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Inference for Step-Stress Partially
Accelerated Life Test Model with an
Adaptive Type-l Progressively Hybrid
Censored Data

Showkat Ahmad Lone ~ Ahmadur Rahman Tanveer A. Tarray
Saudi Electronic University Aligarh Muslim University Islamic University of Science
Riyadh, Saudi Arabia Aligarh, India & Technology

Kashmir, India

Consider estimating data of failure times under step-stress partially accelerated life tests
based on adaptive Type-1 hybrid censoring. The mathematical model related to the lifetime
of the test units is assumed to follow Rayleigh distribution. The point and interval
maximum-likelihood estimations are obtained for distribution parameter and tampering
coefficient. Also, the work is conducted under a traditional Type-I hybrid censoring plan
(scheme). A Monte Carlo simulation algorithm is used to evaluate and compare the
performances of the estimators of the tempering coefficient and model parameters under
both progressively hybrid censoring plans. The comparison is carried out on the basis of
mean squared errors and bias.

Keywords: Life testing, Rayleigh distribution, Type-I progressive hybrid censoring,
adaptive type-I progressive hybrid censoring, simulation study

Introduction

In accelerated life testing, Type-I and Type-Il censoring schemes are the two most
popular and commonly used censoring schemes. Under the conventional Type-I
censoring scheme, the experiment continues up to a pre-specified time. However,
the conventional Type-1l censoring scheme requires the experiment to continue
until a pre-specified number of failures occurs. Therefore, in a Type-1 censoring
scheme, the experimental time is fixed but the number of observed failures is a
random variable. In a Type-1I censoring scheme, the number of observed failures
is fixed but the experimental time is a random variable. The main limitation of these
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censoring schemes is that the experimenter can’t fix both time and failures in
advance. Therefore, researchers introduced a mixture of these two censoring
schemes called a hybrid censoring scheme which is described below.

Suppose n is the number of units being tested and also assume that the
lifetimes of sample units are independent and identically distributed (i.i.d) random
variables. Let the ordered lifetimes of these units be denoted by
Yin < Y2in < ... < Ynin, respectively. The test is terminated when a pre-fixed number,
m < n, out of n units have failed, or when a pre-fixed time, To, has been reached. In
other words, the life-test is terminated at a random time (ym:n, To). It is also usually
assumed that the failed units are not replaced in the experiment.

This hybrid censoring scheme, which was originally introduced by Epstein
(1954), has been used quite extensively used in reliability acceptance test in MIL-
STD-781C (United States Department of Defense, 1977). From now on this hybrid
censoring scheme is referred to as Type-I hybrid censoring scheme (Type-I HCS).
It is evident that the complete sample situations as well as Type-1 and Type-I1 right
censoring schemes are all special cases of this Type-1 HCS.

Since the introduction of Type-1 HCS by Epstein (1954), extensive work was
done on hybrid censoring and their different variations. In his pioneering work,
Epstein introduced the Type-I HCS and considered the special case when the
lifetime distribution is exponential with mean lifetime 6. He discussed estimation
methods for & and also proposed a two-sided confidence interval for 8 without
presenting a formal proof of its construction. Later, Fairbanks et al. (1982) modified
the proposition slightly and suggested a simple set of confidence intervals.
Motivated by the works of Bartholomew (1963) and Barlow et al. (1968), Chen and
Bhattacharyya (1988) derived the exact distribution of the conditional maximum
likelihood estimator (MLE) of @ by using the conditional moment generating
function approach, and used it to construct an exact lower confidence bound for 6.
Childs et al. (2003) derived a simplified but an equivalent form of the exact
distribution of the MLE of & as derived by Chen and Bhattacharyya. In constructing
exact confidence intervals for 6 from the exact conditional densities, these authors
made a critical assumption about monotonicity of tail probabilities and this was
formally proved recently by Balakrishnan and Iliopoulos (2009). Draper and
Guttman (1987) considered the Bayesian inference for ¢ and obtained the Bayesian
estimate and a two-sided credible interval for & by using an inverted gamma prior.
A comparison of different methods of estimation, by using extensive Monte Carlo
simulations, was carried out by Gupta and Kundu (1998). All these results are
developed for the case of exponential distribution, Type-1 HCS which has been
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discussed for some other lifetime distributions such as two-parameter exponential,
Weibull, log-normal, and generalized exponential.

