF FIGURES ........................................................................................................... xi 

CHAPTER 1: INTRODUCTION ....................................................................................... 1 

1.1 The Generalized Exponential Distribution ........................................................... 2 

1.2 Quantiles............................................................................................................... 6 

1.3 Progressively Censored Data ............................................................................... 8 

1.4 Literature on Inference Based on Progressively Censored Data ........................ 11 

CHAPTRE 2: LIKELIHOOD INFERENCE .................................................................... 14 

2.1 An Overview of The Likelihood Inference ............................................................. 14 

2.2 The Likelihood Inference ........................................................................................ 17 

2.3 Bootstrap Methods .................................................................................................. 22 

2.3.1 Bootstrap-t Confidence Interval ....................................................................... 25 

2.3.2 Percentile Confidence Interval ......................................................................... 26 

2.4 Simulation Study ..................................................................................................... 26 

CHAPTER 3: BAYESIAN INFERENCE ........................................................................ 45 

3.1 An Overview on Bayesian Inference ...................................................................... 46 



  
   

vii 
 

3.2 Bayesian Estimate for 𝑥𝑝 ........................................................................................ 50 

3.3 Simulation Study ..................................................................................................... 54 

CHAPTER 4: DATA ANALYSIS ................................................................................... 82 

Example 1: Generated Data from Scheme 5 ................................................................. 82 

Example 2:  Real Data from (Lawless, 2003) ............................................................... 85 

CHAPTER 5: COMPARISON, CONCLUSION, AND SUGGESTIONS FOR 

FURTHER STUDIES ....................................................................................................... 95 

Comparison ....................................................................................................................... 96 

Suggestion for Further Studies........................................................................................ 100 

REFERENCES ............................................................................................................... 101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
   

viii 
 

LIST OF TABLES  

Table 1: The shape parameter 𝛼 different values. ............................................................4 

Table 2: Different kinds of censoring schemes...............................................................11 

Table 3: Censoring schemes. ..........................................................................................28 

Table 4: Bias and MSE results for classical statistics methods. .........................................31 

Table 5: Coverage probability and expected lengths results for classical statistics methods 

when 𝛼 = 0.1 ..................................................................................................................33 

Table 6: Coverage probability and expected lengths results for classical statistics methods 

when 𝛼 = 0.05 ................................................................................................................34 

Table 7: Bias and MSE results for different values of 𝜃 and 𝜎. ......................................41 

Table 8: Coverage probability and expected lengths results for different values of 𝜃 and 𝜎 

for 𝛼 = 0.1……………………………………………………………………………….42 

Table 9: Coverage probability and expected lengths results for different values of 𝜃 and 𝜎 

for 𝛼 = 0.05 ....................................................................................................................43 

Table 10: Bias and MSE results for informative priors  .................................................59 

Table 11: Coverage probability and expected lengths results when 𝛼 = 0.1 for 

informative priors............................................................................................................61 

Table 12: Coverage probability and expected lengths results when 𝛼 = 0.05 for 

informative priors............................................................................................................62 

Table 13: Bias and MSE results for different values of 𝜃 and 𝜎 for informative priors ..69 

Table 14: Coverage probability and expected lengths results for different values of 𝜃 and 

𝜎 when 𝛼 = 0.1  for informative priors ..........................................................................70 



  
   

ix 
 

Table 15: Coverage probability and expected lengths results for different values of 𝜃 and 

𝜎 when 𝛼 = 0.05 for informative priors .........................................................................71 

Table 16: Bias and MSE results for noninformative priors  ...........................................72 

Table 17: Coverage probability and expected lengths results when 𝛼 = 0.1  for 

noninformative priors......................................................................................................73 

Table 18: Coverage probability and expected lengths results when 𝛼 = 0.05 for 

noninformative priors......................................................................................................74 

Table 19: Bias and MSE results for different values of 𝜃 and 𝜎 for noninformative priors

.........................................................................................................................................80 

Table 20: Coverage probability and expected lengths results for different values of 𝜃 and 

𝜎 when 𝛼 = 0.1  for noninformative priors ....................................................................80 

Table 21: Coverage probability and expected lengths results for different values of 𝜃 and 

𝜎 when 𝛼 = 0.05 for noninformative priors ...................................................................81 

Table 22: Example 1 (a) confidence intervals for classical statistics methods. ..................83 

Table 23: Example 1 (b) confidence intervals for Bayesian statistics methods ..................84 

Table 24: Descriptive statistics for the real data. ............................................................87 

Table 25: MLEs results of (𝜃, 𝜎, 𝑥𝑝0.1 , 𝑥𝑝0.25 , 𝑥𝑝0.5 , 𝑥𝑝0.75 , 𝑥𝑝0.9) parameters. .........................90 

Table 26: Scheme 1 Confidence Intervals of the classical statistics methods.....................91 

Table 27: Scheme 2 Confidence Intervals of the classical statistics methods.....................91 

Table 28: Bayesian estimates of (𝜃𝐵 , 𝜎𝐵, 𝑥𝐵𝑝0.1 , 𝑥𝐵𝑝0.25 , 𝑥𝐵𝑝0.5 , 𝑥𝐵𝑝0.75 , 𝑥𝐵𝑝0.9) parameters.

.........................................................................................................................................92 

Table 29: Scheme 1 Bayesian Confidence Intervals.......................................................93 



  
   

x 
 

Table 30: Scheme 2 Bayesian Confidence Intervals.......................................................93 

  



  
   

xi 
 

LIST OF FIGURES  

Figure 1: PDF plot for GE distribution. ............................................................................6 

Figure 2: Bias and MSE plots for classical statistics methods........................................36 

Figure 3: Expected lengths plots for classical statistics methods when 𝛼 = 0.1 ............37 

Figure 4: Coverage probability plots for classical statistics methods when 𝛼 = 0.1 .....38 

Figure 5: Expected lengths plots for classical statistics methods when 𝛼 = 0.05 .........39 

Figure 6: Coverage probability plots for classical statistics methods when 𝛼 = 0.05. ..40 

Figure 7: Bayesian bias and MSE plots for informative priors. .....................................64 

Figure 8: Bayesian expected lengths plots when 𝛼 = 0.1 for informative priors ..........65 

Figure 9: Bayesian coverage probability plots when 𝛼 = 0.1 for informative priors ....66 

Figure 10: Bayesian expected lengths plots when 𝛼 = 0.05 for informative priors ......67 

Figure 11: Bayesian coverage probability plots when 𝛼 = 0.05 for informative priors 68 

Figure 12: Bayesian bias and MSE plots for noninformative priors. .............................75 

Figure 13: Bayesian expected lengths plots when 𝛼 = 0.1 for noninformative priors ..76 

Figure 14: Bayesian coverage probability plots when 𝛼 = 0.1 for noninformative priors

.........................................................................................................................................77 

Figure 15: Bayesian expected lengths plots when 𝛼 = 0.05 for noninformative priors 78 

Figure 16: Bayesian coverage probability plots when 𝛼 = 0.05 for noninformative priors

.........................................................................................................................................79 

Figure 17: Histogram plot for the real data. ....................................................................87 

Figure 18: Plot between the expected and the observed distribution..............................88 

*Note to Student: Please note that the capitalization of titles on List of Tables and List of Figures are both 

acceptable. For example, Page 7 uses Title Case, while page 8 uses Sentence Case. We only ask that you be 

consistent with your choice throughout the document. 



  
   

1 
 

CHAPTER 1: INTRODUCTION 

 In statistical analysis a lifetime or failure time data is wildly used in many areas. 

Then the lifetime can be defined by having time scale, time origin and an event, which 

noted as failure or death. In this study we are interested in censored lifetime data especially 

a progressively type-II censored data. The lifetime data is called censored when an 

information about an individual survival time is available, but the survival time is not 

known exactly. The progressively type-II censored data will be approached if the deletions 

are carried out at an observed failure time. The analysis of this type of data is important in 

many sciences like the biomedical, engineering, and social sciences. For more explanation, 

lifetime distribution methodology applications are mainly used to investigate the 

manufactured items' durability or to study human diseases and their treatment. The interest 

in analyzing such data is not new. In about 1970, dealing with this type of data had been 

expanded rapidly depending on methodology, theory, and fields of application. Since about 

1980, software packages for lifetime data had been developed widely with a lot of new 

features and packages.  

The lifetime in general is a positive random variable 𝑇 assumed to be continuous 

with probability density function (pdf) 𝑓(𝑇). Some examples of common lifetime 

distributions are the exponential distribution, Weibull distribution, log normal distribution, 

log logistic distribution, and generalized exponential distribution. Censored data occurs 

when failure times for some units have not been completely observed. There are many 

causes for censoring. One of these causes is the absence of an event during the study time. 

If an observation has been lost to follow-up from the study because of death or any other 
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reasons, then this can be a reason for censoring.  

 In this thesis, we consider the likelihood inference of the quantiles of the 

Generalized Exponential distribution based on progressively type II censored data. Then, 

our main research problems are: 

1- Investigating and studying the performance of two types of statistical inference, 

namely; classical inference and Bayesian inference. 

2-  Considering point estimation as well as interval estimation. Three types of classical 

confidence intervals have been constructed, namely; the asymptotic interval, the 

percentile interval, and bootstrap-t interval. For the Bayesian intervals, we 

considered equal tail intervals as well as the highest probability density (HPD) 

interval. 

3- Comparing between the classical statistical inference point estimation and the 

Bayesian inference point estimation.  

Problems 1, 2, and 3 are presented in chapters 2, 3, and 5, respectively. The rest of 

this chapter gives a brief explanation and a review of some literature related to our 

study. 

1.1 The Generalized Exponential Distribution  

 The Generalized Exponential distribution denoted by GE, is a relatively new 

distribution applied on the life time data. It is introduced by (Gupta & Kundu, Generalized 

Exponential Distributions, 1999) as a possible alternative for Weibull and Gamma 

distributions. The main idea of using GE distribution instead of Weibull or gamma 

distributions is that has the many properties are quite like the gamma distribution, but the 

distribution function is like the one of Weibull distribution, which will let the computation 
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simpler. The GE distribution is skewed to the right and its monotone hazard function is like 

the monotone hazard functions of gamma and Weibull distributions. (Khan, 1987) assumed 

that the GE distribution has two parameters and in case of having an additional parameter 

which called the location parameter. The GE distribution with an additional parameter fits 

many situations of life and reliability test results whereas the coefficient of variation of the 

data is significantly greater than the unity. The GE distribution can be used as an alternative 

to the Weibull and gamma families for analyzing lifetime data. (Gupta & Kundu, 

Generalized Exponential Distributions, 1999) presented the distribution function, the 

probability density function and properties of the distribution. They considered statistical 

inference techniques for GE distribution.  

 On the other hand, (Gupta & Kundu, Generalized Exponential Distribution: 

Statistical Inferences, 2002) derived the maximum likelihood estimation of the unknown 

parameters of a generalized exponential distribution for both, complete sample and 

censored sample. They presented the MLEs for both types of censoring, type I and type II. 

The consistency and the asymptotic normality results of the MLE’s of the GE distribution 

had been provided by the researchers, in case of complete data. On the other hand, in case 

of type I censored data and if the data were in grouped form, the Fisher Information matrix 

had been provided. Also, (Gupta & Kundu, Generalized Exponential Distribution: Existing 

Results and Some Recent Developments, 2007) assumed that the GE distribution is more 

useful for analyzing lifetime data than gamma distribution, Weibull distribution or log-

normal distribution. They presented the source of this model. Also, some properties and 

different estimation procedures had been presented. And (Gupta & Kundu, Generalized 

Exponential Distribution: Bayesian Estimations, 2008) derived the Bayesian estimators for 
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the two unknown parameters of the GE distribution. They assumed gamma distribution as 

prior distributions for both shape and scale parameters. 

 This research is based on the generalized exponential distribution. First, we will 

present the GE distribution with three parameters. A random variable 𝑋 said to be 

generalized exponential distributed if 𝑋 has the following distribution function  

                       𝐹(𝑥; 𝛼, 𝜆, 𝜇) = (1 − 𝑒−(𝑥−𝜇) 𝜆⁄ )𝛼            (𝑥 > 𝜇, 𝛼 > 0, 𝜆 > 0).                 (1) 

The corresponding density function is 

𝑓(𝑥; 𝛼, 𝜆, 𝜇) =
𝛼

𝜆
(1 − 𝑒−(𝑥−𝜇) 𝜆⁄ )𝛼−1𝑒−(𝑥−𝜇) 𝜆⁄      (𝑥 > 𝜇, 𝛼 > 0, 𝜆 > 0),                 (2) 

where, the shape parameter is 𝛼, the scale parameter is 𝜆 and the location parameter is 𝜇. 

The GE distribution can be denoted as 𝐺𝐸(𝛼, 𝜆, 𝜇). The behavior of the hazard function for 

different values of the shape parameter 𝛼 and its relation with the Gamma and Weibull 

distributions is explained in the table below.  

 

 

Table 1. The shape parameter 𝛼 different values. 

 

Parameter:  Gamma Weibull GE 

𝛼 = 1 1
𝜆⁄  1

𝜆⁄  1
𝜆⁄  

𝛼 > 1 Increasing from 0 

to 1 𝜆⁄  

Increasing from 0 

to ∞ 

Increasing from 0 

to 1 𝜆⁄  

𝛼 < 1 Decreasing from 

∞ to 1 𝜆⁄  

Decreasing from 

∞ to 0 

Decreasing from 

∞ to 1 𝜆⁄  
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This research will consider only two parameters. If the location parameter is zero as in most 

applications of lifetime data models. The shape and scale parameters denoted by 𝜃 and 𝜎 

respectively. Therefore, our density and cumulative functions will be defined as follows  

𝑓(𝑥; 𝜃, 𝜎) =
𝜃

𝜎
𝑒−𝑥 𝜎⁄ (1 − 𝑒−𝑥 𝜎⁄ )𝜃−1           (𝑥 > 0, 𝜃 > 0, 𝜎 > 0).          (3)                

𝐹(𝑥; 𝜃, 𝜎) = (1 − 𝑒−𝑥 𝜎⁄ )𝜃             (𝑥 > 0, 𝜃 > 0, 𝜎 > 0).          (4)  

The probability density function proposed in equation (3), has been plotted in the figure 

below with indicating different parameters sets. These parameters are (𝜃1, 𝜎1) = (2,1.2), 

(𝜃2, 𝜎2) = (1.2,0.5), (𝜃3, 𝜎3) = (1.5,0.7), (𝜃4, 𝜎4) = (1.7,0.9) and (𝜃5, 𝜎5) = (2.3,1.5). 
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Figure 1. PDF plot for GE distribution. 

 

 

1.2 Quantiles 

 Quantiles can be found in many different areas of statistics. It can be applied in 

many fields like finance, investment, economics, engineering and medicine. The range of 

a probability distribution can be divided into continuous intervals with equal probabilities 

by cut points called quantiles. A finite set can be partitioned into q subsets of equal sizes 

by values called q-quantiles. Historically, there are many uses of sample quantiles in 

statistics. (Eubank, 1984). In 1846, Quetelet used the probable error of a distribution 

estimator based on the semi-interquartile range. Also, quantiles like the median had been 
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discussed by (Galton, 1889) , (Edgeworth, Progressive Means, 1886) and (Edgeworth, 

Review of Fisher's Mathematical Investigations, 1893). Two studies had been made in 

1899 by (Sheppard, 1899) and then by (Pearson, 1920) were interested in the problem of 

choosing the optimal quantile for the mean estimation and the normal distribution’s 

standard deviation by the subsets of the sample quantiles' linear functions. The asymptotic 

distribution of the sample quantiles derivation had been discussed in detail in (Pearson, 

1920). Simirnoff (1935) explained the behavior of a sample quantile in case of having large 

sample. Also, he introduced the limiting distribution’s strict derivation. These results had 

been generalized in 1946 by (Mosteller, 1946), which were supported by (Ogawa, 1951), 

was highly intentioned with the idea of having quantiles to be an estimation tools in 

location and scale parameter models. Later, quantiles have been used widely in problems 

of the classical and the robust statistical inference. Also, quantiles were very important in 

(Tukey, 1977) and (Parzen, 1979a) works. Which were on the exploratory data analysis 

and the nonparametric data modeling. 

The 𝑝𝑡ℎ quantile for any variable T is the value 𝑡𝑝 such that 

Pr(𝑇 ≤ 𝑡𝑝) = 𝑝. 

Where, 𝑡𝑝 = 𝐹
−1(𝑝). Noticed that, the pth quantile can be referred as the 100 pth percentile 

of the distribution. (Pfeiffer, 1990) introduced some properties for the 𝑝𝑡ℎ quantile, which 

are shown below:  

1- Suppose that the cumulative distribution function 𝐹(𝑥) is continuous and strictly 

increasing on a closed interval [𝑎, 𝑏], then the 𝑝𝑡ℎ quantile function 𝑡𝑝 is also 

continuous and strictly increasing on the closed interval [𝐹(𝑎), 𝐹(𝑏)]. 
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2- If the cumulative distribution function 𝐹(𝑥) has a jump at 𝑥 = 𝑎, then the 𝑝𝑡ℎ 

quantile function 𝑡𝑝(𝑝) = 𝑎 for 𝑝 ∈ (𝐹(𝑎 − 0), 𝐹(𝑎)]. 

3- If 𝐹(𝑥) = 𝐹(𝑎) for 𝑥 ∈ [𝑎, 𝑏) for 𝐹(𝑎 − 𝑐) < 𝐹(𝑎) and 𝐹(𝑏 + 𝑐) > 𝐹(𝑎), ∀ 𝑐 >

0, then 𝑡𝑝(𝐹(𝑎)) = 𝑎 and 𝑝 > 𝐹(𝑎) implies that 𝑡𝑝(𝑝) ≥ 𝑏. 

4- The 𝑝𝑡ℎ quantile function 𝑡𝑝 is left continuous. For more explanation, the 𝑡𝑝 

function is the inverse function of the cumulative distribution function 𝐹(𝑥), then 

to get the graph of 𝑡𝑝, we may reflect the graph of 𝐹(𝑥) in the main diagonal. By 

considering the jump of 𝐹(𝑥) to be a horizontal line. So, the jump of 𝐹(𝑥) will be 

a horizontal interval for 𝑡𝑝, and a horizontal interval for 𝐹(𝑥) becomes a jump for 

𝑡𝑝. Then 𝐹(𝑥) is right continuous and 𝑡𝑝 is left continuous.  

5- Suppose that 𝐹(𝑡𝑝(𝑝) − 0) ≤ 𝑝 ≤ 𝐹(𝑡𝑝(𝑝)), therefore if 𝐹(𝑥) is continuous at 

𝑡𝑝(𝑝), then 𝐹 (𝑡𝑝(𝑝)) = 𝑝.    

  

1.3 Progressively Censored Data 

 In statistics, economics, engineering, and medical researches, censoring is a 

condition where the value of measurement or observation is only partially known. 

Generally, if the exact survival time is not known, but we have some information about the 

survival time, in this case the resulting data is said to be censored. Therefore, in survival 

analysis, time until an event occurs is the variable of interest. The event describes death, 

disease, or some other individual experience. Survival data has many applications in 

biomedical science, industrial reliability (for example, reliability engineering, such as 

lifetime of electronic devices, components, or systems), sociology (for example, period of 
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first marriage), marketing (for example, length of newspaper or magazine contribution), 

and so on. Now, we review some examples of the survival analysis. Suppose our 

experiment is about leukemia patients, where the event of interest (failure) is "going out of 

the reduction" and the outcome is "time in a week until a person goes out of the reduction". 

The next example is in sociology and it about repetition, where the event is "getting 

rearrested" and the outcome is "time in weeks until rearrested". As another example, 

suppose we got a data about transplant patients, the event in this situation is "death" and 

the outcome is "time in months from receiving a transplant until death".   

 (Balakrishnan & Cramer, The Art of Progressive Censoring, 2014) As mentioned 

before, the censored data problem is that the observed data of a variable is partially known. 

The problem is related to the missing data, where the observed value of some variable is 

unknown. Therefore, it can be said that the following causes are the reasons of why 

censoring occurs in the data: 

1- There are many reasons that would make a person withdraw the study.  

2- During a period of the study, an individual lost to follow-up. 

3- No events occur from a person until the study ends.   

Theoretically, censoring can be defined as follows. In a life test we usually got n units to 

test it and a progressive censoring scheme or censoring plan denoted by (𝑅1, … , 𝑅𝑟) . The 

units removed from the test within the test period, that process is called progressive 

censoring in general. There are several models of progressively censored data, but the most 

popular are the progressive Type-II censoring or the progressive Type-I censoring. The 

following notations are for progressively censored data. 



  
   

10 
 

1- 𝑛,𝑚, 𝑅1, 𝑅2, …  ∈ ℕ0 are all integers. 

2- The sample size is 𝑚; and for some models, it could be random. 

3- The total number of units in the experiment is 𝑛.  

4- The effectively employed removals number at the 𝑗𝑡ℎ censoring time is 𝑅j. 

5- ℛ = (𝑅1, … , 𝑅𝑟) denoted as the censoring scheme, where 𝑟 is the number of censoring 

times. 

 The progressive Type-II censoring is occurred when a surviving unit will be 

selected randomly to be removed from the experiment when observing a failure to reduce 

the time and the cost of the experiment. 

The set of allowable Type-II censoring schemes can be defined as follows: 

𝒢𝑚,𝑛
𝑚 = {(𝑟1, … , 𝑟𝑚) ∈ ℕ0

𝑚: ∑ 𝑟𝑖
𝑚
𝑖=1 = 𝑛 −𝑚}  . 

Suppose we have 𝑘 successive zeros, then the notation for that situation will be 0∗𝑘. In 

general (𝑎1, 0
∗𝑛1 , 𝑎2, 𝑎3, 0

∗𝑛2 , 𝑎4, 0
∗𝑛3) = (𝑎1, 0, … ,0⏟  

𝑛1 𝑡𝑖𝑚𝑒𝑠

, 𝑎2, 𝑎3, 0, … ,0⏟  
𝑛2 𝑡𝑖𝑚𝑒𝑠

, 𝑎4, 0, … ,0⏟  
𝑛3 𝑡𝑖𝑚𝑒𝑠

). For 

example, (1∗𝑚) means that the censoring scheme (1, … ,1) ∈ 𝒢𝑚,𝑛
𝑚 . The following table 

explains some schemes.  
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Table 2. Different kinds of censoring schemes. 

