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We consider the problem of making statistical inference on unknown parameters of a lognormal distribu-
tion under the assumption that samples are progressively censored. The maximum likelihood estimates
(MLEs) are obtained by using the expectation-maximization algorithm. The observed and expected Fisher
information matrices are provided as well. Approximate MLEs of unknown parameters are also obtained.
Bayes and generalized estimates are derived under squared error loss function. We compute these estimates
using Lindley’s method as well as importance sampling method. Highest posterior density interval and
asymptotic interval estimates are constructed for unknown parameters. A simulation study is conducted
to compare proposed estimates. Further, a data set is analysed for illustrative purposes. Finally, optimal
progressive censoring plans are discussed under different optimality criteria and results are presented.

Keywords: approximate maximum likelihood estimate; Bayes estimate; EM algorithm; Fisher informa-
tion matrix; importance sampling; Lindley’s method; maximum likelihood estimate; optimal censoring

1. Introduction

In general, reliability and life testing experiments are performed to study products failure time
distributions. Such experiments often give rise to censored data. Type-I and type-II censoring
have been the two most common schemes for generating censored samples. Many authors have
studied various lifetime distributions under these schemes and one may refer to Balakrishnan and
Cohen [1] for a review. These two censoring schemes do not allow for removal of units at time
point other than the final time point of the experiment. Many studies of life and bio-assays are
conducted where live units are removed in between from the experiment for further investigations.
So, a more practical censoring scheme known as progressive censoring which allows intermediate
removal of units can be used. A progressively censored sample can be obtained as follows. Let
a total of n experimental units be placed on a life test. At the time of first failure, the R1 of the
remaining n − 1 surviving units are randomly removed from the experiment. Similarly, when
the second failure occurs, R2 of the remaining n − R1 − 2 surviving units are again randomly
removed. Finally, when mth failure occurs, the remaining Rm = n − R1 − R2 − · · · − Rm−1 − m
units are removed from the experiment. This yields a progressively type-II censored sample of

∗Corresponding author. Email: shuo@stat.tku.edu.tw
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1072 S. Singh et al.

size m from a parent sample of size n and here (R1, R2, . . . , Rm) is referred as the correspond-
ing progressive censoring scheme. The numbers m and Ri are prefixed before the start of the
experiment. Progressive censoring has received considerable attentions of many authors, see for
instance, the monograph by Balakrishnan and Aggarwala [2] and the review article by Balakrish-
nan [3] for various work done on progressive censoring scheme. One may also refer to the works
of Balasooriya and Balakrishnan,[4] Balakrishnan et al.,[5] Balakrishnan and Asgharzadeh,[6]
Asgharzadeh,[7] Pradhan and Kundu,[8] among others.

A random variable X following a two parameter lognormal LN(μ, τ) distribution has the density
function of the form

f (x; μ, τ) = 1

x
√

τ
φ

(
ln x − μ√

τ

)
, x > 0, −∞ < μ < ∞, τ > 0,

where φ(·) denotes the density function of a standard normal random variable. In this paper μ and τ

are treated as unknown parameters. In fact, eμ and eτ can be treated as scale and shape parameters
of LN(μ, τ) distribution, respectively. The distribution can assume variety of shapes and this
flexibility makes it useful for adequate fitting of data which mostly occur in socio-economic,
bio-assays, industrial and agricultural experiments. One may refer to Nelson [9] for a discussion
on these accounts and some related properties of lognormal distribution. We mention that Weibull
distribution has been extensively used by many authors to analyse various failure time data, see
for instance, Kundu [10] and Gupta and Kundu.[11] It is to be noted that hazard function of a
LN(μ, τ) distribution behaves in a manner similar to that of the Weibull distribution. Although
not much work has been done on lognormal distribution, however, because of stated similarity
and seeing the usefulness of the Weibull distribution it renders that many failure time data can
also be adequately analysed using LN(μ, τ) distribution as well, particularly when samples are
censored. In this paper, the problem of making statistical inference on the unknown parameters
of a lognormal distribution is considered under the assumption that samples are progressively
censored.

We have organized rest of the paper as follows. In Section 2, maximum likelihood estimation is
discussed. The expectation-maximization (EM) algorithm is proposed to compute the maximum
likelihood estimates (MLEs) of unknown parameters μ and τ . Next, in Section 3, we provide
the observed and expected Fisher information matrices. Asymptotic confidence intervals are con-
structed using the observed information matrix of the MLEs. Approximate maximum likelihood
estimates (AMLEs) are obtained in Section 4. Bayes estimation is discussed in Section 5. Lind-
ley’s method and importance sampling method are used to derive approximate Bayes estimates
for μ and τ . Highest posterior density (HPD) interval estimates are also constructed for unknown
parameters. In Section 6, we compare the performance of all estimates using simulations and a
data set is analysed for illustrative purposes. The optimum censoring plan is discussed in Section 7.
Finally, some conclusions are made in Section 8.

2. Maximum likelihood estimation

Suppose that n independent units whose lifetime follow LN(μ, τ) distribution are put on a life
test and then a progressively type-II censored sample of size m is observed under the scheme
R = (R1, R2, . . . , Rm). We denote the observed sample by X = (X1:m:n, X2:m:n, . . . , Xm:m:n). Writing
X(j) in place of Xj:m:n, j = 1, 2, . . . , m for convenience, we observe that the likelihood function of
μ and τ is

l(μ, τ |x) ∝
m∏

i=1

1

x(i)
√

τ
φ(y(i))[1 − �(y(i))]Ri ,
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where y(i) = ((ln x(i) − μ)/
√

τ), x = (x(1), x(2), . . . , x(m)) and �(·) denotes the distribution
function of a standard normal distribution. The likelihood equations of μ and τ are obtained as

m∑
i=1

y(i) +
m∑

i=1

Ri
φ(y(i))

1 − �(y(i))
= 0, (1)

−m +
m∑

i=1

y2
(i) +

m∑
i=1

Ri
y(i)φ(y(i))

1 − �(y(i))
= 0. (2)

The MLEs of unknown parameters can be computed by solving the above two nonlinear equa-
tions. One may refer to Balakrishnan and Mi [12] (see also [5]) regarding the existence of a
unique root for Equations (1) and (2). These equations do not yield analytic solution for desired
estimates. So, some numerical techniques such as Newton–Raphson should be employed to com-
pute the MLEs. Here we apply EM algorithm suggested by Dempster et al.,[13] to compute
the desired MLEs of μ and τ . We mention that this progressively censored lognormal prob-
lem for deriving MLEs can be viewed as an incomplete data problem, see for instance, Ng
et al.[14] We write the observed data as X = (X(1), X(2), . . . , X(m)) and unobserved (censored) data
as Z = (Z1, Z2, . . . , Zm) with each of Zj being a 1 × Rj vector such that Zj = (Zj1, Zj2, . . . , ZjRj ),
j = 1, 2, . . . , m. The complete data are given by W = (X, Z). Now after ignoring the constant
term, the log-likelihood function of the complete data Lc(W ; μ, τ) is given by

ln Lc(W ; μ, τ) = −n

2
ln τ −

m∑
i=1

ln x(i) − 1

2τ

m∑
i=1

(ln x(i) − μ)2 −
m∑

j=1

Rj∑
k=1

ln zjk

− 1

2τ

m∑
j=1

Rj∑
k=1

(ln zjk − μ)2.