Under a progressive Type-1 hybrid censoring scheme (T-1 PHCS), the
experimenter pre-fixes the testing time and number of failures out of the n units
placed under life testing experiment and terminates the experiment at time
T = min(m, To). At the time when the first failure occurs, R1 units among the n — 1
remaining (surviving) units are randomly taken off from the experiment. At the
time when the second unit fails, the experimenter randomly removes R> of the
remaining n — 2 — Ry units. The same procedure continues until T = min(m, To) is

reached, at that point of time, all the surviving units Rf =n—j-R —-R,-...—R;

are removed from the experiment, where j is the number of units observed up to
time T = min(m, To) and Ry, R»,..., R;j are pre-fixed whole numbers. For an extensive
review of the literature of progressive Type-1 censoring or progressive Type-I
hybrid censoring, the readers may refer to Balakrishnan and Aggarwala (2002) and
Balakrishnan (2007). The termination times in Type-lI and Type-Il censoring
schemes are described below:

Censoring scheme Termination time
Hybrid Type-I Min(m: n)
Hybrid Type-l Max(m; n)

Under the progressive hybrid censoring schemes, the experimenter is not sure
about the termination time of the test. To overcome this problem, Lin and Yang
(2013) proposed another censoring scheme called adaptive Type-l progressive
hybrid censoring scheme (AT-1 PHCS) and carried the estimations for the
exponential distribution. The censoring scheme assures the termination of the life
testing experiment at a fixed time To and results a higher efficiency of estimators as
compared with T-1 PHCS. Lin et al. (2009) investigated the maximum likelihood
and Bayesian estimation for two parameter Weibull distribution based on AT-I
PHCS. Using AT-I PHCS, there is no previous related study on PALT. The current
study deals with estimating information about the failure time of test units under
SSPALT using adaptive Type-lI progressive hybrid censoring scheme. The
mathematical model of the failure times is assumed to follow Rayleigh distribution.
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Method

The Rayleigh distribution is an important lifetime distribution used to model the
lifetime of the random process. It has many applications, including reliability, life
testing and survival analysis. The probability density function (pdf) is given by

2
fy(Y:9)=9—{GXD(—2y—02j, y>0,6>0. (1)

The survival function and hazard function are as follows:

2

S(y):exp(—zy—ezj, 2)

h(y)=-L. @3)

0 y<0
f(y)=1f.(y), O<y<r 4)
f,(y), y>7

where

fz(y)ﬁwg#exp[—[”ﬂz(g;r)] } 050451 (5

The above is obtained by applying the variable-transformation technique to
equation (1) along with the model proposed by DeGroot and Goel (1979) given
below:

T ifT<r
={ (6)

t+pH(T-7) ifT>r
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where T is the lifetime of an item under usual operating conditions, z is the stress
change time, and g (> 1) is the acceleration factor.

It was Kundu and Joarder (2006) who introduced a censoring scheme called
progressive Type-1 hybrid censoring scheme (T-1 PHCS) scheme. Under this
scheme, the life test under progressive censoring scheme (Ry,..., Rj) is finished at a
random time min(Ym:n:n, To), Wwhere 0 < To < oo and 1 < m < n are fixed in advance,
and yimn < Y2mn < ... < Yjmn are the ordered failure times resulting from the
experiment. Specifically, the experiment terminates at time to (= Ym:m:n) if the m™
progressively censored observed failure will occur before time To (i.e., Ym:m:n < To).
Otherwise, the experiment will be terminated at time To with Yj:m:n < To < Yj+1:m:n and
all the remaining R; =n—X;R — j surviving items are censored at time To. Here, j

denotes the number of failures which occur before time min(Ymn:n, To).