 

Scheme 𝓡 = (𝑹𝟏, … , 𝑹𝒓) Meaning 

ℴ𝑚 = (0
∗𝑚−1, 𝑛 − 𝑚)  Right censoring, i.e., the sample size is 𝑛 

and the first order statistics are 𝑚.  

(0∗𝑚) Complete sample size (𝑚 = 𝑛) 

ℴ1 = (𝑛 −𝑚, 0
∗𝑚−1) First-step censoring plan (FSP), i.e., after 

failure the exclusion takes place. 

ℴ𝑘 = (0
∗𝑘−1, 𝑛 − 𝑚, 0∗𝑚−𝑘) One-step censoring plan (OSP), i.e., after 

the  𝑘𝑡ℎ failure the removal takes place, 

2 ≤ 𝑘 ≤ 𝑚 − 1 

 

 

1.4 Literature on Inference Based on Progressively Censored Data 

 In this section we shall mention related literature reviews to our study. 

(Balakrishnan, Progressive Censoring Methodology: An Appraisal (with Discussions), 

2007) considered the progressively censored order statistics properties and provided the 

progressively censored samples' procedures. Basically, he focused in his study on many 

developments related to this topic. Also, he suggested some problems which further 

research in future can be. Researcher focused on the progressive Type-II right censoring 

situation, but he presented a brief idea about Type-I right censoring. He explained the basic 

distribution theory of the progressively Type-II right censoring. Then he talked about the 

development of that type of censoring. Three main distributions were interested to apply it 
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for progressively Type-II censored order statistics distribution.    

 (Sarhan & Abuammoh, 2008) derived the inference procedures for the Generalized 

Exponential distribution based on a progressively Type-II censored data. They applied 

Monte Carlo simulation to estimate based on point estimation and the interval estimates.   

(Ng, Kundu, & Chan, 2009) considered the adaptive Type-II progressive censoring 

scheme. The maximum likelihood estimation (MLE) has been derived based on the 

exponential distribution. Also, they constructed the confidence intervals based on diverse 

methods and applied Monte Carlo simulation to compare their coverage probabilities and 

expected widths.  

(Krishna & Kumar, 2011) obtained the maximum likelihood and Bayesian estimates for 

one parameter Lindley distribution based on a progressively Type II censored sample. For 

applications, they used Monte Carlo simulation for calculating interval estimation and 

coverage probability for their parameter. 

(Ye, Chan, Xie, & Ng, 2014) introduced some properties of an adaptive type II progressive 

censoring. They reduced the bias of the maximum likelihood estimators by using bias 

correction. After that, they derived the Fisher information matrix for the maximum 

likelihood estimators of the extreme value distributed lifetimes, considering these 

properties. To construct confidence intervals for extreme value distribution parameters, 

they proposed four different approaches. They applied Monte Carlo simulation to compare 

between these methods. To correct the bias, they used the bootstrap method. The 

confidence intervals in this study were based on observed information matrix, Fisher 

information matrix, parametric percentile bootstrap and studentized bootstrap.  

 In Chapter 2, we derive the likelihood inference about the quantiles of the GE 
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distribution based on a progressively type-II censored data by using invariance property of 

MLE after considering the likelihood inference of the GE distribution based on a 

progressively type-II censored data due to (Sarhan & Abuammoh, 2008). Also, we 

construct an MLE intervals such as asymptotic, percentile and bootstrap-t confidence 

intervals due to (Baklizi A. , 2008) and (Baklizi A. , 2009). The new method in this thesis 

is considering these intervals for the quantiles of the GE distribution based on a 

progressively censored data. In Chapter 3, we derive the Bayesian inference about the 

quantiles of the GE distribution based on a progressively type-II censored data due to 

(Gupta & Kundu, Generalized Exponential Distribution: Bayesian Estimations, 2008) and 

(Krishna & Kumar, 2011). For simulation study, we apply an importance sampling method. 

Of course, after constructing confidence intervals for both statistical methods (classical and 

Bayesian), we calculate the coverage probability and expected lengths of these intervals. 

Chapter 5 presents a comparison between these two methods considering the bias, mean 

squared error, coverage probability and expected lengths. Our contributions are that bias 

and MSE results for Bayesian method are closer to zero more than classical methods. Also, 

Bayesian intervals have the best expected lengths, especially the equal tail intervals. 
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CHAPTRE 2: LIKELIHOOD INFERENCE 

 The main idea of the maximum likelihood estimation (MLE) is estimating the 

parameters of statistical models given observations. (Aldrich, 1997) In 1912, R. A. Fisher 

derived the “absolute criterion” from the “principle of inverse probability”. The 

“optimum”, in 1921, was related to the notation of “likelihood” and it was known as a 

quantity of evaluating hypothetical quantities based on the data given. In 1922, the 

“maximum likelihood gave estimates which satisfied “sufficiency” and “efficiency”. In 

that days there were two ways of estimating the likelihood, based on the distribution of the 

entire sample or sometimes on the distribution of a statistic. Therefore, it could be said that 

the “Mathematical foundations of theoretical statistics” appeared in 1922 to express the 

“Maximum likelihood”. 

2.1 An Overview of The Likelihood Inference 

 The maximum likelihood method is based on the likelihood function, which is 

known as the joint probability distribution or the joint probability density of the random 

variables 𝑋1, 𝑋2, … , 𝑋𝑛 at 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑛 = 𝑥𝑛. The likelihood function is 

denoted by 𝐿(𝑥; 𝜃) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛; 𝜃), where 𝑥1, 𝑥2, … , 𝑥𝑛 are the values of a random 

sample from a population with parameter 𝜃. Therefore, the maximum likelihood estimator 

is found by maximizing the likelihood function with respect to 𝜃, and then we call the value 

of 𝜃 that maximizes the likelihood function as the maximum likelihood estimate of 𝜃.   

 We need to find the first partial derivative of the natural logarithm of the likelihood 

function with respect to 𝜃 to estimate the parameter 𝜃. That first partial derivative is usually 

called the "score". The Fisher information is given by 
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𝐼(𝜃) = 𝐸 [
𝜕2

𝜕𝜃2
𝑙𝑛 𝐿(𝑥; 𝜃)] .         ( 5 ) 

Noted that, 0 ≤ 𝐼(𝜃) < ∞.  In this study, we may more interested in using the observed 

Fisher information matrix, which defined as the negative of the second derivative of the 

log-likelihood function. Therefore, we can say that the Fisher information 𝐼(𝜃) is the 

expected value of the observed Fisher information matrix.     

 The invariance property of maximum likelihood estimators is a very useful 

property. Generally, if a specific distribution has a parameter 𝜃, but suppose the interested 

estimator is for some function of 𝜃, say 𝜏(𝜃). Formally, a theorem below can express the 

invariance property of MLEs: 

Theorem 2.1.1 (Invariance property of MLEs) (Casella & Berger, 2002) . If the MLE of 𝜃 

is 𝜃, then for any function 𝜏(𝜃), the MLE of 𝜏(𝜃) is 𝜏(𝜃).  

 Now, we shall define the Asymptotic Normality. Say we have 𝜃 is asymptotically 

normal if 

√𝑛(𝜃 − 𝜃0)
𝐷
→𝑁(0, 𝜎𝜃0

2 ) , 

where the parameter 𝜎𝜃0
2  is known to be the asymptotic variance of our estimator 𝜃, while 

𝜃0 is known as a true value of parameter 𝜃 .  Suppose that 𝜃𝑀𝐿𝐸  converges in probability 

to 𝜃0. Then we say that  𝜃𝑀𝐿𝐸  is consistent.  

Generally, let a statistical model {𝑓(. , 𝜃): 𝜃 ∈ Θ} of probability density function (pdf) or 

probability mass function (pmf) on 𝑋 ⊆ 𝑅𝑑 satisfied and in addition to the consistency 

assumption. Then we have: 

1- The true value of 𝜃0 ∈ Θ. 
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2- There exists 𝑈 ⊆ Θ, such that function 𝜃 → 𝑓(𝑥 , 𝜃), ∀ 𝑥 ∈ 𝑋 twice continuously 

differentiable with respect to 𝜃 ∈ U. 

3- A 𝑝 × 𝑝  non-singular Fisher information matrix 𝐼(𝜃0) and 

𝐸𝜃0[||∇θ𝑙𝑜𝑔𝑓(𝑥, 𝜃0)||] < ∞ satisfies. 

4- A compact ball 𝐾 ⊆ 𝑈 of a non-empty interior, exists, which is centered at  𝜃0, such 

that 𝐸𝜃0𝑠𝑢𝑝𝜃∈𝐾 [||∇𝜃
2 𝑙𝑜𝑔𝑓(𝑥, 𝜃)||] < ∞ , 

∫
x
𝑠𝑢𝑝𝜃∈𝐾|∇θ𝑙𝑜𝑔𝑓(𝑥, 𝜃0)|𝑑𝜃 < ∞ , 

∫
x
𝑠𝑢𝑝𝜃∈𝐾|∇𝜃

2 𝑙𝑜𝑔𝑓(𝑥, 𝜃)|𝑑𝜃 < ∞ , 

Related to the assumptions above with their properties, then asymptotic normality of the 

MLE must hold.  

Theorem 2.1.2 (Asymptotic normality of the MLE.) Let 𝑋1, 𝑋2, 𝑋3, …, be identically 

independent distributed (iid) for 𝑓(𝑥|𝜃) and 𝜃 be the MLE of 𝜃 . Then,  

√𝑛(𝜃 − 𝜃0) → 𝑁 (0,
1

𝐼(𝜃0)
).          ( 6 ) 

Noticed that, when the Fisher information is larger, then the asymptotic variance of the 

estimator will be smaller.   

Assume that we have a sequence of random variables 𝑇𝑛 such that 

√𝑛(𝑇𝑛 − 𝜃)
𝐷
→𝑁(0, 𝜎2) as 𝑛 → ∞ , 

Let 𝑔(𝑥) be a cntinous function such that 𝑔(𝑥) ≠ 0̀  then  

√𝑛(𝑔(𝑇𝑛) − 𝑔(𝜃))
𝐷
→𝑁(0, 𝜎2[𝑔(𝜃)̀ ]

2
). 

This result is called the delta method. In the multivariate case, the delta method will be 

defined as in the following theorem.  
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Theorem 2.1.3 (Multivariate Delta method) (Gugushvili, 2014) Suppose we have a 

multiparameter vector of differentiated parameters 𝜏 = 𝑔(𝜃1, … , 𝜃𝑘) and it can be 

differentiated as 

∇𝑔 =

(

 

𝜕𝑔

𝜕𝜃1

⋮
𝜕𝑔

𝜕𝜃𝑘)

  , 

and let �̂� = 𝑔(𝜃). Then  �̂� − 𝜏 → 𝑁 (0, (∇̂𝑔)
𝑇
𝐼−1̂𝑛(∇̂𝑔)), 

where 𝐼𝑛
−1(𝜃) be the inverse of the Fisher information matrix 𝐼𝑛(𝜃), with 𝐼−1̂𝑛 = 𝐼𝑛

−1(𝜃) 

and ∇̂𝑔 = ∇𝑔(𝜃). 

2.2 The Likelihood Inference 

 Generally, a data is said to be progressively censored when n items entered in a life 

time testing experiment and observing m failures. While the first failure is observed an 𝑅1 

of the surviving units will be selected randomly and removed. Also, when the second 

failure is observed, the same thing will be done with an 𝑅2 of the surviving units. Therefore, 

the experiment will be terminated when mth failures will be observed and all remaining 

surviving units are removed (i.e, 𝑅𝑚 = 𝑛 − 𝑅1 − 𝑅2 −⋯− 𝑅𝑚−1 −𝑚). The 

progressively censored sample is denoted as 𝑋1:𝑚:𝑛 < 𝑋2:𝑚:𝑛 < ⋯ < 𝑋𝑚:𝑚:𝑛.  

 In this research our sample will be progressively type II censored data, therefore 

the joint density function of 𝑋 = (𝑋1,𝑚,𝑛, … , 𝑋𝑚,𝑚,𝑛) with censoring scheme 𝑅 =

(𝑅1, … , 𝑅𝑚) is given by: 

𝑓1,2,…,𝑚:𝑚:𝑛(𝑥1, 𝑥2, … , 𝑥𝑚) = 𝑑𝐽 (∏𝑓(𝑥𝑖:𝑚:𝑛)

𝑚

𝑖=1

)(∏(1 − 𝐹(𝑥𝑖:𝑚:𝑛))
𝑅𝑖

𝑚

𝑖=1

) 
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,    0 < 𝑥1:𝑚:𝑛 < 𝑥2:𝑚:𝑛 < ⋯ < 𝑥𝑚:𝑚:𝑛 < ∞ ,             (7) 

where, 𝑑𝐽 = ∏ [𝑛 − 𝑖 + 1 − ∑ 𝑅𝑘
max {𝑖−1,𝐽}
𝑘=1 ]𝑚

𝑖=1 . 

 Now, for the generalized exponential distribution, to find the likelihood function of 

𝜃 and 𝜎 based on the progressively type II censored data we will substitute equations (3) 

and (4) into equation (7) to get: 

𝐿(𝑥; 𝜃, 𝜎) = 𝑑𝐽 (∏
𝜃

𝜎
𝑒−𝑥𝑖 𝜎⁄ (1 − 𝑒−𝑥𝑖 𝜎⁄ )

𝜃−1𝑚
𝑖=1 ) (∏ (1 − (1 − 𝑒−𝑥𝑖 𝜎⁄ )

𝜃
)
𝑅𝑖

𝑚
𝑖=1 ) ,    (8)  

Taking ln for equation (6) to get: 

𝑙𝑛𝐿(𝑥; 𝜃, 𝜎) = 𝑐𝑜𝑛𝑠𝑡 + 𝑚𝑙𝑛𝜃 −𝑚𝑙𝑛𝜎 −
1

𝜎
[∑𝑥𝑖

𝑚

𝑖=1

] + (𝜃 − 1) [∑ln(1 − 𝑒−𝑥𝑖 𝜎⁄ )

𝑚

𝑖=1

]

+ [∑𝑅𝑖ln (1 − (1 − 𝑒
−𝑥𝑖 𝜎⁄ )

𝜃
)

𝑚

𝑖=1

].          (9) 

 Now, we need to find the maximum likelihood function estimators for 𝜃 and 𝜎. To 

do that we must take the first derivative of equation (9) firstly with respect to 𝜃 and then 

with respect to 𝜎, and then equating each derivative to zero. 

𝜕𝑙𝑛𝐿(𝑥; 𝜃, 𝜎)

𝜕𝜃
=
𝑚

𝜃
+∑ln(1 − 𝑒−𝑥𝑖 𝜎⁄ )

𝑚

𝑖=1

−∑𝑅𝑖
(1 − 𝑒−𝑥𝑖 𝜎⁄ )

𝜃
𝑙𝑛(1 − 𝑒−𝑥𝑖 𝜎⁄ )

(1 − (1 − 𝑒−𝑥𝑖 𝜎⁄ )𝜃)

𝐽

𝑖=1

= 0 ,         (10) 

𝜕𝑙𝑛𝐿(𝑥; 𝜃, 𝜎)

𝜕𝜎
=
−𝑚

𝜎
+
1

𝜎2
∑𝑥𝑖

𝑚

𝑖=1

−
(𝜃 − 1)

𝜎2
∑

𝑥𝑖𝑒
−𝑥𝑖 𝜎⁄

(1 − 𝑒−𝑥𝑖 𝜎⁄ )

𝑚

𝑖=1

+
𝜃

𝜎2
∑𝑅𝑖

𝑥𝑖𝑒
−𝑥𝑖 𝜎⁄ (1 − 𝑒−𝑥𝑖 𝜎⁄ )

𝜃−1

(1 − (1 − 𝑒−𝑥𝑖 𝜎⁄ )𝜃)

𝐽

𝑖=1

= 0 ,   (11) 

 The MLE of 𝜃 and �̂� can be found by solving the system simultaneous non-linear 
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equation by Newton-Raphson method. 

The 𝑝𝑡ℎ quantile of GE distribution can be found by finding the inverse function of 

equation (4) as follows. 

𝑡𝑝 = 𝐹
−1(𝑝) = −𝜎 log(1 − 𝑝1 𝜃⁄ ).                 (12) 

 In our research we are interested in finding the maximum likelihood estimator for 

the 𝑝𝑡ℎ quantile of GE distribution, which has been found by the invariance property of 

MLE by the following equation: 

𝑡𝑝(𝜃, �̂�) = �̂�𝑝 = −�̂� log(1 − 𝑝
1 �̂�⁄ ).                 (13) 

To find the approximate confidence intervals for 𝑥𝑝 for large 𝑚, we need to find the 

observed Fisher Information matrix of the parameters 𝜃 and 𝜎, denoted as follows: 

𝐽(𝜃, 𝜎) =

[
 
 
 −
𝜕2𝑙𝑛𝐿(𝑥; 𝜃, 𝜎)

𝜕𝜃2
−
𝜕2𝑙𝑛𝐿(𝑥; 𝜃, 𝜎)

𝜕𝜃𝜕𝜎

−
𝜕2𝑙𝑛𝐿(𝑥; 𝜃, 𝜎)

𝜕𝜎𝜕𝜃
−
𝜕2𝑙𝑛𝐿(𝑥; 𝜃, 𝜎)

𝜕𝜎2 ]
 
 
 

 ,      (14) 

𝜕2𝑙𝑛𝐿(𝑥;𝜃,𝜎)

𝜕𝜃2
=
−𝑚

𝜃2
− ∑ 𝑅𝑖 [

2(1−𝑒−𝑥𝑖 𝜎⁄ )
𝜃
𝑙𝑛(1−𝑒−𝑥𝑖 𝜎⁄ )

(1−(1−𝑒−𝑥𝑖 𝜎⁄ )
𝜃
)

+
2(1−𝑒−𝑥𝑖 𝜎⁄ )

2𝜃
𝑙𝑛(1−𝑒−𝑥𝑖 𝜎⁄ )

(1−(1−𝑒−𝑥𝑖 𝜎⁄ )
𝜃
)
2 ]𝐽

𝑖=1  , 

𝜕2𝑙𝑛𝐿(𝑥; 𝜃, 𝜎)

𝜕𝜃𝜕𝜎
= −

1

𝜎2
∑

𝑥𝑖𝑒
−𝑥𝑖 𝜎⁄

(1 − 𝑒−𝑥𝑖 𝜎⁄ )

𝑚

𝑖=1

+
∑ 𝑅𝑖𝑥𝑖𝑒

−𝑥𝑖 𝜎⁄𝐽
𝑖=1

𝜎2
 

       [
(1−𝑒−𝑥𝑖 𝜎⁄ )

𝜃−1

(1−(1−𝑒−𝑥𝑖 𝜎⁄ )
𝜃
)
+
𝜃(1−𝑒−𝑥𝑖 𝜎⁄ )

𝜃
𝑙𝑛(1−𝑒−𝑥𝑖 𝜎⁄ )

(1−(1−𝑒−𝑥𝑖 𝜎⁄ )
𝜃
)

+
𝜃(1−𝑒−𝑥𝑖 𝜎⁄ )

2𝜃−1
𝑙𝑛(1−𝑒−𝑥𝑖 𝜎⁄ )

(1−(1−𝑒−𝑥𝑖 𝜎⁄ )
𝜃
)
2 ] , 
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𝜕2𝑙𝑛𝐿(𝑥; 𝜃, 𝜎)

𝜕𝜎2
=
𝑚

𝜎2
−
2

𝜎3
∑𝑥𝑖

𝑚

𝑖=1

−
(𝜃 − 1)

𝜎4
∑

𝑥𝑖
2𝑒−𝑥𝑖 𝜎⁄

(1 − 𝑒−𝑥𝑖 𝜎⁄ )

𝑚

𝑖=1

−
(𝜃 − 1)

𝜎4
∑

𝑥𝑖
2𝑒−2𝑥𝑖 𝜎⁄

(1 − 𝑒−𝑥𝑖 𝜎⁄ )2

𝑚

𝑖=1

+
2(𝜃 − 1)

𝜎3
∑

𝑥𝑖𝑒
−𝑥𝑖 𝜎⁄

(1 − 𝑒−𝑥𝑖 𝜎⁄ )

𝑚

𝑖=1

−
𝜃(𝜃 − 1)

𝜎4
∑ 𝑅𝑖

𝐽

𝑖=1

𝑥𝑖
2𝑒−2𝑥𝑖 𝜎⁄ 𝜃(1 − 𝑒−𝑥𝑖 𝜎⁄ )

𝜃−2

(1 − (1 − 𝑒−𝑥𝑖 𝜎⁄ )𝜃)

+ 
𝜃

𝜎4
∑ 𝑅𝑖

𝐽

𝑖=1

𝑥𝑖
2𝑒−2𝑥𝑖 𝜎⁄ 𝜃(1 − 𝑒−𝑥𝑖 𝜎⁄ )

𝜃−1

(1 − (1 − 𝑒−𝑥𝑖 𝜎⁄ )𝜃)

−
𝜃2

𝜎4
∑ 𝑅𝑖

𝐽

𝑖=1

𝑥𝑖
2𝑒−2𝑥𝑖 𝜎⁄ 𝜃(1 − 𝑒−𝑥𝑖 𝜎⁄ )

2𝜃−2

(1 − (1 − 𝑒−𝑥𝑖 𝜎⁄ )𝜃)2
 

 

−
2𝜃

𝜎3
∑ 𝑅𝑖
𝐽
𝑖=1

𝑥𝑖𝑒
−𝑥𝑖 𝜎⁄ (1−𝑒−𝑥𝑖 𝜎⁄ )

𝜃−1

(1−(1−𝑒−𝑥𝑖 𝜎⁄ )
𝜃
)

, 

The inverse of the observed Fisher Information matrix 𝐽−1(𝜃, �̂�) would be the asymptotic 

variance covariance matrix. Which denoted as follows 

𝐽𝑛(𝜃, �̂�) = 𝐽
−1(𝜃, 𝜎)|𝜃=�̂�,𝜎=�̂� =

1

|𝐽(𝜃, 𝜎)|

[
 
 
 −
𝜕2𝑙𝑛𝐿(𝑥; 𝜃, 𝜎)

𝜕𝜎2
𝜕2𝑙𝑛𝐿(𝑥; 𝜃, 𝜎)

𝜕𝜃𝜕𝜎
𝜕2𝑙𝑛𝐿(𝑥; 𝜃, 𝜎)

𝜕𝜎𝜕𝜃
−
𝜕2𝑙𝑛𝐿(𝑥; 𝜃, 𝜎)

𝜕𝜃2 ]
 
 
 

.  (15) 

Since, equation (15) is a variance covariance matrix then it is symmetric.  

