55 research outputs found

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    Contribution to ground-based and UAV SAR systems for Earth observation

    Get PDF
    Mankind's way of life is the main driver of a planetary-scale change that is marked by the growing of human population's demand of energy, food, goods, services and information. As a result, it have emerged new ecological, economical, social and geopolitical concerns. In this scenario, SAR remote sensing is a potential tool that provides unique information about the Earth's properties and processes that can be used to solve societal challenges of local and global dimension. SARs, which are coherent systems that are able to provide high resolution images with weather independence, represent a suitable alternative for EO with diverse applications. Some examples of SAR application areas are topography (DEM generation with interferometry), agriculture (crop classification or soil moisture), or geology (monitoring surface deformation). In this framework, the encompassing objective of the present doctoral work has been part of the implementation and the subsequent evaluation of capabilities of two X-band SAR sensors. On the one hand, the RISKSAR-X radar designed to be operated at ground to monitor small-scale areas of observation and, on the other, the ARBRES-X sensor designed to be integrated into small UAVs. Despite its inherently dissimilar conception, the concurrence of both sensors has been evidenced along this manuscript. By taking advantage of the similarities between them, it has been possible to analogously assess both sensors to obtain conclusions. In this context, the common link has been the development of the polarimetric OtF operation mode of the RISKSAR-X, allowing this sensor to be operated equivalently to the ARBRES-X. Regarding the RISKSAR-X SAR sensor, several hardware contributions have been developed during part of this Ph.D. with the aim of improving the system performance. By endowing the system with the capability to operate in the fully polarimetric OtF acquisition mode, the relative long scanning time has been reduced. It is of great interest since the measured scatterers that present a short term variable reflectivity during the scanning time, such as moving vegetation, may degrade the extracted parameters from the retrieved data and the SAR image reconstruction. During this doctoral activity, it has been studied the image blurring, the decorrelation and the coherence degradation introduced by this effect. Furthermore, a new term in the differential interferometric coherence that takes into account the image blurring has been introduced. Concerning the ARBRES-X SAR system, one of the main objectives pursued during this Ph.D. has been the integration of the sensor into a small UAV MP overcoming restrictions of weight, size and aerodynamics of the platform. The use of this type of platforms is expected to open up new possibilities in airborne SAR remote sensing, since it offers much more versatility than the commonly used fixed wings UAVs. Different innovative flight strategies with this type of platforms have been assessed and some preliminary results have been obtained with the use of the ARBRES-X SAR system. During the course of the present doctoral work, much effort has been devoted to achieve the first experimental repeat-pass interfereometric results obtained with the UAV MP together with the ARBRES-X. Moreover, the sensor has been endowed with fully polarimetric capabilities by applying the improvements developed to the RISKSAR-X radar, which is another example of the duality between both systems. Finally, a vertical and a semicircular aperture have been successfully performed obtaining SLC images of the scenario, which envisages the capability of the UAV MP to perform tomographic images and complete circular apertures in the future. In conclusion, the UAV MP is a promising platform that opens new potentials for several applications, such as repeat-pass interferometry or differential tomography imaging with the realization of almost arbitrary trajectories.El mode de viure de la humanitat és el principal motor d'un canvi a escala planetària que està marcat per la creixent demanda d'energia, d'aliment, de béns, de serveis i d'informació de les poblacions humanes. Com a resultat, han sorgit noves inquietuds ecològiques, econòmiques, socials i geopolítiques. En aquest escenari, la detecció remota SAR és una eina potencial que proporciona informació única sobre les propietats i processos de la Terra que es pot utilitzar per resoldre reptes socials de dimensió local i global. Els SARs, que són sistemes coherents que poden proporcionar imatges d'alta resolució amb independència del temps, representen una alternativa adequada per a l'observació de la Terra. Alguns exemples d'àrees d'aplicació SAR són la topografia (generació de DEM amb interferometria), l'agricultura (classificació de cultius o humitat del sòl) o la geologia (monitoratge de deformació superficial). En aquest context, l'objectiu general del present doctorat ha estat part de la implementació i posterior avaluació de les capacitats de dos sensors SAR de banda X. D'una banda, el radar RISKSAR-X dissenyat per funcionar a terra i monitoritzar àrees d'observació a petita escala i, d'altra, el sensor ARBRES-X dissenyat per ser integrat en petits UAVs. Malgrat la seva concepció inherentment diferent, la concurrència d'ambdós sensors s'ha evidenciat al llarg d'aquest manuscrit. Aprofitant les similituds entre ells, s'han pogut avaluar de forma anàloga els dos sensors per obtenir conclusions. En aquest sentit, el vincle comú ha estat el desenvolupament del mode de funcionament polimètric OtF del RISKSAR-X, permetent que aquest sensor operi de forma equivalent a l'ARBRES-X. Pel que fa al sensor RISKSAR-X, s'han desenvolupat diverses contribucions hardware durant part d'aquest doctorat amb l'objectiu de millorar el rendiment del sistema. En dotar el sistema de la possibilitat d'operar en el mode d'adquisició totalment polarimètric OtF, s'ha reduït el relatiu llarg temps d'escaneig. Això és de gran interès ja que els blancs mesurats que presenten una reflectivitat variable a curt termini, com ara la vegetació en moviment, poden degradar els paràmetres extrets de les dades recuperades i la reconstrucció d'imatges SAR. Durant aquesta activitat doctoral s'ha estudiat el desenfocat de la imatge, la decorrelació i la degradació de la coherència introduïts per aquest efecte. A més, s'ha introduït un nou terme en la coherència interferomètrica diferencial que té en compte el desenfocat de la imatge. Pel que fa al sistema ARBRES-X, un dels principals objectius perseguits durant aquest doctorat ha estat la integració del sensor en un petit UAV MP superant les restriccions de pes, grandària i aerodinàmica de la plataforma. S'espera que l'ús d'aquest tipus de plataformes obri noves possibilitats en la detecció remota SAR aerotransportada, ja que ofereix molta més versatilitat que els UAV d'ales fixes habituals. S'han avaluat diferents estratègies de vol innovadores amb aquest tipus de plataformes i s'han obtingut resultats preliminars amb l'ús del sistema ARBRES-X. Durant el transcurs del present treball, s'ha dedicat molt esforç a assolir els primers resultats experimentals d'interferometria de múltiple passada obtinguts amb l'UAV MP conjuntament amb l'ARBRES-X. A més, el sensor ha estat dotat de capacitats totalment polarimètriques aplicant les millores desenvolupades al radar RISKSAR-X, el qual constitueix un altre exemple de la dualitat entre ambdós sistemes. Finalment, s'han realitzat amb èxit una apertura vertical i semicircular obtenint imatges SLC de l'escenari, el qual permet preveure la capacitat de l'UAV MP per a realitzar imatges tomogràfiques i apertures circulars completes en el futur. En conclusió, l'UAV MP és una plataforma prometedora que obre nous potencials per a diverses aplicacions, com ara la interferometria de múltiple passada o la tomografia diferencial amb la realització de trajectòries gairebé arbitràries

