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ABSTRACT 

An Ergonomics Investigation of the Application of Virtual Reality on Training 

for a Precision Task 

Delaney M. Bales 

 

 Virtual reality is rapidly expanding its capabilities and accessibility to consumers. 

The application of virtual reality in training for precision tasks has been limited to 

specialized equipment such as a haptic glove or a haptic stylus, but not studied for 

handheld controllers in consumer-grade systems such as the HTC Vive. A straight-line 

precision steadiness task was adopted in virtual reality to emulate basic linear movements 

in industrial operations and disability rehabilitation. This study collected the total time and 

the error time for the straight-line task in both virtual reality and a physical control 

experiment for 48 participants. The task was performed at four different gap widths, 4mm, 

5mm, 6mm, and 7mm, to see the effects of virtual reality at different levels of precision. 

Average error ratios were then calculated and analyzed for strong associations to various 

factors. The results indicated that a combination of Environment x Gap Width factors 

significantly affected average error ratios, with a p-value of 0.000. 

 This human factors study also collected participants’ ratings of user experience 

dimensions, such as difficulty, comfort, strain, reliability, and effectiveness, for both 

physical and virtual environments in a questionnaire. The results indicate that the ratings 

for difficulty, reliability, and effectiveness were significantly different, with virtual reality 

rating consistently rating worse than the physical environment. An analysis of 

questionnaire responses indicates a significant association of overall environment 

preference (physical or virtual) with performance data, with a p-value of 0.027. 
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 In general, virtual reality yielded higher error among participants. As the difficulty 

of the task increased, the performance in virtual reality degraded significantly. Virtual 

reality has great potential for a variety of precision applications, but the technology in 

consumer-grade hardware must improve significantly to enable these applications. Virtual 

reality is difficult to implement without previous experience or specialized knowledge in 

programming, which makes the technology currently inaccessible for many people. Future 

work is needed to investigate a larger variety of precision tasks and movements to expand 

the body of knowledge of virtual reality applications for training purposes. 
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1. Introduction 

Virtual reality (VR) is a rapidly expanding technology that can be used to simulate 

almost any environment. Current applications include gaming, entertainment, professional 

training, engineering development, and physical therapy [2]. The believability of a virtual 

environment is called immersion. To create a sense of immersion in VR, multisensory 

stimuli are needed. 

VR has long relied on the senses of sight, hearing, and touch to create convincing 

experiences. Head-mounted displays (HMDs) provide the visual and sometimes the audial 

information needed to create a simulated environment. The sense of touch, called haptics, 

is a critical factor of how people physically perceive and feel the world around them [22]. 

Haptics includes both tactile touch, stimulated through the skin, and proprioception, the 

sense of one’s own bodily positions and motions. Haptic feedback can be difficult to 

include in a virtual experience and is currently in the early development stage.  

The current haptic solution in most consumer-grade VR systems is a hand-held 

controller. These controllers are usually shaped like a remote control and have 

ergonomically designed buttons. Active haptic feedback is usually in the form of vibrations 

from a motor inside the controller. Most games and experiences designed for VR utilize 

full arm motions while holding the controller and allow for high error tolerances. The haptic 

feedback component of VR is low resolution, simplified, and concentrated at the hands 

[9]. 

Human perception of proprioception in the arms during VR experiences is still a 

young researched field. As a result, the virtual reality experience may lose its sense of 

realism or create confusion for its users. VR can be used to train workers, such as machine 

operators in industrial tasks, while reducing accident risks and eliminating material waste. 

For some VR simulations, such as surgical procedures, an accurate and realistic 
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simulation is crucial to producing practical results. So far, VR is mainly equipped for arm 

movement that requires low tolerance [9]. Research needs to be conducted to study 

detailed tolerances with proprioceptive tasks in virtual reality. 

Cognitive ergonomics is a field of human factors research that includes the study 

of human perception of and interaction with their environment [13]. In the current state of 

VR, people are expected to recognize and respond to the foreign environment. As VR 

becomes more immersive, people’s perceptions and interactions in a simulated world may 

more closely resemble their real-life responses. The development of VR technology relies 

on human factors engineering and ergonomics research to achieve a fully immersive 

experience. 

Right now, one of the big deficiencies in VR is the lack of information on performing 

precision tasks with hand-held controllers [12]. In terms of precision tolerance, a user’s 

expected performance in virtual reality is unknown compared to their performance in 

physical reality. In addition, there is little empirical information about users’ perceptions of 

a precision tasks in the current VR capability setting. A study of these issues could provide 

valuable information about needed improvements in VR technology. 

This study investigates the effects of virtual reality on training accuracy and human 

perception for a precision task. A task requiring participants to trace a straight line within 

a specified gap tolerance was developed in virtual reality. The experiment was conducted 

to measure the performance of hand steadiness while holding a VR controller. In addition, 

user perceptions of the two environments were also documented and analyzed to see if 

VR is a suitable substitute environment for training, and, if so, what factors contributed to 

this perception. 

The purpose of this study is to investigate whether virtual reality can be used to 

replace physical tasks and emulate training for industrial operations or disability 
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rehabilitation, such as tracing a straight line. The results of this research can assist future 

VR developers in improving virtual reality programs for factors related to precision, 

training, and perception. The results also lend itself to further work in the area of precision 

hand movement tasks in virtual reality. 
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2. Literature Review 

The purpose of this literature review is to search what information and research 

has already been conducted on haptic systems and ergonomics in virtual reality. The term 

visuo-haptic refers to systems that combine visual and touch sensory engagement. It is 

evident that there is still a lot to be learned in the field of visuo-haptic immersion with virtual 

reality. Research in the field of haptics and ergonomics begins with background 

information on human body interactions with haptic feedback and how tactile and 

proprioceptive senses have been tested in previous studies. This review discusses what 

is already known in the field of visuo-haptic mixed realities and what future research could 

benefit the scientific community. 

 

2.1 Virtual Reality 

The first virtual reality head-mounted display (HMD) was created in 1960 [8]. 

However, the development of VR was slow until the late 1980’s and 1990’s. For the last 

20 years, virtual reality has progressed tremendously. Lots of research has been 

conducted on virtual reality technology on various topics such as visual quality, interactive 

controllers, and psychological effects. One topic that has been researched heavily within 

human-computer interaction is haptics. However, haptics in conjunction with virtual reality 

specifically is still a new concept and field of study. 

 

2.2 Human Physiology for Haptics 

Human touch is categorized two different ways: tactile and proprioceptive. Tactile 

touch is stimulated through the skin and characterizes sensations such as heat, pressure, 

vibration, slipping, and pain [14]. Proprioception is the awareness of one’s own body 

placement or limb position. An example of proprioception is when someone is aware of 
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where their arms are reaching in the dark or while their eyes are closed. Proprioceptive 

touch also provides information on body forces and motion through muscles, tendons, and 

joints [14]. Haptic feedback affects both tactile and proprioceptive touch. 

The human body has two types of skin: glabrous (non-hairy) skin found on the 

palm of the hands and hairy skin found on the rest of the body. Certain parts of the body, 

such as the palm of the hands, are more sensitive and perceptive than other parts of the 

body, such as the outer thigh, due to variances in thickness, vascularity (blood vessels), 

density, electrical conductivity, and mechanical properties of the skin [16]. A 1968 study 

shows that women are more sensitive to pressure than men and both the left and right 

sides of the body are equally sensitive to pressure [24]. 

Testing tactile sensitivity can be difficult due to the various factors regarding 

physical limitations and differences, and tactile location, spacing, and strength. Since 

some parts of the body are more sensitive than others, and due to variability from person 

to person, the required or even recommended amount of spatial separation between two 

simultaneous points of contact can vary quite a lot to obtain an accurate perception of 

reality [16]. However, it has been found that spatial separation is more distinctly perceived 

“if they are oriented along the transverse rather than the longitudinal axis of the body,” 

which is visualized below in Figure 1 [16]. 
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Figure 1. Anatomical human planes of motion (left), and axes of rotation (right) [18]. 

 

Human skin has physical limitations associated with tactile perception. According 

to Myles and Binseel, adaptation and masking are two of these physical limitations. 

Adaptation is when “a stimulus is presented for a lengthy amount of time” and results in 

reduced perception [16]. The habituation effect, as MacLean calls it, could heighten a 

person’s threshold for subsequent trials of tactile stimulation [14]. Masking is when “the 

perception of a target stimulus is changed by a non-target stimulus that overlaps in time 

and/or space, and masking can interfere with one’s ability to localize the target stimulus” 

[15]. Essentially, masking is when one tactile stimulus overrides another tactile stimulus 

and reduces the perception. MacLean also mentions this masking effect when discussing 

the spatial resolution of tactile receptors for accurate human perception: “if there is a high 

density of receptors, the resulting overlap and ‘crosstalk’ reduce effective resolution” [14]. 

A way to reduce the masking effect is to allow time and space between stimuli, such as 

reducing the spatial resolution or lowering the frequency of tactile signals. 

A commonly used method of tactile feedback is vibration. Vibration is better 

detected on hairy, bony skin than on soft, fleshy areas [15]. Three separate research 

studies from 1937, 1996, and 2003 all found that elderly people have a higher vibration 
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threshold in certain areas of the body [6, 11, 23]. The 1937 study by Laidlaw and Hamilton 

also found that overweight people generally had a higher vibration threshold. 

 

2.3 Haptic Hardware 

To target the two types of haptic feedback, tactile and proprioceptive, there are two 

types of haptic devices. Force feedback devices target proprioception by “providing forces 

that react to our movements in space” [14]. These types of devices are useful for 

simulating a physical force response virtually, such as dialing a knob that gets gradually 

more difficult to turn. Tactile displays are designed to provide local feedback to the skin, 

such as vibration, heat, or pressure. MacLean lists “piezoelectric, voice coil, solenoid, or 

eccentric motor actuation” as the most popular devices for tactile displays due to their 

“efficiency, small size, and low power requirements.” Hatzfeld and Kern describe a variety 

of haptic interaction system types, such as assistive systems, haptic interfaces, 

manipulators, teleoperators, and comanipulators [7].  

There are several examples of existing haptic systems. The ALEx arm exoskeleton 

is “an upper limb mechanically compliant exoskeleton with low encumbrances, and low 

friction of the actuation system” which has six degrees of freedom [20]. The ALEx 

exoskeleton system, which is an arm and shoulder haptic feedback exoskeleton that is 

paired with a head-mounted virtual reality (VR) display, is shown below in Figure 2. 
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Figure 2. ALEx exoskeleton setup (left), and the virtual workspace of the system in grey 

with the coordinate system located on the subject’s shoulder (right) [20]. 
 