We need to compute the pseudo log-likelihood function Ls(μ, τ) in the E-step which is obtained
from the function Lc and it is seen that

Ls(μ, τ) = −n

2
ln τ −

m∑
i=1

ln x(i) − 1

2τ

m∑
i=1

(ln x(i) − μ)2 −
m∑

j=1

Rj∑
k=1

E(ln Zjk|Zjk > x(j))

− 1

2τ

m∑
j=1

Rj∑
k=1

E((ln Zjk − μ)2|Zjk > x(j)).

After some simplifications this is rewritten as

Ls(μ, τ) = −n

2
ln τ − nμ2

2τ
+
(μ

τ
− 1

) m∑
i=1

ln x(i) +
(μ

τ
− 1

) m∑
j=1

Rj∑
k=1

E(ln Zjk|Zjk > x(j))

− 1

2τ

m∑
i=1

(ln x(i))
2 − 1

2τ

m∑
j=1

Rj∑
k=1

E((ln Zjk)
2|Zjk > x(j)). (3)

Also, the related expectations are defined and evaluated as

A(x(j); μ(k), τ(k)) = E(ln Zjk|Zjk > x(j)) = μ + Q(j)
√

τ
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1074 S. Singh et al.

and

B(x(j); μ(k), τ(k)) = E((ln Zjk)
2|Zjk > x(j)) = τ(1 + y(j)Q(j)) + 2μ

√
τQ(j) + μ2,

where y(j) = ((ln x(j) − μ)/
√

τ), and Q(j) = φ(y(j))/(1 − �(y(j))).
Now the M-step involves the maximization the function Ls(μ, τ) as defined in (3). If (μ(k), τ(k))

be the kth stage estimate of (μ, τ) then the corresponding (k + 1)th stage estimate (μ(k+1), τ(k+1))

is obtained by maximizing the function

Ls(μ, τ) = −n

2
ln τ − nμ2

2τ
+
(μ

τ
− 1

) m∑
i=1

ln x(i) − 1

2τ

m∑
i=1

(ln x(i))
2

+
(μ

τ
− 1

) m∑
j=1

RjA(x(j); μ(k), τ(k)) − 1

2τ

m∑
j=1

RjB(x(j); μ(k), τ(k)).

As a consequence, the desired updated estimates turn out to be

μ̂(k+1) = 1

n

⎡
⎣ m∑

i=1

ln x(i) +
m∑

j=1

RjA(x(j); μ(k), τ(k))

⎤
⎦

and

τ̂(k+1) = 1

n

⎡
⎣ m∑

i=1

(ln x(i))
2 +

m∑
j=1

RjB(x(j); μ(k), τ(k))

⎤
⎦− μ̂2

(k+1).

3. Fisher information matrix

This section deals with computing the observed and expected Fisher information matrices using
the method of Louis.[15] Note that observed information matrix is helpful in constructing asymp-
totic confidence intervals for unknown parameters. The expected Fisher information matrix will
be utilized in obtaining optimal censoring plans. In the next subsection, we obtain observed
information matrix.

3.1. Observed Fisher information matrix

The missing information principle of Louis [15] suggests that

Observed information = Complete information − Missing information. (4)

Now define notations X = the observed data, W = the complete data, θ = (μ, τ), IX(θ) = the
observed information, IW (θ) = the complete information, IW |X(θ) = the missing information, then
Equation (4) can be reexpressed as

IX(θ) = IW (θ) − IW |X(θ). (5)

Note that the complete information IW (θ) is given by

IW (θ) = −E

[
∂2 ln Lc(W ; θ)

∂θ2

]
=
⎡
⎣n

τ
0

0
n

2τ 2

⎤
⎦ . (6)
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The Fisher information in one observation, which is censored at the time of the jth failure time
x(j) is given by

I (j)
W |X(θ) = −EZj |X(j)

[
∂2 ln fZj (zj|x(j), θ)

∂θ2

]
= EZj |X(j)

[
∂ ln fZj (zj|x(j), θ)

∂θ

]2

=
[
a11(x(j); μ, τ) a12(x(j); μ, τ)

a21(x(j); μ, τ) a22(x(j); μ, τ)

]
.

The elements of the above matrix are computed using the conditional distribution of Zjk|X(j) = x(j),
k = 1, 2, . . . , Rj. This conditional distribution is derived as (see [8,14])

fZ|X(zj|X(j) = x(j)) =
⎧⎨
⎩

f (zj; θ)

1 − �(y(j))
if zj > x(j),

0 otherwise.

Consequently, we are able to observed that

a11(x(j); μ, τ) = 1

τ
[1 + y(j)Q(j) − Q2

(j)],

a21(x(j); μ, τ) = 1

2τ 1.5
[Q(j) + y(j)Q(j)(y(j) − Q(j))],

a22(x(j); μ, τ) = 1

4τ 2
[2 + y(j)Q(j)(1 − y(j)Q(j) + y2

(j))].

Thus, the total missing information is given by

IW |X(θ) =
m∑

j=1

RjI
(j)
W |X(θ). (7)

Finally, using Equations (6) and (7) in Equation (5), we obtain the observed information matrix. It
is to be noted again that the asymptotic variance covariance matrix of (μ̂, τ̂ ) is given by [IX(θ)]−1.

Further, the two-sided 100(1 − ξ)% asymptotic confidence intervals for the parameters μ and τ

can be obtained as μ̂ ± Zξ/2

√
Var(μ̂) and τ̂ ± Zξ/2

√
Var(τ̂ ), respectively, where Zξ/2 is the upper

ξ/2th percentile of the standard normal distribution.

3.2. Expected Fisher information matrix

This subsection deals with finding the expected Fisher information matrix based on progressively
censored sample X and the associated censoring scheme R = (R1, R2, . . . , Rm). Note that the
expected Fisher information matrix is given by

E[IX(θ)] = IW (θ) − E[IW |X(θ)].

Since missing information matrix involves only function of X(j) so in order to evaluate above
expression we need the probability density function of X(j), j = 1, 2, . . . , m which is given by
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1076 S. Singh et al.