Then the asymptotic distribution is as follows  

√𝑛 (𝜃 − 𝜃
�̂� − 𝜎

)
𝑑
→𝑁 (0, 𝐽𝑛(𝜃, �̂�)),                 (16) 

Now, by applying multivariate delta method, we have: 
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∇̂𝑡𝑝 =

[
 
 
 
 
𝜕𝑡𝑝(𝜃, �̂�)

𝜕𝜃
𝜕𝑡𝑝(𝜃, �̂�)

𝜕�̂� ]
 
 
 
 

= [

�̂�𝑝1 �̂�⁄ 𝑙𝑛𝑝

𝜃2(1 − 𝑝1 �̂�⁄ )

− log(1 − 𝑝1 �̂�⁄ )

] ,         (17) 

Then, 

√𝑛(−�̂� log(1 − 𝑝1 �̂�⁄ ) + 𝜎 log(1 − 𝑝1 𝜃⁄ )) → 𝑁 (0, ∇̂𝑡𝑝
𝑇
𝐽𝑛(𝜃, �̂�)∇̂𝑡𝑝),     (18) 

where, 

 ∇̂𝑡𝑝
𝑇
𝐽𝑛(𝜃, �̂�)∇̂𝑡𝑝 =

[
�̂�𝑝1 �̂�⁄ 𝑙𝑛𝑝

�̂�2(1−𝑝1 �̂�⁄ )
− log(1 − 𝑝1 �̂�⁄ )] [

𝑣𝑎𝑟(�̂�) 𝑐𝑜𝑣(𝜃, �̂�)

𝑐𝑜𝑣(𝜃, �̂�) 𝑣𝑎𝑟(𝜃)
] [

�̂�𝑝1 �̂�⁄ 𝑙𝑛𝑝

�̂�2(1−𝑝1 �̂�⁄ )

− log(1 − 𝑝1 �̂�⁄ )

], 

= 𝑣𝑎𝑟(�̂�)
�̂�2𝑝2 �̂�⁄ (𝑙𝑛𝑝)2

𝜃4(1 − 𝑝1 �̂�⁄ )
2 + 2𝑐𝑜𝑣(𝜃, �̂�) log(1 − 𝑝

1 �̂�⁄ )
�̂�𝑝1 �̂�⁄ 𝑙𝑛𝑝

𝜃2(1 − 𝑝1 �̂�⁄ )

+ 𝑣𝑎𝑟(𝜃)(log(1 − 𝑝1 �̂�⁄ ))
2
.      (19) 

We are interested in this study to find the bootstrap estimator of the standard deviation of 

the maximum likelihood of the 𝑝𝑡ℎ quantile. Generally, the standard deviation is the square 

root of the variance. Therefore, the square root of equation (19) will be our bootstrap 

estimator. 

𝑆�̂�𝑥𝑝

= √𝑣𝑎𝑟(�̂�)
�̂�2𝑝2 �̂�⁄ (𝑙𝑛𝑝)2

𝜃4(1 − 𝑝1 �̂�⁄ )
2 + 2𝑐𝑜𝑣(𝜃, �̂�) log(1 − 𝑝

1 �̂�⁄ )
�̂�𝑝1 �̂�⁄ 𝑙𝑛𝑝

𝜃2(1 − 𝑝1 �̂�⁄ )
+ 𝑣𝑎𝑟(𝜃)(log(1 − 𝑝1 �̂�⁄ ))

2
 , (20) 
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𝑆�̂̂�𝑥𝑝 =

√𝑣𝑎𝑟(�̂̂�)
�̂̂�
2
𝑝2 �̂̂�⁄ (𝑙𝑛𝑝)2

�̂̂�
4
�̂̂�(1−𝑝1 �̂̂�⁄ )

2 + 2𝑐𝑜𝑣(�̂̂�, �̂̂�) log (1 − 𝑝1 �̂̂�
⁄ )

�̂̂�𝑝1 �̂̂�⁄ 𝑙𝑛𝑝

�̂̂�
2
(1−𝑝1 �̂̂�⁄ )

+ 𝑣𝑎𝑟(�̂̂�) (log (1 − 𝑝1 �̂̂�⁄ ))
2

. 

The a (1 − 𝛼)% confidence interval for 𝑥𝑝, which based on the asymptotic results that 

we got is denoted by 

�̂�𝑝 ± 𝑧𝛼 2⁄ 𝑆�̂�𝑥𝑝  .            (21) 

where 𝑆�̂�𝑥𝑝 is the asymptotic standard deviation of equation (19) obtained by substituting 

𝜃 and �̂�.  

2.3 Bootstrap Methods 

 The bootstrap can be considered as an example of modern science in statistics. In 

1969, the idea of bootstrap was first proposed by (Simon, 1969). After that, (Efron, 1979a) 

inspired by the earlier work on the jackknife to publish the bootstrap in "Bootstrap 

methods: another look at the jackknife". In 1981, a Bayesian extension had been developed.  

Bootstrap methods were applied extensively in the literature, (Li, 2011) estimated 

the interval for the quantiles of two-parameter exponential distributions. He used two 

methods, bootstrap and fiducial inferences. In his study, he was interested in calculating 

the coverage probabilities and expected lengths of both methods. He used numerical 

simulation study for comparing between these two methods. The results showed that 

fiducial inference method had well performance under all the examined conditions. He 

applied the Monte Carlo simulation to get coverage probabilities and expected length 

estimation. The study ended with that coverage probabilities of fiducial intervals were close 

to 1−∝ and it was larger than the bootstrap intervals for small 𝑝. but for large 𝑝 the 
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coverage probabilities for both methods were close to each other. For that reason, fiducial 

intervals showed better performance. On the other hand, the expected lengths for bootstrap 

method showed better results than fiducial method. (Bang & Zhao, 2012) suggested to use 

censored data to construct confidence intervals by applying some statistical methods such 

as bootstrap. They did simulation to study the properties of these methods.  

(Panichkitkosolkul & Saothayanun, 2012) introduced the structure of the bootstrap 

confidence intervals based on the half-logistic distribution. They applied many types of 

bootstrap confidence intervals, such as, standard bootstrap, percentile bootstrap and bias-

corrected percentile bootstrap confidence intervals. They compared between coverage 

probabilities and average lengths of bootstrap confidence intervals by using Monte Carlo 

simulations. The study showed that the coverage probabilities of the standard bootstrap 

confidence intervals were getting closer to the confidence level than other types of 

bootstrap confidence intervals. (Baklizi A. , 2008) developed confidence intervals for 

different quantiles based on one and two independent samples. He considered the 

maximum likelihood estimator based on record values from the Weibull distribution. He 

constructed bootstrap-t, bootstrap-t with bootstrap estimated variance and bootstrap 

percentile intervals and compared between them. This study ended with the length of 

intervals increased as 𝑝𝑡ℎ quantile values increased. On the other hand, the larger the 

sample size the shorter intervals. The error rates were appeared larger for small sample 

sizes than the nominals. But, for intervals based on the asymptotic normality of the MLE 

and the observed information matrix or the Fisher information matrix the error rates seems 

to be moderate. While for all three types of bootstrap intervals, the error rates were very 
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large. (Baklizi A. , 2009) considered the quantiles of the generalized exponential 

distribution. This study concluded that intervals lengths seems better for higher P values 

and smaller sample sizes. Intervals' error rates were larger than for nominal ones especially 

for small sample sizes. While error rates for intervals based on the asymptotic normality of 

the MLE seemed to be small. Bootstrap intervals, error rates were the largest especially for 

the percentile interval and the bootstrap-t interval with variance estimates from the Fisher 

information matrix.  

 Many journal articles have stressed that bootstrap has great practical value. Also, 

that journal articles emphasized to consider bootstrapping in applied work. On the other 

hand, it is not surprising that extremely precise results can be found when combined 

bootstrapping with modern insights, while traditional methods fail badly. Generally, all 

bootstrap methods depend on the data has been gotten from a study to detect the sampling 

distributions, which used to calculate the confidence intervals and test hypotheses. The 

basic idea of bootstrapping depends on random sampling with replacement. Bootstrapping 

helps to define sampling distribution of sample means, without considering the normality 

assumption. It also could assign measures of accuracy (such as variance, bias, confidence 

intervals, prediction error or some other such measures) to sample estimate.  This technique 

allows by using random sampling method, to estimate the sampling distribution of any 

statistic. Bootstrap has advantages and disadvantages. The most important advantage is the 

simplicity of bootstrapping. A standard errors and confidence intervals estimates can be 

derived easily for complex estimators of complex parameters of the distribution. These 

complex estimators could be percentile points, odds ratio, proportions, and correlation 

coefficients. Also, to check the stability and control the results, we can be bootstrapping. 
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On the other hand, bootstrap confidence intervals are asymptotically more precise than the 

standard intervals, which depend on the sample variance and the normality assumptions. 

But the simplicity of bootstrapping hides aside of the disadvantage. Which is the fact that 

important assumptions need to take care of it when bootstrapping, for example 

independence of samples. There are many methods for bootstrapping. In this study we are 

interested in bootstrap methods for means, namely the percentile method and the bootstrap 

t method.  

The bootstrap t method arises when we are interested to compute a confidence interval for 

𝜇. Suppose the T statistics which is given by  

𝑇 =
�̅�−𝜇

𝑠 √𝑛⁄
 , 

and it has a Student's t distribution. Therefore, the confidence interval for the population 

mean is given by (�̅� ± 𝑇
𝑠

√𝑛
) when sampling from a Normal distribution. The bootstrap t 

method or percentile t bootstrap, as it called sometimes, detects the distribution of T. In 

this situation we get the bootstrap samples same as percentile method, but for this bootstrap 

sample we must calculate the sample mean and standard deviation, then label them to be 

�̅�∗ and 𝑠∗.  

2.3.1 Bootstrap-t Confidence Interval 

 To compute the bootstrap-t confidence interval. First, we need to calculate a 

vector which is given by 𝑍∗ =
(�̂̂�𝑝−�̂�𝑝)

𝑆�̂̂�𝑥𝑝
 , where 𝑆�̂̂�𝑥𝑝 is the estimated asymptotic standard 

deviation of �̂�𝑝 and it is defined in equation (20). After that, we need to find  𝑧𝛼
∗  which is 

the 𝛼 quantile of the bootstrap distribution 𝑍∗. Then, the bootstrap-t interval is given by 
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(�̂�𝑝 − 𝑧1−𝛼 2⁄
∗ 𝑆�̂�𝑥𝑝, �̂�𝑝 − 𝑧𝛼 2⁄

∗ 𝑆�̂�𝑥𝑝)  .      (22) 

2.3.2 Percentile Confidence Interval 

 The maximum likelihood estimator of 𝑥𝑝 has been introduced in chapter 2 to be �̂�𝑝 

as shown in equation (13). Now, we are interested to find the maximum likelihood 

estimator for the bootstrap samples which generated from the Generalized Exponential 

distribution with parameters 𝜃 and �̂� . Therefore, by applying the invariance property on 

equation (13), then �̂̂�𝑝 will be the maximum likelihood estimator for the bootstrap samples. 

The percentile confidence interval can be constructed by finding the cumulative 

distribution function of �̂̂�𝑝  which would be denoted by �̂� . The 1 − 𝛼 percentile interval 

for �̂�𝑝 is defined by 

(�̂�−1 (
𝛼

2
) , �̂�−1 (1 −

𝛼

2
))  .       (23) 

2.4 Simulation Study 

 We will investigate the performance of the point and interval estimators. We will 

consider the bias and MSE for point estimators, the coverage probability and the expected 

length for confidence intervals.  

We did simulation for N=2000. Also, we chose different values of P, which cover the whole 

range of P (0 < 𝑃 < 1). Our parameters values fixed to be 𝜃 = 2  and 𝜎 = 1.2 for table 5. 

It is important to mention that we choose B=500, which indicates the bootstrap samples for 

each scheme. Note that the best choice of B to get better results is extremely large. But in 

this study, we have been chosen the number of bootstrap samples to be B=500. It is noticed 

that the choice of B is small as (Davidson & MacKinnon, 2001) did. After that we will take 
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other different values of 𝜃 and 𝜎 to check the stability of our results. 

This study interested in calculating the bias, the mean-squared error (MSE), and the 

asymptotic variance. Table 5 shows the results of different estimates replicated 2000 times. 

For that replication we calculated the following for 𝑥𝑝, 𝑝 = 0.1, 0.25, 0.5, 0.75, 0.9; 

1- Bias: The expected value of the difference between the estimator's (�̂�𝑝) value and 

the true value parameter (𝑥𝑝) is called the bias function of an estimator and it is 

denoted by: 

𝑏𝑖𝑎𝑠 = 𝐸(�̂�𝑝 − 𝑥𝑝). 

2- MSE: Or it called the risk function. It is the expected value of the squared of the 

difference between the estimator and the true value parameter. MSE measures the 

quality of an estimator, whenever it is closer to zero, the better. MSE values are 

always non-negative and it is denoted by: 

𝑀𝑆𝐸 = 𝐸(�̂�𝑝 − 𝑥𝑝)
2
. 

After we calculated our parameters, we used it to calculate our confidence intervals. First, 

we substituted the five different values that we got for �̂�𝑝 into equation (21) to find the 

asymptotic intervals for all values of P's. We sorted the five vectors of  �̂̂�𝑝's before 

calculating the percentile confidence intervals which noticed in equation (23). To find out 

the Bootstrap-t confidence interval we calculated first the vector 𝑍∗, which is explained in 

section 2.3.1, before calculating equation (22) we sorted 𝑍∗ vectors. For both percentile 

and Bootstrap-t confidence intervals we used "quantile" equation in R software. In this 

research we are interested in finding the average length and the error rates for each interval 
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we have got. The average length for any confidence interval can be calculated by 

subtracting the lower bound of the confidence interval from the upper bound. To calculate 

the error rate for each interval type, we counted how many times that the values of 

parameter (𝑥𝑝) can be higher than the upper bound or less than the lower bound and then 

we take the proportion of them to get the error rate. Shortly, we called the confidence 

intervals in tables 6 and 7 as follows: 

1- A I: Asymptotic confidence interval. 

2- P R C: Percentile confidence interval. 

3- Boot-t: Bootstrap-t confidence interval.   

To evaluate the performance of the 𝑝𝑡ℎquantile estimator �̂�𝑝 and the bootstrap estimator 

�̂̂�𝑝 , we did a simulation study by using R software. To do so, following Mohi El-Din et al. 

(2016) we chose different censoring schemes with different sample sizes n and different 

choices of m, where n and m are the total number of units and the sample size, respectively. 

Table 3 below shows the censoring schemes used in the simulation study.   

 

 

Table 3. Censoring schemes. 

 

Scheme N M R 

1 50 30 (011, 19, 09, 1, 08) 
2 50 40 (015, 1,3, 02, 1, 010, 1, 02, 2, 04, 1,1) 
3 70 50 (020, 5,5,4,3, 06, 1,1, 010, 1, 07) 
4 90 60 (015, 7,3,0,4,2, 010, 2,3,5,1, 013, 1,1,1, 010) 
5 100 70 (035, 13,1, 010, 3,0,3, 07, 2,2,0,5, 08, 1) 
6 100 80 (042, 6,1,4,1, 014, 1,2, 010, 2,2,1, 05) 
7 130 100 (060, 1,2,4,0,2, 010, 2,1,0,5,7,0,3,0,2,1, 015) 
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 For generating a progressively type II censored data we used simple simulations 

steps which had been presented by (Balakrishnan & Sandhu, A Simple Simulational 

Algorithm for Generating Progressive Type II Censored Samples, 1995) . The following 

simulation algorithm steps explain the way of generating a progressively censored type II 

data: 

1- Generate 𝑚 independent observations, such that 𝑚~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1). These 

observations are called 𝑊1,𝑊2, … ,𝑊𝑚 . 

2- Calculate 𝑉𝑖 = 𝑊𝑖
1 (𝑖+𝑅𝑚+𝑅𝑚−1+⋯+𝑅𝑚−𝑖+1)⁄

 , ∀ 𝑖 = 1, 2, … ,𝑚. 

3- Compute 𝑈𝑖 = 1 − 𝑉𝑚𝑉𝑚−1…𝑉𝑚−𝑖+1, ∀ 𝑖 = 1, 2, … ,𝑚. Noticed that, 

𝑈1, 𝑈2, … , 𝑈𝑚 are required for progressive type II censored sample from Uniform 

(0,1) distribution. 

4- Finally, set 𝑋𝑖 = 𝐹
−1(𝑈𝑖) , ∀ 𝑖 = 1, 2, … ,𝑚. Where the inverse cdf of the 

distribution under consideration is known as  𝐹−1(. ). Then the required progressive 

type II censored sample from the distribution 𝐹(. ) is 𝑋1, 𝑋2, … , 𝑋𝑚. 

Note that, the simulation above needs exactly 𝑚 uniform observations and doesn’t need 

any sorting.  

 Before we started our simulation in R software, we downloaded some specific 

packages in R to make sure that our simulation done perfectly. We will mention some of 

these packages such as "optimization" and "optimx" to apply the optim function. At the 

end of the simulation we transferred our results tables to a word document, to do so we 

downloaded "rtf" and "Rcpp" packages.    

 In R software, to find the maximum likelihood estimators we applied a function 
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called optim in R software, but the optim function couldn't find the MLE values directly, 

so we wrote a command at the end of the function "return(-log_L)", which multiply 

equation (9) by mines to get our results. Of course, after we got the values of  𝜃 and �̂�, we 

substituted them into equation (13) to get the values of �̂�𝑝's. Also, to find the Fisher 

Information matrix, which is defined in equation (5), we included in the optim function a 

command called "hessian = TRUE". After that we found the inverse of the observed fisher 

information matrix, noted in equation (15). Then we substituted it in equation (19), which 

has been calculated directly in R software. Then to find the bootstrap estimator �̂̂�𝑝 , we 

repeated the optim function using the values of  𝜃 and �̂� that we got for B=500 repeating 

this step for N=2000. So, we got the values of 𝜃 and �̂̂�, and similarly we repeated the steps 

above to get the values of �̂̂�𝑝's and to find the inverse of the observed fisher information 

matrix. After we calculated �̂�𝑝 and �̂̂�𝑝 values, we used it to find what we interested in (Bias 

and MSE) as explained above.  

 We faced a problem in finding a suitable initial guess. For that reason, we applied 

an optim function in R software two times. First, we used 𝜃 = 2  and 𝜎 = 1.2 as an initial 

guess for the first optim function. Also, we applied the Taylor expansion in equation (9). 

We expanded the following term in equation (9) to be as follows: 
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∑𝑅𝑖ln (1 − (1 − 𝑒
−𝑥𝑖 𝜎⁄ )

𝜃
)

𝑚

𝑖=1

≈ −∑𝑅𝑖(1 − 𝑒
−𝑥𝑖 𝜎⁄ )

𝜃
𝑚

𝑖=1

−
1

2
∑𝑅𝑖(1 − 𝑒

−𝑥𝑖 𝜎⁄ )
2𝜃

𝑚

𝑖=1

−
1

3
∑𝑅𝑖(1 − 𝑒

−𝑥𝑖 𝜎⁄ )
3𝜃

𝑚

𝑖=1

−
1

4
∑𝑅𝑖(1 − 𝑒

−𝑥𝑖 𝜎⁄ )
4𝜃

𝑚

𝑖=1

 .   (24 ) 

Note that we used the first fourth terms of the expansion as an approximation because 

Taylor expansion likelihood is easy to maximize. After that we used its solution parameters 

for 𝜃 and 𝜎 as an initial guess for our original likelihood function. Note that, second time 

we applied the optim function, a Taylor expansion hasn’t been used. We directly used 

equation (9) for optimizing our parameters.   

 

 

Table 4. Bias and MSE results for classical statistics methods. 

Scheme  P=0.1 P=0.25 P=0.5 P=0.75 P=0.9 

1 Bias 0.019 0.011 -0.006 -0.031 -0.062 

 MSE 0.01 0.016 0.037 0.118 0.315 

2 Bias 0.017 0.01 -0.004 -0.025 -0.052 

 MSE 0.01 0.014 0.028 0.083 0.227 

3 Bias 0.012 0.007 -0.002 -0.016 -0.033 

 MSE 0.007 0.011 0.023 0.069 0.182 

4 Bias 0.011 0.009 0.003 -0.006 -0.018 

 MSE 0.006 0.008 0.018 0.057 0.154 

5 Bias 0.008 0.004 -0.002 -0.012 -0.022 

 MSE 0.004 0.007 0.017 0.059 0.165 

6 Bias 0.012 0.01 0.004 -0.006 -0.018 

 MSE 0.005 0.007 0.014 0.039 0.105 

7 Bias 0.007 0.005 0.001 -0.003 -0.008 

 MSE 0.004 0.006 0.013 0.039 0.11 
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                 In General, the results in table 4 shows that results seem to be slightly similar 

from one experiment or another, but it is important to note that bias and the MSE, values 

are lower when we choose larger values of sample sizes 𝑚 and 𝑛 defined in table 3. 

 On the other hand, it is very clear that values of bias in each scheme is decreasing 

when increasing the 𝑝𝑡ℎ quantile values. In contrast, mean square error are increased when 

increasing the 𝑝𝑡ℎ quantile values. 

 For confidence intervals, we are interested in calculating the interval length and the 

error rate for each interval. Tables 5 and 6 show the results for intervals lengths and error 

rates respectively for 2000 replications. On the other hand, confidence intervals are 

calculated for both 𝛼 = 0.1 and 𝛼 = 0.05 respectively, in tables 5 and 6. 

 The lengths of all types of intervals can be found by the difference between the 

upper bound and the lower bound of the intervals. The error rates can be calculated by 

checking whether the estimator 𝑥𝑝 belongs to the confidence intervals or not. 