In 1989, a haptic display system named SPIDAR (“SPace Interface Device for 

Artificial Reality”) was developed [21]. This string-based design is “composed of a cubic 

frame that encloses a working space,” in which “the main components of the system are 

four sets of a DC motor, a pulley, an encoder, and a string” [21]. Encoders are used to 

track position or rotation. The haptic display couples with a virtual environment to provide 

force feedback when colliding with an object in the virtual world. The SPIDAR system is 

illustrated in Figure 3 below. 

 
Figure 3. SPIDAR system [21]. 

 

Researchers developed the HIRO III haptic simulator, a five-fingered haptic 

interface robot that connects to a user’s five fingertips [5]. This system was developed to 



 9 

avoid the usage of large and clunky exoskeletons and to allow more degrees of freedom 

than an exoskeleton. Akbar and Jeon call this system “a robotic arm with five fingers [that] 

provides independent forces to each finger of the user” [1]. The HIRO III design, shown in 

Figure 4, was tested to show “high-precision force presentation.” 

 

 
Figure 4. HIRO III haptic simulator [5]. 

 

The PHANToM haptic device (currently known as the Geomagic Touch) is a stylus-

based design [4]. According to Eck, “the haptic stylus is often augmented with some 

context-dependent tool like a drill for dental surgery training, a brush for virtual painting, 

or tools for rapid prototyping” [4]. This device consists of two gimbal joints that allow the 

stylus to be moved around like a pen or brush. The PHANToM stylus is useful for many 

applications; however, one downfall is that it is difficult to calibrate. 
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Figure 5. Geomagic Touch (PHANToM) haptic stylus device being used in combination 

with visual simulation [18]. 
 

While there are many options for haptic devices, there are several common 

limitations. Force feedback devices can suffer from “subtle instability” such as jittering or 

excess signal [14]. Simulated forces can feel weak or compromised, or respond too slowly, 

which takes away from the realistic simulation. Physical interactions may be oversimplified 

or inappropriate for the virtual application, such as having incorrect geometry, size, or 

degrees of freedom [14]. Differences between physical and virtual haptics can detract from 

the user experience and authenticity of sensitivity and perception. For owners of haptic 

devices, equipment can take up a lot of power disproportional to the intended environment 

and usage, which can be cumbersome and expensive to maintain. 

 

2.4 How to Test Haptics: Previous Procedures 

A 1950 paper titled Computing Machinery and Intelligence, by Alan Turing, 

questions the ability of machines to exhibit artificial intelligence that is indistinguishable 

from that of complex human thought. The “haptic Turing test” is one in which the virtually 

rendered object feels the same as the real object [14]. Researchers have been trying to 
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develop and improve haptic tests and interfaces for more than 80 years. However, only in 

the last couple decades has the marriage of visual simulation and haptic feedback been 

studied. Due to the subjective and abstract nature of touch perception, measurements of 

haptic feedback have been difficult to quantify and collect. A variety of qualitative and 

quantitative methods have been utilized in the past to measure haptic feedback. 

MacLean mentions the “just noticeable difference (JND)” percentage, which is “a 

common measure of both tactile and proprioceptive sensory resolution” [14]. The 

exponential resolution curve models the differences in human perception at low versus 

high torque levels, which makes distinguishing between force levels difficult. The JND 

measurement attempts to capture small changes in perception but does not answer the 

question of “whether we discriminate torque or force directly or if we instead sense 

compliance or something else” [14]. Nonetheless, the JND measurement helps 

characterize discrimination between torque and displacement. 

While testing the ALEx exoskeleton system, researchers assessed the 

physiological effects both quantitatively and qualitatively. The ALEx system was 

developed to simulate human interaction with an aggressive virtual avatar in a dark 

alleyway setting [20]. The researchers monitored the subjects’ heart rate, electrodermal 

activity, respiration rate, and oxygen saturation for a correlation with heightened sense of 

danger. Qualitative measurements were taken through a 17-question questionnaire that 

targeted control, presence, and embodiment [20]. These questions asked about the user’s 

perception of congruence and persuasiveness—the believability—of the virtual 

environment compared to a real one. The questionnaire also asked the user if they felt a 

sensation of danger, oppression, or a need to move their arm during the simulation. The 

study had two randomized test groups, one with haptics and one without. The 

questionnaire responses showed several significant differences between the haptic and 
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non-haptic tests, however most responses were similar and showed no significant 

difference. 

Another group of researchers compared the effectiveness of a lightweight 

wearable exoskeleton with head-mounted display (HMD) to a table-top haptic device with 

computer monitor display for virtual immersion and sense of presence [10]. In this study, 

eighteen voluntary test subjects were randomly asked to try one of the two systems and 

provide their subjective feedback regarding control factors, sensory factors, distraction 

factors, and realism factors [10]. Most of the data analysis was based on subjective 

qualitative feedback, and only the time it took to perform the task was recorded 

quantitatively. The two systems are shown below in Figure 6. 

 

 
Figure 6. Lightweight wearable haptic exoskeleton paired with HMD (left), and table-top 

haptic interface paired with computer monitor virtual environment (right) [10]. 
 

2.5 Visuo-Haptic Research Studies 

Several studies in recent decades have conducted different types of haptic 

feedback tests in conjunction with visual simulation or virtual reality. The previous tests 

collect and analyze subjective qualitative data (collected through questionnaires) and 

objective quantitative data (such as physiological measurements) to characterize haptic 

perception. In these examples, statistical analysis was performed on all test results to 
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attempt characterization and modeling of haptic feedback effectiveness when combined 

with visual simulation. There are various haptic hardware systems that have been 

developed for research and consumer use, but the existing options are either 

underdeveloped or inaccessible, and the variety of systems types is still very broad.  Any 

sign of a preferable or superior haptic test system is still to be determined. 

The results of several visuo-haptic research studies point to the conclusion that 

the quality of visuals in a virtual environment has a greater influence on human perception 

than the quality of haptic feedback [12, 17]. The first study involves stroke patients 

performing a task in both physical and virtual environments for physical therapy [12]. The 

second study studied how people’s perception of softness changed just by projecting 

surface deformations [17]. Both studies found that the visual component of the test was 

more effective at tricking the brain’s perception than the haptics. Another study concluded 

that a head-mounted display with a wearable exoskeleton was more effective than a table-

top haptic device with a computer monitor for virtual immersion [10]. This validity of this 

study is questionable due to its lack of statistical analysis, omission of its data 

questionnaire, and poor comparison of “apples to oranges” systems that are too different 

to be compared. 

A 1997 study on “Moving Objects in Space: Exploiting Proprioception in Virtual-

Environment Interaction” discusses the issues with interactivity in virtual worlds. The 

authors attribute the main issues with manipulation and handling in VEs to a lack of haptic 

feedback limited input information, and limited precision. They also attribute precise 

manipulation difficulties to the absence of a physical work surface for the person to steady 

their hand against. Haptic feedback is essential to helping users improve their interactivity 

with virtual environments [15]. 
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Another study compares the effectiveness of a visuo-haptic virtual environment to 

a physical environment on the quality of grasping in stroke patients [12]. The twelve 

subjects had to grasp three differently shaped objects in both physical and virtual 

environments. The three test methods for grasping the objects was physical environment 

without a haptic glove, physical environment with a haptic glove, and virtual environment 

with a haptic glove and HMD. The virtual environment attempted to replicate the physical 

environment as closely as possible in position, shape, and size. The study found that the 

subjects responded better to the physical environment. However, in the virtual 

environment, it was discovered that the quality of the visual graphics was more relevant 

to the success of the individuals grasping the object than the haptic feedback from the 

glove [12]. This research suggests that the quality and accuracy of the visual component 

of a virtual environment should be well-developed, whereas the haptic feedback 

component can be less developed and still effective. 

In the ALEx exoskeleton study in which a person interacts with an aggressive 

virtual avatar, the results of a haptic group were compared to that of a non-haptic group 

for each of the 17 questionnaire questions. The results of the two groups were similar for 

most questions regarding presence and embodiment, except for several significant 

differences. One significant difference between the two groups was that the haptic group 

was more likely to feel the sensation that the avatar opponent could have grabbed their 

arm [20]. The haptic group was more likely to passively move their arm at the beginning 

and end of the experiment. Another result is that the haptic group felt more congruence 

between their different sense perceptions, which suggests that mixed visuo-haptic 

systems are more immersive than strictly visual environments [20]. 

The 2011 study that was conducted on the usability of a wearable versus a table-

top visuo-haptic device claims that the wearable device was preferable [10]. Data was 
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collected qualitatively via a subjective questionnaire and quantitatively via measurement 

of the amount of time it took each subject to complete a task. The questionnaire results 

and time data showed that the wearable exoskeleton with HMD was preferable to the 

table-top haptic simulator and computer screen. However, little to no statistical analysis 

for significance was performed and the questionnaire questions were not disclosed, so the 

results and conclusions bring up several questions. To verify and validate the results, 

statistical analysis and evaluation of the unbiased nature of the questionnaire should be 

performed.  

A system exists that uses visual projections to manipulate a person’s perception 

of softness without haptic feedback. This system, called SoftAR, simulates different 

objects by projecting surface deformations onto a blank soft surface [17]. A user can 

perceive a different material softness from the actual softness of the interface through the 

surface deformation effect (SDE), which is a form of augmented reality where spatial 

projections are applied to a soft surface. This research indicates that while the physical 

surface has not changed, a person’s perception of softness can be manipulated visually 

through surface deformation projections. 

Only a few research studies paired visual and haptic feedback and analyzed the 

effectiveness of their combination on user immersion and perception. Of the studies that 

did not, most of them suggest pursuing further research that combines visual and haptic 

interfaces [1, 4, 10]. 

 

2.6 Background Summary 

Research on the combined effect of visual simulation and haptic feedback, dubbed 

visuo-haptics mixed realities, has been grazed by several studies over recent decades. A 

review of the literature reveals several previously used methods for testing subjective 
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haptic feedback as well as existing results and conclusions related to visuo-haptic 

interfaces. Some studies conclude that the visual component of an immersive virtual 

reality environment is more effective at establishing authenticity than haptic feedback. 

Other studies attempt to quantify and qualify haptic feedback perception. The recurring 

suggestion for future work in the field of visuo-haptics is a strong sign that research in this 

area is needed and valuable to the scientific community. 

Precision work in virtual reality could be applied to physical rehabilitation for 

disabled persons, such as stroke patients. Current virtual reality studies for precise haptic 

applications involve the use of a haptic glove or specialty equipment, rather than a 

handheld controller [12]. Handheld VR controllers could be used to emulate experiences 

such as training for industrial tasks. The lack of research on precision tasks in virtual reality 

applications indicates a void in the body of knowledge. Therefore, the objective of this 

human factors research is to investigate the application of virtual reality on training for a 

precision task using handheld controllers. 
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3. Design 

3.1 Overview  

Current virtual reality systems are not designed for detailed, fine-tuned tasks. 

Current VR applications are usually games that involve full body movement or full arm 

interactions, such as throwing a stick, shooting zombies, or picking up objects on a desk. 