(see [2])

fX(j) (x) = cj−1

j∑
i=1

ai,j
1

x
√

τ
φ

(
ln x − μ√

τ

){
1 − �

(
ln x − μ√

τ

)}ri−1

, 0 < x < ∞,

where rj = m − j + 1 +∑m
i=j Ri, cj−1 = ∏j

i=1 ri, j = 1, 2, . . . , m, and a1,1 = 1, ai,j = ∏j
k=1,k �=i

1/(rk − ri), 1 ≤ i ≤ j ≤ m. Thus, we have

E[IW |X(θ)] =
m∑

j=1

RjEX(j)

[
a11(x(j); μ, τ) a12(x(j); μ, τ)

a21(x(j); μ, τ) a22(x(j); μ, τ)

]
,

where

EX(j) [a11(x(j); μ, τ)] = 1

τ
[1 + e1j(μ, τ) − e2j(μ, τ)],

EX(j) [a12(x(j); μ, τ)] = 1

2τ 1.5
[e3j(μ, τ) + e4j(μ, τ) − e5j(μ, τ)],

EX(j) [a22(x(j); μ, τ)] = 1

4τ 2
[2 + e1j(μ, τ) − e6j(μ, τ) + e7j(μ, τ)],

and

e1j(μ, τ) = cj−1

j∑
i=1

ai,j

∫ 1

0
�−1(u)φ(�−1(u))(1 − u)ri−2 du,

e2j(μ, τ) = cj−1

j∑
i=1

ai,j

∫ 1

0
(φ(�−1(u)))2(1 − u)ri−3 du,

e3j(μ, τ) = cj−1

j∑
i=1

ai,j

∫ 1

0
φ(�−1(u))(1 − u)ri−2 du,

e4j(μ, τ) = cj−1

j∑
i=1

ai,j

∫ 1

0
(�−1(u))2φ(�−1(u))(1 − u)ri−2 du,

e5j(μ, τ) = cj−1

j∑
i=1

ai,j

∫ 1

0
�−1(u)(φ(�−1(u)))2(1 − u)ri−3 du,

e6j(μ, τ) = cj−1

j∑
i=1

ai,j

∫ 1

0
(�−1(u))2(φ(�−1(u)))2(1 − u)ri−3 du,

e7j(μ, τ) = cj−1

j∑
i=1

ai,j

∫ 1

0
(�−1(u))3(φ(�−1(u)))(1 − u)ri−2 du.

Finally, the expected asymptotic variance–covariance matrix of (μ̂, τ̂ ) is obtained as

V(θ) =
[
V11(n, R) V12(n, R)

V21(n, R) V22(n, R)

]
= (E[IX(θ)])−1.
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4. Approximate maximum likelihood estimation

It is observed that the likelihood equations (1) and (2) do not yield explicit estimators for MLEs.
In this section, we provide explicit estimators for μ and τ by obtaining approximate maximum
likelihood estimators. We mention that the likelihood equations are nonlinear because of the term
φ(y(i))/(1 − �(y(i))). Define

h(y(i)) = φ(y(i))

1 − �(y(i))
.

We approximate the function h(y(i)) by expanding it in a Taylor series around E(Y(i)) = ν(i). From
Balakrishnan and Sandhu,[16] it is seen that if U(i) is the ith progressively type-II censored sample
from the U(0, 1) distribution then,

Y(i) =d �−1(U(i)).

Further, we have

ν(i) = E(Y(i)) ≈ �−1(α(i)),

where α(i) = E(U(i)) and it is known from Balakrishnan and Aggarwala [2] that

α(i) = 1 −
m∏

j=m−i+1

j + Rm−j+1 + · · · + Rm

j + 1 + Rm−j+1 + · · · + Rm
.

Now by expanding h(y(i)) around ν(i) and keeping only the first two terms we have the following
approximation:

h(y(i)) ≈ h(ν(i)) + (y(i) − ν(i))h
′(ν(i))

= αi + βiy(i), (8)

where αi = h(ν(i)) − ν(i)h′(ν(i)) and βi = h′(ν(i)) for i = 1, 2, . . . , m. Next, we show that βi is
nonnegative for all i. We have

h′(y) = φ(y)

(1 − �(y))2
h1(y),

where h1(y) = φ(y) − y(1 − �(y)). We observed that h1(y) is decreasing in y. Moreover,
limy→−∞ h1(y) = ∞ and limy→∞ h1(y) = 0. This means that h1(y) is nonnegative for all y, which
in turn implies that h′(y) is non negative for all y. Hence, it is proved that βi ≥ 0 for all i. Further,
using the approximation (8) in Equations (1) and (2) and then simplifying, we see that AMLEs
of μ and τ are of the forms, respectively,

μ̂A =
∑m

i=1(1 + Riβi) ln x(i) +√
τ̂A
∑m

i=1 Riαi

m +∑m
i=1 Riβi

,

and

τ̂A =
⎛
⎜⎝A1 +

√
A2

1 + 4mB1

2m

⎞
⎟⎠

2

,

where A1 = ∑m
i=1 Riαi(ln x(i) − K), B1 = ∑m

i=1(ln x(i) − K)2(1 + Riβi), and K = (
∑m

i=1(1 +
Riβi) ln x(i))/(m +∑m

i=1 Riβi).
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Using approximate likelihood function the asymptotic variance–covariance matrix can be
obtained as

I(θ) =

⎡
⎢⎢⎢⎣

∂2 ln l(μ, τ |x)
∂μ2

∂2 ln l(μ, τ |x)
∂μ∂τ

∂2 ln l(μ, τ |x)
∂τ∂μ

∂2 ln l(μ, τ |x)
∂τ 2

⎤
⎥⎥⎥⎦

−1

θ=θ̂A

.

Further, the two-sided asymptotic confidence intervals using the normality property of AMLEs
for the parameters μ and τ can be obtained.

5. Bayes estimation

Suppose that X(1), X(2), . . . , X(m) is progressively type-II censored sample from a LN(μ, τ) distri-
bution. Based on such sample, Bayes estimators of the unknown parameters μ and τ are derived
under the squared error loss function. We propose to use a natural bivariate prior distribution for
μ and τ given as

π(μ, τ) = π2(τ )π1(μ|τ),

where π1(μ|τ) follows a normal N(a1, τ/b1) distribution and π2(τ ) follows an inverse gamma
IG(p2, q2/2) distribution with corresponding prior means being a1 and q2/2(p2 − 1), p2 > 1,
respectively. Here hyperparameters a1, b1, p2, and q2 are chosen to reflect the prior knowledge
about the unknown parameters. We further refer to Crow and Shimizu [17] for a discussion on
considering such prior distributions for parameters of a lognormal distribution. The corresponding
posterior distribution is given by

π(μ, τ |x) = π2(τ ) × π1(μ|τ) × l(μ, τ |x)∫∞
−∞

∫∞
0 π2(τ ) × π1(μ|τ) × l(μ, τ |x) dτ dμ

, −∞ < μ < ∞, 0 < τ < ∞.

Therefore, if g(μ, τ) is any function of μ and τ then its Bayes estimate, under the squared error
loss function, has the form

ĝB1(x) =
∫∞
−∞

∫∞
0 g(μ, τ)π(μ, τ |x) dτ dμ∫∞

−∞
∫∞

0 π(μ, τ |x) dτ dμ
. (9)

If we take a noninformative prior π∗(μ, τ) = 1/τ , −∞ < μ < ∞, 0 < τ < ∞, one has the
posterior distribution of (μ, τ)

π∗(μ, τ |x) ∝ π∗(μ, τ) × l(μ, τ |x)∫∞
−∞

∫∞
0 π∗(μ, τ) × l(μ, τ |x) dτ dμ

, −∞ < μ < ∞, 0 < τ < ∞.