 

 

 

 

 

 

 

 

 

 



  
   

33 
 

Table 5. Coverage probability and expected lengths results for classical statistics methods when 

𝛼 = 0.1 

 
𝜶 = 𝟎. 𝟏    &    𝑵 = 𝟐𝟎𝟎𝟎 

Scheme Interval 

Type 

P=0.1 P=0.25 P=0.5 P=0.75 P=0.9 

A L E R A L E R A L E R A L E R A L E R 

1 A I 0.312 0.114 0.395 0.115 0.612 0.12 1.091 0.131 1.788 0.135 

P R C 0.315 0.129 0.395 0.114 0.605 0.126 1.071 0.144 1.748 0.15 

Boot-t  0.326 0.093 0.413 0.101 0.649 0.112 1.176 0.11 1.952 0.116 

2 A I 0.31 0.119 0.381 0.118 0.543 0.107 0.926 0.117 1.509 0.125 

P R C 0.327 0.155 0.39 0.126 0.524 0.118 0.84 0.161 1.331 0.192 

Boot-t  0.338 0.088 0.417 0.079 0.59 0.096 1.012 0.134 1.674 0.15 

3 A I 0.263 0.121 0.328 0.121 0.485 0.118 0.844 0.119 1.382 0.124 

P R C 0.265 0.121 0.328 0.121 0.481 0.119 0.834 0.125 1.361 0.131 

Boot-t  0.271 0.102 0.337 0.107 0.5 0.109 0.881 0.112 1.452 0.109 

4 A I 0.234 0.111 0.294 0.098 0.442 0.099 0.777 0.106 1.273 0.111 

P R C 0.235 0.119 0.293 0.104 0.438 0.099 0.769 0.111 1.259 0.115 

Boot-t  0.239 0.1 0.3 0.094 0.453 0.099 0.805 0.104 1.328 0.104 

5 A I 0.222 0.106 0.275 0.108 0.407 0.107 0.719 0.111 1.186 0.117 

P R C 0.229 0.124 0.276 0.113 0.396 0.112 0.678 0.13 1.107 0.145 

Boot-t  0.233 0.082 0.287 0.086 0.42 0.104 0.745 0.116 1.241 0.119 

6 A I 0.222 0.106 0.273 0.105 0.389 0.108 0.663 0.102 1.082 0.103 

P R C 0.227 0.122 0.275 0.118 0.383 0.111 0.643 0.108 1.044 0.111 

Boot-t  0.23 0.081 0.2809 0.096 0.396 0.099 0.679 0.099 1.116 0.1 

7 A I 0.203 0.109 0.25 0.107 0.363 0.111 0.631 0.116 1.037 0.123 

P R C 0.21 0.129 0.254 0.11 0.352 0.116 0.586 0.14 0.946 0.157 

Boot-t  0.214 0.086 0.263 0.086 0.375 0.105 0.649 0.138 1.073 0.149 
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Table 6. Coverage probability and expected lengths results for classical statistics methods when 

𝛼 = 0.05 
 

𝜶 = 𝟎. 𝟎𝟓    &    𝑵 = 𝟐𝟎𝟎𝟎 

Scheme Interval 

Type 

P=0.1 P=0.25 P=0.5 P=0.75 P=0.9 

A L E R A L E R A L E R A L E R A L E R 

1 A I 0.373 0.061 0.474 0.058 0.734 0.069 1.308 0.079 2.144 0.084 

P R C 0.376 0.081 0.472 0.069 0.723 0.069 1.28 0.083 2.096 0.086 

Boot-t  0.393 0.045 0.5 0.049 0.785 0.058 1.426 0.056 2.369 0.062 

2 A I 0.369 0.057 0.455 0.06 0.649 0.063 1.105 0.08 1.803 0.084 

P R C 0.388 0.092 0.464 0.072 0.625 0.069 1.001 0.103 1.586 0.124 

Boot-t  0.404 0.04 0.501 0.041 0.709 0.051 1.218 0.077 2.014 0.094 

3 A I 0.314 0.065 0.392 0.061 0.579 0.062 1.009 0.067 1.652 0.069 

P R C 0.316 0.083 0.391 0.072 0.573 0.066 0.995 0.065 1.626 0.068 

Boot-t  0.325 0.052 0.404 0.057 0.601 0.06 1.059 0.052 1.75 0.044 

4 A I 0.279 0.061 0.351 0.063 0.527 0.063 0.927 0.066 1.519 0.066 

P R C 0.28 0.066 0.348 0.065 0.52 0.065 0.912 0.068 1.496 0.066 

Boot-t  0.286 0.044 0.358 0.055 0.542 0.055 0.962 0.058 1.59 0.057 

5 A I 0.263 0.061 0.325 0.068 0.481 0.057 0.849 0.054 1.401 0.056 

P R C 0.271 0.084 0.328 0.075 0.467 0.06 0.801 0.067 1.306 0.072 

Boot-t  0.278 0.046 0.34 0.05 0.498 0.056 0.885 0.058 1.476 0.061 

6 A I 0.264 0.068 0.326 0.062 0.465 0.06 0.794 0.056 1.297 0.057 

P R C 0.27 0.076 0.327 0.067 0.457 0.064 0.767 0.062 1.246 0.064 

Boot-t  0.274 0.045 0.336 0.055 0.475 0.056 0.815 0.062 1.342 0.062 

7 A I 0.241 0.064 0.298 0.064 0.432 0.058 0.751 0.06 1.233 0.061 

P R C 0.25 0.082 0.302 0.068 0.418 0.065 0.696 0.081 1.125 0.09 

Boot-t  0.255 0.048 0.314 0.043 0.447 0.058 0.775 0.078 1.283 0.081 

 

 

 Before commenting on tables 5 and 6, we shall describe the coverage probabilities 

and indicate whether it reach the nominal coverage probability or not? Where the nominal 

error for 𝛼 = 0.1 and 𝛼 = 0.05 are between 0.08 and 0.12, and between 0.04 and 0.06, 

respectively. For 𝛼 = 0.1, schemes 1, 2, 3, and 7 don’t attain the nominal coverage 

probability for some confidence intervals, especially when 𝑝 = 0.75, 0.9. On the other 

hand, some confidence intervals in table 6 show more problems about attaining the 

coverage probability, which is clear in all schemes, except scheme 4, and for all 𝑝𝑡ℎ 

quantiles, except for 𝑝 = 0.5.  
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 From tables 5 and 6, we noted that the length of the three types of intervals are 

getting smaller while taking larger samples (  𝑚 and 𝑛 are larger which are defined in table 

3). 

It is very clear that the bootstrap-t interval's lengths are larger than the other intervals, but 

the smallest one is the percentile interval of the other intervals especially when 𝑝 =

0.5, 0.75, 0.9. That result is more pronounced when 𝑚 and 𝑛 , which are defined in table 

3, are larger and in addition when 𝑝 = 0.5, 0.75, 0.9. Also, the average lengths seem to be 

smaller when 𝛼 = 0.1.  

 Now, the results for the error rates for each type of intervals. Generally, we can 

conclude that percentile confidence interval shows more problems in attaining the coverage 

probability all over the schemes and for all 𝑝𝑡ℎ quantiles. On the other hand, bootstrap-t 

interval is more likely to attain the coverage probability for all schemes especially when 

𝑝 = 0.1 & 0.25.  

 It is interesting to note that error rates for the three types of intervals are similar 

from scheme to another and get closer to the nominal probabilities when 𝑚 and 𝑛 are larger. 

 To clarify our results more, we have chosen only four schemes results to plot it by 

using R software again. Figure 1 presents the plot of the bias and MSE results for schemes 

1, 2, 3, and 6. While figures 2 and 4 present the plots of the expected lengths of confidence 

intervals for the same schemes. Finally, figures 3 and 5 present the plots of these schemes’ 

coverage probability. It is noted that values of 𝑝 are plotted on the x-access and all the 

results plotted on the y-access. 
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Figure 2. Bias and MSE plots for classical statistics methods. 
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Figure 3. Expected lengths plots for classical statistics methods when 𝛼 = 0.1 
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Figure 4. Coverage probability plots for classical statistics methods when 𝛼 = 0.1 
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Figure 5. Expected lengths plots when for classical statistics methods 𝛼 = 0.05 
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Figure 6. Coverage probability plots for classical statistics methods when 𝛼 = 0.05 

 

 

 Also, we applied our simulation again, but with different values of 𝜃 and 𝜎. This 

process has been made to check the stability of our results and to compare between them. 

Therefore, we apply it for only three schemes (1, 2, and 3) for our purposes. We take 

another different value of 𝜃 and 𝜎 as shown in tables 7 and 8. Also, we concentrate on only 

one value of 𝑝𝑡ℎ quantile, i.e; 𝑝 = 0.5.  
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The table below displays the results of bias and MSE of our parameter  (𝑥𝑝).  

 

 

Table 7. Bias and MSE results of schemes 1, 2, 3 for different values of 𝜃 and 𝜎. 

P=0.5 
Scheme 𝜽 𝝈 Bias MSE 

1 𝜃 = 1.2 𝜎 = 0.5 0.001 0.005 

2   -0.001 0.004   

3   0 0.003 

1 𝜃 = 1.5 𝜎 = 0.7 -0.004 0.011 

2   0.002 0.009 

3   0.0004 0.007 

1 𝜃 = 1.7 𝜎 = 0.9 0.001 0.021 

2   -0.009 0.014   

3   0.003 0.011 

 

 

 Now, table 8 and table 9 present the results for the average length and error rates 

for all three types of intervals that we have. Of course, these tables are presenting the all 

cases of different values of 𝜃 and 𝜎 and for both values of 𝛼 = 0.1 & 𝛼 = 0.05 .  
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Table 8. Coverage probability and expected lengths results for different values of 𝜃 and 𝜎 for 𝛼 =

0.1 and 𝑝 = 0.5. 

𝜶 = 𝟎. 𝟏    &    𝒑 = 𝟎. 𝟓   

Scheme 𝜽 𝝈 Interval 

Type 

A L E R 

1 𝜃 = 1.2 𝜎 = 0.5 A I 0.222 0.124 

   P R C 0.219 0.122 
   Boot-t  0.238 0.106 
2   A I 0.197 0.118 
   P R C 0.195 0.124   
   Boot-t  0.210   0.103 
3   A I 0.175 0.120 
   P R C 0.173 0.118 
   Boot-t  0.181   0.109 
1 𝜃 = 1.5 𝜎 = 0.7 A I 0.333 0.12 

   P R C 0.329 0.124 
   Boot-t  0.355 0.106 
2   A I 0.297 0.115 
   P R C 0.291 0.115 
   Boot-t  0.318 0.105 
3   A I 0.264 0.103 
   P R C 0.263 0.104 
   Boot-t  0.274 0.102 
1 𝜃 = 1.7 𝜎 = 0.9 A I 0.445 0.128 

   P R C 0.440   0.128 
   Boot-t  0.472 0.125   
2   A I 0.389 0.120 
   P R C 0.378 0.118 
   Boot-t  0.418 0.105   
3   A I 0.352 0.096   
   P R C 0.349 0.104 
   Boot-t  0.363 0.092   
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Table 9. Coverage probability and expected lengths results for different values of 𝜃 and 𝜎 for 𝛼 =

0.05 and 𝑝 = 0.5. 

𝜶 = 𝟎. 𝟎𝟓    &    𝒑 = 𝟎. 𝟓   

Scheme 𝜽 𝝈 Interval 

Type 

A L E R 

1 𝜃 = 1.2 𝜎 = 0.5 A I 0.264 0.072 

   P R C 0.261 0.071 
   Boot-t  0.287 0.05 
2   A I 0.235 0.072 
   P R C 0.232 0.069   
   Boot-t  0.254   0.048 
3   A I 0.208 0.069 
   P R C 0.206 0.063 
   Boot-t  0.218 0.056 
1 𝜃 = 1.5 𝜎 = 0.7 A I 0.397 0.068 

   P R C 0.391 0.072 
   Boot-t  0.428 0.053 
2   A I 0.354 0.066 
   P R C 0.346 0.067 
   Boot-t  0.382 0.054 
3   A I 0.315 0.06 
   P R C 0.312 0.059 
   Boot-t  0.328 0.051 
1 𝜃 = 1.7 𝜎 = 0.9 A I 0.530 0.078 

   P R C 0.523 0.078 
   Boot-t  0.569 0.062 
2   A I 0.463 0.072 
   P R C 0.449   0.070 
   Boot-t  0.501 0.053 
3   A I 0.419 0.053 
   P R C 0.415 0.056   
   Boot-t  0.436   0.043   

 

 

 From table 7, bias results for all different values of 𝜃 and 𝜎 are getting smaller, 

especially for 𝜃 = 1.2 and 𝜎 = 0.5. Similarly, for the MSE results. It is worth to mention 

that these results’ behavior is the same as results behavior when 𝜃 = 2 and 𝜎 = 1.2. 
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 Comparing between the results for different values of 𝜃 and 𝜎 when 𝑝 = 0.5, bias 

and MSE results are the smallest when 𝜃 = 1.2 and 𝜎 = 0.5 . While for 𝜃 = 2 and 𝜎 =

1.2 results are the largest. Therefore, we can say that the smaller values of  𝜃 and 𝜎 the 

better bias and MSE results got.  

 As we discussed before, that table 8 presents the results of average lengths and error 

rates for different values of 𝜃 and 𝜎 when 𝛼 = 0.1 and 𝑝 = 0.5. In general, attaining the 

coverage probability for some types of confidence intervals, is behaving the same as when 

𝜃 = 2 and 𝜎 = 1.2. Also, it is very clear that all coverage probabilities for all schemes for 

different values of 𝜃 and 𝜎 in table 8 attain the nominal error rate, therefore the average 

lengths for all these types of confidence intervals are comparable. Then we can say that the 

smallest average lengths are for 𝜃 = 1.2 and 𝜎 = 0.5 and the best average lengths is for 

the percentile confidence interval. It is noted that for each value of 𝜃 and 𝜎 , the expected 

lengths of confidence intervals are getting smaller when 𝑚 and 𝑛 are larger.  

 From table 9, attaining the nominal error rates for some confidence intervals for 

different values of 𝜃 and 𝜎 show some problems, especially when 𝜃 = 1.2 and 𝜎 = 0.5 

and 𝜃 = 1.7 and 𝜎 = 0.9. It is noted that, this problem appears in asymptotic and percentile 

confidence intervals for schemes 1 and 2. Therefore, we can only compare between scheme 

3 average lengths of confidence intervals. Similarly, the comparable average lengths in 

table 9, behave the same as average lengths presented in table 8.  

 Finally, we can say that the smaller values of 𝜃 and 𝜎, the better average lengths 

that we get, and this is true for 𝛼 = 0.1 and 𝛼 = 0.05. 
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CHAPTER 3: BAYESIAN INFERENCE 

 Bayesian statistics is an important field in statistics. This field depends on the 

Bayesian interpretation of probability. Generally, a degree of belief of an event can be 

expressed by probability. An event may have a prior knowledge, then we can say that the 

degree of belief may base on that prior knowledge. Where these prior knowledges could 

be the results of previous experiments or personal beliefs about the event. To describe how 

Bayesian statistics works, at the beginning of any problem, we shall start with some 

probabilities, which called prior probabilities Bayesian statistics to get more information 

or updated probabilities. These updated probabilities are called posterior probabilities. 

Bayesian statistics depends fundamentally on Bayes theorem. The main idea of Bayes 

theorem is describing the conditional probability of an event based on an observed data or 

a prior information or beliefs about the event.  

 (Gelman, et al., 2013) and (Fienberg, 2006) gave a brief introduction about 

Bayesian statistics. In 18th century, the Bayes theorem had been introduced firstly by a 

mathematician and theologian Thomas Bayes. And he published his paper in 1763 which 

described the formulation of a specific case of Bayes theorem. Between the end of the 18th 

century and the 19th century, many research papers were published on Bayes theory. Pierre-

Simon Laplace was the first one developed it to a modern formulation in his “Théorie 

analytique des probabilités.” Laplace developed the Bayesian interpretation of 

probabilities. The Bayesian methods used by Laplace are still used to solve many statistical 

problems. Also, other later authors developed many Bayesian methods. But this method 

wasn’t commonly used until the 1950s. Bayesian methods weren’t favored during the 20th 

century because of their philosophy. Also, Bayesian methods need a lot of computing a 

https://en.wikipedia.org/wiki/Pierre-Simon_Laplace#Analytic_theory_of_probabilities
https://en.wikipedia.org/wiki/Pierre-Simon_Laplace#Analytic_theory_of_probabilities
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programing system to complete them, which weren’t available for much of the 20th century. 

While most of the methods used in that period were for frequentist interpretations. After 

developing computers and powerful computers showed up with new algorithms such as the 

Markov chain Monte Carlo, therefore, Bayesian methods has not been widely used by 

statistician until the 21st century.  Bayesian statistics currently is an important active branch 

of statistics.  

3.1 An Overview on Bayesian Inference  

 The posterior distribution is considered as the most important quantity in Bayesian 

inference. All the information about the unknown parameter 𝜃 are available in the posterior 

distribution after getting an observed data 𝑋 = 𝑥. The general definition can be defined as 

the following. Suppose we have an observed data 𝑋 = 𝑥 of a random variable 𝑋 with 

density function 𝑓(𝑥|𝜃) and the prior distribution has a density function 𝑓(𝜃). Then the 

posterior distribution can be defined based on Bayes' theorem as follows 

𝑓(𝜃|𝑥) =
𝑓(𝑥|𝜃)𝑓(𝜃)

∫ 𝑓(𝑥|𝜃)𝑓(𝜃)𝑑𝜃
    ,                   ( 26) 

where 𝑓(𝑥|𝜃) is simply can be known as the likelihood function 𝐿(𝜃). We write 𝐿(𝜃) =

𝑓(𝑥|𝜃) because 𝜃 is random, so we explicit condition on a specific value 𝜃.  

Now, based on Bayes theorem, the density of the posterior distribution is proportional to 

the numerator of equation (26), i.e: 

𝑓(𝜃|𝑥) ∝ 𝑓(𝑥|𝜃)𝑓(𝜃)         𝑜𝑟         𝑓(𝜃|𝑥) ∝ 𝐿(𝜃)𝑓(𝜃)  ,       ( 27) 

where  " ∝ " is known as "is proportional to". Therefore, generally the density function of 



  
   

47 
 

the posterior distribution can be computed by multiplying the likelihood function and the 

prior density function.  

 In Bayesian statistics, the prior and posterior distribution are said to be conjugate 

prior distributions, if they belong to the same family distribution and the prior distribution 

is called a conjugate prior for the likelihood function.  For more explanation, suppose we 

have a Gaussian likelihood function and choose a Gaussian prior distribution. Then the 

posterior distribution is also Gaussian. Therefore, the Gaussian family is said to be 

conjugate to itself or called self-conjugate. More generally, assume that the likelihood 

function (𝐿(𝜃) = 𝑓(𝑥|𝜃)) which based on the observation 𝑋 = 𝑥. A class 𝒢 of 

distributions is called conjugate with respect to 𝐿(𝜃) if the posterior distribution 𝑓(𝜃|𝑥) is 

in 𝒢 for all  𝑥 whenever the prior distribution 𝑓(𝜃) is in 𝒢 (Held & Sabanés Bové, 2014). 

 In Bayesian statistics to estimate the unknown parameter 𝜃, at least three possible 

Bayesian point estimates are offered, such as the posterior mean, mode, and median. The 

question is which one should we choose for our application? To answer this question, we 

should define a loss function which indicated to be a theoretic way to take a decision. A 

loss function 𝑙(𝑎, 𝜃) ∈ ℝ computes the loss encountered when estimating the true 

parameter 𝜃 by 𝑎. For more explanation, suppose 𝑎 = 𝜃 , then the related loss function is 

set to zero: 𝑙(𝑎, 𝜃) = 0. The common used loss function is the quadratic loss function 

𝑙(𝑎, 𝜃) = (𝑎 − 𝜃)2. Another choice for the loss function, is the linear loss function 

𝑙(𝑎, 𝜃) = |𝑎 − 𝜃| or the zero-one loss function  

𝑙𝜀(𝑎, 𝜃) = {
0,    |𝑎 − 𝜃| ≤ 𝜀 ,
1,   |𝑎 − 𝜃| > 𝜀,
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In this situation we need to choose a suitable added parameter 𝜀 > 0. Now, to indicate the 

point estimate 𝑎 to minimize the posteriori expected loss with respect to 𝑓(𝜃|𝑥). That point 

estimate is called a Bayes estimate. Formally, a Bayes estimate of 𝜃 with respect to a loss 

function 𝑙(𝑎, 𝜃) minimizes the expected loss with respect to the posterior distribution 

𝑓(𝜃|𝑥). It minimizes  

𝐸{𝑙(𝑎, 𝜃)|𝑥} = ∫
Θ
𝑙(𝑎, 𝜃)𝑓(𝜃|𝑥)𝑑𝜃 .      (28) 

 Now, let us introduce the credible region's definition. A subset 𝐶 ⊆ Θ with 

∫
𝐶
𝑓(𝜃|𝑥)𝑑𝜃 = 𝛾 is called 𝛾.100% credible region for 𝜃 with respect to 𝑓(𝜃|𝑥). If 𝐶 is a 

real interval.  

As any confidence interval, the credible interval can be defined as the range of 

values within an unobserved parameter value which falls with a subjective probability. This 

interval is in the domain of a posterior probability distribution or a predictive distribution. 

The credible interval is like the confidence intervals in frequentist statistics, despite the 

differences in their respective philosophies. Therefore, it is interesting to mention the 

differences between credible intervals and confidence intervals. In Bayesian statistics, 

intervals' bounds are treated as fixed and the estimated parameter as a random variable, in 

contrast frequentist confidence intervals treat their bounds as a random variable and the 

estimated parameter as a fixed value. In addition to that, Bayesian credible intervals need 

knowledge of the condition-exact prior distribution, but frequentist confidence intervals 

don't require that.  
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To find the suitable credible interval, there are some methods to follow, such as: 

1- The highest posterior density interval need to choose the narrowest interval which 

can be done for the unimodal distribution. In this case, the mode will be chosen 

with those values of highest probability density. 

2- The equal-tailed interval, in this case the interval can be chosen where the 

probability of being lower the interval is the same as being above it. This kind of 

interval will contain the median. 