Rarely do these tasks require extreme precision. To investigate this void, a straight-line 

accuracy test was adapted for VR, using the HTC Vive handheld controllers. The straight-

line test was created in both a physical (real-life) environment and a virtual environment 

to compare participants’ results between the two. 

The physical environment was the “reality” experiment and the control consisting 

of a real room with physical equipment. The participants performed an ergonomics test 

using equipment from a university ergonomics laboratory. The virtual environment was a 

replica of the room and equipment in an interactive virtual reality setup. In the virtual 

environment, the participants wore a VR headset and performed the same task using 

handheld controllers. 

Participants were screened for those who have little to no previous experience with 

virtual reality and are right-hand dominant. A total of 24 males and 24 females were 

selected to participate in the experiment. During the experiment, the participant sat in a 

chair at a desk. The experimenter sat on the other side of the desk, with a computer, and 

gives instructions. Each participant completed the precision task in both environments in 

a randomly assigned order and then completed a questionnaire. 

 

3.2 Physical Environment 

The purpose of the physical environment was to test how participants performed 

in a real-life setting. This was the control experiment.  
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The straight-line test in the physical environment utilized the Lafayette Instruments 

Groove Type Steadiness Tester. This straight-line steadiness tester has two parallel, 

adjustable, and 25cm long metal plates that are mounted on top of a mirrored glass 

surface, which is secured to the board. The gap width between the two plates was set to 

either 4mm, 5mm, 6mm, or 7mm. The participant used an electronic test lead to draw a 

line on the glass from left to right inside the gap between the two plates, without touching 

the metal. If the test lead contacted the metal, an electric circuit was completed and a 

clock counter kept track of how long the participant was in contact with the metal. This 

was recorded as the “error time,” in milliseconds. The total time it took a participant to start 

and stop drawing the line was also recorded. An error ratio, equal to the error time over 

the total time, was calculated and averaged across three samples for each participant. 

The error ratio was a value between 0.0 and 0.1. 

 

 
Figure 7. Physical test setup. 
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The straight-line tester was mounted on a vertical board in front of the participant. 

It was positioned in the same place for every participant. The stylus was an electronic test 

lead that was embedded inside a foam tube of 1.125in diameter. The participant was 

instructed to hold the stylus like they would a remote control, with their fingers curled 

around the bottom of the foam grip and their thumb on top. They were instructed to raise 

their arm comfortably to touch the board with the tip of their stylus. 

In the physical environment, the height, length, and depth of the target area was 

controlled by the equipment. Depth was controlled by the back of the straight-line test 

board. Length was controlled to 25cm. Participants concentrated on staying within the 

height of the gap width and not touching the metal guides. They were instructed to keep 

a pace of three seconds to trace the full 25cm line. The experimenter recorded the actual 

times and had participants redo the task if their pace was too fast or too slow. 

 

 
Figure 8. Participant performing test in the physical environment. 
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Figure 9. Close-up of participant tracing a line in the physical environment. 

 

3.3 Virtual Environment 

The purpose of the virtual environment was to test how participants performed the 

task in virtual reality. The participant wore the head-mounted display and picked up the 

HTC Vive controller with their right hand (Figure 10). The VR program recorded the same 

information (error time and total time) as the physical equipment. In adapting to virtual 

reality, there were several differences between the virtual and physical environments. The 

changes were meant to reduce the cognitive load of the virtual environment so that 

participants were not distracted while performing the task. 
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Figure 10. Participant performing test in the virtual environment. 

 

The room, table, chairs, and straight-line test equipment were replicated in VR. 

The experimenter, the computer, and the VR motion tracking base stations were removed 

from the virtual environment to de-clutter the visual space.  

The position and orientation of the virtual controller matched wherever the 

controller was in real time. The controller was modelled in VR to look the same as the 

physical stylus. The participant was instructed to hold the stylus like they would a remote 

control, with their fingers curled around the bottom of the foam grip and their thumb on 

top. They were instructed to raise their arm comfortably to touch the board with the tip of 

their stylus. The participant could not see their hand or body in VR. 
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Figure 11. Test setup in virtual reality. 

 

No vibrational feedback was implemented in the hand controller. Vibrations would 

shake the participant’s hand and risk increasing their error time. Error time from systematic 

vibrational feedback would be impossible to discern from the participant’s natural 

unsteadiness, resulting in an artificially inflated error time and poor results. 

The same rationale applies to the elimination of pressing buttons on the controller. 

Even though the VR controller had buttons, the participant did not need to press any 

buttons during the experiment. The participant simply moved their controller to the target 

area and the experimenter controlled when the program started and stopped recording. 

Although it was considered, a physical board was not installed for the participant 

to hit with their controller when they touched the virtual board, as a form of haptic feedback. 

The calibration procedure was not precise enough to ensure perfect alignment of the 

physical board with the virtual board, which could result in failure to complete the task or 

skewed results. 
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Finally, to replace the absence of any haptic feedback, visual feedback was 

implemented in the virtual environment. Rather than haptic cues, color-coded cues helped 

the participant perceive their performance. The colors red, yellow, and green indicated 

depth and accuracy (Figure 12). Green meant the tip of the pointer was on the surface 

and within the accurate range. Yellow meant the tip of the pointer was on the surface, but 

outside of the accurate range, such as touching the metal guide bars. Red meant the tip 

of the pointer was not on the surface at all. Participants were instructed to correct 

themselves based on the color indicators. 

During the experiment, participants were instructed to keep a pace of three 

seconds to trace the full 25cm line in virtual reality. The experimenter checked the results 

and had participants redo the task if their pace was too fast or too slow. 

 

 
Figure 12. Red, yellow, and green color indicators, respectively. 

 

3.4 Technical Development 

The experimental task in the physical environment was designed by this author. 

The experimental task in the virtual reality environment was designed and directed by this 

author, and developed by an experienced Computer Scientist. The virtual reality 

experience was developed using UnReal Engine, a gaming engine used for developing 

3D interactive spaces [3]. 
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Figure 13. Virtual environment designed in UnReal Engine. 
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4. Methodology 

4.1 Design of Experiment 

The three main factors were gender (either Male or Female), environment (either 

Physical or Virtual), and gap width (4mm, 5mm, 6mm, or 7mm). In part of the analysis, the 

environment factor was eliminated by taking the difference between each participant’s 

virtual error ratio and physical error ratio. This gave the total change in performance per 

person, which illustrates how much the environment affected each participant’s 

performance better than raw scores. 

Forty-eight subjects (24 males and 24 females) were recruited from four different 

major departments at Cal Poly State University, San Luis Obispo. There was an equal 

number of males and females for every type of test. Twelve subjects were assigned to 

each of the four gap widths (4mm, 5mm, 6mm, and 7mm). Of the six males assigned to 

4mm, half of them started in the physical environment and the other half started in the 

virtual environment. The same assignment method applied to all males and females at all 

gap widths. Every participant did the task in both the physical and virtual environment. At 

the end of the experiment, each participant completed a questionnaire about their 

experience and perceptions of various human factor dimensions. 

 

4.2 Hypothesis 

My hypothesis is that the virtual environment will have higher error ratios than the 

real environment. The goal of this experiment is to test if there is a significant effect of 

virtual reality on error ratios for a detailed task. It is hypothesized that: 

• There is a significant difference between corresponding error ratios in the physical 

environment and the virtual environment 
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• There is a significant difference of error ratios between each gap width in either 

environment 

• There is no difference between genders in either environment 

• Those who prefer the virtual environment in the survey also have a lower error 

ratio 

 

4.3 Variables 

4.3.1 Independent Variables 

There are four independent variables. 

• Gap Width (4mm, 5mm, 6mm, or 7mm)– Each subject was randomly assigned to 

a gap width and performed all their tests with the same gap width. 

• Gender (Male or Female)– An equal number of males and females performed all 

tests. 

• Environment (Physical or Virtual)– Each subject performed the same tests in both 

the physical environment and the virtual environment. They were randomly 

assigned to start in one environment, and then continue to repeat the task in the 

other environment. 

• Direction of Randomized Test Sequence (Physical to Virtual, or Virtual to 

Physical)– The test sequence refers to what order of environments the participant 

was randomly assigned to during the experiment. The two possible test sequences 

are (1) physical to virtual, and (2) virtual to physical. An equal number of males 

and females were randomly assigned to each test sequence. 
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4.3.2 Dependent Variables 

• Error ratio (Equal to error time over total time) 

• Change in average error ratio between environments 

• Questionnaire results 

The error ratio was calculated by dividing the error time over the total time. Three 

samples of error ratios were taken for each participant in each environment and then 

averaged. Each participant ended up with two scores, average physical error ratio and 

average virtual error ratio. The change in average error ratio between environments was 

also calculated and used for part of the analysis. 

In the physical environment, error time was defined by amount of time spent 

touching the top or bottom metal guides. The total time was measured as the time between 

when the experimenter said “go” and when the participant said “stop” as soon as they 

reached the end of the line. The experimenter started and stopped a timer on these verbal 

cues. 

In the virtual environment, the program measured both error time and total time. 

Error time was counted when the user was either not directly on the base surface or when 

they were touching or outside of the bounds. The total time was counted when the stylus 

was in contact with the base plate. The total time was controlled by the experimenter, who 

cleared the clock when they said “go” and stopped the clock as soon as the participant 

reached the end of the line. Since it was possible for the user to stick the stylus through 

the base plate, the total time detection zone started at the surface and descended into the 

base by a few centimeters (see Figure 14). 
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Figure 14. Geometry of cross section of virtual board on its side. 

 

 In addition to the quantitative error ratios, the dependent variables also included 

the questionnaire results from each participant. Participants were asked to rate their 

perceptions of certain human factor measures, such as reliability and comfort, on a scale 

of 1 to 5. They were also asked to choose whether they preferred the physical or virtual 

environment for two scenarios: overall and specifically for training for this task. They were 

also solicited for comments to explain their ratings, likes, and dislikes about the 

environments. 

 

4.3.3 Controlled Variables 

• Location: The cubicle in the back-left corner of the Cal Poly Ergonomics Lab was 

used for all experimental data collection. 

• Lighting: All room lights were on and window shades were closed. 

• Set-Up: Inside the cubicle was a table, a participant chair, an experimenter chair 

on the other side of the table, a desktop computer facing the experimenter, and 

either physical equipment or virtual reality equipment set up in front of the subject. 

• Apparatus: HTC Vive headset and controller, Lafayette Instruments straight-line 

steadiness tester, an electronic test lead glued inside a 1.125in diameter foam tube 

• Pace: All participants were instructed to keep a pace of 3 seconds to trace the line. 

They were instructed to count to 3 seconds, either out loud or to themselves. The 
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average and standard deviation of actual total time were 3.027±0.764 seconds. 

The median of actual total time was 2.936 seconds. 

• Procedure: Subjects were randomly assigned to start in one environment, and then 

switch to the other environment. All other procedural steps, including introduction, 

instructions, and conclusion, were the same for all participants. 