Further, the generalized Bayes estimate of g(μ, τ) is given by

ĝB2(x) =
∫ ∞

−∞

∫ ∞

0
g(μ, τ)π∗(μ, τ |x) dτ dμ. (10)

Since the estimators defined in Equations (9) and (10) cannot be simplified to closed forms,
one may use some approximation methods to obtain the estimates. We consider Lindley’s method
and importance sampling method in this study.
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5.1. Lindley’s method

We use the method of Lindley [18] to obtain approximate explicit Bayes estimators of unknown
parameters μ and τ . We have briefly outlined the method in Appendix 1. It can be shown that
Bayes estimates of μ and τ using Lindley’s method under squared error loss function are of the
form

μ̂B1 = μ̂ + 0.5[σ 2
11l30 + 3σ11σ21l21 + σ11σ22l12 + 2σ12σ21l12 + σ12σ22l03] + ρ1σ11 + ρ2σ12,

(11)
and

τ̂B1 = τ̂ + 0.5[σ11σ21l30 + 3σ12σ22l12 + σ11σ22l21 + 2σ12σ21l21 + σ 2
22l03] + ρ1σ21 + ρ2σ22.

(12)
Expressions for terms appearing in the right-hand side of Equations (11) and (12) are given in
Appendix 1.

We can also compute approximate Bayes estimates of μ and τ using AMLEs in a similar
manner. Calculation can follow from Appendix 1. In such a case, we use approximate likelihood
function. Explicit expressions for respective generalized Bayes estimates of μ and τ using MLEs
and AMLEs can similarly be evaluated. Details are not presented here.

5.2. Importance sampling method

In this section, we provide some more approximate Bayes estimates using a Markov Chain Monte
Carlo (MCMC) technique. We propose importance sampling method to generate samples from
the posterior distribution of μ and τ and then using these samples, we compute desired Bayes
estimates. Furthermore, HPD intervals for unknown parameters are also constructed using the
method of Chen and Shao [19] (see Appendix 2 for details).

First observe that the posterior distribution μ and τ under the considered bivariate prior
distribution is

π(μ, τ |x) ∝ IGτ

(
m

2
+ p2,

1

2

{
m∑

i=1

(ln x(i))
2 + a2

1b1 + q2 − (
∑m

i=1 ln x(i) + a1b1)
2

m + b1

})

Nμ|τ
(∑m

i=1 ln x(i) + a1b1

m + b1
,

τ

m + b1

)
h(μ, τ),

where h(μ, τ) = ∏m
i=1{1 − �((ln x(i) − μ)/

√
τ)}Ri . We generate samples from π(μ, τ |x) as

follows.
Step 1. Generate τ1 ∼ IGτ (·, ·) and μ1 ∼ Nμ|τ1(·, ·).
Step 2. Repeat Step 1 s times to obtain (μ1, τ1), (μ2, τ2), . . . , (μs, τs).
Bayes estimates of μ and τ under squared error loss is now computed as,

μ̂∗ =
∑s

i=1 μih(μi, τi)∑s
i=1 h(μi, τi)

and

τ̂ ∗ =
∑s

i=1 τih(μi, τi)∑s
i=1 h(μi, τi)

.
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In addition, we can compute approximate generalized Bayes estimates of μ and τ with respect
to the noninformative prior π(μ, τ) = 1/τ , −∞ < μ < ∞, 0 < τ < ∞, in a similar manner as
above using the importance sampling method.

6. Simulation and data analysis

6.1. Simulation results

In this subsection, a Monte Carlo simulation study is conducted to compare the performance of
proposed estimators. We simulate progressively type-II censored samples of size m from a given
sample of size n with given censoring scheme. We compute MLEs of μ and τ using the EM
algorithm and respective AMLEs are taken as the initial guesses for implementing the algorithm.
Two different approximate Bayes estimates using Lindley and MCMC samples are computed
under squared error loss. For simulation purpose, the unknown parameters are assigned values as
μ = 0 and τ = 1. Both the average estimates and mean-squared error (MSE) values are computed
based on 5000 replications. We denote Prior 1 for noninformative Bayes estimates and Prior 2
for proper Bayes estimates in which case hyperparameters are given values as a1 = 0.01, b1 = 1,
p2 = 3, and q2 = 4. We are able to suggest these values based on our discussion given in the
beginning of Section 5. We further mention that, given the true values of parameters, prior means
of μ and τ have been taken into considerations in specifying values for hyperparameters. For
convenience, short notations are used to represent different censoring schemes, for instance,
scheme (5, 0, 0, 0, 0) is denoted by (5, 0∗4). InTable 1, various average estimates and corresponding
MSEs in parentheses are presented for different censoring schemes.

From Table 1, we observe that the MLEs and AMLEs behave almost similar in terms of abso-
lute biases and MSE values. This holds true for all presented schemes. Bayes estimates obtained
from Lindley’s approach using MLEs and AMLEs respectively behave like MLEs and AMLEs.
However, it seems that these Bayes estimates are marginally good. Noninformative MCMC esti-
mates also compete quite well with these estimates. Among proper Bayes estimates of μ the one’s
obtained from Lindley’s approach using MLEs performs really well. The corresponding MCMC
estimates are also good. For estimating τ , the estimates from Lindley’s approach using AMLEs
show good performance. In this case, performance of the corresponding MCMC estimates is highly
noticeable. Also, with the increase in effective sample size, absolute biases and MSE values of
all estimates decrease significantly and this holds true for all proposed censoring schemes.

In Table 2, the average lengths and coverage probabilities for 95% interval estimates are pre-
sented for both the parametersμ and τ .We tabulate these results using different censoring schemes.
We observe that the average lengths of asymptotic confidence intervals for μ using AMLEs is
marginally wider than the corresponding lengths obtained using MLEs. However, in case of the
parameter τ , the average lengths obtained using MLEs and AMLEs are almost alike. The interval
estimates of μ obtained using the noninformative prior (Prior 1) compete quite well with those of
the corresponding asymptotic estimates in terms of average lengths. On the other hand for τ , the
performance of HPD intervals under prior 1 is not so satisfactory. We further observe that the HPD
intervals (under Prior 2) show superior behaviour to all its competitors. This holds true for both
the parameters μ and τ . Also, the average lengths of all confidence intervals tend to decrease with
the increase in effective sample size. In the table, we also tabulate the coverage probabilities for
the interval estimates of μ and τ . One can see that the most of the coverage probabilities lie below
nominal level of 95% for different censoring schemes. Balakrishnan et al. [5] indicated that when
the effective sample size is relatively small then the coverage probabilities may be unsatisfactory.
In fact, we observe that (not reported in the table) the corresponding coverage probabilities do
improve with the increase in effective sample size.
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Table 1. Average and MSE values (in parentheses) of all estimates of μ and τ .