    Contribution to ground-based and UAV SAR systems for Earth observation

    Get PDF
    Mankind's way of life is the main driver of a planetary-scale change that is marked by the growing of human population's demand of energy, food, goods, services and information. As a result, it have emerged new ecological, economical, social and geopolitical concerns. In this scenario, SAR remote sensing is a potential tool that provides unique information about the Earth's properties and processes that can be used to solve societal challenges of local and global dimension. SARs, which are coherent systems that are able to provide high resolution images with weather independence, represent a suitable alternative for EO with diverse applications. Some examples of SAR application areas are topography (DEM generation with interferometry), agriculture (crop classification or soil moisture), or geology (monitoring surface deformation). In this framework, the encompassing objective of the present doctoral work has been part of the implementation and the subsequent evaluation of capabilities of two X-band SAR sensors. On the one hand, the RISKSAR-X radar designed to be operated at ground to monitor small-scale areas of observation and, on the other, the ARBRES-X sensor designed to be integrated into small UAVs. Despite its inherently dissimilar conception, the concurrence of both sensors has been evidenced along this manuscript. By taking advantage of the similarities between them, it has been possible to analogously assess both sensors to obtain conclusions. In this context, the common link has been the development of the polarimetric OtF operation mode of the RISKSAR-X, allowing this sensor to be operated equivalently to the ARBRES-X. Regarding the RISKSAR-X SAR sensor, several hardware contributions have been developed during part of this Ph.D. with the aim of improving the system performance. By endowing the system with the capability to operate in the fully polarimetric OtF acquisition mode, the relative long scanning time has been reduced. It is of great interest since the measured scatterers that present a short term variable reflectivity during the scanning time, such as moving vegetation, may degrade the extracted parameters from the retrieved data and the SAR image reconstruction. During this doctoral activity, it has been studied the image blurring, the decorrelation and the coherence degradation introduced by this effect. Furthermore, a new term in the differential interferometric coherence that takes into account the image blurring has been introduced. Concerning the ARBRES-X SAR system, one of the main objectives pursued during this Ph.D. has been the integration of the sensor into a small UAV MP overcoming restrictions of weight, size and aerodynamics of the platform. The use of this type of platforms is expected to open up new possibilities in airborne SAR remote sensing, since it offers much more versatility than the commonly used fixed wings UAVs. Different innovative flight strategies with this type of platforms have been assessed and some preliminary results have been obtained with the use of the ARBRES-X SAR system. During the course of the present doctoral work, much effort has been devoted to achieve the first experimental repeat-pass interfereometric results obtained with the UAV MP together with the ARBRES-X. Moreover, the sensor has been endowed with fully polarimetric capabilities by applying the improvements developed to the RISKSAR-X radar, which is another example of the duality between both systems. Finally, a vertical and a semicircular aperture have been successfully performed obtaining SLC images of the scenario, which envisages the capability of the UAV MP to perform tomographic images and complete circular apertures in the future. In conclusion, the UAV MP is a promising platform that opens new potentials for several applications, such as repeat-pass interferometry or differential tomography imaging with the realization of almost arbitrary trajectories.El mode de viure de la humanitat és el principal motor d'un canvi a escala planetària que està marcat per la creixent demanda d'energia, d'aliment, de béns, de serveis i