Under SSPALT scheme the units are first subjected to normal stress level So
and then at time 7 the stress is increased to S;. Let m be the prefixed number of
failures under both stress levels. The termination time To along with removals
(R1, Ra,..., R,,..., Rj) are also fixed in advance. At the time of the i failure yi:mn, Ri
units are removed from the experiment and, at the stress changing time z, R; units
would be withdrawn from the surviving ones, and so on. The observed data in the
SSPALT under T-1 PHCS is:

Case I: ym:nin <To
So :(yl'm:n’ Rl)!(yZ:m:n' RZ)""’(ynu:m:n’ Rnu )’(7’ Rr)’
Sl :(ynu+1:m:n’ Rnu+l)1(ynu+2:m:n’ Rnu+2 )" . ’(ym—l'm:n7 Rm—l)’(ym:m:w RT)

Case ll: ym:n:in = To
So :(yl'm:n’Ri)’(yZ:m:n'RZ)""'(ynu:m:n’Rnu)'(T’ Rr)’
S1 :(ynu+1:m:n’ I:\)nuﬁ-l)’(yn,ﬁz:m:n’ Rnu+2)""'(ym:m:n :TO’ Rm = Rr)

Case lll: ym:n:n > To
SO =(y].'m:n’Rl)’(yZ:m:n’RZ)""’(ynu:m:n'Rnu)’(T' Rr)’
Sl =(ynu+1:m:n’Rnu+l)’(ynu+2:m:n'Rnu+2)""'(yj:m:n’ Rj)’(TO’R}‘)
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where ny is the number of failure numbers at normal condition. The total failure
number j and finally censored number R} in SSPALT under each case are given by

j>mRi=n-m-Y"R ifr<y,. <T,
j=mRj=n-m->"R ify, . =T,

. . . i .
J<mRi=n-j-> R ify ..>T

For AT-1 PHCS, suppose n items are placed under test and let the ordered
lifetimes of these units be denoted by y1:n < y2n < ... < Yna. In the case that the m™
failure tm:n:n OCCUrS prior to time To (i.€., ym:m:n < To), the test will not stop, but will
continue to perceive failures up to time To without any further removals. Once the
time To is reached, all the remaining R;” =n— j—X;R units are taken off and the

test will terminate automatically. The observed data in the SSPALT under adaptive
type-1 PHCS is

Case I: ym:n:in < To
So = (Yamns R (Yamn R )sevos( Yomns Ry, )5 (72 R,
Sy = (Yo mas R o1 )oYy sz R 2 ) oo (Vi s Rt ) (Vi Re),
(Ymezmn0)--s (Vi 0) (To R}

Case Il: ym:n:in = To
S0 =(y].'m:n’Rl)’(yZ:m:n’RZ)""’(ynu:m:n’Rnu)’(T’ Rr)’
Sl = (ynu+1:m:n’ Rnu+l)’(ynu+2:m:n' Rnu+2)""'(ym:mn _TO’ I:\)m = R**)

Case lll: ym:n:n > To
S0 :(y]_'m:n’Rl)’(yz:m:n'R2)""’<ynu:m:n’Rnu)’(T’ Rr)'
Sl = (ynu+1:m:n' Rnu+l)’(ynu+2:m:n' I:anu+2)""’(yj:m:n’ I:zj )’(TO’ Rj*)
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where ny is the number of failure numbers at normal condition. The total failure
number j and finally censored number R™ in SSPALT under each case are given

by

j>m,R}‘*=n—j—ZLRi i-I:T<ym:m:n<-|-0’
j:m,R}ﬁ*:n_m_Z:ilRi If ym:m:n:TO’
. - . i
j<mR’=n-j->'R

j=1 i If ym:m:n >TO

Under the new censoring scheme, called an adaptive progressive Type-I
hybrid censoring scheme, the experimenter is free to change the value of Ty to attain
the optimum experimental time and a higher chance of observing many failures. It
not only assures the termination of the life testing experiment at a fixed time To for
efficiency of statistical inference but also control the total number of failures on the
test to be not too far away from the ideal failure number m.