To calculate these intervals, we need the posterior distribution, however, in many cases, 

the posterior distribution is known only up to a proportionality constant. Therefore, we 

can’t use the posterior directly and we need some solution to this problem. Various 

approaches were used in the literature including importance sampling and Markov chain 

Monte Carlo (MCMC) techniques. In this thesis, we will use importance sampling as 

(Shaw, 2018) clarified. Suppose we have any distribution 𝑓(𝑥) and we can’t sample from 

it. But, it is possible to generate samples from another distribution 𝑞(𝑥) which 

approximates 𝑓(𝑥). Therefore, we can use importance sampling method to sample from 

𝑞(𝑥). Suppose that we face a problem in estimating 𝐸{𝑔(𝑋)} for some function 𝑔(𝑥) with 

respect to a density 𝑓(𝑥). 

Then that satisfy the following  

𝐸{𝑔(𝑋)} = ∫
𝑔(𝑥)𝑓(𝑥)

𝑞(𝑥)
𝑞(𝑥)𝑑𝑥

𝑥

= 𝐸 {
𝑔(𝑥)𝑓(𝑥)

𝑞(𝑥)
|𝑋 ∼ 𝑞(𝑥)} ,   (29) 

This expectation is calculated with respect to the density 𝑞(𝑥). Therefore, if a random 
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sample has been drawn from 𝑞(𝑥) then 𝐸{𝑔(𝑋)} can be approximated by 

𝐼 =
1

𝑁
∑
𝑔(𝑥𝑖)𝑓(𝑥𝑖)

𝑞(𝑥𝑖)

𝑁

𝑖=0

 ,       (30) 

Noted that, 

𝐸 (𝐼|𝑋 ∼ 𝑞(𝑥)) =
1

𝑁
∑ 𝐸 (

𝑔(𝑥𝑖)𝑓(𝑥𝑖)

𝑞(𝑥𝑖)
|𝑋 ∼ 𝑞(𝑥))𝑁

𝑖=0  , 

                                                    =
1

𝑁
∑ 𝐸 (

𝑔(𝑋)𝑓(𝑋)

𝑞(𝑋)
|𝑋 ∼ 𝑞(𝑥))𝑁

𝑖=0 = 𝐸{𝑔(𝑋)} , 

Then 𝐼 is an unbiased estimator of 𝐸{𝑔(𝑋)}. Similarly, we can obtain that  

𝑣𝑎𝑟 (𝐼|𝑋 ∼ 𝑞(𝑥)) =
1

𝑁
𝑣𝑎𝑟 (

𝑔(𝑋)𝑓(𝑋)
𝑞(𝑋)

|𝑋 ∼ 𝑞(𝑥)),    (31) 

Therefore, the variance of 𝐼 will depends on the choice of  𝑁 and the approximation density 

𝑞(𝑥). Further results can be found in the following standard references on Bayesian 

analysis, in  (Berger, 1980), (Bolstad, 2007), and (Lee, 1992). To compute the Bayesian 

estimators, we need to find the posterior distribution which will be introduced in the 

following section.                  

3.2 Bayesian Estimate for 𝑥𝑝 

In this chapter, we will derive the Bayesian estimators for the parameters 𝜃, 𝜎 and for the 

𝑝𝑡ℎ quantile. (Gupta & Kundu, Generalized Exponential Distribution: Bayesian 

Estimations, 2008) derived the Bayesian estimators for the two unknown parameters of the 

GE distribution. They assumed gamma distribution as prior distributions for both shape 

and scale parameters. The Bayesian estimators couldn’t be written in the explicit form. For 
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that reason, a simulation computation had been applied. To generate posterior samples, 

they proposed the Gibbs sampler procedure. Monte Carlo simulation had been applied to 

compare between Bayesian estimators under the assumption of non-informative priors and 

the maximum likelihood estimators. (Kim & Han, Bayesian Estimation of Generalized 

Exponential Distribution Under Progressive First Failure Censored Sample, 2015) derived 

the maximum likelihood and Bayesian estimators of the GE distribution based on 

progressive first failure censored samples. They applied Markov Chain Monte Carlo 

method for generating samples. For estimating the parameters and predicting future 

observations, they used importance sampling. For their application purposes, they used a 

simulated data analysis. (Mohie El-Din & Shafay, 2013) considered the one and two 

sample Bayesian prediction intervals based on the progressively Type-II censored data. 

They applied their results on some distributions such as exponential, Pareto, Weibull and 

Burr Type-XII models. They did some numerical computations and found, in case of one-

sample, that the lower bounds are nearly insensitive to the assumed values to hyper 

parameters, but the upper bounds are quite sensitive. In case of two-sample both lower and 

upper bounds are found nearly insensitive to the assumed values to hyper parameters. The 

empirical Bayes approach estimating can be used as a prior parameter in case of unknown 

vector of hyper parameters. (El-Sagheer, 2016) consider the Bayesian approach, point and 

interval predictions based on general progressively cosponsored data for the generalized 

Pareto distribution.  

Based on definition 4.1 and proportional (27), we shall find the posterior distributions for 

our parameters 𝜃 and 𝜎. After that, we are interested to find the posterior distribution for 
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the 𝑝𝑡ℎquantile.  

In this study, we are interested in the Generalized Exponential distribution as mentioned in 

chapter 1. Equations (3 & 4) shows the cumulative and density distribution functions for 

the GE distribution respectively. Now, to compute the posterior distributions we need to 

use the likelihood function, which is defined in equation (8). For our purposes we shall 

rewrite equation (8) as follows.  

𝐿(𝑥; 𝜃, 𝜎) = (
𝜃

𝜎
)
𝑚

𝑒−∑ 𝑥𝑖 𝜎⁄
𝑚
𝑖=1 ∏(1− 𝑒−𝑥𝑖 𝜎⁄ )

𝜃−1
𝑚

𝑖=1

(∏(1 − (1 − 𝑒−𝑥𝑖 𝜎⁄ )
𝜃
)
𝑅𝑖

𝑚

𝑖=1

) , (32) 

The prior distributions for parameters 𝜃 and 𝜎 have been chosen to be Gamma and Inverted 

Gamma distributions, respectively. Basically, both of that distributions are known as a 

continues distribution on the positive real line, with two parameters 𝛼 and 𝛽. The 

exponential distribution, Erlang distribution, and chi-square distribution are al special cases 

of Gamma distribution. Also, we can say that if 𝑋~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) then 
1

𝑋
~𝐼𝑛𝑣 −

𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽). The inverse gamma distribution can be used as a conjugate prior for the 

scale parameter. In general, the probability density function for gamma and inverse gamma 

distributions can be presented respectively as follows:   

𝑓(𝑥; 𝛼, 𝛽) =
1

Γ(𝛼)𝛽𝛼
𝑥𝛼−1𝑒

−𝑥
𝛽⁄       , 𝑥 > 0 

𝑓(𝑥; 𝛼, 𝛽) =
1

Γ(𝛼)𝛽𝛼
𝑥−(𝛼+1)𝑒

−1
𝛽𝑥⁄       , 𝑥 > 0 

with 𝛼 is a shape parameter and 𝛽 is a scale parameter. Where Γ(. ) denotes as a gamma 

function.  

Now, suppose  𝜃~𝐺(𝑎0, 𝑏0) and 𝜎~𝐼𝐺(𝑎1, 𝑏1). Therefore, the prior distributions for 𝜃 and 
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𝜎 are 

∏1(𝜃) =
1

Γ(𝑎0)𝑏0
𝑎0
𝜃𝑎0−1𝑒

−𝜃
𝑏0
⁄
   ,         (33)  

∏2(𝜎) =
1

Γ(𝑎1)𝑏1
𝑎1
𝜎−(𝑎1+1)𝑒

−1
𝑏1𝜎
⁄   ,          (34)  

The joint posterior density function of 𝜃 and 𝜎, can be computed by substituting equations 

(32, 33, & 34) into proportional (27) to get  

∏(𝜃, 𝜎|𝑥) ∝ 𝐿(𝑥|𝜃, 𝜎)∏1(𝜃)∏2(𝜎) , 

∏(𝜃, 𝜎|𝑥) ∝ (
𝜃

𝜎
)
𝑚

𝑒−∑ 𝑥𝑖 𝜎⁄
𝑚
𝑖=1 𝑒(𝜃−1)∑ 𝑙𝑛(1−𝑒−𝑥𝑖 𝜎⁄ )𝑚

𝑖=1 𝑒
∑ 𝑅𝑖𝑙𝑛(1−(1−𝑒

−𝑥𝑖 𝜎⁄ )
𝜃
)𝑚

𝑖=1 . 

1

Γ(𝑎0)𝑏0
𝑎0
𝜃𝑎0−1𝑒

−𝜃
𝑏0
⁄
.

1

Γ(𝑎1)𝑏1
𝑎1
𝜎−(𝑎1+1)𝑒

−1
𝑏1𝜎
⁄   ,   (35) 

∏(𝜃, 𝜎|𝑥) ∝ 𝜃𝑎0+𝑚−1𝑒
−𝜃(1 𝑏0

⁄ −∑ 𝑙𝑛(1−𝑒−𝑥𝑖 𝜎⁄ )𝑚
𝑖=1 )

𝜎−(𝑎1+𝑚+1)𝑒
−1

𝜎⁄ (∑ 𝑥𝑖
𝑚
𝑖=1 +1 𝑏1

⁄ )
 

𝑒
−∑ 𝑙𝑛(1−𝑒−𝑥𝑖 𝜎⁄ )𝑚

𝑖=1 +∑ 𝑅𝑖𝑙𝑛(1−(1−𝑒
−𝑥𝑖 𝜎⁄ )

𝜃
)𝑚

𝑖=1   ,      (36) 

Equation (36) can be written as follows:  

∏(𝜃, 𝜎|𝑥) ∝ 𝐺𝜃|𝜎(𝑎0
∗ , 𝑏0

∗)𝐼𝐺𝜎(𝑎1
∗ , 𝑏1

∗)𝐺3(𝜃, 𝜎)  ,          (37) 

where 𝐺𝜃|𝜎(𝑎0
∗ , 𝑏0

∗) is a gamma density function with parameters 𝑎0
∗ = 𝑎0 +𝑚 and 𝑏0

∗ =

1

1 𝑏0⁄ −∑ 𝑙𝑛(1−𝑒−𝑥𝑖 𝜎⁄ )𝑚
𝑖=1

 , which are known as shape and scale parameters, respectively. The 

same for  𝐼𝐺𝜎(𝑎1
∗ , 𝑏1

∗) is an inverse gamma density with parameters 𝑎1
∗ = 𝑎1 +𝑚 and 𝑏1

∗ =

1

∑ 𝑥𝑖
𝑚
𝑖=1 +1 𝑏1⁄

 , which are known as shape and scale parameters, respectively. On the other 

hand,  



  
   

54 
 

𝐺3(𝜃, 𝜎) =
1

(
1

1 𝑏0⁄ −∑ 𝑙𝑛(1−𝑒−𝑥𝑖 𝜎
⁄
)𝑚

𝑖=1

)

𝑎0+𝑚 𝑒
𝑅𝑖𝑙𝑛(1−(1−𝑒

−𝑥𝑖 𝜎⁄ )
𝜃
)−∑ 𝑙𝑛(1−𝑒−𝑥𝑖 𝜎⁄ )𝑚

𝑖=1 . 

In case of noninformative prior distributions given by  

∏2(𝜃) = 1 ,            (38)  

∏2(𝜎) =
1

𝜎
  ,           (39) 

We proceed as follows, the joint posterior density function can be done by substituting 

equations (32), (38), and (39) into proportional (27) to get the following 

∏(𝜃, 𝜎|𝑥) ∝ 𝜃𝑚𝑒𝜃∑ 𝑙𝑛(1−𝑒−𝑥𝑖 𝜎⁄ )𝑚
𝑖=1 𝜎−(𝑚+1)𝑒

−1
𝜎⁄ ∑ 𝑥𝑖

𝑚
𝑖=1  

𝑒
−∑ 𝑙𝑛(1−𝑒−𝑥𝑖 𝜎⁄ )𝑚

𝑖=1 +∑ 𝑅𝑖𝑙𝑛(1−(1−𝑒
−𝑥𝑖 𝜎⁄ )

𝜃
)𝑚

𝑖=1  ,    (40) 

And then equation (40) can be written as follows:  

∏(𝜃, 𝜎|𝑥) ∝ 𝐺𝜃|𝜎 (𝑚 + 1,
−1

∑ 𝑙𝑛(1 − 𝑒−𝑥𝑖 𝜎⁄ )𝑚
𝑖=1

) 𝐼𝐺𝜎 (𝑚,
1

∑ 𝑥𝑖
𝑚
𝑖=1

)𝐺4(𝜃, 𝜎) ,           (41) 

where 𝐺4(𝜃, 𝜎) =
1

Γ(𝑚+1)(
−1

∑ 𝑙𝑛(1−𝑒−𝑥𝑖 𝜎
⁄
)𝑚

𝑖=1

)

(𝑚+1) 𝑒
−∑ 𝑙𝑛(1−𝑒−𝑥𝑖 𝜎⁄ )𝑚

𝑖=1 +∑ 𝑅𝑖𝑙𝑛(1−(1−𝑒
−𝑥𝑖 𝜎⁄ )

𝜃
)𝑚

𝑖=1 . 

3.3 Simulation Study 

 We have been applied importance sampling to simulate our results. The same 

process that we used in classical way, similarly, we generated a progressively type II 

censored sample from generalized exponential distribution. The schemes that displayed in 

table 3 has been used again in Bayesian simulation. We choose the same initial values as, 

𝜃0 = 2 and 𝜎0 = 1.2. We mentioned in section 3.5 in this study that our parameters 𝜃 and 
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𝜎 priors distributions are Gamma and Inverse Gamma distributions, respectively; i.e 

𝜃~𝐺(𝑎0, 𝑏0) and 𝜎~𝐼𝐺(𝑎1, 𝑏1). We choose different values of hyper parameters 𝑎0, 𝑏0, 𝑎1, 

and 𝑏1 for each scheme to avoid high bias results. For all hyper parameters, we choose 

nonnegative values. The simulation has been repeated for 𝑁 = 2000, and 𝐵 = 1000 as 

several samples.  

The following steps are the steps that we use in simulation: 

1- Generate 𝜎1~𝐼𝐺( 𝑎1 +𝑚,
1
𝑏1
⁄ + ∑ 𝑥𝑖

𝑚
𝑖=1 ) 

2- Generate 𝜃1~𝐺(𝑎0 +𝑚,
1
𝑏0
⁄ − ∑ 𝑙𝑛(1 − 𝑒−𝑥𝑖 𝜎⁄ )𝑚

𝑖=1 ) 

3- Calculate �̂�𝐵𝑝 from 𝜃 and �̂� that we got from steps 1 and 2 for all values of p. 

4- Repeat step 1, 2, and 3 𝑁 times to obtain our parameters (𝜃1, 𝜎1), … , (𝜃𝑁 , 𝜎𝑁). 

5- The Bayes estimate is considering by  

�̂�𝐵𝑝 ≈
1
𝑁⁄ ∑ �̂�𝑝

𝑁
𝑖=1 (𝜃𝑖,𝜎𝑖) 𝐺3(𝜃𝑖,𝜎𝑖)

1
𝑁⁄ ∑ 𝐺3(𝜃𝑖,𝜎𝑖)

𝑁
𝑖=1  

 . 

Bias and MSE of our Bayesian estimators �̂�𝐵𝑝  have been calculated too. The way of 

calculating bias and MSE have been explained in section 2.4.  

Now, we need to calculate the equal tail Bayesian interval. And we obtain the highest 

posterior density region similarly as (Kundu & Pradhan, 2009), who inspired by (Chen & 

Shao, 1999) and (Raqab & Madi, 2005) ideas, which known as the HPD credible interval 

for 𝑥𝐵𝑝. To do so, let 𝜋 (𝑥𝐵𝑝|𝑑𝑎𝑡𝑎) and Π(𝑥𝐵𝑝|𝑑𝑎𝑡𝑎) denote as posterior density function 

and posterior distribution function of 𝑥𝐵𝑝 , respectively. And the 𝑝𝑡ℎ quantile of 𝑥𝐵𝑝 is  
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𝑥𝐵𝑝
(𝑝)
= 𝑖𝑛𝑓 {𝑥𝐵𝑝: Π (𝑥𝐵𝑝|𝑑𝑎𝑡𝑎) ≥ 𝑝}, 

where 0 < 𝑝 < 1. Therefore, for a given 𝑥𝐵𝑝
∗ , 

Π(𝑥𝐵𝑝
∗ |𝑑𝑎𝑡𝑎) = 𝐸 (𝐼𝑥𝐵𝑝≤𝑥𝐵𝑝

∗ |𝑑𝑎𝑡𝑎), 

where 𝐼𝑥𝐵𝑝≤𝑥𝐵𝑝
∗  is known as an indicator function. So, to simulate the expectation of Bayes 

estimator, we can obtain the following  

Π(𝑥𝐵𝑝
∗ |𝑑𝑎𝑡𝑎) =

1
𝑁⁄ ∑ 𝐼𝑥𝐵𝑝≤𝑥𝐵𝑝

∗  𝑁
𝑖=1  𝐺3(𝜃𝑖,𝜎𝑖)

1
𝑁⁄ ∑ 𝐺3(𝜃𝑖,𝜎𝑖)

𝑁
𝑖=1  

 , 

The next step, is order the value of {𝑥𝐵𝑝𝑖}, which has been calculated from step 3 in the 

simulation steps above. Then, we calculate the following  

𝑤𝑖 =
𝐺3(𝜃𝑖 , 𝜎𝑖)

∑ 𝐺3(𝜃𝑖 , 𝜎𝑖)
𝑁
𝑖=1  

, ∀ 𝑖 = 1,… ,𝑁 

After that we have  

Π(𝑥𝐵𝑝
∗ |𝑑𝑎𝑡𝑎) =

{
 
 

 
 

0 𝑖𝑓 𝑥𝐵𝑝
∗ < 𝑥𝐵𝑝(1),

∑ 𝑤𝑗
𝑖

𝑗=1
𝑖𝑓 𝑥𝐵𝑝(𝑖) < 𝑥𝐵𝑝

∗ < 𝑥𝐵𝑝(𝑖+1),

1 𝑖𝑓 𝑥𝐵𝑝
∗ ≥ 𝑥𝐵𝑝(𝑛).

 

The equal tail Bayes interval can be calculated by  

�̂�𝐵𝑝 (
𝛼

2
) = 𝑥𝐵𝑝(𝑖)    𝑖𝑓    ∑ 𝑤𝑗

𝑖−1

𝑗=1
<
𝛼

2
≤∑ 𝑤𝑗

𝑖

𝑗=1
 , 

and  

�̂�𝐵𝑝 (1 −
𝛼

2
) = 𝑥𝐵𝑝(𝑖)    𝑖𝑓    ∑ 𝑤𝑗

𝑖−1
𝑗=1 < 1 −

𝛼

2
≤ ∑ 𝑤𝑗

𝑖
𝑗=1  . 
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But to calculate the HPD credible interval for 𝑥𝐵𝑝 we need to approximate 𝑥𝐵𝑝
(𝑝)

 by  

�̂�𝐵𝑝
(𝑝) = {

𝑥𝐵𝑝(1) 𝑖𝑓 𝑝 = 0,

𝑥𝐵𝑝(𝑖) 𝑖𝑓 ∑ 𝑤𝑗
𝑖−1

𝑗=1
< 𝑝 ≤∑ 𝑤𝑗

𝑖

𝑗=1
.
 

At the end, to calculate a 100(1 − 𝑝)% HPD credible interval for 𝑥𝐵𝑝, as the following  

𝐻𝑗 = (�̂�𝐵𝑝
(
𝑗
𝑁
)
, �̂�𝐵𝑝

(
𝑗+(1−𝑝)𝑁

𝑁
)
) , ∀ 𝑗 = 1,… , 𝑝 𝑁 

Noted that we choose the smallest width 𝐻𝑗∗ from all 𝐻𝑗’s.  

For the case of non-informative prior distributions, the following simulation is used in the 

simulations 

Then the simulation steps will be similar as for Gamma and inverse gamma priors, but with 

little differences: 

1- Generate 𝜎1~𝐼𝐺( 𝑚,
1

∑ 𝑥𝑖
𝑚
𝑖=1

) 

2- Generate 𝜃1~𝐺(𝑚 + 1,
−1

∑ 𝑙𝑛(1−𝑒−𝑥𝑖 𝜎⁄ )𝑚
𝑖=1

) 

3- Calculate �̂�𝐵𝑝 from 𝜃 and �̂�  that we got from steps 1 and 2 for all values of p. 

4- Repeat step 1, 2, and 3 𝑁 times to obtain our parameters (𝜃1, 𝜎1), … , (𝜃𝑁 , 𝜎𝑁). 

5- The Bayes estimate is considering by  

�̂�𝐵𝑝 ≈
1
𝑁⁄ ∑ �̂�𝑝

𝑁
𝑖=1 (𝜃𝑖,𝜎𝑖) 𝐺4(𝜃𝑖,𝜎𝑖)

1
𝑁⁄ ∑ 𝐺4(𝜃𝑖,𝜎𝑖)

𝑁
𝑖=1  

 . 

Now, we need to calculate the equal tail Bayesian interval. And the same as above for 

gamma and inverse gamma prior distributions, we have done the same steps. But the 
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simulation of the Bayes estimator’s expectation will be  

Π(𝑥𝐵𝑝
∗ |𝑑𝑎𝑡𝑎) =

1
𝑁⁄ ∑ 𝐼𝑥𝐵𝑝≤𝑥𝐵𝑝

∗  𝑁
𝑖=1  𝐺4(𝜃𝑖,𝜎𝑖)

1
𝑁⁄ ∑ 𝐺4(𝜃𝑖,𝜎𝑖)

𝑁
𝑖=1  

. 

And ordering the value of {𝑥𝐵𝑝𝑖}, which has been calculated from step 3 in the simulation 

steps above will be as follows   

𝑤𝑖 =
𝐺4(𝜃𝑖 , 𝜎𝑖)

∑ 𝐺4(𝜃𝑖, 𝜎𝑖)
𝑁
𝑖=1  

, ∀ 𝑖 = 1,… ,𝑁 

Also, we have  

Π(𝑥𝐵𝑝
∗ |𝑑𝑎𝑡𝑎) =

{
 
 

 
 

0 𝑖𝑓 𝑥𝐵𝑝
∗ < 𝑥𝐵𝑝(1),

∑ 𝑤𝑗
𝑖

𝑗=1
𝑖𝑓 𝑥𝐵𝑝(𝑖) < 𝑥𝐵𝑝

∗ < 𝑥𝐵𝑝(𝑖+1),

1 𝑖𝑓 𝑥𝐵𝑝
∗ ≥ 𝑥𝐵𝑝(𝑛).