• Hand Dominance: All participants were screened and selected for right hand 

dominance. 

• Gender: An equal number of males and females were selected. 

• Participant Consent Form (See Appendix A) 

• Script and Instructions (See Appendix B) 

• Post-Experiment Questionnaire (See Appendix C) 

 

4.4 Participants 

Subjects were recruited for this experiment through department emails to students 

in industrial engineering, mechanical engineering, biomedical engineering, and 

kinesiology. Subjects volunteered on a first-come, first-serve basis to fill open time slots. 

No incentive, other than the opportunity to experience virtual reality for the first time, was 

offered to recruit participants via email. However, donuts were provided at the end of the 

actual experiment as a surprise token of appreciation. 

• Background: Cal Poly Student 

• Majors: 28 mechanical engineering, 7 industrial engineering, 4 biomedical 

engineering, 3 kinesiology, 6 other majors 

• Age: 18-26 years old (Sample average is 20.4±1.9 years old) 

• Gender: 24 males and 24 females 
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The subjects were screened to meet the following criteria. 

• Handedness: Right hand dominant 

• Experience: Either no experience or only one prior experience with virtual reality 

• Vision: Normal or corrected-to-normal vision, such as either contacts or glasses. 

All participants who wore glasses kept their glasses on while wearing the VR 

headset. 

 

4.5 Equipment 

• Lafayette Instrument Co. Model 54035 Clock/Counter 

• Lafayette Instrument Co. Model 32010 Groove Type Steadiness Tester (straight-

line steadiness test in Figure 15) 

• Electronic test lead, glued inside a 1.125in diameter foam tube to replicate the grip 

size of the HTC Vive controller 

• HTC Vive headset and controller (see specifications below) 

• HTC Vive motion-tracking base stations setup, including tripods 

• Desktop computer used by the experimenter 

• Hygienic wipes to sanitize the headset, controller, and stylus between participants 

 



 31 

 
Figure 15. Lafayette Instruments Groove Type Steadiness Tester. 

 

 

Specifications for the HTC Vive are as follows: 

• Display: OLED 

• Resolution: 2160x1200 (1080x1200 per eye) 

• Refresh Rate: 90 Hz 

• Field of View: 110° 

• Tracking Area: 15ft. x 15ft. 

The HTC Vive virtual reality system was chosen, as opposed to the Oculus Rift 

system, due to its availability on the market at the time this experiment began in November 

2016. The HTC Vive system included two handheld controllers in the system, whereas the 

Oculus Rift had not yet released its Oculus Touch controllers. The complete HTC Vive 

system was available for immediate shipment in November 2016. The purpose of this 

experiment is to study precision tasks using existing, available VR hardware. No 

specialized equipment, such as haptic gloves or a haptic stylus, was purchased for this 

experiment due to budget constraints and availability constraints. A haptic stylus was 

quoted for more than $2,000. Haptic gloves were deemed too specialized for the broader 

purpose of this study and capabilities of the experimenter’s resources. Funding from the 
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Industrial and Manufacturing Engineering Student Fee Committee and the Melfred Borzall 

Project Fund was applied for and granted to this experiment. 

It should be noted that the desktop computer was built specifically for this 

experiment to meet the PC specifications of the HTC Vive. It was more economical to build 

a PC from separate components than to buy an off-the-shelf computer by Dell or a similar 

brand. All equipment purchased for this virtual reality system will stay in the Industrial and 

Manufacturing Engineering department for future work related to human factors 

engineering and ergonomics. 

It should also be noted that a Leap Motion controller was also purchased during 

the early development of this thesis experiment. The Leap Motion controller is designed 

to integrate with the HTC Vive headset. The controller tracks free hand and finger position 

and movement. It took several iterations of programming with the Leap Motion before 

starting the first pilot tests. The first pilot tests proved unsuccessful and the Leap Motion 

controller was ditched and replaced with the HTC Vive controllers. More information about 

the pilot tests can be found in section 4.9 Pilot Tests.  

 

4.6 Task 

The task was to draw a straight line from left to right, 25cm long, while staying 

within a certain gap tolerance and not touching the top or bottom guides. Participants were 

instructed to use their right hand to hold the stylus like a TV remote control, with their palm 

on the right side of the barrel, fingers curled around the bottom, and thumb on top. If the 

tip of the stylus contacted the top or bottom metal guides, an electrical circuit was 

completed and a clock counter recorded how long the subject was in contact with the top. 

The experimenter counted aloud three seconds to demonstrate the pace needed to trace 
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the entire line before starting the timer. The participant counted aloud to themselves or in 

their head during the actual task. 

The actual total time it took to draw the line was recorded by the experimenter in 

a spreadsheet. The experimenter had participants redo the task if their pace was too fast 

or too slow. The task was repeated three times, and the average error ratio (error time 

over total time) was calculated for each environment. Each participant has an average 

physical error ratio and an average virtual error ratio for their assigned gap width. 

 

4.7 Experimental Procedure 

The experiment lasted approximately 10 minutes and the questionnaire took 

approximately 10 minutes to complete. Participants were scheduled into 25min time slots. 

1) Greeting 

a. When the participant arrived, they set their belongings on a chair away from 

the experimental setup to eliminate distractions. The participant took a seat 

at the table and were given the informed consent form (Appendix A) to read 

and sign. 

b. The experimenter read the introduction script (Appendix B). 

2) Environment 1 

a. The participant was randomly assigned to start in either the Physical or the 

Virtual environment. The correct equipment was already set up to begin. 

b. The experimenter read the instructions for this task. 

c. The participant was given 3 warmup trials that were not recorded to ensure 

they understood the task. 

d. The participant was asked if they had any questions and if they were ready 

to begin. 
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e. The recorded task began. The participant repeated until there were 3 

sufficient samples of data for this environment. 

3) Switch environments 

a. When the participant was done with Environment 1, the experimenter set 

up the equipment for the next environment. 

4) Environment 2 

a. The experimenter read the instructions for this task. 

b. The participant was given 3 warmup trials that were not recorded to ensure 

they understood the task. 

c. The participant was asked if they had any questions and if they were ready 

to begin. 

d. The recorded task began. The participant repeated until there were 3 

sufficient samples of data for this environment. 

5) Conclusion and Questionnaire 

a. After the participant had completed both tasks, the experimenter read a 

concluding statement. 

b. The participant was given a written post-experiment questionnaire 

(Appendix C) to fill out and return.  

c. The participant took the questionnaire to a different cubicle so they could 

concentrate and fill it out privately and at their own pace. 
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Figure 16. The experimenter giving instructions to the participant during the virtual 

environment task. 
 

 
Figure 17. The experimenter collecting data during the virtual environment task. 
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4.8 Measures 

 The main measurements of data were total time to complete the task and total 

error time. This was measured with a timer in the physical experiment and with the 

software in the virtual experiment. The other measurements were obtained through the 

questionnaire. These measurements include rating various user experience dimensions, 

such as difficulty, comfort, reliability, strain, and effectiveness, on defined scales of 1 to 5. 

Participants were also asked to state their preferences and write comments and 

suggestions for improvement. 

 

4.9 Pilot Tests 

The very first iteration of this experiment used a Leap Motion controller in 

conjunction with the HTC Vive headset. The Leap Motion was meant to replace the HTC 

Vive handheld controllers due to its advertised functionality of tracking finger movement 

in free space. After completing all the software development for this test setup, pilot tests 

were run. These first pilot tests showed that this experiment would be impossible to collect 

reliable data with the Leap Motion controller. Most of the issues encountered with Leap 

Motion involved the virtual hand, which jittered asynchronously with the user’s hand, 

jumped to different positions in space, and randomly inverted upside-down. Neither the 

participant nor the experimenter could control when these idiosyncrasies would occur or 

fix them. Thus, the Leap Motion controller was taken out and the entire experiment was 

redesigned using only the handheld controllers that came with the HTC Vive system. 

It was assumed that organizations using virtual reality for training purposes will buy 

the HTC Vive kit alone, without separately purchasing the Leap Motion controller. The 

HTC Vive headset and controllers are already meant to work together, so it was natural to 

use the included handheld controllers without Leap Motion. This experiment should be 
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helpful for people who are trying to use commercially available virtual reality systems, such 

as the HTC Vive, rather than customized or excessively expensive equipment. 

The second iteration of pilot tests with the HTC Vive controllers was a success. 

Four males and three females participated. Very few changes were made to the 

experiment after the pilot tests. The results from the pilot test are not included in the results 

section of this report. 
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5. Results 

The results are segmented into quantitative results, qualitative results, and 

observations. In the Quantitative Results section, the data is presented in two forms: (1) 

average error ratio per environment per person and (2) the change in average error ratio 

between environments per person. The average error ratio per environment is an 

indication of each person’s “raw score” in each environment. It is calculated by taking the 

participant’s error time and dividing by total time. The error times varied per person, but 

the actual total times for the entire sample were 3.027±0.764 seconds. 

The change in average error ratio between environments is an indication of how 

much a person’s individual performance was affected by switching to a different 

environment. With this data, the magnitude of the effect can be compared across all 

participants. The change in average error ratio between environments was calculated per 

person using the following formula. 

 

∆	𝐴𝑣𝑔	𝐸𝑟𝑟𝑜𝑟	𝑅𝑎𝑡𝑖𝑜 = (𝑉𝑖𝑟𝑡𝑢𝑎𝑙	𝐴𝑣𝑔	𝐸𝑟𝑟𝑜𝑟	𝑅𝑎𝑡𝑖𝑜) − (𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙	𝐴𝑣𝑔	𝐸𝑟𝑟𝑜𝑟	𝑅𝑎𝑡𝑖𝑜) 

 

 The results of 48 participants (24 males and 24 females) were used in the 

quantitative analysis. There were three additional participants, for a total of 51 people, 

who had completed the experiment, but a glitch in the virtual reality system recorded 

incorrect times for these three people. Their quantitative data was thrown out and new 

participants were recruited to replace the results. The three original participants were not 

made aware of the glitch and continued with the experiment and questionnaire normally. 

Since they were not aware of the glitch and could comment candidly on their experience, 

some of their feedback regarding comfortability, likes, and dislikes were saved and 

included in the qualitative results section. 
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5.1 Quantitative Results 

5.1.1 Average Error Ratio Per Environment 

Data must pass a normality test before further analysis. The residuals of this data 

passed the normality test with a p-value of 0.183, which allowed the analysis to continue 

(Figure 18). The test for equal variances of the residuals versus gap, gender, and 

environment factors yielded a p-value of 0.109, which means we failed to reject the null 

hypothesis that all variances are equal (Figure 19). The assumptions to run an ANOVA 

were met at an alpha level of 0.01. A summary of the collected data is best shown 

graphically in Figure 20, which shows the average error ratios in each environment at 

different gap widths. 