Maximum Likelihood Estimation

The point and interval estimation for the parameters and acceleration factor of the
Rayleigh distribution based on progressive hybrid censoring (PHC) and adaptive
progressive hybrid censoring (APHC) are evaluated. Also, it can be seen that the
only difference between these two censoring schemes lies in the Case | defined in
the previous section. Therefore, the likelihood function is formed taking only Case |
into consideration, where the m™" failure tmmn occurs before the time To (i.e.,
Ymim:n < TO)-

Point Estimation

Consider the process of obtaining the point ML estimates of parameters 6 and S
based on obtained data from both PHC and APHC. The likelihood function for
SSPALT under two censoring schemes is obtained.

Estimation based on PHC

Assuming Rayleigh distribution, obtained the MLEs of the unknown parameters
based on the observed data set from PHC. The likelihood function under SSPALT
for the j ordered lifetime data set is as follows:
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L(0,8) % [T (Yimo)[5: (o) ] [5:(5)]°
X H f, (yi;m:n)[sz (yi:m:n )]Ri I:Sz (to )]RT

i=n,+1

(7)

where Rf =n—%,R —m with m = ny + na, ny is the number of failed units at use

conditions, na is the number of failed units at accelerated conditions, and to denotes
the time at which the m™ failure occurs. Also,

Sl(y):exp(_y_zj and Sz(y)exp{_{ﬂﬁ(y—r)}z}

26° 20°

The log-likelihood function is given by

InL(6,8) ZlnyI Zlng/i,—Znulne—Zmln0+nalnﬂ

i=n,+1

(8)
202|:Zyl Z ¢ +ZRy, + Z R’ +n,2°R, +n, 4R }

i=n,+1 i=n,+1

where ¢i = 7+ f(yi —7) and ¢t = 7 + S(to — 7).
Differentiating equation (8) with respect to # and  and equating them to zero,

alnL 2m
Y R gg{Zy. Z¢+2Ry.}

i=n,+1

9)
o {Z R¢? +n,2°R. +n,¢ }:
olnL n, & (yi-7) 1 &
=2+ ) - 2 #(%i-1)
a i=n,+1 9 i=n,+1
s B 4 (10)
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From equation (9), the estimate of parameter 6 as a function of 3 is obtained:

| XY @ER) D (LR )0 R 4N g7R,
0= 2m )

It is nearly impossible to obtain the closed form solution of the nonlinear equation
in (10). Therefore, the iterative technique called the Newton-Raphson method is
used to find the ML estimate of 5. Hence, the ML estimate of 6 can be easily
obtained from equation (11).

Estimation based on APHC

Using APHC scheme, the likelihood function under SSPALT for the j ordered
lifetime data set is as follows:

L(0.8) T [ 0T [ 6]
< T G )52 i) I [ 52 (T)]7

i=n,+1

(12)

where R =n—X,R —j with j=ny +ng, ny is the number of failed units at use

conditions, and na is the number of failed units at accelerated conditions.
The natural logarithm of the above likelihood of the above function is given
below:

j
InL(0, B) ZlnyI D> Ing-2n,In6-2jInO+n,Inp

i=n,+1

202 Zy, Z @ +ZRy, + Z R’ +n,°R +ngR"

i=n,+1 i=n,+1

(13)

where ¢t =1+ f(To—17). The partial derivatives of the above log-likelihood
function with respect to parameters are equated to zero, and the resulting equations
are

10
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i=1 i=n,+1

olnL 2 1|l , & . .,

=—— 4+ S+ 4+ ¥ Ry
86 9 03|:Zy| Z¢| ; |ylj|
(14)

j
+%{ Z R¢’ +n,7°R. +na¢fR}‘*} 0

i=n,+1

(o)}
=3
-
Il
m:
+
M_.
—_

yi_T) 1
_ _?Zﬁ(yi_f)

i=n,+1

J. (15)
_%{ > R (y,—7)+n (TO_T)R;*}O

i=n,+1

From equation (14), the point estimate of parameter 6 as a function of 3 is
obtained:

1
2 Y (MR (LR +R 40 IR
2]

O— (16)

Because it is very hard to obtain a closed-form solution for the nonlinear equation
in (15), the iterative Newton-Raphson method is used to find the ML estimate of f.
Hence, the ML estimate of 4 can be easily obtained from equation (16).