 

The equal tail Bayes interval can be calculated by  

�̂�𝐵𝑝 (
𝛼

2
) = 𝑥𝐵𝑝(𝑖)    𝑖𝑓    ∑ 𝑤𝑗

𝑖−1
𝑗=1 <

𝛼

2
≤ ∑ 𝑤𝑗

𝑖
𝑗=1  , 

and  

�̂�𝐵𝑝 (1 −
𝛼

2
) = 𝑥𝐵𝑝(𝑖)    𝑖𝑓    ∑ 𝑤𝑗

𝑖−1
𝑗=1 < 1 −

𝛼

2
≤ ∑ 𝑤𝑗

𝑖
𝑗=1 . 

But to calculate the HPD credible interval for 𝑥𝐵𝑝 we need to approximate 𝑥𝐵𝑝
(𝑝)

 by  

�̂�𝐵𝑝
(𝑝) = {

𝑥𝐵𝑝(1) 𝑖𝑓 𝑝 = 0,

𝑥𝐵𝑝(𝑖) 𝑖𝑓 ∑ 𝑤𝑗
𝑖−1

𝑗=1
< 𝑝 ≤∑ 𝑤𝑗

𝑖

𝑗=1
.
 

At the end, to calculate a 100(1 − 𝑝)% HPD credible interval for 𝑥𝐵𝑝, as the following  
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𝐻𝑗 = (�̂�𝐵𝑝
(
𝑗
𝑁
), �̂�𝐵𝑝

(
𝑗+(1−𝑝)𝑁

𝑁
)
) , ∀ 𝑗 = 1,… , 𝑝 𝑁 

Noted that we choose the smallest width 𝐻𝑗∗ from all 𝐻𝑗’s. Tables below display our results 

for bias, MSE, average lengths and coverage probabilities for Bayesian approach. Noticed 

that the following tables are presenting the results of gamma and inverse gamma prior 

distributions 

 

 

Table 10. Bias and MSE results for informative priors. 

 

Scheme  Hyper parameters P=0.1 P=0.25 P=0.5 P=0.75 P=0.9 

1 Bias 
𝑎0 = 1.5, 𝑏0 = 3  
𝑎1 = 1.5, 𝑏1 = 0.7 

0.012 0.009 0.008 0.016 0.03 

MSE 
0.008 0.015 0.036 0.109 0.282 

2 Bias 
𝑎0 = 1.5, 𝑏0 = 3  
𝑎1 = 1.5, 𝑏1 = 0.7 

0.016 0.012 0.01 0.011 0.016 

MSE 
0.008 0.014 0.029 0.077 0.192 

3 Bias 
𝑎0 = 2.4, 𝑏0 = 1 

𝑎1 = 1.5, 𝑏1 = 0.7 

0.001 0.004 0.016 0.043 0.082 

MSE 
0.005 0.01 0.023 0.067 0.168 

4 Bias 
𝑎0 = 3, 𝑏0 = 0.5 

𝑎1 = 1.5, 𝑏1 = 0.5 

-0.005 -0.003 0.009 0.036 0.076 

MSE 
0.002 0.003 0.008 0.024 0.066 

5 Bias 
𝑎0 = 1.3, 𝑏0 = 0.7 

𝑎1 = 1.2, 𝑏1 = 0.6 

-0.018 -0.016 0.004 0.047 0.072 

MSE 
0.004 0.007 0.016 0.049 0.137 

6 Bias 
𝑎0 = 2, 𝑏0 = 0.5 

𝑎1 = 1.5, 𝑏1 = 0.5 

-0.008 -0.008 0.003 0.03 0.07 

MSE 
0.001 0.003 0.006 0.019 0.054 

7 Bias 
𝑎0 = 1.5, 𝑏0 = 1.2 

𝑎1 = 1.6, 𝑏1 = 0.7 

-0.003 -0.004 0 0.012 0.03 

MSE 
0.003 0.005 0.01 0.03 0.08 
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 Note that these hyper parameters presented in table 10 has been chosen to get the 

expectation of gamma prior and inverse gamma prior to be the value of 𝜃0 = 2 and 𝜎0 =

1.2 or nearly to 𝜃0 = 2 and 𝜎0 = 1.2 to get the best results. Also, the same hyper 

parameters of each scheme have been used to get the results of both Bayesian intervals 

under each censoring scheme. 

 From table 10, we noticed that both values of bias and MSE are increasing over all 

the 𝑝𝑡ℎ quantiles values. Also, it is notable that in general there are no significant difference 

between bias and MSE all over our schemes, but we can say that values of MSE are 

decreasing while 𝑚 and 𝑛 are getting bigger.  

Now, the following tables 11 and 12 present the results of the average length and error rates 

for equal tail intervals and highest posterior density region. The simulation has been done 

for both α = 0.1 and α = 0.05. 
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Table 11. Coverage probability and expected lengths results when 𝛼 = 0.1 for informative priors. 

𝛂 = 𝟎. 𝟏 

Scheme Interval 

Type 
P=0.1 P=0.25 P=0.5 P=0.75 P=0.9 

A L E R A L E R A L E R A L E R A L E R 

1 E T  
0.295 0.104 0.396 0.124 0.609 0.132 1.053 0.136 1.697 0.128 

HPD  
0.27 0.149 0.368 0.154 0.567 0.165 0.956 0.169 1.518 0.166 

2 E T  
0.295 0.103 0.377 0.118 0.54 0.128 0.899 0.112 1.447 0.107 

HPD  
0.276 0.147 0.357 0.141 0.512 0.14 0.835 0.146 1.321 0.146 

3 E T  
0.236 0.103 0.317 0.125 0.475 0.137 0.792 0.136 1.262 0.129 

HPD  
0.215 0.152 0.294 0.157 0.441 0.161 0.724 0.161 1.135 0.172 

4 E T  
0.127 0.119 0.183 0.111 0.295 0.102 0.524 0.102 0.86 0.099 

HPD  
0.113 0.151 0.166 0.14 0.27 0.132 0.48 0.137 0.787 0.121 

5 E T  
0.196 0.154 0.262 0.151 0.409 0.117 0.729 0.101 1.202 0.097 

HPD  
0.173 0.176 0.235 0.172 0.376 0.148 0.674 0.132 1.109 0.118 

6 E T  
0.125 0.1 0.173 0.105 0.261 0.121 0.451 0.122 0.744 0.115 

HPD  
0.113 0.13 0.158 0.123 0.242 0.137 0.42 0.148 0.688 0.137 

7 E T  
0.151 0.139 0.207 0.138 0.318 0.138 0.553 0.122 0.903 0.112 

HPD  
0.133 0.178 0.187 0.176 0.294 0.168 0.512 0.156 0.834 0.143 
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Table 12. Coverage probability and expected lengths results when 𝛼 = 0.05 for informative priors. 

 

𝛂 = 𝟎. 𝟎𝟓 

Scheme Interval 

Type 
P=0.1 P=0.25 P=0.5 P=0.75 P=0.9 

A L E R A L E R A L E R A L E R A L E R 

1 E T  
0.345 0.056 0.476 0.066 0.742 0.076 1.278 0.076 2.059 0.072 

HPD  
0.319 0.08 0.445 0.087 0.692 0.088 1.176 0.093 1.869 0.093 

2 E T  
0.352 0.043 0.456 0.064 0.654 0.069 1.088 0.069 1.75 0.058 

HPD  
0.328 0.07 0.431 0.08 0.621 0.086 1.016 0.074 1.608 0.072 

3 E T  
0.276 0.055 0.382 0.063 0.573 0.078 0.953 0.089 1.518 0.088 

HPD  
0.255 0.078 0.357 0.082 0.539 0.098 0.886 0.094 1.391 0.094 

4 E T  
0.14 0.096 0.207 0.08 0.342 0.06 0.615 0.047 1.018 0.049 

HPD  
0.129 0.099 0.191 0.095 0.318 0.074 0.573 0.067 0.943 0.063 

5 E T  
0.217 0.136 0.295 0.124 0.473 0.078 0.857 0.058 1.421 0.052 

HPD  
0.198 0.148 0.271 0.136 0.44 0.095 0.801 0.079 1.327 0.07 

6 E T  
0.139 0.065 0.198 0.071 0.305 0.068 0.532 0.062 0.88 0.059 

HPD  
0.128 0.082 0.183 0.08 0.285 0.083 0.498 0.081 0.821 0.074 

7 E T  
0.169 0.098 0.236 0.098 0.372 0.08 0.654 0.069 1.073 0.059 

HPD  
0.153 0.132 0.217 0.118 0.348 0.09 0.613 0.093 1 0.08 

 

 

 Mostly, the coverage probability of those Bayesian intervals doesn’t attain the 

nominal error rate. And this is very clear for the HPD intervals. Where the nominal error 

rate in this situation has been explained in chapter 2, section 2.4. The results for the average 

lengths for both kinds of intervals are increased while the 𝑝𝑡ℎ quantile values are getting 

bigger. On the other hand, the error rates didn't show similar remark.  

The average lengths of the highest posterior density region are smaller than the average 

lengths of the equal tail intervals all over our different schemes and 𝑝𝑡ℎ quantile values. In 

contrast the error rates of HPD intervals for most situations are bigger than the equal tail 
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intervals'. For α = 0.1 the average lengths for both kind of Bayesian intervals are smaller 

than the average lengths when α = 0.05.  

It is worth to mention that error probabilities result for scheme 7 seems to have a problem. 

Specially for α = 0.05, the error probability for the HPD interval is around 0.1 when P=0.1 

and P=0.25 under scheme 6.  

 We have chosen four schemes to plot their results. These schemes are 1, 2, 3, and 

6. This step is done to clarify our results. As what we have done in chapter 2, we plotted 

𝑝𝑡ℎ quantile values on the x-access and the results of the bias, MSE, intervals lengths, and 

coverage probabilities. Figures 7-11 represent our purposes.   
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Figure 7. Bayesian bias and MSE plots for informative priors. 
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Figure 8. Bayesian expected lengths plots when 𝛼 = 0.1 for informative priors 
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Figure 9. Bayesian coverage probability plots when 𝛼 = 0.1 for informative priors 



  
   

67 
 

 

Figure 10. Bayesian expected lengths plots when 𝛼 = 0.05 for informative priors 
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Figure 11. Bayesian coverage probability plots when 𝛼 = 0.05 for informative priors 

 

 

Same process that we have done for the classical way, which implies choosing other values 

of 𝜃 and 𝜎. We also repeated our simulation for Bayesian statistics, choosing the same 

values of 𝜃 and 𝜎, just to make sure that our processes are perfectly done. Noted that the 

same technique that we depend in choosing the hyper parameters for 𝜃 = 2 and 𝜎 = 1.2, 

we do the same for other values of 𝜃 and 𝜎.  The tables below show our results for different 

values of 𝜃 and 𝜎. 



  
   

69 
 

Table 13. Bias and MSE results for different values of 𝜃 and 𝜎 for informative priors 

P=0.5 

Scheme 𝜽 𝝈 Hyper parameters Bias MSE 

1 𝜃 = 1.2 𝜎 = 0.5 𝑎0 = 1, 𝑏0 = 1.2  
𝑎1 = 1.5, 𝑏1 = 0.25 

0.057 0.009 

2   𝑎0 = 1, 𝑏0 = 1.2  
𝑎1 = 1.5, 𝑏1 = 0.25 

0.036 0.006 

3   𝑎0 = 1, 𝑏0 = 1.2  
𝑎1 = 1.5, 𝑏1 = 0.25 

0.032 0.004 

1 𝜃 = 1.5 𝜎 = 0.7 𝑎0 = 1.5, 𝑏0 = 3  
𝑎1 = 1.5, 𝑏1 = 0.7 

0.025 0.012 

2   𝑎0 = 1.5, 𝑏0 = 3  
𝑎1 = 1.5, 𝑏1 = 0.7 

0.022 0.009 

3   𝑎0 = 2.4, 𝑏0 = 1 

𝑎1 = 1.5, 𝑏1 = 0.7 

0.015 0.007 

1 𝜃 = 1.7 𝜎 = 0.9 𝑎0 = 1.9, 𝑏0 = 0.9  
𝑎1 = 1.5, 𝑏1 = 0.45 

0.031 0.006 

2   𝑎0 = 1.9, 𝑏0 = 0.9  
𝑎1 = 1.5, 𝑏1 = 0.45 

0.019 0.005 

3   𝑎0 = 1.9, 𝑏0 = 0.9  
𝑎1 = 1.5, 𝑏1 = 0.45 

0.019 0.003 
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Table 14. Coverage probability and expected lengths results of different values of 𝜃 and 𝜎 and 
𝛼 = 0.1 for informative priors    
 

 

𝜶 = 𝟎. 𝟏    &    𝒑 = 𝟎. 𝟓   

Scheme 𝜽 𝝈 Interval 

Type 

A L E R 

1 𝜃 = 1.2 𝜎 = 0.5 E T  0.241 0.152 

   HPD  0.217 0.249 
2   E T  0.214 0.147 
   HPD  0.194 0.215 
3   E T  0.18 0.15 
   HPD  0.162 0.225 
1 𝜃 = 1.5 𝜎 = 0.7 E T  0.354 0.126 

   HPD  0.328 0.143 
2   E T  0.313 0.11 
   HPD  0.294 0.108 
3   E T  0.275 0.122 
   HPD  0.256 0.138 
1 𝜃 = 1.7 𝜎 = 0.9 E T  0.232 0.145 

   HPD  0.211 0.178 
2   E T  0.204 0.127 
   HPD  0.186 0.168 
3   E T  0.175 0.144 
   HPD  0.159 0.204 
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Table 15. Coverage probability and expected lengths results of different values of 𝜃 and 𝜎 and 
𝛼 = 0.05 for informative priors    
 

𝜶 = 𝟎. 𝟎𝟓    &    𝒑 = 𝟎. 𝟓   

Scheme 𝜽 𝝈 Interval 

Type 

A L E R 

1 𝜃 = 1.2 𝜎 = 0.5 E T  0.262 0.09 

   HPD  0.243 0.145 
2   E T  0.24 0.088 
   HPD  0.222 0.133 
3   E T  0.197 0.094 
   HPD  0.182 0.144 
1 𝜃 = 1.5 𝜎 = 0.7 E T  0.417 0.074 

   HPD  0.389 0.087 
2   E T  0.372 0.057 
   HPD  0.35 0.065 
3   E T  0.325 0.075 
   HPD  0.304 0.091 
1 𝜃 = 1.7 𝜎 = 0.9 E T  0.255 0.1 

   HPD  0.237 0.13 
2   E T  0.229 0.085 
   HPD  0.212 0.118 
3   E T  0.194 0.097 
   HPD  0.179 0.13 

 

 

 Comparing between results in Tables 10 and 13, in case of 𝑝 = 0.5, we found that 

results of bias for 𝜃 = 2 and 𝜎 = 1.2 are smaller than the results for other different values 

of  𝜃 and 𝜎. On the other hand, MSE results show the opposite. When considering tables 

11, 12, 14, and 15. It seems that the error rates when 𝛼 = 0.1 or 𝛼 = 0.05 for 𝑝 = 0.5, 

mostly don’t attain the nominal error rate for each interval. Then, we can say that Bayesian 

intervals for any value of 𝜃 and 𝜎 are not comparable. Note that, the HPD intervals show 

more problems to attain the nominal error rate.   

Now, the following tables are presenting results of the noninformative prior distributions. 
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Table 16. Bias and MSE results of noninformative prior distributions. 

 

Scheme  P=0.1 P=0.25 P=0.5 P=0.75 P=0.9 

1 Bias 
0.02 0.019 0.021 0.031 0.049 

MSE 
0.01 0.017 0.04 0.122 0.319 

2 Bias 
0.02 0.018 0.019 0.026 0.039 

MSE 
0.009 0.014 0.028 0.08 0.212 

3 Bias 
0.009 0.014 0.032 0.065 0.111 

MSE 
0.006 0.012 0.027 0.075 0.188 

4 Bias 
0.004 0.007 0.019 0.044 0.079 

MSE 
0.005 0.009 0.021 0.062 0.159 

5 Bias 
0.005 0.004 0.007 0.017 0.031 

MSE 
0.004 0.007 0.017 0.048 0.124 

6 Bias 
-0.003 0 0.013 0.039 0.076 

MSE 
0.004 0.007 0.016 0.045 0.115 

7 Bias 
-0.007 -0.006 0.004 0.026 0.058 

MSE 
0.003 0.005 0.013 0.038 0.096 

 

 

 In general, bias and MSE values are increased while the 𝑝𝑡ℎ quantiles are increased. 

In contrast, these results are decreasing when 𝑚 and 𝑛 are getting bigger.  But the bias 

value of scheme 5 for P=0.9 is 0.111, which is quite high. On the other hand, MSE values 

of all schemes are around 0.1 for P=0.9, which is also quite high.  
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Table 17. Coverage probability and expected lengths results when 𝛼 = 0.1 for noninformative 

prior distributions. 

 

𝛂 = 𝟎. 𝟏 

Scheme Interval 

Type 
P=0.1 P=0.25 P=0.5 P=0.75 P=0.9 

A L E R A L E R A L E R A L E R A L E R 

1 Bayes  
0.291 0.126 0.39 0.135 0.611 0.142 1.074 0.148 1.744 0.142 

HPD  
0.271 0.162 0.368 0.16 0.574 0.17 0.985 0.17 1.567 0.17 

2 Bayes  
0.292 0.1 0.374 0.104 0.544 0.122 0.918 0.122 1.488 0.12 

HPD  
0.277 0.136 0.359 0.128 0.52 0.135 0.859 0.145 1.363 0.148 

3 Bayes  
0.236 0.134 0.318 0.142 0.478 0.152 0.805 0.158 1.286 0.16 

HPD  
0.219 0.17 0.299 0.17 0.45 0.178 0.744 0.182 1.165 0.183 

4 Bayes  
0.199 0.133 0.274 0.156 0.426 0.16 0.729 0.156 1.163 0.154 

HPD  
0.181 0.168 0.254 0.184 0.397 0.192 0.669 0.189 1.051 0.188 

5 Bayes  
0.182 0.156 0.242 0.166 0.38 0.145 0.675 0.127 1.107 0.116 

HPD  
0.16 0.199 0.218 0.206 0.35 0.182 0.622 0.157 1.013 0.156 

6 Bayes  
0.192 0.12 0.256 0.134 0.377 0.154 0.624 0.166 0.99 0.168 

HPD  
0.176 0.156 0.239 0.158 0.354 0.182 0.579 0.188 0.903 0.185 

7 Bayes  
0.151 0.163 0.207 0.172 0.321 0.161 0.548 0.165 0.874 0.168 

HPD  
0.134 0.204 0.189 0.208 0.297 0.208 0.504 0.196 0.796 0.198 
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Table 18. Coverage probability and expected lengths results when 𝛼 = 0.05 for noninformative 

prior distributions. 

𝛂 = 𝟎. 𝟎𝟓 

Scheme Interval 

Type 
P=0.1 P=0.25 P=0.5 P=0.75 P=0.9 

A L E R A L E R A L E R A L E R A L E R 

1 Bayes  
0.343 0.069 0.468 0.08 0.741 0.077 1.305 0.08 2.122 0.083 

HPD  
0.323 0.092 0.446 0.094 0.702 0.094 1.209 0.093 1.931 0.094 

2 Bayes  
0.346 0.06 0.449 0.062 0.656 0.067 1.109 0.065 1.794 0.064 

HPD  
0.329 0.068 0.433 0.07 0.631 0.074 1.042 0.081 1.656 0.086 

3 Bayes  
0.278 0.071 0.378 0.078 0.576 0.09 0.973 0.102 1.553 0.102 

HPD  
0.26 0.098 0.359 0.098 0.547 0.102 0.908 0.106 1.425 0.102 

4 Bayes  
0.233 0.086 0.326 0.098 0.51 0.094 0.872 0.098 1.393 0.102 

HPD  
0.215 0.108 0.305 0.111 0.481 0.11 0.813 0.118 1.281 0.113 

5 Bayes  
0.206 0.125 0.278 0.122 0.444 0.094 0.798 0.078 1.314 0.071 

HPD  
0.186 0.145 0.255 0.138 0.415 0.117 0.746 0.102 1.22 0.088 

6 Bayes  
0.224 0.076 0.303 0.078 0.452 0.086 0.749 0.101 1.187 0.107 

HPD  
0.208 0.092 0.286 0.092 0.429 0.108 0.701 0.118 1.096 0.119 

7 Bayes  
0.174 0.118 0.244 0.114 0.382 0.097 0.656 0.098 1.048 0.099 

HPD  
0.158 0.136 0.225 0.132 0.358 0.12 0.611 0.123 0.968 0.124 

  

 

 The general observation on both tables 17 and 18 is that most of the coverage 

probability for all schemes didn’t attain the nominal error rate, therefore these intervals in 

this case are not comparable.  

 We also choose the same schemes as in informative priors’ case and plot their 

results. Figures 12-16 represent our purposes.   
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Figure 12. Bayesian bias and MSE plots for noninformative priors. 
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Figure 13. Bayesian expected lengths plots when 𝛼 = 0.1 for noninformative priors 
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Figure 14. Bayesian coverage probability plots when 𝛼 = 0.1 for noninformative priors 
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Figure 15. Bayesian expected lengths plots when 𝛼 = 0.05 for noninformative priors 
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Figure 16. Bayesian coverage probability plots when 𝛼 = 0.05 for noninformative priors. 

 

 

To be consistent with the informative prior distribution case, we apply the same process of 

choosing different values of 𝜃 and 𝜎 to apply it for the noninformative prior distribution. 

Our results in this case are shown in the tables below.  
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Table 19. Bias and MSE results for different values of 𝜃 and 𝜎 for noninformative priors. 

P=0.5 
Scheme 𝜽 𝝈 Bias MSE 

1 𝜃 = 1.2 𝜎 = 0.5 0.004 0.005 

2   0.008 0.004 

3   0.001 0.003 

1 𝜃 = 1.5 𝜎 = 0.7 0.010 0.011 

2   0.011 0.009 

3   0.009 0.007 

1 𝜃 = 1.7 𝜎 = 0.9 0.013 0.019 

2   0.014 0.016 

3   0.007 0.012 

 

 

Table 20. Coverage probability and expected lengths results of different values of 𝜃 and 𝜎 and 
𝛼 = 0.1 for noninformative priors.   