 

 
Figure 18. Normality test of residuals for average error ratios. 
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Figure 19. Test for equal variances of residuals of average error ratios vs. gap, gender, 

environment. 
 

 
Figure 20. Scatterplot of average error ratios in each gap category, separated by 

environment. 
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As expected, the average error ratios in the virtual environment are higher than the 

average error ratios in the physical environment at all gap widths, as shown in Figure 20. 

The range of average error ratios is much wider in the virtual environment than the range 

in the physical environment. This means that between participants of all genders, there is 

greater variability of accuracy in virtual reality. 

 

Table 1. ANOVA for Data: Average Error Ratio. Effects: Gap, Gender, Environment, and 
Block(Gap, Gender). Interaction between Environment and Gap is significant. 

Analysis of Variance 
 
Source                    DF   Adj SS   Adj MS  F-Value  P-Value 
  Gap                      3  0.53005  0.17668    17.77    0.000 
  Gender                   1  0.00108  0.00108     0.11    0.743 
  Environment              1  3.23299  3.23299   325.19    0.000 
  Gap*Gender               3  0.00692  0.00231     0.23    0.873 
  Environment*Gap          3  0.36600  0.12200    12.27    0.000 
  Environment*Gender       1  0.01605  0.01605     1.61    0.211 
  Environment*Gap*Gender   3  0.00770  0.00257     0.26    0.855 
  Block(Gap, Gender)      40  0.34773  0.00869     0.87    0.663 
Error                     40  0.39767  0.00994 
Total                     95  4.90620 
 
Model Summary 
        S    R-sq  R-sq(adj)  R-sq(pred) 
0.0997085  91.89%     80.75%      53.31% 
 

 

The interaction between Environment and Gap has a p-value of less than 0.001. 

This result indicates that the interaction between Environment and Gap has a significant 

effect on the average error ratio. The interaction plot in Figure 21 shows that average error 

ratios simultaneously increase and spread out when Environment and Gap change. A 

Tukey Pairwise Comparison test is performed in the next section to find which means are 

significantly different from each other between gap widths. 

As the gap width decreases from 7mm to 4mm, it is assumed that task difficulty 

increases. Without interaction, we might only see an incremental increase in average error 

ratio for each gap width, with no difference between environments. Without interaction, we 
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might also observe a constant increase in average error ratios between environments. 

However, these are not the case. Interaction between both Environment and Gap has the 

most significant effect on average error ratio. 

 

 
Figure 21. Interaction plot between Environment and Gap effects. Environment 1 is the 

Physical Environment and environment 2 is the Virtual Environment. 
 

The effect of Direction of Randomized Test Sequence (whether a participant 

started in the virtual or physical environment) was also run in an ANOVA, and found to 

have no significant effect on results, with a p-value of 0.710 (Table 8, Appendix D). 

Balancing the Direction factor was meant to mitigate the effects of “learning” in the 

repeated measures design. An example of the learning effect would be if all participants 

started in the physical environment, learned how to do the task, and then performed the 

task better in the virtual environment, thus skewing the results. The ANOVA results 

indicate that Direction, and therefore the learning effect, had no significant effect on the 

results in a balanced repeated measures design of experiment. 
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The interaction plot above shows a significant increase of average error ratios in 

the virtual environment. A Tukey Pairwise Comparison test was used to find which means 

are significantly different from each other at a 97% confidence level. The test was applied 

to compare means across the four different gap widths specifically in virtual reality. The 

test shows that the mean at 4mm is not grouped with any of the other means. 

Subsequently, the means for 5mm and 6mm are grouped together and the means for 6mm 

and 7mm are grouped together. According to the test output, in Table 2, the mean at 4mm 

is significantly different from the means of all other gap widths in the virtual environment. 

This comparison also indicates that the mean average error ratios, if expressed as error 

percentages, are 61% at 4mm, 45% at 5mm, 31% at 6mm, and 26% at 7mm. 

 

Table 2. Tukey Pairwise Comparison for Average Error Ratios only in VR 
Tukey Pairwise Comparisons: 
Response = Virtual Average Error Ratio, Term = Gap  
 
Grouping Information Using the Tukey Method and 97% Confidence 
 
Gap2   N      Mean  Grouping 
4     12  0.608500  A 
5     12  0.448333      B 
6     12  0.312000      B  C 
7     12  0.256333         C 
 
Means that do not share a letter are significantly different. 

 

 

5.1.2 Change in Average Error Ratio Between Environments 

The change in average error ratio (∆ average error ratio) is the virtual error ratio 

minus the physical error ratio. The average error ratios in the virtual environment were 

always higher than the ratios in the physical environment, so all ∆ average error ratios 

were positive values. 
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The residuals of this data passed the normality test with a p-value of 0.247, which 

allowed the analysis to continue (Figure 22). The test for equal variances of the residuals 

versus gap and gender factors yielded a p-value of 0.040 (Figure 23). At an alpha level of 

0.01, we failed to reject the null hypothesis that all variances are equal. The assumptions 

to run an ANOVA were met. A summary of the collected data is best shown graphically in 

Figure 24, which shows the ∆ average error ratios at different gap widths. 

 

 
Figure 22. Normality test of residuals for change in average error ratios. 
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Figure 23. Test for equal variances of residuals of change in average error ratio vs. gap 

and gender. 
 

 
Figure 24. Scatterplot of change in average error ratio (virtual - physical) at each gap 

width. 
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The distribution of the changes in average error ratio is shown above in Figure 24. 

As the gap size increased, the difficulty of the test decreased. The participant’s change in 

performance improved with an increase in gap size. This means that at larger gap widths, 

participant’s performance in the virtual environment was closer to their performance in the 

physical environment. 

The change in average error ratio represents how much each participant’s 

performance was affected between the two environments. The ANOVA for the Change in 

Average Error Ratio data produced the same results as the Average Error Ratio data. The 

ANOVA results for Change in Average Error Ratio can be found in Table 9 in Appendix D. 

A Tukey Pairwise Comparison test was used to find which means are significantly 

different from each other at a 97% confidence level. The test was applied to compare 

means across the four different gap widths. The test shows that the mean at 4mm is 

grouped with the mean at 5mm. Subsequently, the means for 5mm and 6mm are grouped 

together and the means for 6mm and 7mm are grouped together. According to the test 

output, in Table 3, the mean at 4mm and the mean at 7mm are significantly different. This 

means that a physical gap width increase of 3mm, which is a relatively small 

measurement, produced significantly better performance results. 

 

Table 3. Tukey Pairwise Comparison for Changes in Average Error Ratio 
Tukey Pairwise Comparisons: 
Response = Change in Avg Error Ratio, Term = Gap  
 
Grouping Information Using the Tukey Method and 97% Confidence 
 
Gap   N      Mean  Grouping 
4    12  0.551365  A 
5    12  0.403636  A   B 
6    12  0.281750      B  C 
7    12  0.231352         C 
 
Means that do not share a letter are significantly different. 
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5.1.3 Preference versus Performance 

 Participants responded to a questionnaire at the end of the experiment. The 

questionnaire asked for the participant’s overall preference of the physical environment or 

virtual environment. The participant was also asked which environment they would 

recommend for training somebody else in the same task. It is expected that those who 

overall prefer the virtual reality environment have less change in their performance 

between the environments. One participant did not choose an overall preference. 

 The change in average error ratios was used to represent the change in 

performance per participant. The preferences and opinions of each participant from the 

questionnaire were corresponded with their change in average error ratio. The residuals 

passed the normality test with a p-value of 0.489 to allow further analysis under this 

assumption. 

 
Figure 25. Normality test of residuals for preference versus performance. 
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 A two-sample t-test was performed to see if there was a significant difference 

between the mean change in average error ratios of participants who overall preferred the 

physical environment and participants who overall preferred the virtual environment. With 

a p-value of 0.332, there is not a significant difference between the average change in 

performance for participants who preferred the physical environment and those who 

preferred the virtual environment (Table 4). Notably, 30 participants preferred the physical 

environment while 17 participants preferred the virtual environment, and one person did 

not respond. Participants’ feedback, expanded in the Qualitative Results section, gives 

some indication of their likes and dislikes which may have influenced their preference. 

 

Table 4. Two-sample T-test for Change in Average Error Ratio and Environmental 
Preference 

Two-sample T for Change in Average Error Ratio 
 
OverallPref   N   Mean  StDev  SE Mean 
Physical     30  0.382  0.184    0.034 
Virtual      17  0.328  0.179    0.044 
 
 
Difference = µ (Physical) - µ (Virtual) 
Estimate for difference:  0.0541 
95% CI for difference:  (-0.0576, 0.1657) 
T-Test of difference = 0 (vs ≠): 
T-Value = 0.98  P-Value = 0.332  DF = 34 
 

 

Participants were asked which environment they preferred overall (Overall 

Preference) and which environment they preferred specifically for training in this task 

(Training Preference). The Overall Preference of certain environment has a significant 

association with the change in average error ratios at a p-value of 0.027 (Table 5). In 

general, the participants who preferred the virtual environment had less change in 

performance between the two environments. Gap width also had a significant association 

with change in performance at a p-value of less than 0.001, which is consistent with earlier 
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findings. It was found that Training Preference had no significant effect on performance, 

with a p-value of 0.855 (Table 11, Appendix D). 

 

Table 5. ANOVA for Data: Change in Average Error Ratio. Effects: Overall 
Environmental Preference, Gender, Gap. 

Analysis of Variance 
 
Source                    DF   Adj SS    Adj MS  F-Value  P-Value 
  OverallPref              1  0.09058  0.090578     5.39    0.027 
  Gender                   1  0.02826  0.028261     1.68    0.204 
  Gap                      3  0.70148  0.233825    13.92    0.000 
  OverallPref*Gender       1  0.00909  0.009087     0.54    0.468 
  OverallPref*Gap          3  0.06150  0.020500     1.22    0.319 
  Gender*Gap               3  0.02207  0.007356     0.44    0.727 
  OverallPref*Gender*Gap   3  0.05131  0.017102     1.02    0.398 
Error                     31  0.52060  0.016793 
Total                     46  1.52637 
 

 

 

5.2 Qualitative Results 

Each participant responded to a questionnaire after completing the experiment. 

The questionnaire asked participants to rate the physical and virtual environments for five 

user experience dimensions: difficulty, comfort, strain, reliability, and effectiveness. The 

following Table 6 shows the average score of each dimension for each environment. A 

two-sample t-test was performed on each user experience dimension. At an alpha level of 

0.05, the ratings of difficulty, reliability, and effectiveness were significantly different 

between environments. The ratings of comfort and strain had low p-values of 0.063 and 

0.086, respectively, but were not considered significantly different between environments. 