Interval Estimation

The interval ML estimates of parameters 6 and S are obtained, based on obtained
data from both PHC and APHC. Miller (1981) suggested that the asymptotic
distribution of the ML estimates of 6 and f is given by

((6-0).(8-8))>N(0.17(6.5)).
where 17X(@, ) is the variance-covariance matrix of the unknown model parameters.

The elements of the 2 x 2 matrix 172, Iﬁl(ﬁ,ﬂ),i =1,2, approximated under two
censoring schemes are presented in the sub-subsections given below:

11
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Fisher Information Matrix under PHC

The elements of the fisher information matrix under PHC scheme are the negative
of the partial double derivative of the log-likelihood function defined in equation
(8) and are given below:

__&InL
H 06°

=—;—T+§[_nz"y. > 4 +2Ry.} an

i=n,+1

+%{Z Rg’+n,7°R_+n,¢’R }
i=n,+1

o%InL o%InL

I, =1, =—
2R 5608 000

:_é{z & (i — Z R (y—7 +na¢f(t0—r)R;‘}

i=n,+1 i=n,+1

Thus, the approximate 100(1 — y)% two-sided confidence limits for 6 and S are,
respectively, given by

0+2,,1:(6,8) and B+Z,,1:(6.8),

where Z,; is the upper (y / 2)™" percentile of a standard normal distribution.

12
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Fisher Information Matrix under APHC

The following are the elements of Fisher Information matrix under this censoring
scheme

| __82InL
H 06?
2(n,—n,) 3| J &
REUSUYRELD D S 0)
0 0" | = i=n,+1 i=1
+i{ ZJ: R#>+n°R_+n #R}
94 il u T u j

i=n,+1

Ny M% S (y,—c) (21)

2
i=n,+1 ¢| i=n,+1
1

+?[ii R(y,—7) +n,(T,~7)° R}‘*}

=n,+1

L = _d°InL _ &’InL
2O 5608 800

Thus, the approximate 100(1 — y)% two-sided confidence limits for & and S are,
respectively, given by

042,11 (6.8) and B=z,, /l;;(é,ﬁ’),
Simulation

The theoretical comparison of the performance of different censoring schemes for
different parameter values is almost impossible to compute, Monte Carlo method

13



INFERENCE FOR STEP-STRESS PARTIALLY ACCELERATED LTM

of simulation is carried out to compare them. The study is carried out to compare
the performance of the MLEs in terms of their mean square errors and biases for
different choices of n, m, 7, and To based on parameter values of two different types
of progressive hybrid censoring schemes. Considered the following three
progressive censoring schemes and, for each setting, the bias and MSEs based on
10000 simulations are estimated and reported in tabular form.

Scheme1: R1=R2=...=Rpaand Rm=n-m;
Scheme2: Ri=n—-mand R, =R3=... =Rn=0;
Scheme 3: Ri=R2=...=Rpa1=1andRmn=n-2m+ 1.

For each scheme, the simulation procedure is carried out according to the following
steps:

Step 1.  First the values of n, m, 7, and To are specified.

Step 2.  Specify the values of the parameters ¢ and .

Step 3.  Generate a random sample of size n from Rayleigh distribution
under both normal and accelerated conditions using inverse CDF
method.

Step4.  For given values of n, m, 7z, To (To>7), 6, and S generate the
progressive hybrid censored sample using the model given by
equation (4). The two sample data sets are given below.

Set 1 (HPC) : yl:m:n <...< ynu:m:n <7< ynu+1:m:n <...< ym:m:n
Set2 (AHPC): Y, <. < Yoo <7< Yo mn <+ < Y <

ym+l:m:n <...< yj:m:n < TO

Table 1. Mean values of the bias and MSEs based on both PHC and APHC when n, m, 1,
and To are set at 0.5, 1.2, 2.5, and 6, respectively

Bias of MSE of 8 Bias of B MSE of 8
(n,m) Scheme PHC APHC PHC APHC PHC APHC PHC APHC
(20, 8) 1 0563 0472 0.668 0.531 0.611 0.518 0.723 0.588

2 0.697 0.503 0.711 0.613 0.713 0.622 0.797 0.676
3 0612 0.485 0.688 0.576 0.667 0.546 0.755 0.624

(30, 8) 1 0.456 0.353 0.577 0.461 0.531 0.446 0.602 0.516
2 0.478 0.390 0.631 0.547 0.669 0.510 0.646 0.598
3 0461 0.379 0.602 0.512 0.577 0.485 0.621 0.576

14
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Table 1 (continued).