Bayes (Prior 1) Bayes (Prior2)

Lindley Lindley

n m Scheme Parameter MLE AMLE MLE AMLE MCMC MLE AMLE MCMC

15 6 (9, 0∗5) μ −0.07450 −0.08378 0.07994 0.02283 0.04665 −0.01466 0.02305 −0.03714
(0.15067) (0.15105) (0.14559) (0.13755) (0.14978) (0.09327) (0.08965) (0.10672)

τ 0.89334 0.91943 1.19466 1.26226 1.40242 0.93727 1.01486 0.93368
(0.23472) (0.23912) (0.40479) (0.43841) (0.72984) (0.04185) (0.04853) (0.10249)

15 6 (0∗5, 9) μ −0.10312 −0.09236 0.03385 0.03070 0.03422 0.03098 0.02891 −0.02598
(0.14152) (0.13737) (0.12346) (0.11987) (0.21433) (0.18363) (0.15024) (0.08716)

τ 0.82040 0.84304 1.17183 1.18064 1.18025 0.88503 0.86086 0.88374
(0.38194) (0.36614) (0.37034) (0.40177) (0.41269) (0.28139) (0.32469) (0.11498)

15 9 (6, 0∗8) μ −0.02349 −0.03182 0.01122 0.02456 0.01182 −0.00987 −0.01014 −0.01019
(0.10021) (0.10069) (0.10004) (0.09865) (0.09987) (0.07808) (0.07648) (0.08076)

τ 0.91649 0.93492 1.16231 1.19627 1.26159 0.94403 0.97971 0.92831
(0.17697) (0.18138) (0.29485) (0.30358) (0.39803) (0.06312) (0.06369) (0.09285)

15 9 (0∗8, 6) μ −0.0417 −0.04097 0.01422 0.03831 −0.04610 −0.01403 0.01327 −0.02427
(0.08794) (0.08762) (0.08324) (0.08413) (0.10674) (0.06477) (0.11883) (0.07260)

τ 0.87960 0.88257 1.20588 1.23179 1.39418 0.93470 0.96879 0.91869
(0.24854) (0.24574) (0.40219) (0.43106) (0.44635) (0.02827) (0.03057) (0.11352)

20 8 (12, 0∗7) μ −0.05453 −0.06497 0.05116 0.06052 0.02713 −0.02128 −0.0293 −0.02702
(0.11377) (0.11512) (0.11153) (0.10776) (0.11551) (0.08210) (0.08369) (0.08331)

τ 0.94103 0.96412 1.17874 1.23007 1.25715 0.94938 1.00917 0.93924
(0.19070) (0.19582) (0.31006) (0.33379) (0.36667) (0.06224) (0.07037) (0.09113)

20 8 (0∗7, 12) μ −0.0786 −0.07599 0.03162 −0.05539 −0.01057 −0.01308 −0.04397 −0.07873
(0.10345) (0.10232) (0.08087) (0.084939) (0.15955) (0.08235) (0.08757) (0.08067)

τ 0.86010 0.86704 1.16926 1.42074 1.34669 0.89540 1.22736 0.88012
(0.29664) (0.29219) (0.21906) (0.17277) (0.14255) (0.17211) (0.13211) (0.12019)

20 10 (10, 0∗9) μ −0.03165 −0.04105 0.02744 −0.03179 0.02466 −0.01113 −0.01822 −0.01117
(0.09101) (0.09147) (0.09026) (0.08854) (0.09201) (0.07190) (0.07056) (0.07254)

τ 0.93059 0.95119 1.13859 1.17721 1.21326 0.94386 0.98613 0.93888
(0.15558) (0.16083) (0.23977) (0.25401) (0.30026) (0.06538) (0.06888) (0.08735)

20 10 (0∗9, 10) μ −0.04931 −0.04869 0.02028 0.06198 −0.06533 −0.02139 0.04248 −0.04007
(0.07729) (0.07711) (0.06844) (0.07679) (0.11234) (0.05279) (0.14937) (0.06912)

τ 0.88874 0.89066 1.18179 1.22831 1.22196 0.91891 0.98563 0.90789
(0.23398) (0.23191) (0.29338) (0.37161) (0.36695) (0.02117) (0.02864) (0.11941)

20 10 (1∗10) μ −0.04081 −0.04418 0.03830 0.04282 0.03930 −0.01771 0.01805 −0.03399
(0.08096) (0.08099) (0.07644) (0.07483) (0.08791) (0.05827) (0.06444) (0.06393)

τ 0.89969 0.90456 1.16013 1.18751 1.29279 0.93543 0.97170 0.93041
(0.19768) (0.19805) (0.28050) (0.30872) (0.49620) (0.04167) (0.04809) (0.09832)

25 10 (15, 0∗9) μ −0.04212 −0.05258 0.02548 −0.03529 0.02542 −0.01797 −0.02663 −0.01862
(0.08981) (0.09054) (0.08829) (0.08595) (0.09316) (0.06964) (0.06842) (0.07118)

τ 0.93854 0.96181 1.12926 1.17516 1.19248 0.94296 0.99483 0.94653
(0.14942) (0.15537) (0.22072) (0.23988) (0.26978) (0.06498) (0.07122) (0.08078)

25 10 (0∗9, 15) μ −0.07115 −0.07036 0.06270 −0.06457 −0.04932 −0.02884 −0.03143 −0.02547
(0.08357) (0.08308) (0.06388) (0.06504) (0.14583) (0.05362) (0.05397) (0.08360)

τ 0.87639 0.87856 1.15066 1.2899 1.13208 0.89028 1.09379 0.88767
(0.23625) (0.23500) (0.18486) (0.38867) (0.48823) (0.04485) (0.23322) (0.14363)

25 15 (10, 0∗14) μ −0.01784 −0.02530 0.02117 −0.02819 0.02724 −0.01473 −0.01925 −0.01319
(0.06222) (0.06258) (0.06196) (0.06183) (0.06383) (0.05401) (0.05398) (0.05078)

τ 0.95416 0.97189 1.10871 1.13612 1.13971 0.95846 0.98731 0.96010
(0.11119) (0.11543) (0.15823) (0.16670) (0.17125) (0.06392) (0.06590) (0.07404)

25 15 (0∗14, 10) μ −0.02150 −0.02167 0.01381 0.01972 −0.08664 −0.0126 −0.01317 −0.01207
(0.05156) (0.05156) (0.04997) (0.04974) (0.07342) (0.04206) (0.04158) (0.05918)

τ 0.92542 0.92526 1.13589 1.14265 1.09375 0.94405 0.95423 0.90838
(0.15098) (0.15085) (0.21222) (0.21799) (0.30884) (0.05454) (0.05683) (0.09837)
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1082 S. Singh et al.

Table 2. Average interval length and coverage probability (in parentheses) for μ and τ .