In every category, virtual reality scored worse than the physical environment based on the 

defined scale from 1 to 5. It is surprising that comfort and strain were not significantly 

different because users had to wear a headset in virtual reality, which could have been 

uncomfortable for some participants. 
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Table 6. Average Ratings of User Experience Dimensions 

 Physical 
Environment 

Average 
Score 

Virtual 
Environment 

Average 
Score 

P-value of 
Two Sample 

T-Test 

Difficulty 
(1=difficult and 5=easy) 

3.729 2.729 0.000 

Comfort 
(1=uncomfortable and 5=very 
comfortable) 

4.250 3.936 0.063 

Strain 
(1=least strain and 5=most strain) 

2.146 2.500 0.086 

Reliability 
(1=least reliable and 5=most reliable) 

4.452 4.000 0.005 

Effectiveness 
(1=least effective and 5=most effective) 

4.292 3.250 0.000 

 

Out of all the questionnaire responses, the following statements are noteworthy: 

• 32 participants said they were better able to perceive depth in the physical 

environment due to the haptic feedback of touching the board 

• In both the physical and virtual environments, 41 participants felt minor strain in 

their hand, forearm, or arm while holding up the controller and stylus during the 

task 

• 16 participants said the mirrored background and the metal were difficult to 

differentiate on the physical equipment, making the task more difficult. They also 

mentioned that the screeching sound of metal on glass was distracting. (Note: This 

noise occurred in only a handful of trials.) 

• 29 participants said depth perception was difficult in the virtual environment due to 

the lack of haptic feedback 
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• 25 participants said being able to use virtual reality was “cool”, “fun,” or “interesting” 

• 15 participants stated that they liked the color-changing indicators in virtual reality 

because it gave immediate feedback of their performance 

• 14 participants said the VR headset felt heavy or uncomfortable 

• 13 participants suggest adding haptic feedback to improve the virtual environment 

• 5 participants did not like not being able to see their hand or the experimenter in 

the virtual environment 

• 4 participants said the headset screen was pixelated 

• 1 participant said she or he felt uncomfortable knowing that someone is near them 

but not being able to see that person in the virtual environment 

• 1 participant said, “Even though [virtual reality] looks unreal, I felt my brain wanted 

to think it was real.” 

 

5.3 Observations 

The experiment design process took longer than expected because of the 

limitations in virtual reality that had to be considered and worked around. Some of the 

decisions made to consciously differentiate the environments (i.e. color-coded indicators, 

removing vibrational feedback) were the best way to compensate these limitations at the 

time of the experiment.  

Since virtual reality is a new and expensive technology, it was easy to find 51 

people who had never experienced it before to participate in the experiment. After the 

experiment was finished, many participants asked questions about the technology and 

wanted to learn more about future opportunities involving VR in the college. The following 

is a list of observations made throughout the experiment. 
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• Two participants had extreme difficulty getting the VR test to work. When the timer 

started, the colored background would turn red. This issue was resolved after 

trying again several times. 

• Three trial runs were given to each participant in the instructions. In the physical 

environment, most participants used all three trial runs. In the virtual environment, 

most participants asked for and used more than three trial runs, approximately five 

or six. 

• The software developer who programmed the VR environment is color blind. He 

chose colors that he could see, so it was assumed that the experiment was 

accessible for color blind participants. One participant said she or he is color blind 

in the post-experiment questionnaire, which could have affected their ability to 

recognize the color indicators in VR. Their results were within the normal range 

and were not thrown out. 

• Two participants noted that they have genetic or above average natural hand 

shakiness. One participant noted that she or he has tendonitis. Their results were 

within the normal range and were not thrown out. 

• Five participants wore glasses. The headset fit over their glasses, so they all kept 

their glasses on during the experiment. Three participants commented on the 

discomfort of wearing glasses under the headset. 

• Four participants noted “slight disorientation” when they first put on the virtual 

reality headset, but they all said they adjusted quickly. Only one person said his or 

her eyes felt strained after. Another person said she or he felt a little dizziness after 

taking the headset off, but not during the experiment. 
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6. Discussion 

This experiment measured and analyzed the performance of participants 

conducting a straight-line precision task in virtual reality. Forty-eight participants were 

asked to trace a straight line within a certain gap tolerance. The task was designed to be 

unfamiliar because of the way the stylus was held, gripped like a TV remote rather than 

like a pencil, to trace the line. The participants were training how to do the task in both 

reality and virtual reality to emulate precise motions of certain industrial operations or 

physical therapy. The total time to trace the line and the error time were recorded to 

determine average error ratios. The average error ratios of each participant represented 

relative scores of how well each participant performed in each environment.  

The data showed that in both environments, error increased as the difficulty of the 

task increased. At lower gap widths, the average error ratios were higher. The data also 

showed that a participant’s average error ratio was always higher in the virtual 

environment than in the physical environment. These two observations do not act 

independently. There is a significant interaction between gap width and environment, at a 

p-value of less than 0.001. The interaction indicates that performance was significantly 

affected by a combination of gap width and environment factors. 

Each participant had two average error ratios, one for the physical environment 

and one for the virtual environment. The difference between these two ratios quantifies 

how much a person’s performance changed between environments. Every participant had 

a higher error ratio in the virtual environment than in the physical environment. In the 

straight-line test, the gap width represented precision tolerance, measured at 4mm, 5mm, 

6mm, or 7mm. The change in average error ratio at 4mm is significantly higher than the 

change in average error ratio at 7mm, at a 97% confidence level. The results suggest that 
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as the difficulty of the task increases (i.e. the gap width shrinks from 7mm to 4mm), the 

change in performance is significantly worse. 

The mean average error ratios in virtual reality show just how much error VR 

developers could expect when designing a precise linear target like the straight-line test. 

If the mean average error ratio in VR is represented as an error percentage, VR 

developers could expect 26% error for 7mm-wide targets, 31% error for 6mm targets, 45% 

error for 5mm targets, and 61% error for 4mm targets (Table 2). Depending on the purpose 

of the VR experience, perhaps a 4mm target tolerance is preferred for more difficult tasks, 

whereas a 7mm target tolerance is preferred for easier tasks. 

When looking at user preferences, there was a significant association of overall 

environment preference with the change in average error ratio (p-value of 0.027). In 

general, the participants who preferred virtual reality had less change in their error 

performance between the two environments. This could indicate that participants who 

liked the virtual environment also performed better in the virtual environment. This is an 

interesting finding that suggests that users could be motivated to perform better in virtual 

reality due to positive expectations and opinions of the technology. Future work would be 

needed to further investigate this association. 

 

6.1 Limitations of the Study and Sources of Error 

 The development of this study included many iterations of tasks and software 

programming. Due to the experimenter’s unfamiliarity with game engine programming for 

virtual reality, a consultant with a Bachelor of Science in Computer Science was recruited 

to assist with the technical development of this experiment. Despite online tutorials and 

software help functions, it can be difficult for the average person to learn how to create a 

sophisticated program in UnReal Engine without formal education or extensive 
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experience. The steep learning curve of VR software is a major inhibitor to widespread 

adoption of virtual reality. It has also created a very lucrative market and high demand for 

VR programmers and developers. The success of this VR program was reliant on the 

abilities of the computer scientist to replicate the physical environment and equipment 

functions, as well as to develop creative work-arounds for issues such as lack of haptic 

feedback. 

 The experimenter had strong interest in, but limited experience with, virtual reality 

before starting this thesis project. That was not enough to start this project without outside 

guidance from experts in virtual reality. An extensive literature review and several 

discussions with local VR experts were helpful and essential to understanding the 

complexities and challenges of virtual reality. Part of the purpose of this experiment was 

to study the effectiveness of off-the-shelf hardware systems for a precise task so that 

others can create and improve future training programs with similar consumer systems, 

such as the HTC Vive. The development process of this study indicates that virtual reality 

for training for a precision task is not something that one implements overnight. Rather, it 

is difficult to implement without previous experience. 

A potential source of error in data collection was the method of tracking time data. 

The physical timer was dependent on the experimenter clicking the timer button at the 

right time. The experimenter controlled when the timer started because the experimenter 

said “go” and started the timer simultaneously. However, the experimenter waited until the 

participant said “stop” to stop the timer, but could not see the participant’s hand because 

they were on opposite sides of the table. The experimenter read instructions on how to 

keep the correct pace of 3 seconds, but there was variation of approximately ±1 second. 

The experimenter used discretion in judging whether a sample was too fast or too slow 

and had the participant repeat the test if the results were too far off. 
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 In the virtual reality program, the timer began when the program detected the 

proximity of the pointer to the target area. To start the task, the participant would hold the 

pointer to the left of the straight line. The experimenter zeroed the timer as soon as they 

said “go” and the participant started to move his or her hand. The experimenter could see 

a replica of the virtual program in real time on the computer monitor, and stopped the timer 

as soon as the participant reached the end of the line, without any verbal cues. Again, the 

experimenter used discretion in judging whether a sample was too fast or too slow. 

 One factor that was not analyzed is the tradeoff between speed and accuracy 

during the straight-line steadiness test. Because total times varied in every sample, even 

with the same participant, the error ratio was calculated to normalize the data. However, 

looking at the raw data, there is a possibility that participants who were slower to trace the 

line had less error because they could concentrate. This effect was not tested, but it is 

nonetheless relevant and possibly significant. The median total time was 2.936 seconds, 

which is slightly faster than the recommended 3 seconds pace. The effect of speed versus 

accuracy may have some effect, however it was not accounted for in this study. 

The HTC Vive controller has several embedded motion tracking sensors 

throughout the remote. The sensors located in the handle portion are far enough back that 

they could be affected by the wrist position and angle of the user. In this study, the precise 

positional relationship between the sensors in the controller and the user’s wrist were not 

measured. The movement of the virtual controller corresponds with the sensors in the 

physical controller, so there could be some source of error that derives from the way the 

controller was modeled in VR. 

 Calibration of the equipment is another potential source of error, but no statistical 

analysis was performed to address this. The experiment was set in a shared classroom 

and the data collection period spanned over nine days due to scheduling availability. 
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Between two to fourteen participants were scheduled for each day of data collection. The 

classroom is locked and a class of 24 students meet once a week in the room. Due to the 

semi-public nature of the classroom, all test equipment was set up and taken down every 

day to ensure equipment protection and security. The positions of all the equipment were 

measured and marked with tape to ensure consistency between days. The virtual reality 

equipment was calibrated the same way every single day. Despite best efforts to maintain 

consistency, we recognize that there could have been small differences in calibration due 

to the frequency of setting up and taking down the equipment. No statistical analysis was 

performed to investigate this effect. 

 

6.2 Participation and Feedback 

 Participants were recruited from engineering and kinesiology departments at Cal 

Poly via department emails that linked to an online form. As soon as the department emails 

were sent out, there was an overwhelming and quick response to fill up available time 

slots. The emails screened participants for right-handedness and no prior experience with 

virtual reality. It should be noted that the 24 available spots for males filled up at a rate 

nearly twice as fast as the 24 available spots for females. No incentives were offered to 

participants in the recruitment email. 