Bias of MSE of 8 Bias of 8 MSE of 8
(n,m) Scheme PHC APHC PHC APHC PHC APHC PHC APHC
(50, 8) 1 0376 0.252 0.436 0.403 0.409 0.311 0.420 0.344

2 0401 0.295 0.549 0.495 0.537 0.446 0.545 0.440
3 0390 0.267 0.499 0.423 0.486 0.395 0.447 0.393

(20, 12) 1 0.270 0.209 0.365 0.311 0.302 0.238 0.385 0.300
0.391 0.298 0.501 0.441 0.589 0.478 0.504 0.409
3 0320 0.226 0.389 0.309 0.538 0.404 0.434 0.365

N

(30, 12) 1 0.203 0.153 0.254 0.215 0.218 0.209 0.275 0.204
2 0225 0.194 0.344 0.301 0.387 0.338 0.476 0.284
3 0210 0.167 0.290 0.248 0.289 0.230 0.438 0.277
(50, 12) 1 0.158 0.090 0.130 0.103 0.199 0.101 0.173 0.107

N

0.174 0.134 0.299 0.178 0.267 0.209 0.249 0.210
3 0166 0.112 0.182 0.139 0.228 0.137 0.192 0.121

Table 2. Mean values of the bias and MSEs based on both PHC and APHC when n, m, 1,
and To are set at 0.5, 1.2, 2.5, and 12, respectively

Bias of MSE of 8 Bias of B MSE of 8
(n, m) Scheme PHC APHC PHC APHC PHC APHC PHC APHC
(20, 8) 1 0.220 0.192 0.301 0.266 0.311 0.267 0.345 0.267

2 0253 0.228 0.357 0.302 0.407 0.345 0.470 0.363
3 0.232 0.206 0.326  0.280 0.366 0.318 0.410 0.302

(30, 8) 1 0.176 0.138 0.245 0.201 0.259 0.222 0.311 0.240
0.240 0.205 0.307 0.254 0.329 0.298 0.405 0.309
3 0.204 0.144 0.276  0.223 0.304 0.270 0.345 0.287

N

(50, 8) 1 0.154 0.112 0.187 0.145 0.192 0.170 0.298 0.209
2 0198 0.154 0.226  0.198 0.226 0.197 0.366 0.288
3 0177 0.128 0.199 0.167 0.218 0.183 0.328 0.244

(20, 12) 1 0.137 0.102 0.182 0.151 0.188 0.167 0.302 0.189
2 0.202 0.198 0.241 0.202 0.247 0.224 0.402 0.301
3 0.187 0.166 0.230 0.187 0.223 0.205 0.365 0.277

(30, 12) 1 0.123 0.091 0.122 0.108 0.154 0.119 0.244 0.141
2 0176 0.145 0.187 0.155 0.204 0.188 0.306 0.209
3 0137 0.120 0.155 0.126 0.188 0.167 0.287 0.178

(50, 12) 1 0.087 0.073 0.098 0.071 0.098 0.079 0.146 0.080
2 0.128 0.103 0.137 0.120 0.156 0.119 0.202 0.167
3 0.102 0.087 0.108 0.083 0.133 0.100 0.177 0.122
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Table 3. Mean values of the bias and MSEs based on both PHC and APHC when n, m, 1,
and To are set at 1.5, 1.2, 2.5, and 6, respectively

Bias of MSE of 8 Bias of 8 MSE of 8
(n, m) Scheme PHC APHC PHC APHC PHC APHC PHC APHC
(20, 8) 1 0.380 0.334 0.441 0.370 0.674 0.603 0.623 0.567

2 0428 0.379 0.501 0.423 0.780 0.698 0.708 0.637
3 0376 0.356 0.456 0.406 0.710 0.649 0.666 0.589