Average asymptotic interval length Average HPD interval length

MLE AMLE Prior 1 Prior 2

n m Scheme μ τ μ τ μ τ μ τ

15 6 (9, 0∗5) 1.38135 1.76097 1.42023 1.74599 1.67596 2.91635 1.29798 1.35903
(0.8906) (0.7905) (0.9222) (0.7997) (0.944) (0.944) (0.9425) (0.9285)

15 6 (0∗5, 9) 1.20592 2.07104 1.4577 2.142 1.122046 4.84457 0.89412 1.39173
(0.8186) (0.6973) (0.9285) (0.7389) (0.7945) (0.8745) (0.8795) (0.939)

15 9 (6, 0∗8) 1.17001 1.55059 1.19655 1.54147 1.36392 2.26529 1.137 1.27703
(0.9115) (0.8123) (0.9346) (0.8171) (0.954) (0.9485) (0.95) (0.935)

15 9 (0∗8, 6) 1.03473 1.77073 1.09152 1.77546 0.95916 2.86307 0.81868 1.29945
(0.8835) (0.785) (0.9288) (0.7908) (0.837) (0.899) (0.8765) (0.911)

20 8 (12, 0∗7) 1.23036 1.56941 1.25308 1.55126 1.41441 2.24901 1.1705 1.2678
(0.9126) (0.8252) (0.9307) (0.8326) (0.9425) (0.9375) (0.9465) (0.931)

20 8 (0∗7, 12) 1.09609 1.90973 1.24509 1.95121 1.10326 2.15583 0.88751 1.09639
(0.8524) (0.7557) (0.9376) (0.786) (0.903) (0.7375) (0.9345) (0.818)

20 10 (10, 0∗10) 1.11617 1.4545 1.13622 1.44085 1.26264 1.98369 1.0732 1.2024
(0.9155) (0.8311) (0.9342) (0.8365) (0.95) (0.947) (0.943) (0.92)

20 10 (0∗10, 10) 0.98281 1.723 1.04597 1.73291 0.97238 1.7868 0.92228 1.04615
(0.8841) (0.7915) (0.9311) (0.8047) (0.9021) (0.7865) (0.93412) (0.8155)

20 10 (1∗10) 1.01183 1.60016 1.05744 1.60343 1.0771 2.42263 0.86449 1.23971
(0.8969) (0.8003) (0.9316) (0.8094) (0.8985) (0.9265) (0.8945) (0.9085)

25 10 (15, 0∗9) 1.11928 1.42981 1.13464 1.41089 1.23256 1.83796 1.06628 1.18769
(0.9189) (0.8411) (0.9361) (0.8487) (0.945) (0.938) (0.9475) (0.922)

25 10 (0∗9, 15) 1.00945 1.77415 1.10633 1.80098 0.85931 1.39777 0.82279 0.94275
(0.8735) (0.7899) (0.8829) (0.8182) (0.8485) (0.6615) (0.8955) (0.76)

25 15 (10, 0∗14) 0.94129 1.25625 0.95334 1.24773 1.0168 1.52525 0.90939 1.07588
(0.9299) (0.8667) (0.9415) (0.8705) (0.9375) (0.949) (0.9425) (0.9235)

25 15 (0∗14, 10) 0.83371 1.44355 0.86084 1.44604 0.79683 1.14917 0.78257 0.86471
(0.9111) (0.841) (0.9355) (0.8452) (0.9025) (0.7465) (0.93578) (0.747)

6.2. Data analysis

In this section, we analyse a real data set to illustrate the implementation of proposed estimation
methods. For this purpose, we use the data set given in [20] which represents the number of
million revolutions before failure for 23 ball bearings. The corresponding observations are

17.88 28.92 33.00 41.52 42.12 45.60 48.40 51.84 51.96 54.12
55.56 67.80 68.64 68.64 68.88 84.12 93.12 98.64 105.12 105.84

127.92 128.04 173.40

We first make an inference whether a LN(μ, τ) distribution will fit the given data. For compar-
ison purposes, we have also taken into consideration fitting log-logistic and Weibull distributions
with both having, say, a shape parameter μ and a scale parameter τ . We used the method of max-
imum likelihood for estimating the unknown parameters of each of these models. The negative
log-likelihood criterion (NLC), Kolmogorov–Smirnov (K–S) statistic, chi-squared (χ2) statistic,
Akaike’s information criterion (AIC), and Bayesian information criterion (BIC) are employed to
judge the goodness of fit. We refer to Krishna and Malik [21] and Dey and Kundu [22] for a review
on these criteria. The observed and expected frequencies for different groups for χ2 statistic are
reported for all distributions in Table 3. We have compared different proposed criteria in Table 4.
Based on the reported values, we observe that lognormal distribution fits the data reasonably well.
So we analyse the given data set using this distribution.
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Table 3. The observed and expected frequencies.

Expected frequencies

Intervals Observed frequencies Lognormal Log-logistic Weibull

0–35 3 2.92 2.69 3.55
35–55 7 6.09 5.95 4.54
55–80 5 6.43 6.96 6.04
80–100 3 3.15 3.18 3.85
100- 5 4.41 4.22 5.02

Table 4. Goodness-of-fit tests for given distributions.

Model μ̂ τ̂ NLC AIC BIC K–S χ2

lognormal 4.15038 0.27215 113.1286 230.2571 232.5281 0.0897 0.54
log-logistic 4.15880 0.29881 113.3730 230.7460 233.0170 0.0943 0.92
Weibull 2.10184 0.01221 113.6920 231.3839 233.6549 0.1510 1.78

Table 5. Generated progressively censored samples.

Observations

Scheme x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10) x(11) x(12)

(11, 0∗11) 17.88 68.64 68.64 68.88 84.12 93.12 98.64 105.12 105.84 127.92 128.04 173.40
(0, 11, 0∗10) 17.88 28.92 68.64 68.88 84.12 93.12 98.64 105.12 105.84 127.92 128.04 173.40
(0∗2, 11, 0∗9) 17.88 28.92 33.00 68.88 84.12 93.12 98.64 105.12 105.84 127.92 128.04 173.40
(0∗11, 11) 17.88 28.92 33.00 41.52 42.12 45.60 48.40 51.84 51.96 54.12 55.56 67.80

Table 6. Estimates of μ and τ .

Bayes

Lindley

Scheme Parameter MLE AMLE MLE AMLE MCMC Prior 1

(11, 0∗11) μ 4.44525 4.41193 4.45131 4.45773 4.44829
τ 0.28984 0.34178 0.35184 0.42472 0.35838

(0, 11, 0∗10) μ 4.41371 4.40625 4.44058 4.46989 4.44453
τ 0.33856 0.34606 0.40493 0.43868 0.42478

(0∗2, 11, 0∗9) μ 4.39162 4.38686 4.42771 4.45773 4.42867
τ 0.37353 0.3774 0.45255 0.48194 0.45942

(0∗11, 11) μ 4.18420 4.18406 4.25525 4.34307 4.06632
τ 0.31769 0.31762 0.44753 0.49545 0.31213

We generate four different progressively type-II censored samples of size m = 12 from n = 23
observations using four different censoring schemes and data are listed in Table 5. In Table 6, we
tabulate all estimates of both unknown parameters μ and τ . MLEs are computed using the EM
algorithm.AMLEs are also presented in the table. Noninformative prior is taken into consideration
for producing the Bayes estimates against squared error loss. The method of Lindley is used to
compute two different Bayes estimates using MLEs and AMLEs, respectively. Noninformative
MCMC estimates are also obtained and presented in the table. In Table 7, the 95% approximate
confidence intervals using asymptotic distributions of MLEs and AMLEs are tabulated. The
corresponding HPD intervals of μ and τ are also given in Table 7.
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Table 7. Interval estimates for μ and τ .

