1,247 research outputs found

    An Ergonomics Investigation of the Application of Virtual Reality on Training for a Precision Task

    Get PDF
    Virtual reality is rapidly expanding its capabilities and accessibility to consumers. The application of virtual reality in training for precision tasks has been limited to specialized equipment such as a haptic glove or a haptic stylus, but not studied for handheld controllers in consumer-grade systems such as the HTC Vive. A straight-line precision steadiness task was adopted in virtual reality to emulate basic linear movements in industrial operations and disability rehabilitation. This study collected the total time and the error time for the straight-line task in both virtual reality and a physical control experiment for 48 participants. The task was performed at four different gap widths, 4mm, 5mm, 6mm, and 7mm, to see the effects of virtual reality at different levels of precision. Average error ratios were then calculated and analyzed for strong associations to various factors. The results indicated that a combination of Environment x Gap Width factors significantly affected average error ratios, with a p-value of 0.000. This human factors study also collected participants’ ratings of user experience dimensions, such as difficulty, comfort, strain, reliability, and effectiveness, for both physical and virtual environments in a questionnaire. The results indicate that the ratings for difficulty, reliability, and effectiveness were significantly different, with virtual reality rating consistently rating worse than the physical environment. An analysis of questionnaire responses indicates a significant association of overall environment preference (physical or virtual) with performance data, with a p-value of 0.027. In general, virtual reality yielded higher error among participants. As the difficulty of the task increased, the performance in virtual reality degraded significantly. Virtual reality has great potential for a variety of precision applications, but the technology in consumer-grade hardware must improve significantly to enable these applications. Virtual reality is difficult to implement without previous experience or specialized knowledge in programming, which makes the technology currently inaccessible for many people. Future work is needed to investigate a larger variety of precision tasks and movements to expand the body of knowledge of virtual reality applications for training purposes

    Does the Embodiment Influence the Success of Visuo-haptic Learning?

    Get PDF
    The purpose of this work is to demonstrate the influence of embodiment on the success of Visuo-haptic Learning, as it has not been yet investigated by current literature. With this aim, we conducted an experimental campaign to compare the users’ Sense of Embodiment (SoE) and learning success values obtained by experiencing the same simulated duty cycle within two different Visuo-haptic Learning environments. Interesting results have been found: the embodiment influenced the users’ completion time and mental workload, but it did not have particular incidence on the obtained learning level (intended as knowledge of the procedure). With this work, we aim to highlight the necessity of conducting wider and deeper studies about the influence of human factors and subjective perceptions on the success of Visuo-haptic Learning

    Investigating Embodied Interaction in Near-Field Perception-Action Re-Calibration on Performance in Immersive Virtual Environments

    Get PDF
    Immersive Virtual Environments (IVEs) are becoming more accessible and more widely utilized for training. Previous research has shown that the matching of visual and proprioceptive information is important for calibration. Many state-of-the art Virtual Reality (VR) systems, commonly known as Immersive Virtual Environments (IVE), are created for training users in tasks that require accurate manual dexterity. Unfortunately, these systems can suffer from technical limitations that may force de-coupling of visual and proprioceptive information due to interference, latency, and tracking error. It has also been suggested that closed-loop feedback of travel and locomotion in an IVE can overcome compression of visually perceived depth in medium field distances in the virtual world [33, 47]. Very few experiments have examined the carryover effects of multi-sensory feedback in IVEs during manual dexterous 3D user interaction in overcoming distortions in near-field or interaction space depth perception, and the relative importance of visual and proprioceptive information in calibrating users\u27 distance judgments. In the first part of this work, we examined the recalibration of movements when the visually reached distance is scaled differently than the physically reached distance. We present an empirical evaluation of how visually distorted movements affects users\u27 reach to near field targets in an IVE. In a between subjects design, participants provided manual reaching distance estimates during three sessions; a baseline measure without feedback (open-loop distance estimation), a calibration session with visual and proprioceptive feedback (closed-loop distance estimation), and a post-interaction session without feedback (open-loop distance estimation). Subjects were randomly assigned to one of three visual feedbacks in the closed-loop condition during which they reached to target while holding a tracked stylus: i) Minus condition (-20% gain condition) in which the visual stylus appeared at 80\% of the distance of the physical stylus, ii) Neutral condition (0% or no gain condition) in which the visual stylus was co-located with the physical stylus, and iii) Plus condition (+20% gain condition) in which the visual stylus appeared at 120% of the distance of the physical stylus. In all the conditions, there is evidence of visuo-motor calibration in that users\u27 accuracy in physically reaching to the target locations improved over trials. Scaled visual feedback was shown to calibrate distance judgments within an IVE, with estimates being farthest in the post-interaction session after calibrating to visual information appearing nearer (Minus condition), and nearest after calibrating to visual information appearing further (Plus condition). The same pattern was observed during closed-loop physical reach responses, participants generally tended to physically reach farther in Minus condition and closer in Plus condition to the perceived location of the targets, as compared to Neutral condition in which participants\u27 physical reach was more accurate to the perceived location of the target. We then characterized the properties of human reach motion in the presence or absence of visuo-haptic feedback in real and IVEs within a participant\u27s maximum arm reach. Our goal is to understand how physical reaching actions to the perceived location of targets in the presence or absence of visuo-haptic feedback are different between real and virtual viewing conditions. Typically, participants reach to the perceived location of objects in the 3D environment to perform selection and manipulation actions during 3D interaction in applications such as virtual assembly or rehabilitation. In these tasks, participants typically have distorted perceptual information in the IVE as compared to the real world, in part due to technological limitations such as minimal visual field of view, resolution, latency and jitter. In an empirical evaluation, we asked the following questions; i) how do the perceptual differences between virtual and real world affect our ability to accurately reach to the locations of 3D objects, and ii) how do the motor responses of participants differ between the presence or absence of visual and haptic feedback? We examined factors such as velocity and distance of physical reaching behavior between the real world and IVE, both in the presence or absence of visuo-haptic information. The results suggest that physical reach responses vary systematically between real and virtual environments especially in situations involving presence or absence of visuo-haptic feedback. The implications of our study provide a methodological framework for the analysis of reaching motions for selection and manipulation with novel 3D interaction metaphors and to successfully characterize visuo-haptic versus non-visuo-haptic physical reaches in virtual and real world situations. While research has demonstrated that self-avatars can enhance ones\u27 sense of presence and improve distance perception, the effects of self-avatar fidelity on near field distance estimations has yet to be investigated. Thus, we investigated the effect of visual fidelity of the self-avatar in enhancing the user\u27s depth judgments, reach boundary perception and properties of physical reach motion. Previous research has demonstrated that self-avatar representation of the user enhances the sense of presence [37] and even a static notion of an avatar can improve distance estimation in far distances [59, 48]. In this study, performance with a virtual avatar was also compared to real-world performance. Three levels of fidelity were tested; 1) an immersive self-avatar with realistic limbs, 2) a low-fidelity self-avatar showing only joint locations, and 3) end-effector only. There were four primary hypotheses; First, we hypothesize that just the existence of self-avatar or end-effector position would calibrate users\u27 interaction space depth perception in an IVE. Therefore, participants\u27 distance judgments would be improved after the calibration phase regardless of self-avatars\u27 visual fidelity. Second, the magnitude of the changes from pre-test to post-test would be significantly different based on the visual details of the self-avatar presented to the participants (self-avatar vs low-fidelity self-avatar and end-effector). Third, we predict distance estimation accuracy would be the highest in immersive self-avatar condition and the lowest in end-effector condition. Forth, we predict that the properties of physical reach responses vary systematically between different visual fidelity conditions. The results suggest that reach estimations become more accurate as the visual fidelity of the avatar increases, with accuracy for high fidelity avatars approaching real-world performance as compared to low-fidelity and end-effector conditions. There was also an effect of the phase where the reach estimate became more accurate after receiving feedback in calibration phase. Overall, in all conditions reach estimations became more accurate after receiving feedback during a calibration phase. Lastly, we examined factors such as path length, time to complete the task, average velocity and acceleration of physical reach motion and compared all the IVEs conditions with real-world. The results suggest that physical reach responses vary systematically between the VR viewing conditions and real-world