 
𝜶 = 𝟎. 𝟏    &    𝒑 = 𝟎. 𝟓   

Scheme 𝜽 𝝈 Interva

l Type 

A L E R 

1 𝜃 = 1.2 𝜎 = 0.5 E T  0.213 0.156 

   HPD  0.197 0.189 

2   E T  0.188 0.157 

   HPD  0.176 0.176 

3   E T  0.167 0.154 

   HPD  0.154 0.181 

1 𝜃 = 1.5 𝜎 = 0.7 E T  0.339 0.122 

   HPD  0.316 0.147 

2   E T  0.301 0.120 

   HPD  0.285 0.139 

3   E T  0.263 0.128 

   HPD  0.247 0.155 

1 𝜃 = 1.7 𝜎 = 0.9 E T  0.451 0.133   

   HPD  0.421 0.149 

2   E T  0.395 0.126 

   HPD  0.376 0.147 

3   E T  0.346 0.124 

   HPD  0.326 0.152 
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Table 21. Coverage probability and expected lengths results of different values of 𝜃 and 𝜎, and 
𝛼 = 0.05 for noninformative priors.    
 

𝜶 = 𝟎. 𝟎𝟓    &    𝒑 = 𝟎. 𝟓   

Scheme 𝜽 𝝈 Interval 

Type 

A L E R 

1 𝜃 = 1.2 𝜎 = 0.5 E T  0.244 0.112 

   HPD  0.229 0.130 

2   E T  0.219 0.117 

   HPD  0.206 0.125 

3   E T  0.191 0.104 

   HPD  0.179 0.125 

1 𝜃 = 1.5 𝜎 = 0.7 E T  0.400 0.076 

   HPD  0.376 0.088   

2   E T  0.356 0.073 

   HPD  0.338 0.085 

3   E T  0.311 0.069 

   HPD  0.293   0.083 

1 𝜃 = 1.7 𝜎 = 0.9 E T  0.540 0.069 

   HPD  0.508 0.080 

2   E T  0.474 0.076 

   HPD  0.452 0.083 

3   E T  0.415 0.077 

   HPD  0.391 0.087 

 

 

 It is clear from tables 16 and 19, that the bias and MSE results are getting smaller 

for smaller values of 𝜃 and 𝜎 , especially for 𝜃 = 1.2 and 𝜎 = 0.5. By concentrating on the 

results related to 𝑝 = 0.5, tables 17 and 18 show that Bayesian intervals are mostly anti-

conservative. And this is true for different values of 𝜃 and 𝜎 , which their results are clearly 

presented in tables 20 and 21. Therefore, we can say that Bayesian intervals in case of 

noninformative priors are not comparable.  
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CHAPTER 4: DATA ANALYSIS 

 In this chapter, we shall present two data sets applications to clarify our inferential 

procedures, which have been explained in the previous units. For each data set we will 

apply both the classical and Bayesian statistics. In this chapter, we are interested in 

calculating the maximum likelihood for our parameters 𝜃, 𝜎, 𝑥𝑝, and 𝑥𝐵𝑝. Also, we will find 

the confidence intervals for quantiles and will include the MLE, Bootstrap, and Bayes 

intervals. The first data set is generated from scheme 5 and the second one is a real-life 

data set. Of course, we use same simulation techniques that we used in chapter 2 and 

chapter 3 for running both examples 1 and 2.    

Example 1: Generated Data from Scheme 5 

 A progressively type II censored data has been generated from Scheme 5 (𝑛 =

70,𝑚 = 50, and 𝑅 = (020, 5,5,4,3, 06, 1,1, 010, 1, 07)) based on generalized exponential 

distribution with parameters 𝜃 = 2 and 𝜎 = 1.2. The data we got are  

0.0851   0.1127   0.1368   0.2465   0.2644   0.2905   0.3342   0.3378   0.3773   0.4160 

0.4866    0.5046    0.5559    0.5730   0.6359    0.6451    0.6716    0.6856   0.7168   0.7591 

0.7955    0.8151    0.8157    0.8380   0.9440    0.9541    1.1145    1.1826   1.1964   1.3082 

1.3109    1.4631    1.6386    1.7388   1.9520    2.0443    2.0617    2.1800   2.4350   2.4380 

2.5894    2.6489    2.9877    3.3289   3.7082    3.8538    3.9058    3.9783   4.0314   4.1352 

a- We used the same simulation which has been explained in chapter 2. We set  𝐵 = 500. 

Our estimation results for our estimators are 𝜃 = 1.596, �̂� = 1.312, �̂�𝑝0.1 = 0.354,

�̂�𝑝0.25 = 0.714, �̂�𝑝0.5 = 1.369, �̂�𝑝0.75 = 2.365, and �̂�𝑝0.9 = 3.609. It appears that 
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estimation results are very close to the initial values of our parameters.  

Now, we shall present the three types of confidence intervals (Asymptotic, percentile, and 

bootstrap-t confidence intervals) for our estimators �̂�𝑝 , for both values of 𝛼 = 0.1 and 𝛼 =

0.05. The table below shows our results. 

 

 

Table 22. Example 1 (a) confidence intervals for classical statistics methods. 

 

C.I 𝜶 = 𝟎. 𝟏 

�̂�𝑝0.1 �̂�𝑝0.25 �̂�𝑝0.5  �̂�𝑝0.75 �̂�𝑝0.9 
A I 

(0.232, 0.475) (0.549, 0.879) (1.114, 1.624) (1.906, 2.824) (2.842, 4.377) 

P R C 
(0.247, 0.505) (0.568, 0.915) (0.915, 1.67) (1.911, 2.908) (2.842, 4.436) 

Boot-t  
(0.218, 0.479) (0.535, 0.886) (1.108, 1.676) (1.939, 2.97) (2.937, 4.641) 

C.I 𝜶 = 𝟎. 𝟎𝟓 
 

�̂�𝑝0.1 �̂�𝑝0.25 �̂�𝑝0.5  �̂�𝑝0.75 �̂�𝑝0.9 
A I 

(0.209, 0.499) (0.517, 0.91) (1.065, 1.673) (1.818, 2.912) (2.695, 4.524) 
P R C 

(0.237, 0.552) (0.528, 0.964) (1.082, 1.706) (1.847, 2.962) (2.765, 4.584) 
Boot-t  

(0.192, 0.504) (0.484, 0.935) (1.084, 1.712) (1.887, 3.083) (2.852, 4.813) 

 

 

For  𝛼 = 0.05 , the confidence intervals seem to be wider than it is for 𝛼 = 0.1. As we 

increase 𝛼 the interval width decreases. For both values of 𝛼 , we notice that the length of 

these different types of confidence intervals are not very different from each other for each 

estimator �̂�𝑝, and this result doesn’t conflict with the results presented in table 5 and table 



  
   

84 
 

6 in chapter 2.   

b- In this part, we apply Bayesian simulation which has been explained in chapter 3 to get 

Bayesian estimation and calculate Bayesian intervals (Bayes and HPD intervals). To do so, 

we also choose same parameters initial values, 𝜃 = 2 and 𝜎 = 1.2, and we use the same 

generated data which has been generated from scheme 5 based on Generalized exponential 

distribution. Therefore, results of Bayes estimators are 𝜃𝐵 = 1.17, �̂�𝐵 = 1.804, �̂�𝐵𝑝0.1 =

0.356, �̂�𝐵𝑝0.25 = 0.721, �̂�𝐵𝑝0.5 = 1.393, �̂�𝐵𝑝0.75 = 2.424,  and  �̂�𝐵𝑝0.9 = 3.72. Also, these 

Bayes estimators are very close to our initial guesses. While the Bayesian intervals for each 

estimator �̂�𝐵𝑝 are indicated in the following table. 

 

 

Table 23. Example 1 (b) confidence intervals for Bayesian statistics methods. 

C.I 𝜶 = 𝟎. 𝟏 

  �̂�𝐵𝑝0.1  �̂�𝐵𝑝0.25  �̂�𝐵𝑝0.5  �̂�𝐵𝑝0.75  �̂�𝐵𝑝0.9  

Bayes 
(0.23, 0.499) (0.546, 0.925) (1.139, 1.681) (1.981, 2.973) (2.896, 4.647) 

HPD 
(0.236, 0.499) (0.541, 0.896) (1.165, 1.689) (1.933, 2.826) (2.87, 4.405) 

C.I 𝜶 = 𝟎. 𝟎𝟓 
 

 �̂�𝐵𝑝0.1  �̂�𝐵𝑝0.25  �̂�𝐵𝑝0.5  �̂�𝐵𝑝0.75  �̂�𝐵𝑝0.9  

Bayes 
(0.208, 0.533) (0.514, 1.011) (1.09, 1.74) (1.933, 3.091) (2.896, 4.895) 

HPD 
(0.23, 0.533) (0.498, 0.926) (1.082, 1.689) (1.912, 3.01) (2.87, 4.728) 
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Table 23 shows that the length of both kinds of Bayesian confidence intervals are higher 

when 𝛼 = 0.05 than the lengths of these confidence intervals when  

𝛼 = 0.1. It is notable that this result is consistent with our findings in chapter 3.  

Comparing between classical way results and Bayesian results in this example, we find that 

𝜃 = 1.596 and �̂� = 1.312 estimators are much closer than Bayesian estimators 𝜃𝐵 =

1.17, �̂�𝐵 = 1.804, to the initial values 𝜃 = 2 & 𝜎 = 1.2. On the other hand, by calculating 

the values of  𝑥𝑝’s based on equation (12) in chapter 2, we get 𝑥𝑝0.1 = 0.456, 𝑥𝑝0.25 =

0.832, 𝑥𝑝0.5 = 1.474, 𝑥𝑝0.75 =  2.412 and 𝑥𝑝0.9 =  3.564. In general, values of �̂�𝑝’s are like 

�̂�𝐵𝑝’s. However, it should be said that �̂�𝐵𝑝’s values are much closer to  𝑥𝑝’s values than 

�̂�𝑝’s values, except for 𝑝 = 0.9, opposite is true. About confidence intervals, generally we 

can say that lengths of HPD confidence intervals for both values of 𝛼 , are smaller than 

Bootstrap-t confidence intervals. In contrast, the lengths of percentile confidence intervals 

are smaller than Bayes confidence intervals. 

Example 2:  Real Data from (Lawless, 2003) 

 In this example, we take a real data which has been taken from (Lawless, 2003). 

The data represents the lifetime of automobile brake pads for 98 cars, where the number of 

miles or kilometers are driven, is known to be the pads lifetime. For our purposes we only 

present the lifetime 𝑡𝑖 (in km) data which is left truncated: 

18.6  20.8  24.8  27.8  31.8  32.9  33.6  34.3  37.2  38.7  38.8  39.3  42.4  42.4  42.4  43.4  

43.8  44.1  44.2  44.8  45.2  46.3  46.7  46.8  47.4  49.2  49.2  49.8  50.5  50.8  51.5  52.0  

53.9  54.0  54.0  54.9  55.0  55.9  56.2  56.2  58.4  59.3  59.4  60.3  61.4  61.9  63.7  64.0  
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65.0  65.1  65.5  67.6  68.8  68.8  68.9  68.9  69.0  69.0  69.6  72.2  72.8  73.8  74.7  74.8  

75.2  77.2  77.6  78.1  78.7  79.4  79.5  81.6  82.6  83.0  83.0  83.6  83.8  86.7  87.6  88.0  

89.1  89.5  92.5  92.6  95.7 100.6 101.2 101.9 103.6 105.6 105.6 107.8 110.0 123.5 124.5 

124.6 143.6 165.5 

Before explaining our work, we shall mention that dealing with our data has been inspired 

by (Pradhan & Kundu, 2009) and (Asgharzadeh, 2009) . Where (Pradhan & Kundu, 2009) 

obtained the maximum likelihood estimators of the generalized exponential distribution 

based on progressive censoring. They used EM algorithm in their application. For 

application, they used only one real data as an example. First, they tested the complete data 

set if fitted the generalized exponential distribution by applying the Kolmogorov-Smirnov 

distance. After that, they took three different samples from the data set with 𝑚 = 12 for 

the application. And (Asgharzadeh, 2009) derived the scale parameter of the generalized 

exponential distribution and approximated the likelihood function by providing a simple 

method of deriving an explicit estimator. They used a Monte Carlo simulation to find that 

estimator. They applied two examples for applications. In the first example, to obtain the 

MLE of their parameter 𝜆, they considered 𝑛 = 𝑚 = 23, & 𝑅 = (023) since the whole data 

set contains 23 observations. In example two, they generated two different progressively 

type II censored samples from GE distribution to obtain the approximated MLE and the 

confidence intervals for parameter 𝜎.  

First, we shall present a summary statistic which display in the following table: 
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Table 24: Descriptive statistics for the real data. 

Mean Standard 

deviation 

Minimum Median  Maximum  

67.73 26.73 18.60 65.05 165.50 

 

 

And the histogram plot for the data is shown in the figure below: 

 

 

 

Figure 17. Histogram plot for the real data. 



  
   

88 
 

We must test if our data set fits the GE distribution. We use Kolmogorov-Smirnov to do 

that. We apply the test by using R software, and the Kolmogorov-Smirnov distance is 𝑑 =

0.056 and 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.915. Where 𝑑 is the test statistics represents the maximum 

absolute distance between the expected and the observed distribution. The blot below 

explains that distance. 

 

 

 

Figure 18. Plot between the expected and the observed distribution. 
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Our hypothesis test is 𝐻0 : Data come from GE distribution vs 𝐻1 : Data doesn’t come from 

GE distribution. Now, we need to find the critical values at %95. By using one-sample-

Kolmogorov Smirnov-table, we find that 𝑑0.05 = 1.36. Then, 𝑑0.05 =
1.36

√𝑛
= 0.137, where 

𝑛 = 98. Since 𝑑 = 0.056 < 𝑑0.05 = 0.137 , then we conclude that 𝐻0 can’t be rejected for 

both values of 𝛼. Therefore, our data follow the GE distribution. To run a complete data 

set simulation, setting 𝑛 = 𝑚 = 98, and R = (098). Our estimation results are 𝜃 =

10.364, �̂� = 22.983, �̂�𝑝0.1 = 37.08, �̂�𝑝0.25 = 47.756, �̂�𝑝0.5 = 62.931, �̂�𝑝0.75 = 82.696, 

and �̂�𝑝0.9 = 105.58.  

We have generated progressively type II censored samples by using two different schemes. 

We set 𝑚 = 50 and 𝑚 = 70 , and the censoring schemes below are applied for both ways 

(classical and Bayesian statistics):  

Censoring Scheme 1: R1 = (049, 48) 

The progressively censored type II sample 1:   

18.6  20.8  24.8  27.8  31.8  32.9  33.6  34.3  37.2  38.7  38.8  39.3  42.4  42.4  42.4  43.4  

43.8  44.1  44.2  44.8  45.2  46.3  46.7  46.8  47.4  49.2  49.2  49.8  50.5  50.8  51.5  52.0  

53.9  54.0  54.0  54.9  55.0  55.9  56.2  56.2  58.4  59.3  59.4  60.3  61.4  61.9  63.7  64.0  

65.0  65.1   

Censoring Scheme 2: R2 = (069, 28) 

The progressively censored type II sample 2:   

18.6  20.8  24.8  27.8  31.8  32.9  33.6  34.3  37.2  38.7  38.8  39.3  42.4  42.4  42.4  43.4  
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43.8  44.1  44.2  44.8  45.2  46.3  46.7  46.8  47.4  49.2  49.2  49.8  50.5  50.8  51.5  52.0  

53.9  54.0  54.0  54.9  55.0  55.9  56.2  56.2  58.4  59.3  59.4  60.3  61.4  61.9  63.7  64.0  

65.0  65.1  65.5  67.6  68.8  68.8  68.9  68.9  69.0  69.0  69.6  72.2  72.8  73.8  74.7  74.8  

75.2  77.2  77.6  78.1  78.7  79.4  

a- The MLEs results of (𝜃, 𝜎, 𝑥𝑝0.1 , 𝑥𝑝0.25 , 𝑥𝑝0.5 , 𝑥𝑝0.75 , 𝑥𝑝0.9) for all censoring schemes 1 and 

2 are presented in the following table: 

 

 

Table 25. MLEs results of (𝜃, 𝜎, 𝑥𝑝0.1 , 𝑥𝑝0.25 , 𝑥𝑝0.5 , 𝑥𝑝0.75 , 𝑥𝑝0.9) parameters. 

Scheme �̂� �̂� �̂�𝒑𝟎.𝟏 �̂�𝒑𝟎.𝟐𝟓 �̂�𝒑𝟎.𝟓 �̂�𝒑𝟎.𝟕𝟓 �̂�𝒑𝟎.𝟗 

1 
8.716 25.12 36.683 48.155 64.588 86.1 111.071 

2 
9.381 24.149 36.824 47.937 63.8 84.518 108.541 

 

 

MLE results are increased while 𝑝𝑡ℎ quantiles are increased for �̂�𝑝 estimators. Comparing 

between the MLE results presented in table 25 for censored samples with the MLEs of the 

complete data, it seems that the MLEs of scheme 2 are much closer to the complete data 

MLEs. Also, the MLE results of scheme 2 are lower than the MLE results of scheme 1. On 

the other hand, it doesn’t appear that MLEs for censored data are lower than the MLEs of 

the complete data, but on the contrary except for  
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𝜃 and �̂�𝑝0.1 . Now, tables 25 and 26 represent the confidence intervals of our estimators �̂�𝑝 

in this case: 

 

 

Table 26. Scheme 1 Confidence Intervals of the classical statistics methods. 

C.I 𝜶 = 𝟎. 𝟏 

 �̂�𝑝0.1 �̂�𝑝0.25 �̂�𝑝0.5  �̂�𝑝0.75 �̂�𝑝0.9 

A I 
(32.796, 40.571) (44.206, 52.105) (59.016, 70.16) (76.905, 95.295) (96.975, 125.167) 

P R C 
(33.023, 40.48) (44.245, 52.144) (60.449, 68.757) (81.173, 90.744) (105.167, 116.5) 

Boot-t  
(32.909, 40.447) (44.186, 52.098) (60.271, 68.815) (81.123, 91.04) (105.265, 116.912) 

C.I 𝜶 = 𝟎. 𝟎𝟓 
 

�̂�𝑝0.1 �̂�𝑝0.25 �̂�𝑝0.5  �̂�𝑝0.75 �̂�𝑝0.9 

A I 
(32.051, 41.315) (43.449, 52.861) (57.949, 71.228) (75.143, 97.056) (94.274, 127.867) 

P R C 
(32.501, 41.427) (43.693, 53.011) (59.516, 69.547) (80.209, 91.548) (104.239, 117.179) 

Boot-t  
(31.949, 41.033) (43.38, 52.846) (59.481, 69.838) (80.013, 92.132) (104.371, 117.931) 
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Table 27. Scheme 2 Confidence Intervals of the classical statistics methods. 

 

C.I 𝜶 = 𝟎. 𝟏 

 �̂�𝑝0.1 �̂�𝑝0.25 �̂�𝑝0.5  �̂�𝑝0.75 �̂�𝑝0.9 

A I 
(33.077, 40.572) (44.194, 51.679) (59.037, 68.562) (77.171, 91.866) (97.509, 119.573) 

P R C 
(32.41, 39.353) (43.111, 50.212) (58.429, 65.592) (78.316, 86.066) (101.429, 109.771) 

Boot-t  
(34.193, 41.55) (45.604, 52.878) (61.915, 69.639) (82.757, 91.78) (106.976, 117.166) 

C.I 𝜶 = 𝟎. 𝟎𝟓 
 

�̂�𝑝0.1 �̂�𝑝0.25 �̂�𝑝0.5  �̂�𝑝0.75 �̂�𝑝0.9 

A I 
(32.359, 41.29) (43.477, 52.397) (58.125, 69.474) (75.763, 93.273) (95.396, 121.686) 

P R C 
(31.726, 40.4) (42.212, 51.319) (57.354, 67.068) (77.202, 87.292) (100.284, 110.825) 

Boot-t  
(33.137, 42.363) (44.507, 53.909) (60.372, 70.699) (81.363, 92.787) (105.721, 118.196) 

 

 

 For all schemes in this example, the confidence intervals lengths when  𝛼 = 0.1 are 

smaller than the lengths of same confidence intervals when 𝛼 = 0.05.  

b- In this part, the same censoring schemes and its corresponding samples are applied to 

obtain Bayesian estimates and their confidence intervals. we have been considered the 

noninformative prior distribution in this case. The Bayesian estimates results of 

(𝜃𝐵 , 𝜎𝐵, 𝑥𝐵𝑝0.1 , 𝑥𝐵𝑝0.25 , 𝑥𝐵𝑝0.5 , 𝑥𝐵𝑝0.75 , 𝑥𝐵𝑝0.9) for schemes 1 and 2 are presented in the 

following table: 
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Table 28. Bayesian estimates of (𝜃𝐵, 𝜎𝐵,𝑥𝐵𝑝0.1 , 𝑥𝐵𝑝0.25 , 𝑥𝐵𝑝0.5 , 𝑥𝐵𝑝0.75 , 𝑥𝐵𝑝0.9) parameters. 

Scheme �̂�𝑩 �̂�𝑩 �̂�𝑩𝒑𝟎.𝟏
 �̂�𝑩𝒑𝟎.𝟐𝟓

 �̂�𝑩𝒑𝟎.𝟓
 �̂�𝑩𝒑𝟎.𝟕𝟓

 �̂�𝑩𝟎.𝟗 

1 
4.064 34.968 28.973 43.006 64.335 93.342 127.672 

2 
3.866 37.948 30.402 45.509 68.557 99.977 137.205 

 

 

 It is clear that �̂�𝐵𝑝 estimators are increased while 𝑝𝑡ℎ quantiles are increased for 

both schemes. Now, tables below present Bayesian confidence intervals for all three 

schemes. 

 

 

Table 29. Scheme 1 Bayesian Confidence Intervals. 