Scheme Parameter Asymp. C. I. using MLE Asymp. C. I. using AMLE HPD C. I. using Prior 1

(11, 0∗11) μ (4.14285, 4.74766) (3.99604, 4.82782) (4.11469, 4.79374)
τ (0.06598, 0.5137) (0.10815, 0.57541) (0.13049, 0.71376)

(0, 11, 0∗10) μ (4.09968, 4.72774) (3.99235, 4.82016) (4.104, 4.79734)
τ (0.09613, 0.581) (0.10008, 0.59205) (0.16642, 0.80115)

(0∗2, 11, 0∗9) μ (4.06777, 4.71547) (3.96737, 4.80635) (4.05578, 4.76457)
τ (0.10592, 0.64115) (0.10279, 0.65201) (0.1572, 0.88241)

(0∗11, 11) μ (3.90683, 4.46157) (3.77884, 4.58928) (3.93598, 4.14932)
τ (0.03549, 0.59988) (0.00924, 0.626) (0.1858, 0.84407)

7. Optimal censoring

In previous sections, we considered point and interval estimations of unknown parameters μ and
τ of the LN(μ, τ) distribution when samples are obtained using progressive type-II censoring.
We derived different estimates using several known censoring schemes. However, in various
reliability and life testing studies, it is desirable for practical considerations to select the optimum
progressive censoring scheme from a class of possible schemes. That is, for a given n and m,
one needs to select Ri, i = 1, 2, . . . , m (with

∑m
i=1 Ri = n − m) which is optimal in the sense

that the selected scheme will provide maximum information about the unknown parameters. The
problem of comparing two different censoring schemes has received much interest among various
researchers, see for example, Ng et al.,[23] Kundu,[10] and Pradhan and Kundu.[8] We consider
several different criteria to compare two different censoring schemes. In particular, we will utilize
the following optimality criteria and one may refer to Ng et al. [23] for more discussions on these
criteria.

Criterion I: Minimizing the determinant of the variance–covariance matrix V(θ) of the MLEs.
Criterion II: Minimizing the trace of the variance–covariance matrix V(θ) of the MLEs.
Criteria III, IV, and V: Minimizing the variance of logarithm of the pth quantile when p = 0.5,

0.90, and 0.95, respectively.

Further, note that the MLE of logarithm of the p-th quantile of the LN(μ, τ) distribution is
given by

ln Tp = μ̂ + √
τ̂�−1(p),

with corresponding asymptotic variance

Var[μ̂ + √
τ̂�−1(p)] = V11(n, R) +

(
�−1(p)

2
√

τ̂

)2

V22(n, R) +
(

�−1(p)√
τ̂

)
V12(n, R).

Unfortunately, this information measure (minimizing the variance) depends on p. Gupta and
Kundu [11] and Pradhan and Kundu [8] proposed an information measure as follows:

IW =
∫ 1

0
(Var[μ̂ + √

τ̂�−1(p)])pW(p) dp,

where W(p) is a nonnegative function satisfying∫ 1

0
W(p) dp = 1.

This information measure represents the average asymptotic variance of the quantile estimators
over all quantile points and, hence is independent of p. Without loss of generality, one might
choose W(p) = 1, for 0 < p < 1. Hence, we have the following optimality criterion.
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Criterion VI: Minimizing IW .

As mentioned by Pradhan and Kundu,[8] although the total number of sampling schemes
are finite, they can be quite large. So far one does not have any efficient algorithm to search the
optimal schemes from all possible progressive censoring schemes. Since for given n and m, all the
censoring schemes (R1, R2, . . . , Rm) with R1 + R2 + · · · + Rm = n − m will belong to the convex
hull generated by the points (n − m, 0, 0, . . . , 0), . . . , (0, 0, . . . , n − m). Pradhan and Kundu [8]
suggested that a sub-optimal censoring scheme can be obtained by selecting the optimal censoring
scheme among these extreme points on the convex hull. The expected test time is also an important
factor in reliability studies because the time required to complete an experiment has direct effect
on the associated cost. Under progressive type-II censoring, the time required to complete the test
is the time to observe the mth failure X(m). For a given censoring scheme, the total expected test
time can be computed as

E(X(m)) = cm−1

m∑
i=1

ai,m

∫ 1

0
eμ+√

τ�−1(v)(1 − v)ri−1 dv.

In Table 8, we present the optimal censoring scheme for different n and m when μ = 0 and
τ = 1. In this table, Ei represents that n − m is at the ith position in the extreme points on convex
hull. For example, if n = 10 and m = 5, then the optimal plan (0, 5, 0, 0, 0) is denoted by E2. The
corresponding expected test time is also reported in Table 8. It can be observed that Criteria IV

Table 8. Optimal progressive type-II censoring plan.

(n, m) Optimality criterion Optimal plan E(X(m))

(15,6) I, II E2 3.92863
III E6 0.75380

IV, V E1 4.21752
VI E3 3.55590

(15,9) I,VI E4 4.74556
II E3 4.94981
III E9 1.24207

IV, V E1 5.24957
(20,6) I,VI E2 3.85302

II,IV, V E1 4.17873
III E4 2.89175

(20,8) I,VI E3 4.41981
II E2 4.68157
III E8 0.75937

IV, V E1 4.89950
(20,10) I E3 5.16293

II E2 5.33940
III E10 0.97673

IV, V E1 5.49033
VI E4 4.95334

(25,8) I E3 4.34496
II, VI E2 4.63246

III E5 3.56059
IV, V E1 4.87543

(25,10) I, VI E3 5.08116
II E2 5.28642
III E9 2.39079

IV, V E1 5.46461
(25,12) I, VI E4 5.51178

II E3 5.68445
III E12 5.21235

IV, V E1 5.96856
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1086 S. Singh et al.

Table 9. Optimal progressive censoring plan for real data.