(30, 8) 1 0322 0.278 0.398 0.311 0.598 0.517 0.570 0.488
0.367 0.321 0.456 0.388 0.702 0.616 0.648 0.576
3 0320 0.294 0.414 0.358 0.644 0.568 0.603 0.512

N

(50, 8) 1 0.217 0.187 0.313 0.270 0.426 0.402 0.462 0.377
2 0284 0.250 0.356  0.306 0.588 0.485 0.517 0.450

3 0244 0211 0.321 0.287 0.513 0.434 0.501 0.405

(20, 12) 1 0.213 0.186 0.301 0.208 0.423 0.366 0.387 0.300
2 0300 0.276 0.346  0.299 0.560 0.476 0.465 0.371

3 0281 0.223 0.310 0.287 0.511 0.424 0.432 0.341

(30, 12) 1 0.189 0.155 0.209 0.153 0.309 0.265 0.256 0.178
2 0233 0.199 0.287 0.223 0.422 0.349 0.318 0.259

3 0212 0.160 0.240 0.198 0.389 0.310 0.287 0.225

(50, 12) 1 0.116 0.101 0.106  0.067 0.158 0.111 0.146 0.112

2 0198 0.136 0.145 0.118 0.267 0.185 0.202 0.167
3 0156 0.113 0.119 0.091 0.181 0.131 0.177 0.132

Table 4. Mean values of the bias and MSEs based on both PHC and APHC when n, m, 1,
and To are set at 1.5, 1.2, 2.5, and 12, respectively

Bias of MSE of 8 Bias of B MSE of 8
(n,m) Scheme PHC APHC PHC APHC PHC APHC PHC APHC
(20, 8) 1 0330 0.217 0.344 0.250 0.467 0.405 0.511 0.441

2 0398 0.290 0.431 0.336 0.540 0.486 0.602 0.505
3 0355 0.257 0.387 0.290 0.503 0.433 0.539 0.468

(30, 8) 1 0.266 0.177 0.302 0.190 0.405 0.356 0.465 0.367
0.317 0.226 0.365 0.287 0.489 0.407 0.549 0.419
3 0291 0.195 0.324 0.258 0.448 0.388 0.506 0.399

N

(50, 8) 1 0.206 0.127 0.217 0.155 0.312 0.267 0.401 0.302
2 0.244 0.186 0.278 0.178 0.372 0.370 0.456 0.356
3 0222 0.150 0.244 0.186 0.337 0.301 0.422 0.327

(20, 12) 1 0.213 0.107 0.222 0.159 0.304 0.271 0.387 0.290
2 0.254 0.190 0.267 0.166 0.365 0.357 0.465 0.361
3 0.234 0.158 0.250 0.185 0.326 0.313 0.432 0.323
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Table 4 (continued).

Bias of MSE of 8 Bias of 8 MSE of 8
(n,m) Scheme PHC APHC PHC APHC PHC APHC PHC APHC
(30, 12) 1 0.149 0.077 0.154 0.087 0.226 0.166 0.256 0.178

2 0187 0.117 0.207 0.117 0.329 0.287 0.318 0.259
3 0.168 0.097 0.187 0.103 0.258 0.217 0.287 0.225

(50, 12) 1 0.076 0.048 0.068 0.053 0.158 0.101 0.158 0.086
2 0.133 0.087 0.125 0.087 0.307 0.137 0.301 0.167
3 0.099 0.065 0.098 0.070 0.178 0.111 0.186 0.108

Table 5. Mean values of the bias and MSEs based on both PHC and APHC when n, m, 1,
and To are set at 1.5, 1.2, 4, and 8, respectively

Bias of MSE of 8 Bias of B MSE of 8
(n,m) Scheme PHC APHC PHC APHC PHC APHC PHC APHC
(20, 8) 1 0.387 0.288 0.412 0.251 0.663 0.565 0.723 0.632

2 0478 0.334 0.520 0.341 0.833 0.706 0.825 0.734
3 0430 0311 0.487 0.289 0.716 0.609 0.779 0.680