C.I 𝜶 = 𝟎. 𝟏 

  �̂�𝐵𝑝0.1  �̂�𝐵𝑝0.25  �̂�𝐵𝑝0.5  �̂�𝐵𝑝0.75  �̂�𝐵𝑝0.9  

Bayes 
(26.614, 33.72) (40.352, 46.904) (59.682, 72.323) (85.32, 106.777) (115.518, 147.75) 

HPD 
(27.739, 32.734) (40.322, 46.423) (58.889, 69.092) (84.895, 101.759) (115.518, 140.974) 

C.I 𝜶 = 𝟎. 𝟎𝟓 
 

 �̂�𝐵𝑝0.1  �̂�𝐵𝑝0.25  �̂�𝐵𝑝0.5  �̂�𝐵𝑝0.75  �̂�𝐵𝑝0.9  

Bayes 
(25.734, 32.842) (38.72, 47.615) (58.539, 73.064) (85.32, 109.157) (115.82, 152.223) 

HPD 
(26.495, 32.835) (39.579, 47.615) (59.682, 73.215) (84.895, 107.986) (115.732, 150.275) 
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Table 30. Scheme 2 Bayesian Confidence Intervals. 

 

C.I 𝜶 = 𝟎. 𝟏 

  �̂�𝐵𝑝0.1  �̂�𝐵𝑝0.25  �̂�𝐵𝑝0.5  �̂�𝐵𝑝0.75  �̂�𝐵𝑝0.9  

Bayes 
(27.41, 32.621) (41.316, 47.162) (63.741, 71.348) (93.531, 105.885) (128.543, 146.974) 

HPD 
(27.636, 32.328) (41.801, 47.517) (63.59, 70.956) (93.299, 102.829) (128.485, 141.178) 

C.I 𝜶 = 𝟎. 𝟎𝟓 
 

 �̂�𝐵𝑝0.1  �̂�𝐵𝑝0.25  �̂�𝐵𝑝0.5  �̂�𝐵𝑝0.75  �̂�𝐵𝑝0.9  

Bayes 
(27.113, 35.5) (41.253, 53.749) (62.447, 78.515) (93.61, 113.681) (129.815, 155.301) 

HPD 
(26.253, 32.352) (40.449, 47.951) (61.11, 71.348) (92.7, 106.945) (128.485, 147.427) 

 

 

 As in part (a), the lengths of confidence intervals are smaller when 𝛼 = 0.1 than 

lengths of confidence intervals when 𝛼 = 0.05, and that satisfied for all schemes. 

Comparing between part (a) and part (b), we find that the corresponding parameters 

estimates results for MLE and Bayesian are close to each other, but �̂�𝐵𝑝’s Bayesian 

estimators are much higher than �̂�𝑝’s estimators for 𝑝 = 0.75 and 𝑝 = 0.9. 
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CHAPTER 5: COMPARISON, CONCLUSION, AND SUGGESTIONS FOR FURTHER 

STUDIES 

 In conclusion, this study is about studying the inference procedures for the 

Generalized exponential quantiles based on the progressively censored type II data. The 

maximum likelihood estimators have been derived for both shape and scale parameters of 

the GE distribution. After that, we derived the maximum likelihood estimator for the 𝑝𝑡ℎ 

quantile. For calculating the approximate confidence intervals for 𝜃 and 𝜎 for large 𝑚, an 

observed Fisher information matrix is needed to do our purpose calculations. As we 

mentioned before that we are interested in the maximum likelihood of 𝑝𝑡ℎ quantiles. 

Therefore, we find the asymptotic variance of the MLE of the 𝑝𝑡ℎ quantiles. After that, we 

used the delta method for multivariate to compute the asymptotic distribution. Then, we 

compute three kinds of confidence intervals, the asymptotic confidence interval, bootstrap-

t confidence interval, and percentile confidence interval. We chose different censoring 

schemes with different choices of  𝑛 and 𝑚. And we applied a simulation study to calculate 

bias and MSE for parameter (𝑥𝑝). Also, we calculated the average lengths and coverage 

probability for the three types of confidence intervals. Another statistical method has been 

used in this study, which is known as Bayesian statistics. In this case, we derived the 

posterior distribution, choosing prior distributions for parameters 𝜃 and 𝜎 to be Gamma 

and Inverted Gamma distributions, respectively. Another case of Bayesian application is 

using noninformative prior distributions for parameters 𝜃 and 𝜎.We find out the conditional 

distribution for both 𝑓(𝜃|𝑥) and 𝑓(𝜎|𝑥) for the both cases. Then, we compute two kinds 

of Bayesian intervals, equal tail interval and the highest posterior density interval. For 
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simulation study we applied importance sampling to calculate the bias and MSE for 

Bayesian estimators. And again, we calculate the average lengths and coverage probability 

for each type of intervals, using same censoring schemes used in classical way. 

Comparison  

 In this section, we compared between results presented in chapter 2 and results 

presented in chapter 3. In other words, this comparison will be between the classical 

statistics results in chapter 2 and Bayesian statistics results in chapter 3. We compared 

between table 4, table 10 and table 16, these tables present the bias and MSE for classical 

statistics and both cases of Bayesian statistics respectively. It is obvious that the higher 𝑝th 

quantiles, the lower the bias values, and this is expressed table 4 which represents the 

results of the classical statistics. In contrast, table 9 and table 12 show that the higher 𝑝𝑡ℎ 

quantiles, the higher the bias values, and these tables represents Bayesian work, but this is 

not true for schemes 1 and 2 in table 9. Table 9 shows that the smallest bias for schemes 1 

and 2 is when 𝑝 = 0.5.  It is known that if the bias is zero then we can say that we have an 

unbiased estimator. Therefore, we can see that bias is mostly insignificant for both 

estimators �̂�𝑝’s and �̂�𝐵𝑝’s. Now, we shall describe the MSE results. In our study, the closest 

values of MSE to zero are when 𝑝 = 0.1, and these values move away from zero as 𝑝 

values increase. Note that this is applied to both classical and Bayesian cases and applies 

to all censoring schemes. But, table 16 shows that MSE results when 𝑝 = 0.9 are quite 

high. Generally, MSE results for both classical and Bayesian are similar, but larger 

samples, such as schemes 4,5, … etc, MSE results for the first case of Bayesian statistics 

are better than the classical statistics.  
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 In general, the bias and MSE results for classical and Bayesian method, is that the 

larger values of  𝑛 and 𝑚 in each censoring scheme, the lower the values of bias and MSE.  

 It is important to compare between classical method confidence intervals which 

present in tables 5 and 6, and Bayesian methods intervals which present in tables 11 and 

12. Note that Bayesian intervals in the case of noninformative prior distributions are not 

comparable. Before comparing, we shall mention that coverage probabilities must attain 

the nominal error rate, which are 𝛼 = 0.1 and 𝛼 = 0.05. Whereas, an interval is said to be 

reached the nominal error rate, if the observed coverage probability is close to the nominal 

one. For example, when 𝛼 = 0.1 or 𝛼 = 0.05, the interval is said to be valid if the observed 

coverage probability result is between 0.08 and 0.12, or between 0.04 and 0.06, 

respectively. It is obvious that some coverage probabilities results presented in table 5 

didn’t attain the nominal error rate and this is mostly obvious for percentile and bootstrap-

t confidence intervals for schemes 1, 2, 3 and 7, especially when 𝑝 = 0.75 and 𝑝 = 0.9. 

And this is true only for the percentile confidence interval for scheme 2, when 𝑝 = 0.1. 

Also, the coverage probability of the asymptotic confidence interval for scheme 1 when 

𝑝 = 0.75 and 𝑝 = 0.9 show some problems. On the other hand, the coverage probabilities 

of the both types of Bayesian intervals show some problems for all schemes and all 𝑝𝑡ℎ 

quantiles, and clearly this is true especially for the HPD interval. According to the coverage 

probability results, the comparison between the intervals average widths is only for those 

intervals which attain the nominal error rate. Generally, Bayesian intervals average widths 

are narrower than classical confidence intervals average widths. For scheme 1, the average 

widths of the HPD intervals are not comparable because they didn’t attain the nominal error 
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rate. But equal tail interval shows better average lengths than the classical confidence 

intervals when 𝑝 = 0.1. On the other hand, when 𝑝 = 0.25, asymptotic and percentile 

confidence intervals show better average lengths than equal tail interval with a very small 

difference. When  𝑝 = 0.9, the only intervals can be compared together are bootstrap-t and 

equal tail intervals, and equal tail interval has better average length. For scheme 2, the equal 

tail intervals have the best average lengths all over the 𝑝𝑡ℎ quantiles compared with the 

classical confidence intervals, except when 𝑝 = 0.5, percentile confidence interval is the 

best. And this is true for schemes 4 and 6 for all over the 𝑝𝑡ℎ quantiles. For scheme 3, the 

only situations that we can compare are when 𝑝 = 0.1, 𝑝 = 0.25 and 𝑝 = 0.9, and for all 

these situations equal tail intervals show the best average lengths. The same remark for 

scheme 7, but this is true only when 𝑝 = 0.75 and 𝑝 = 0.9.  

 The coverage probability of the intervals for 𝛼 = 0.05, which are presented in 

tables 6 and 12 for both classical and Bayesian methods, respectively, have more problems 

than the coverage probability of intervals when 𝛼 = 0.1. In table 6, coverage probabilities 

don’t reach the nominal coverage probability especially for percentile confidence interval. 

And this is true for all 𝑝𝑡ℎ quantiles and all schemes, except for 𝑝 = 0.5  and scheme 4. 

For Bayesian intervals, the coverage probabilities mostly don’t attain the nominal error 

rate, especially for the HPD intervals. The only case that HPD intervals attain the nominal 

error rate is for scheme 4 when 𝑝 = 0.75 and 𝑝 = 0.9. When comparing between the two 

methods, classical and Bayesian intervals, equal tail interval has the best average width in 

scheme 1 when 𝑝 = 0.1, but when 𝑝 = 0.25 the percentile confidence interval has the best 

average width with a very small difference. Scheme 3 shows the same comparison, equal 



  
   

99 
 

tail interval has the best average width, but for both 𝑝 = 0.1 and 𝑝 = 0.25. For scheme 2, 

the equal tail interval has the best average width when 𝑝 = 0.1, but when 𝑝 = 0.25 and 

𝑝 = 0.5, asymptotic confidence interval and percentile confidence interval are the best, 

respectively. In scheme 4, there is a clear difference between Bayesian intervals average 

widths and classical confidence intervals average widths, where Bayesian intervals average 

widths are smaller.  

 It is remarkable that all comparable classical confidence intervals and Bayesian 

intervals average widths are decreased when 𝑛 and 𝑚 increase in each censoring scheme. 

In contrast, the average lengths are increased when 𝑝𝑡ℎ quantiles increase.  

 We have applied the classical and Bayesian methods again, but we chose other three 

different values of 𝜃 and 𝜎  with only one 𝑝𝑡ℎ quantile value; i.e 𝑝 = 0.5. In this case, bias 

and MSE results have been decreased when 𝜃 and 𝜎 were decreased. For the coverage 

probability, classical confidence intervals mostly attain the nominal coverage probability 

better than when 𝜃 = 2 and 𝜎 = 1.2 for both cases 𝛼 = 0.1 or 𝛼 = 0.05, except for the 

coverage probabilities of the classical confidence intervals when 𝛼 = 0.05. But this not 

true for both cases of Bayesian intervals since Bayesian intervals’ coverage probability 

don’t attain the nominal error rates when 𝑝 = 0.5. Also, the average widths of the 

comparable intervals for smaller values of 𝜃 & 𝜎 are smaller than their counterpart when 

𝜃 = 2 and 𝜎 = 1.2. 

 In conclusion, we need to find out which inference procedures is better in a case of 

progressively censored data. It is clear from bias and MSE results that the bias for estimates 
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of  𝑥𝑝’s is closer to zero than the bias for estimates of 𝑥𝐵𝑝’s. Which means that 𝑥𝑝’s 

estimates are indicated to be more unbiased than 𝑥𝐵𝑝’s estimates. Of course, for smaller 

parameters values, we get smaller bias and MSE.  

 For those intervals which attain the nominal error rate (0.1 or 0.05), Bayesian 

intervals have the best average widths. For classical methods confidence intervals, 

percentile confidence interval generally has the best average lengths compared with 

asymptotic and bootstrap-t confidence intervals. And this is true for 𝛼 = 0.1 or 𝛼 = 0.05. 

Therefore, a general conclusion is that equal tail intervals are the best regardless of the 

parameter’s values.  

Suggestion for Further Studies 

 It is notable that some of the coverage probability of the classical confidence 

intervals and Bayesian intervals don’t attain the nominal coverage error, especially for 

Bayesian intervals of the noninformative prior distributions. To solve this problem, we 

suggest using another method of simulation, namely Markov Chain Monte Carlo (MCMC), 

especially Metropolis-Hasting within Gibbs sampler. This can be done as a further study 

that will compare between importance sampling and the Markov Chain Monte Carlo 

(MCMC). Also, we can study other types of censoring and compare it with our type of 

censoring. Another different loss function may be able to study it as further studies. 

Another suggestion for further studies is studying the effectiveness of some bias reduction 

techniques like the bootstrap, Jackknife or asymptotic corrections for bias. On the other 

hand, the same procedures can be applied for other continuous distribution and use another 

real data set for application.  



  
   

101 
 

REFERENCES 

Aldrich, J. (1997). R. A. Fisher and The Making of Maximum Likelihood 1912-1922. 

Statistical Science, 162-176. 

Asgharzadeh, A. (2009). Approximate MLE for The Scaled Generalized Exponential 

Distribution Under Progressive Type-II Censoring. Journal of The Korean 

Statistical Society, 223-229. 

Baklizi, A. (2008). Confidence Intervals for The Quantiles of The Weibull Distribution 

Based on Record Values. Journal of Applied Statistical Science, 119-130. 

Baklizi, A. (2009). Confidence Intervals for Quantiles Using Record Values from The 

Generalized Exponential Distribution. Journal of Statistical Theory and 

Applications, 373-381. 

Balakrishnan, N. (2007). Progressive Censoring Methodology: An Appraisal (with 

Discussions). Test, 211-296. 

Balakrishnan, N., & Cramer, E. (2014). The Art of Progressive Censoring. New York: 

Birkhäuser. 

Balakrishnan, N., & Li, T. (2006). Confidence Intervals for Quantiles and Tolerance 

Intervals Based on Ordered Ranked Set Samples. The Institute of Statistical 

Mathematics, 78-82. 

Balakrishnan, N., & Sandhu, R. A. (1995). A Simple Simulational Algorithm for 

Generating Progressive Type II Censored Samples. The American Statistician, 229-

230. 

Bang, H., & Zhao, H. (2012). Average Cost-Effectiveness Ratio with Censored Data. 

Journal of Biopharmaceutical Statistics, 401-415. 



  
   

102 
 

Berger, J. O. (1980). Statistical Decision Theory. New York: Springer Science+Business 

Media. 

Bolstad, W. M. (2007). Introduction to Bayesian Statistics. New Jersey: Wiley. 

Casella, G., & Berger, R. L. (2002). Statistical Inference. Pacific Grove: DUXBURY 

THOMSON LEARNING. 

Chen, M.-H., & Shao, Q.-M. (1999). Monte Carlo Estimation of Bayesian Credible and 

HPD Intervals. Journal of Computational and Graphical Statistics, 69-92. 

Costa, Veber, Frenandes, & Wilson. (2017). Bayesian Estimation of Extreme Flood 

Quantiles Using A Rainfall Runoff Model and A Stochastic Daily Rainfall 

Generator. Journal of Hydrology, 137-154. 

Davidson, R., & MacKinnon, J. (2001). Bootstrap tests: How many bootstraps? Queen's 

Economics Department. 

De San Roman, A. G., & Rebollo-Sanz, Y. F. (2018). An Estimation of Worker and Firm 

Effects with Censored Data. Bulletin of Economic Research, 459-482. 

Edgeworth, F. (1886). Progressive Means. JRSS. 

Edgeworth, F. (1893). Review of Fisher's Mathematical Investigations. EJ. 

Efron, B. (1979a). Bootstrap Methods: Another Look at The Jackknife. Ann, 1-26. 

El-Sagheer, R. M. (2016). Bayesian Prediction Based on General Progressive Censored 

Data from Generalized Pareto Distribution. Journal of Statistics Applications & 

Probabilities, 43-51. 

Eubank, R. L. (1984). Quantiles. Naval Research. 

Fienberg, S. (2006). When Did Bayesian Inference Become Bayesian? Bayesian Analysis, 

1-40. 



  
   

103 
 

Galton, F. (1889). Natural Inheritance. New York: MacMillan. 

Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., & Rubin, D. (2013). Bayesian 

Data Analysis. Chapman and Hall/CRC. 

Gelman, A., Simpson, D., & Betancourt, M. (2017). The Prior Can Often Only Be 

Understood in The Context of The Likelihood. Entropy, 1-13. 

Gugushvili, S. (2014, October 20). Maximum Likelihood Estimation: Multidimensional 

Case. Leiden, Netherlands. 

Gupta, R. D., & Kundu, D. (1999). Generalized Exponential Distributions. Austral. & New 

Zealand J. Statist., 173-188. 

Gupta, R. D., & Kundu, D. (2002). Generalized Exponential Distribution: Statistical 

Inferences. J Statist Theory Appl, 101-118. 

Gupta, R. D., & Kundu, D. (2007). Generalized Exponential Distribution: Existing Results 

and Some Recent Developments. J Statist Plan Inference, 3537-3547. 

Gupta, R. D., & Kundu, D. (2008). Generalized Exponential Distribution: Bayesian 

Estimations. Computational Statistics & Data Analysis, 1873-1883. 

Hasan, M. R., & Baizid, A. R. (2016). Bayesian Estimation Under Different Loss Function 

Using Gamma Prior for The Case of Exponential Distribution. Journal of Scientific 

Research, 67-78. 

Held, L., & Sabanés Bové, D. (2014). Applied Statistical Inference: Likelihood and Bayes. 

New York: Springer. 

Jones, M. C. (1992). Estimating Densities, Quantiles, Quantile Density and Density 

Quantiles. Ann. Inst. Statist. Math, 721-727. 

Khan, M. (1987). A Generalized Exponential Distribution . Biom.J, 121-127. 



  
   

104 
 

Kim, C., & Han, K. (2015). Bayesian Estimation of Generalized Exponential Distribution 

Under Progressive First Failure Censored Sample. Applied Mathematical Sciences, 

2037-2047. 

Kim, C., & Song, S. (2010). Bayesian Estimation of The Parameters of The Generalized 

Exponential Distribution from Doubly Censored Samples. Stat Papers, 583-597. 

Kim, N. (2013). Approximate MLE for The Scale Parameter of The Generalized 

Exponential Distribution Under Random Censoring. Journal of The Korean 

Statistical Society, 119-131. 

Krishna, H., & Kumar, K. (2011). Reliability Estimation in Lindley Distribution with 

Progressively Type II Right Censored Sample. Mathematics and Computers in 

Simulation, 281-294. 

Kundu, D., & Pradhan, B. (2009). Estimating The Parameters of The Generalized 

Exponential Distribution in Presence of Hybrid Censoring. Naval Res Logist, 687-

698. 

Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. New Jersey: John 

Wiley & Sons. 

Lee, P. M. (1992). Bayesian Statistics: An Introduction. Wiley. 

Lewis, N. (2018). Combining Independent Bayesian Posteriors into A Confidence 

Distribution, with Application to Estimate Sensitivity. Journal of Statistical 

Planning and Inference, 80-92. 

Li, X. (2011). Interval Estimation for The Quantile of A Two-Parameter Exponential 

Distribution. International Journal of Innovative Management, Information & 

Production, 78-82. 



  
   

105 
 

Mohi El-Din, M., Amein, M., Shafay, A., & Mohamed, S. (2016). Estimation of 

Generalized Exponential Distribution Based on an Adaptive Progressively Type II 

Censored Sample. Journal of Statistical Computation and Simulation, 1292-1304. 

Mohie El-Din, M. M., & Shafay, A. R. (2013). One- and Two-Sample Bayesian Prediction 

Intervals Based on Progressively Type-II Censored Data. Statist Pap, 287-307. 

Mosteller, F. (1946). On some useful "inefficient" statistics. Annals of Mathematical 

Statistics, 377-408. 

Ng, H. K., Kundu, D., & Chan, P. (2009). Statistical Analysis of Exponential Lifetimes 

Under an Adaptive Type-II Progressive Censoring Scheme. Naval Res Logist, 687-

698. 

Ogawa, J. (1951). Contributions to the theory of systematic statistics. I. Osaka Math. J, 

175-213. 

Panichkitkosolkul, W., & Saothayanun, L. (2012). Bootstrap Confidence Intervals for The 

Process Capability Index Under Half-Logistic Distribution. Journal of Science and 

Technology, 272-281. 

Parzen, E. (1979a). A Density-quantile function perspective on robust estimation. New 

York: Academic Press. 

Pearson, G. (1920). Factors Controlling the Distribution of Forest Types, Part I. ECOLOGY 

SOCIETY of AMERICA, 139-159. 

Pfeiffer, P. (1990). Some Properties of the Quantile Function . Probability for Applications, 

266-271. 

Pradhan, B., & Kundu, D. (2009). On Progressively Censored Generalized Exponential 

Distribution. TEST. 



  
   

106 
 

Raqab, M. Z., & Madi, M. T. (2005). Bayesian Inference for The Generalized Exponential 

Distribution. Journal of Statistical Computation and Simulation, 841-852. 

Sarhan, A. M., & Abuammoh, A. (2008). Statistical Inference Using Progressively Type-

II Censored Data with Random Scheme. International Mathematical Forum, 1713-

1725. 

Shaw, S. (2018). Topics in Bayesian statistics. Retrieved from MA40189: Topics in 

Bayesian statistics: http://people.bath.ac.uk/masss/ma40189.html 

Sheppard, W. (1899). A Method for Extending the Accuracy of Certain Mathematical 

Tables. London Mathematical Society, 432-448. 

Simon, J. (1969). Basic Research Methods in Social Science. New York: Random House. 

Strawderman, R. L., Parzen, M., & Wells, M. T. (1997). Accurate Confidence Limits for 

Quantiles Under Random Censoring. International Biometric Society, 1399-1415. 

Tukey, J. (1977). Exploratory Data Analysis. Massachusetts: Addison-Wesley. 

Ye, Z. S., Chan, P. S., Xie, M., & Ng, H. K. (2014). Statistical Inference for The Extreme 

Value Distribution Under Adaptive Type-II Progressive Censoring Schemes. 

Journal of Statistical Coputation and Simulation, 1099-1114. 

 

 