 Feedback collected from the questionnaires was fairly consistent. More than half 

of participants described virtual reality as “cool,” “fun,” or “interesting.” The functionality of 

physical equipment is limited, whereas virtual reality can be programmed to do almost 

anything. Even though the virtual setup was not exactly the same as the physical setup, 

the additional features of color-changing and decluttering the visual space (by eliminating 

wires, non-essential objects, and the experimenter) were added to help the user perform 
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the task. Color-changing and decluttering the visual space would be difficult to implement 

in the physical environment at the same speed and ease as virtual reality. 

Despite the possibilities of virtual reality, participants still struggled. A majority, 32 

out of 48, of participants noted that it was difficult to perceive depth in virtual reality. This 

could be due to a variety of reasons, such as the lack of haptic feedback in the controller, 

the pixelated resolution of the HTC Vive head-mounted display, or the non-reflective 

surface of the straight-line test equipment in virtual reality. This feedback suggests that 

virtual reality needs better visual quality for people to perform precision tasks. Haptic 

feedback was not implemented in this study because the vibration of the controller might 

shake the user’s hand involuntarily and induce additional error. The haptic feedback 

component of gripped devices, like the HTC Vive controller, needs additional research for 

precision tasks in virtual reality applications. 
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7. Conclusion & Future Work 

This study investigates the effects of virtual reality on user performance while 

training for a precision task. In general, virtual reality yielded higher error ratios than the 

physical test environment. As the difficulty of the task increased, the performance in VR 

degraded significantly. A combination of environment and gap width factors significantly 

affected users’ average error ratios. As a result, the differences between the mean error 

of each gap width were magnified and much more noticeable in virtual reality than in 

physical reality. 

 The results of this research point to the importance of haptic feedback in virtual 

reality. For an unfamiliar and precise task, the current handheld controllers are not the 

best interaction tool. Versatile shapes of controllers may need to be experimented with to 

determine how best to marry technological capability of the developer and functionality for 

the end user. When the Leap Motion controller was briefly used in the development of this 

experiment, the output was too jumpy and unpredictable to produce reliable data for 

analysis. The Leap Motion would have allowed precise finger tracking, but did not work 

the way in which it was intended. 

 Virtual reality has great potential in applications for abled and disabled persons. 

This study focused on training for a linear precision task. Linear movement is a basic 

motion that can be found in industrial operations, such as cutting or soldering, and in 

disability rehabilitation, such as physical therapy for stroke patients. The results of this 

experiment show that virtual reality still needs significant improvements to get the same 

results as a physical task, even for something as simple as tracing a straight line.  

 The development of this study was challenging for the experimenter without 

substantial prior experience with virtual reality. It would be difficult for the average person 

to develop an interactive virtual reality program, such as a precision task for training, 
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without formal computer science education or experience. The steep learning curve of VR 

software is a major inhibitor to the widespread adoption of virtual reality. Even with 

consumer-geared products such as the HTC Vive, the setup of virtual reality for the 

purpose of training poses several challenges. The currently available equipment does not 

seem adequate to train people in precision tasks in VR. 

 

7.1 Future Work 

The straight-line test focused on a simple, linear, and precise movement. 

Recommendations for future work extend to a variety of precision tasks that have more 

levels of complexity and different movements. Tasks for future work can be three-

dimensional, such as pick and place. Perhaps different postures such as standing or 

reclining could affect task performance in virtual reality and mimic industrial operations 

such as training in manufacturing or maintenance work. Two-handed tasks could 

investigate hand-eye coordination of precise or small-scale assembly work in VR. 

In this study, training in VR was studied as an alternative for physical training, 

rather than as a preparation tool for a physical task. Perhaps VR is not ready to replicate 

the exact motions and environment that one would experience in a physical system, but it 

may be an effective tool to prepare someone for a physical task. Future research could 

investigate the exact role and purpose of VR in training experiences. 

Haptic feedback is clearly still an issue for virtual reality in precise applications. To 

continue future work in this experiment, vibrational feedback should be added in the 

handheld controller to test whether this type of feedback is an adequate depth indicator 

for participants. The results with and without vibrational feedback should be compared to 

see whether vibrations created more error or prevented error. 
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At the time of this study, the VR hardware and software were limited in its 

capabilities. The resolution in the head-mounted display was pixelated, which made it 

difficult to see the tip of the stylus. The field of view was limited to 110º, which could be 

widened to improve the peripheral view and sense of immersion. The handheld controllers 

could only be held a certain way and the design could be more ergonomic or 

interchangeable. Once new designs are released, researchers can test for performance 

of precision tasks in virtual reality using improved equipment. 

Virtual reality is being developed at a rapid pace. Each iteration of the technology 

has a short life span and incrementally improves upon the previous version. The intensity 

of development in the field of virtual reality points to far-reaching questions for future work: 

How can precision tasks in virtual reality match real life tasks? How can virtual reality be 

improved to help training and rehabilitation? How can visuo-haptic feedback be optimized 

for an immersive experience? The opportunities capable through virtual reality are 

promising, and future work is needed to investigate the human factors implications of this 

new frontier. 
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APPENDICES 

Appendix A. Informed Consent Form 

INFORMED CONSENT TO PARTICIPATE IN A STUDY TO TEST THE EFFECTS OF 
PHYSICAL AND VIRTUAL ENVIRONMENTS ON TRAINING FOR AN UNFAMILIAR TASK 

 A research project on human factors and virtual reality is being conducted by Delaney Bales, a 
student in the Department of Industrial Engineering at Cal Poly, San Luis Obispo, under the supervision 
of Dr. Reza Pouraghabagher.  The purpose of the study is to observe and analyze the effects of physical 
and virtual environments on training for an unfamiliar task. 

 You are being asked to take part in this study by performing a task in two different 
environments, physical and virtual, followed by a questionnaire. Your participation will take 
approximately 25 minutes. Please be aware that you are not required to participate in this research, you 
may discontinue your participation at any time without penalty, and you may omit any items you prefer 
not to answer in the questionnaire at the end. 

 By participating in this study, there is a risk of experiencing headaches, dizziness, or nausea as 
a result of virtual reality, called “virtual reality sickness.” All possible risks associated with participation 
in this study include head discomfort, confusion, disorientation, headaches, dizziness, nausea, 
overheating, spreading germs, strained muscles, hitting something, static shock, sharp objects, 
overexertion, and glasses damage. Wearing glasses while wearing a virtual reality head-mounted display 
is not recommended, and you assume all risk if your glasses are damaged during the experiment. Please 
note that these risks have been minimized and are unlikely to occur, however individual response to 
virtual reality may vary. Do not wear the virtual reality head-mounted display longer than 20 minutes. 
If you should experience physical or psychological distress, please be aware that you may contact Health 
Services at (805) 756-1211 or Counseling Services at (805) 756-2511 for assistance. 

 Your confidentiality will be protected by the assignment of a subject number in place of your 
name. Your name will not be used in data collection or in reports of this research. Your subject number 
will be used to identify your individual results in data collection and in reports of this research. Your 
responses to the questionnaire will also remain confidential to protect your privacy. Although there are 
no direct benefits to you by participating in this study, your participation may result in a greater 
understanding of virtual reality in designing industrial training methods for unfamiliar tasks. 

 If you have questions regarding this study or would like to be informed of the results when the 
study is completed, please feel free to contact researcher Delaney Bales at dmbales@calpoly.edu or 
916-616-9305, or Dr. Reza Pouraghabagher at rpouragh@calpoly.edu.  If you have concerns regarding 
the manner in which the study is conducted, you may contact Dr. Michael Black, Chair of the Cal Poly 
Institutional Review Board, at (805) 756-2894, mblack@calpoly.edu, or Dr. Dean Wendt, Dean of 
Research, at (805) 756-1508, dwendt@calpoly.edu. 

 If you agree to voluntarily participate in this research project as described, please indicate your 
agreement by signing below.  Please keep one copy of this form for your reference, and thank you for 
your participation in this research. 
 
____________________________________   ________________ 
                   Signature of Volunteer                              Date 
 
____________________________________   ________________ 
                   Signature of Researcher                              Date  
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Appendix B. Experiment Instructions 

 
Participant Screening 

1) Are you right-handed? 
2) How many times have you used Virtual Reality before? (Must be never or only 

once) 
3) How is your vision? (Must be normal or corrected-to-normal) 

 
Greeting & Introduction 
Hello, I’m Delaney and I am an Industrial Engineering grad student. Thank you for 
participating today. The purpose of my thesis experiment is to investigate the effects of 
virtual reality on training for an unfamiliar but simple task. The experiment is broken into 
two parts--Reality and Virtual Reality--followed by a questionnaire about your experience. 
In both parts, your task is to trace a straight line from left to right while holding a remote. 
(Show physical equipment.) Your goal is to complete the task as quickly and accurately 
as possible. You may stop the experiment at any time if you do not want to continue. Do 
you have any questions? 
 
Instructions for Physical Environment 
For this part of the experiment, you will be holding this pointer to trace a straight line from 
left to right. There are two metal plates on here that will detect when you touch it. Behind 
it is a piece of glass that you’re supposed to trace on. The goal is to not touch the metal 
and trace the line as accurately as possible. When you pick up the pointer, hold it like a 
remote control with your thumb on top. Extend your arm in a comfortable position until you 
can reach the board, but without locking your elbow. Please make sure you are sitting up 
straight. 
 
We will start with 3 practice runs. Make sure you start on the left edge. Keep the pace by 
counting to three seconds… 1 thousand, 2 thousand, 3 thousand, and you should be done 
tracing the whole line. Go ahead and start your practice runs. (Do 3 practice runs.) Are 
you done with your practice runs? We will now start recording. (Clear the timer) 
 
Remember the goal is to not touch the metal. I will count to 3 and say Go. It is important 
that as soon as you finish, you must say Stop and I will stop the timer. Any questions? 
Ready? 1, 2, 3, Go. (Record the error and total time. Clear the timers. Repeat three times.) 
We are now done with this part of the experiment. Please give me a moment to setup the 
next experiment. 
 
Instructions for Virtual Environment 
For this part of the experiment, you will be wearing a VR headset and using a controller to 
trace a straight line from left to right. Before we begin, there are several things you should 
know. 
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1) You will only be wearing the headset for about 5 minutes or less. 
2) The headset will completely obstruct your vision, but you will see where the 

controller is. 
3) The headset is secured to your head, but you will feel about a pound of weight as 

it rests on your face. 
4) I wipe the cushion after every use, but you may also put a tissue around the 

cushion if you’d like. 
5) (Glasses Optional) Please keep your glasses on at first. You can take them off if it 

is uncomfortable or if your vision is not affected. 
 