(30, 8) 1 0324 0.223 0.345 0.192 0.587 0.491 0.605 0.503
0.440 0.310 0.465 0.297 0.712 0.607 0.749 0.619
3 0344 0.276 0.394 0.268 0.667 0.565 0.676 0.565

N

(50, 8) 1 0.254 0.127 0.256  0.150 0.433 0.338 0.523 0.413
2 0434 0.301 0.378 0.183 0.586 0.450 0.636 0.496
3 0326 0.208 0.284 0.164 0.504 0.401 0.590 0.454

(20, 12) 1 0.265 0.205 0.252 0.159 0.435 0.370 0.500 0.395
2 0510 0.321 0.367 0.166 0.565 0.461 0.621 0.463
3 0.410 0.267 0.290 0.185 0.506 0.411 0.532 0421

(30, 12) 1 0.179 0.177 0.154 0.086 0.320 0.261 0.351 0.186
2 0346 0.237 0.207 0.127 0.429 0.277 0.415 0.268
3 0312 0.197 0.187 0.101 0.359 0.223 0.399 0.230

(50, 12) 1 0.076 0.048 0.087 0.043 0.208 0.131 0.208 0.085
2 0.233 0.087 0.225 0.097 0.407 0.187 0.355 0.189
3 0199 0.075 0.096 0.067 0.196 0.165 0.258 0.123
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Table 6. Mean values of the bias and MSEs based on both PHC and APHC when n, m, 1,
and To are set at 1.5, 1.2, 4, and 12, respectively

Bias of MSE of 8 Bias of 8 MSE of 8
(n, m) Scheme PHC APHC PHC APHC PHC APHC PHC APHC
(20, 8) 1 0544 0416 0.344 0.250 0.467 0.405 0.511 0.441

2 0.704 0.596 0.431 0.336 0.540 0.486 0.602 0.505
3 0674 0.467 0.387 0.290 0.503 0.433 0.539 0.468

(30, 8) 1 0466 0.353 0.302 0.190 0.405 0.356 0.465 0.367
2 0.617 0.426 0.365 0.287 0.489 0.407 0.549 0.419
3 0523 0.395 0.324 0.258 0.448 0.388 0.506 0.399

(50, 8) 1 0361 0.307 0.217 0.155 0.312 0.267 0.401 0.302
2 0544 0.386 0.278 0.178 0.372 0.370 0.456 0.356
3 0421 0.545 0.244 0.186 0.337 0.301 0.422 0.327

(20, 12) 1 0.313 0.247 0.222  0.159 0.304 0.271 0.387 0.290
2 0464 0.299 0.267 0.166 0.365 0.357 0.465 0.361
3 0337 0.278 0.250 0.185 0.326 0.313 0.432 0.323

(30, 12) 1 0249 0.170 0.154 0.087 0.226 0.166 0.256 0.178
2 0317 0.217 0.207 0.117 0.329 0.287 0.318 0.259
3 0.268 0.196 0.187 0.103 0.258 0.217 0.287 0.225

(50, 12) 1 0.201 0.056 0.068 0.053 0.158 0.101 0.158 0.086
2 0293 o0.107 0.125 0.087 0.307 0.137 0.301 0.167
3 0.249 0.085 0.098 0.070 0.178 0.111 0.186 0.108

Conclusion

Estimating and analyzing failure time data was considered under SSPALT based
on Type-Il hybrid censoring and adaptive Type-1l hybrid censoring using a
maximum likelihood approach. The mathematical model related to the lifetime of
the test units is assumed to follow the Rayleigh distribution. Using the Newton-
Raphson method, the numerical values of MLEs of model parameters are obtained.
Their performances are analyzed and discussed in terms of and MSE and bias. It is
seen that under the adaptive progressive hybrid censoring scheme is more efficient
in the estimators of parameters because of the available sample size obtained under
APHC. Generally, if the experimenter is not concerned about time, then the APHC
is a better option to use in order to obtain a higher efficiency of estimates of model
parameters. However, if the experimental time is limited, i.e., we have to allow only
a few experimental units to fail, and then PHC is reasonably a better scheme.
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