    A Virtual Reality Application of the Rubber Hand Illusion Induced by Ultrasonic Mid-Air Haptic Stimulation

    Get PDF
    Ultrasonic mid-air haptic technologies, which provide haptic feedback through airwaves produced using ultrasound, could be employed to investigate the sense of body ownership and immersion in virtual reality (VR) by inducing the virtual hand illusion (VHI). Ultrasonic mid-air haptic perception has solely been investigated for glabrous (hairless) skin, which has higher tactile sensitivity than hairy skin. In contrast, the VHI paradigm typically targets hairy skin without comparisons to glabrous skin. The aim of this article was to investigate illusory body ownership, the applicability of ultrasonic mid-air haptics, and perceived immersion in VR using the VHI. Fifty participants viewed a virtual hand being stroked by a feather synchronously and asynchronously with the ultrasonic stimulation applied to the glabrous skin on the palmar surface and the hairy skin on the dorsal surface of their hands. Questionnaire responses revealed that synchronous stimulation induced a stronger VHI than asynchronous stimulation. In synchronous conditions, the VHI was stronger for palmar stimulation than dorsal stimulation. The ultrasonic stimulation was also perceived as more intense on the palmar surface compared to the dorsal surface. Perceived immersion was not related to illusory body ownership per se but was enhanced by the provision of synchronous stimulation

    How to Build an Embodiment Lab: Achieving Body Representation Illusions in Virtual Reality

    Get PDF
    Advances in computer graphics algorithms and virtual reality (VR) systems, together with the reduction in cost of associated equipment, have led scientists to consider VR as a useful tool for conducting experimental studies in fields such as neuroscience and experimental psychology. In particular virtual body ownership, where the feeling of ownership over a virtual body is elicited in the participant, has become a useful tool in the study of body representation, in cognitive neuroscience and psychology, concerned with how the brain represents the body. Although VR has been shown to be a useful tool for exploring body ownership illusions, integrating the various technologies necessary for such a system can be daunting. In this paper we discuss the technical infrastructure necessary to achieve virtual embodiment. We describe a basic VR system and how it may be used for this purpose, and then extend this system with the introduction of real-time motion capture, a simple haptics system and the integration of physiological and brain electrical activity recordings

    Affordances and Safe Design of Assistance Wearable Virtual Environment of Gesture

    Get PDF
    Safety and reliability are the main issues for designing assistance wearable virtual environment of technical gesture in aerospace, or health application domains. That needs the integration in the same isomorphic engineering framework of human requirements, systems requirements and the rationale of their relation to the natural and artifactual environment.To explore coupling integration and design functional organization of support technical gesture systems, firstly ecological psychologyprovides usa heuristicconcept: the affordance. On the other hand mathematical theory of integrative physiology provides us scientific concepts: the stabilizing auto-association principle and functional interaction.After demonstrating the epistemological consistence of these concepts, we define an isomorphic framework to describe and model human systems integration dedicated to human in-the-loop system engineering.We present an experimental approach of safe design of assistance wearable virtual environment of gesture based in laboratory and parabolic flights. On the results, we discuss the relevance of our conceptual approach and the applications to future assistance of gesture wearable systems engineering
    • …
    corecore