First, I need you to measure your eye distance to customize the fit. You can change the 
distance with this knob on the bottom left of the headset after you put it on. When you pick 
up the controller, hold it below the trigger and do not pull the trigger or press any buttons. 
If you accidentally press something, it won’t do anything except make your arm shake and 
affect the accuracy of the line. Extend your arm in a comfortable position until you can 
reach the board, but without locking your elbow. Please make sure you are sitting up 
straight. Now, it’s time to put on the headset. (Help them adjust the headset and then 
check.) How does everything feel? Can you see? You can use this knob to adjust the 
vision. 
 
Now pick up the controller. Do you see the red line where the arrow is pointing to? Try to 
touch It with your pointer. You will be using the pointer to trace a straight line from left to 
right on the colored surface. You want the tip of the pointer on the surface and inside the 
grey guides. There are 3 colors to help you perceive depth and accuracy. 

• Green is good, it means you are on the surface and within the accurate range. 
• Yellow is medium, it means you are on the surface, but not within the accurate 

range. 
• And Red means you are not touching the surface at all, meaning the depth of the 

pointer is too far away or too far into the board. 
The goal is to stay on the surface and keep it Green as much as possible and trace the 
line as accurately as possible. If you feel uncomfortable at any time, please tell me and I 
will stop the experiment. 
 
We will start with 3 practice runs. Make sure you start on the left edge. Keep the pace by 
counting to three seconds… 1 thousand, 2 thousand, 3 thousand and you should be done. 
Go ahead and start your practice runs. (Do 3 practice runs.) Are you done with your 
practice runs? We will now start recording. 
 
Remember the goal is to stay on the surface and keep the line green. I will count to 3 and 
say Go. Any questions? Ready? 1, 2, 3, Go. (Backspace to clear timer before each run. 
Spacebar to enter results after each run. Repeat three times.) We are now done with this 
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part of the experiment. You can take the headset off now. Please give me a moment to 
setup the next experiment. 
 
Conclusion 
We are now done with the experiment. I have a questionnaire for you to fill it out. If you 
would like, I will notify you about my results and thesis defense. Thank you again for 
participating! Please take it to the front cubicle and leave it in the folder. You are free to 
leave when you’re done. Thanks! 
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Appendix C. Post-Experiment Questionnaire 

General 

1. Subject Number: 

2. Email (if interested in the results/defense): 

3. Age: 

4. Class Level: Freshman Sophomore  Junior Senior  Graduate
 N/A 

5. Major: 

6. Gender (Circle One): Male Female 

7. Was the task of drawing a straight line with a remote unfamiliar to you? 
Yes No 

8. Which environment would you recommend for training somebody else in the 
same task? Physical Virtual 

9. Which environment did you prefer overall? Physical Virtual 

 
Physical Environment 

10. On a scale from 1 to 5 (with 1=difficult and 5=easy), how easy was it to complete 
the task in the physical environment? 
1 2 3 4 5 
Why? 

11. On a scale from 1 to 5 (with 1=uncomfortable and 5=very comfortable), how 
comfortable was the equipment while performing the task in the physical 
environment? 
1 2 3 4 5 
Why? 

12. On a scale from 1 to 5 (with 1=least strain and 5=most strain), how much muscle 
strain did you feel while performing the task in the physical environment? 
1 2 3 4 5 
If yes, please describe what you felt and where (hand, arm, face, etc.): 

13. On a scale from 1 to 5 (with 1=least reliable and 5=most reliable), how reliable 
was the equipment in completing this task in the physical experiment? (Did you 
perceive that the equipment worked the way it was intended to?) 
1 2 3 4 5 
Why? 
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14. On a scale from 1 to 5 (with 1=least effective and 5=most effective), how 
effective is the physical environment for training people for this task? 
1 2 3 4 5 
Why? 

15. What did you like about the physical experiment? 

16. What did you dislike? What are your suggestions for improvement? 

 
Virtual Reality Environment 

17. On a scale from 1 to 5 (with 1=difficult and 5=easy), how easy was it to complete 
the task in the virtual environment? 
1 2 3 4 5 
Why? 
Do you have suggestions to improve ease of use? 

18. On a scale from 1 to 5 (with 1=uncomfortable and 5=very comfortable), how 
comfortable was the equipment while performing the task in the virtual 
environment? 
1 2 3 4 5 
Why? 
Do you have suggestions to improve comfort? 

19. On a scale from 1 to 5 (with 1=least strain and 5=most strain), how much muscle 
strain did you feel while performing the task in the virtual environment? 
1 2 3 4 5 
If yes, please describe what you felt and where (hand, arm, face, etc.): 

20. On a scale from 1 to 5 (with 1=least reliable and 5=most reliable), how reliable 
was the equipment in completing this task in the virtual experiment? (Did you 
perceive that the equipment worked the way it was intended to?) 
1 2 3 4 5 
Why? 

21. On a scale from 1 to 5 (with 1=least effective and 5=most effective), how 
effective is the virtual environment for training people for this task? 
1 2 3 4 5 
Why? 

22. What did you like about the virtual reality experiment? 

23. What did you dislike? What are your suggestions for improvement? 

24. Did you notice any delay between your motion and the visual feedback in virtual 
reality?  Did it affect your ability to complete the task? How so? 
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25. Did you experience headache, disorientation, confusion, dizziness, or any other 
physical discomfort? 
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Appendix D. Statistics and ANOVAs 

Table 7. ANOVA for Data: Average Error Ratio. Effects: Gap, Gender, Environment, 
Block(Gap, Gender). Interaction between Environment and Gap is significant. 

Analysis of Variance 
 
Source                    DF   Adj SS   Adj MS  F-Value  P-Value 
  Gap                      3  0.53005  0.17668    17.77    0.000 
  Gender                   1  0.00108  0.00108     0.11    0.743 
  Environment              1  3.23299  3.23299   325.19    0.000 
  Gap*Gender               3  0.00692  0.00231     0.23    0.873 
  Environment*Gap          3  0.36600  0.12200    12.27    0.000 
  Environment*Gender       1  0.01605  0.01605     1.61    0.211 
  Environment*Gap*Gender   3  0.00770  0.00257     0.26    0.855 
  Block(Gap, Gender)      40  0.34773  0.00869     0.87    0.663 
Error                     40  0.39767  0.00994 
Total                     95  4.90620 
 
Model Summary 
        S    R-sq  R-sq(adj)  R-sq(pred) 
0.0997085  91.89%     80.75%      53.31% 
 

 

Table 8. ANOVA for Data: Average Error Ratio. Effects: Gap, Gender, Environment, 
Direction, Block(Gap, Gender, Direction). Direction does not have a significant effect. 
Analysis of Variance 
 
Source                         DF   Adj SS   Adj MS  F-Value  P-Value 
  Gap                           3  0.53005  0.17668    18.30    0.000 
  Gender                        1  0.00108  0.00108     0.11    0.740 
  Envmt                         1  3.23299  3.23299   334.93    0.000 
  Directn                       1  0.00136  0.00136     0.14    0.710 
  Gap*Gender                    3  0.00692  0.00231     0.24    0.868 
  Envmt*Gap                     3  0.36600  0.12200    12.64    0.000 
  Gap*Directn                   3  0.05338  0.01779     1.84    0.159 
  Gender*Directn                1  0.00051  0.00051     0.05    0.820 
  Gap*Gender*Directn            3  0.03151  0.01050     1.09    0.368 
  Block(Gap, Gender, Directn)  32  0.26097  0.00816     0.84    0.682 
  Envmt*Gender                  1  0.01605  0.01605     1.66    0.207 
  Envmt*Directn                 1  0.00533  0.00533     0.55    0.463 
  Envmt*Gap*Gender              3  0.00770  0.00257     0.27    0.849 
  Envmt*Gap*Directn             3  0.07105  0.02368     2.45    0.081 
  Envmt*Gender*Directn          1  0.00000  0.00000     0.00    0.985 
  Envmt*Gap*Gender*Directn      3  0.01240  0.00413     0.43    0.734 
Error                          32  0.30889  0.00965 
Total                          95  4.90620 
 
Model Summary 
        S    R-sq  R-sq(adj)  R-sq(pred) 
0.0982489  93.70%     81.31%      43.34% 
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Table 9. ANOVA for Data: Change in Average Error Ratio. Effects: Gender, Gap, 
Direction of Randomized Test Sequence. 

Analysis of Variance 
 
Source                  DF   Adj SS    Adj MS  F-Value  P-Value 
  Gender                 1  0.03209  0.032091     1.66    0.207 
  Gap                    3  0.73201  0.244002    12.64    0.000 
  Direction              1  0.01065  0.010654     0.55    0.463 
  Gap*Gender             3  0.01540  0.005133     0.27    0.849 
  Gap*Direction          3  0.14210  0.047366     2.45    0.081 
  Gender*Direction       1  0.00001  0.000007     0.00    0.985 
  Gap*Gender*Direction   3  0.02480  0.008267     0.43    0.734 
Error                   32  0.61778  0.019306 
Total                   47  1.57484 
 
Model Summary 
       S    R-sq  R-sq(adj)  R-sq(pred) 
0.138945  60.77%     42.38%      11.74% 
 

 

Table 10. ANOVA for Data: Change in Average Error Ratio. Effects: Overall 
Environmental Preference, Gender, Gap. 

Analysis of Variance 
 
Source                    DF   Adj SS    Adj MS  F-Value  P-Value 
  OverallPref              1  0.09058  0.090578     5.39    0.027 
  Gender                   1  0.02826  0.028261     1.68    0.204 
  Gap                      3  0.70148  0.233825    13.92    0.000 
  OverallPref*Gender       1  0.00909  0.009087     0.54    0.468 
  OverallPref*Gap          3  0.06150  0.020500     1.22    0.319 
  Gender*Gap               3  0.02207  0.007356     0.44    0.727 
  OverallPref*Gender*Gap   3  0.05131  0.017102     1.02    0.398 
Error                     31  0.52060  0.016793 
Total                     46  1.52637 
 
Model Summary 
       S    R-sq  R-sq(adj)  R-sq(pred) 
0.129590  65.89%     49.39%           * 
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Table 11. ANOVA for Data: Change in Average Error Ratio. Effects: Environmental 
Preference for Training, Gender, Gap. 

Analysis of Variance 
 
Source              DF   Adj SS    Adj MS  F-Value  P-Value 
  TrainPref          1  0.00072  0.000718     0.03    0.855 
  Gender             1  0.06960  0.069603     3.27    0.079 
  Gap                3  0.58754  0.195848     9.21    0.000 
  TrainPref*Gender   1  0.03543  0.035435     1.67    0.205 
  TrainPref*Gap      3  0.02744  0.009147     0.43    0.733 
  Gender*Gap         3  0.02551  0.008504     0.40    0.754 
Error               35  0.74439  0.021268 
  Lack-of-Fit        2  0.11315  0.056573     2.96    0.066 
  Pure Error        33  0.63124  0.019129 
Total               47  1.57484 
 
Model Summary 
       S    R-sq  R-sq(adj)  R-sq(pred) 
0.145836  52.73%     36.53%           * 
 

 

 