Criterion

Scheme I II III IV V VI E(X(m))

1 (11, 0∗11) 0.000245 0.033505 0.021957 0.045085 0.057595 0.031918 173.40
(1.379592) (1.202209) (0.915289) (1.438372) (1.510999) (1.127201)

2 (0, 11, 0∗10) 0.000365 0.040463 0.024714 0.054492 0.069856 0.036299 173.40
(0.926027) (0.995477) (0.813182) (1.190065) (1.245791) (0.991156)

3 (0∗2, 11, 0∗9) 0.000498 0.047089 0.026913 0.062688 0.080757 0.040177 173.40
(0.678714) (0.855401) (0.746739) (1.034472) (1.077628) (0.895487)

4 (0∗11, 11) 0.000338 0.040280 0.020097 0.064849 0.087026 0.035978 67.80
(1) (1) (1) (1) (1) (1)

and V always give the same optimal plan E1; that is, when n − m items are removed at the time of
the first failure observed. The advantage of this type of censoring is that if the items put on a test
are very costly, the removed surviving items on early stage can be used for the other purposes.
However, the expected test time is maximum in this case, as expected. The Criterion III mostly
provides the optimal plan Em which is type-II censoring. For large n and small effective sample
size m, the optimal plan given by Criterion III slightly shifts to the left of the convex hull. For
example, when n = 25 and m = 12, the optimal plan under Criterion III is E12; but for n = 25
and m = 10, the plan becomes E9, and for n = 25 and m = 8 plan is E5. The expected test time
in this case is minimum but items on the test can not be saved on the early stage hence it may
increase the cost of test. Furthermore, we observe that the optimal plan given by Criterion VI
slightly shifts to the right of the convex hull with the increase in the effective sample size m. Also,
similar behaviour is observed in most of the cases for Criteria I and II. Finally, optimal plans
given by Criteria I, II and VI can be used to balance between the cost of expected test time and
cost of failure of items.

In Table 9, we report all the values of proposed criteria for progressive type-II censoring schemes
as listed in Table 5. Note that scheme 4 is the traditional type-II censoring. Thus, we also report
the gain in efficiency (in parentheses) when the other censoring schemes is used in place of type-II
censoring. From this table, it can be observed that scheme 1 is the optimal scheme for all proposed
criteria except criterion III (p = 0.50). Similarly, except criteria IV (p = 0.90) and V (p = 0.95),
type-II censoring is the optimal one when we compare schemes 2, 3 and 4. Scheme 2 can also be
used instead of type-II censoring as there is a small difference in gain of efficiency for criteria II
and VI.

8. Conclusions

In this paper we have considered estimation of unknown parameters μ and τ of a lognormal
distribution when the data are collected under a progressive type-II censoring scheme. We have
derived the MLEs and AMLEs of these unknown parameters. Bayes estimates are computed by
using Lindley’s method and importance sampling under squared error loss. The asymptotic con-
fidence intervals and HPD intervals are also obtained. We have also studied the optimal censoring
scheme under different criteria. The results for some small values of n and m are reported. Since
the optimal scheme is searched among the extreme points on a convex hull, it may not be the
global optimum. More work on establishing a searching algorithm is needed in the future. Finally,
further investigation into other lifetime distributions as well as designing a test plan in presence
of cost constraint are also interesting direction.
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Appendix 1

For the two parameter case (λ1, λ2), the Lindley’s approximation to the integral (9) suggest that

ĝB1 = g(λ̂1, λ̂2) + 1
2 [A + l30B12 + l03B21 + l21C12 + l12C21] + ρ1A12 + ρ2A21, (A1)

where

A =
2∑

i=1

2∑
j=1

wijσij , lij = ∂ i+jL(λ1, λ2)

∂λi
1∂λ

j
2

,

ρi = ∂ρ

∂λi
, wi = ∂g

∂λi
, wij = ∂2g

∂λi∂λj
,
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ρ = ln π(λ1, λ2), Aij = wiσii + wjσji,

Bij = (wiσii + wjσij)σii, Cij = 3wiσiiσij + wj(σiiσjj + 2σ 2
ij ).

Here L(·, ·) denotes the log-likelihood function, π(λ1, λ2) denotes the corresponding prior distribution and σij is the
(i, j)th element of the inverse of the Fisher information matrix. Note that the expressions in Equation (A1) are evaluated
at the MLE (λ̂1, λ̂2). For the case of our estimation problem with (λ1, λ2) = (μ, τ), the approximate Bayes estimates of
μ and τ are computed using the expression (A1). These estimates are given in Equations (11) and (12), respectively and
the corresponding expressions are evaluated as

ρ1 = b1(a1 − μ)

τ
, ρ2 = 1

2τ 2
(q2 + b1(μ − a1)

2) − 1

τ
(p2 + 1.5),

l30 = 1

τ 1.5

{
m∑

i=1

Ri (y
2
(i) − 1)h(y(i)) − 3

m∑
i=1

Riy(i)h
2(y(i)) + 2

m∑
i=1

Rih
3(y(i))

}
,

l03 = 1

8τ 3

{
−8m + 24

m∑
i=1

y2
(i) +

m∑
i=1

Ri(y
5
(i) − 10y3

(i) + 15y(i))h(y(i))

−
m∑

i=1

Ri(3y4
(i) − 9y2

(i))h
2(y(i)) + 2

m∑
i=1

Riy
3
(i)h

3(y(i))

}
,

l21 = 1

2τ 2

{
2m +

m∑
i=1

Ri(y
3
(i) − 3y(i))h(y(i)) −

m∑
i=1

Ri(3y2
(i) − 2)h2(y(i))

+2
m∑

i=1

Riy(i)h
3(y(i))

}
,

l12 = 1

4τ 5/2

{
8

m∑
i=1

y(i) +
m∑

i=1

Ri(y
4
(i) − 6y2

(i) + 3)h(y(i)) −
m∑

i=1

Ri(3y3
(i) − 5y(i))h

2(y(i))

+2
m∑

i=1

Riy
2
(i)h

3(y(i))

}
.

Appendix 2

Recall the samples (μi, τi), i = 1, 2, . . . , s, as generated in Section 5.2. In this appendix, we briefly describe the method
of Chen and Shao [19] for computing HPD intervals. Suppose that μ is the unknown parameter of interest, and π(μ|x),
�(μ|x) denote its posterior density and posterior distribution functions, respectively. If μ(p) denotes the pth quantile of
μ, then we have μ(p) = inf{μ : �(μ|x) ≥ p; 0 < p < 1}. It can be observed that for a given μ∗, a simulation consistent
estimator of �(μ∗|x) can be obtained by

�(μ∗|x) =
∑s

i=1 1μ≤μ∗ h(μi, τi)∑s
i=1 h(μi, τi)

,

where 1μ≤μ∗ is the indicator function. Let μ(i) be the ordered values of μi. Then the corresponding estimate is obtain as

�̂(μ∗|x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if μ∗ < μ(1),
i∑

j=1

wj if μ(i) ≤ μ∗ < μ(i+1),

1 if μ∗ ≥ μ(s),

where

wi = h(μ(i), τ(i))∑s
i=1 h(μ(i), τ(i))

, i = 1, 2, . . . , s.
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Now, μ(p) is estimated by

μ̂(p) =

⎧⎪⎪⎨
⎪⎪⎩

μ(1) if p = 0,

μ(i) if
i−1∑
j=1

wj < p ≤
i∑

j=1

wj .

To obtain a 100(1 − p)% confidence interval for μ, we consider the intervals of the form (μ̂(j/s), μ̂((j+[(1−p)s])/s)), i =
1, 2, . . . , s − [(1 − p)s] with [u] denoting the greatest integer less than or equal to u. The interval with the smallest width
is treated as the HPD interval. Similarly the HPD interval for the parameter τ can be constructed.
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