d'informació de les poblacions humanes. Com a resultat, han sorgit noves inquietuds ecològiques, econòmiques, socials i geopolítiques. En aquest escenari, la detecció remota SAR és una eina potencial que proporciona informació única sobre les propietats i processos de la Terra que es pot utilitzar per resoldre reptes socials de dimensió local i global. Els SARs, que són sistemes coherents que poden proporcionar imatges d'alta resolució amb independència del temps, representen una alternativa adequada per a l'observació de la Terra. Alguns exemples d'àrees d'aplicació SAR són la topografia (generació de DEM amb interferometria), l'agricultura (classificació de cultius o humitat del sòl) o la geologia (monitoratge de deformació superficial). En aquest context, l'objectiu general del present doctorat ha estat part de la implementació i posterior avaluació de les capacitats de dos sensors SAR de banda X. D'una banda, el radar RISKSAR-X dissenyat per funcionar a terra i monitoritzar àrees d'observació a petita escala i, d'altra, el sensor ARBRES-X dissenyat per ser integrat en petits UAVs. Malgrat la seva concepció inherentment diferent, la concurrència d'ambdós sensors s'ha evidenciat al llarg d'aquest manuscrit. Aprofitant les similituds entre ells, s'han pogut avaluar de forma anàloga els dos sensors per obtenir conclusions. En aquest sentit, el vincle comú ha estat el desenvolupament del mode de funcionament polimètric OtF del RISKSAR-X, permetent que aquest sensor operi de forma equivalent a l'ARBRES-X. Pel que fa al sensor RISKSAR-X, s'han desenvolupat diverses contribucions hardware durant part d'aquest doctorat amb l'objectiu de millorar el rendiment del sistema. En dotar el sistema de la possibilitat d'operar en el mode d'adquisició totalment polarimètric OtF, s'ha reduït el relatiu llarg temps d'escaneig. Això és de gran interès ja que els blancs mesurats que presenten una reflectivitat variable a curt termini, com ara la vegetació en moviment, poden degradar els paràmetres extrets de les dades recuperades i la reconstrucció d'imatges SAR. Durant aquesta activitat doctoral s'ha estudiat el desenfocat de la imatge, la decorrelació i la degradació de la coherència introduïts per aquest efecte. A més, s'ha introduït un nou terme en la coherència interferomètrica diferencial que té en compte el desenfocat de la imatge. Pel que fa al sistema ARBRES-X, un dels principals objectius perseguits durant aquest doctorat ha estat la integració del sensor en un petit UAV MP superant les restriccions de pes, grandària i aerodinàmica de la plataforma. S'espera que l'ús d'aquest tipus de plataformes obri noves possibilitats en la detecció remota SAR aerotransportada, ja que ofereix molta més versatilitat que els UAV d'ales fixes habituals. S'han avaluat diferents estratègies de vol innovadores amb aquest tipus de plataformes i s'han obtingut resultats preliminars amb l'ús del sistema ARBRES-X. Durant el transcurs del present treball, s'ha dedicat molt esforç a assolir els primers resultats experimentals d'interferometria de múltiple passada obtinguts amb l'UAV MP conjuntament amb l'ARBRES-X. A més, el sensor ha estat dotat de capacitats totalment polarimètriques aplicant les millores desenvolupades al radar RISKSAR-X, el qual constitueix un altre exemple de la dualitat entre ambdós sistemes. Finalment, s'han realitzat amb èxit una apertura vertical i semicircular obtenint imatges SLC de l'escenari, el qual permet preveure la capacitat de l'UAV MP per a realitzar imatges tomogràfiques i apertures circulars completes en el futur. En conclusió, l'UAV MP és una plataforma prometedora que obre nous potencials per a diverses aplicacions, com ara la interferometria de múltiple passada o la tomografia diferencial amb la realització de trajectòries gairebé arbitràries.Postprint (published version

    Coherent Change Detection Under a Forest Canopy

    Get PDF
    Coherent change detection (CCD) is an established technique for remotely monitoring landscapes with minimal vegetation or buildings. By evaluating the local complex correlation between a pair of synthetic aperture radar (SAR) images acquired on repeat passes of an airborne or spaceborne imaging radar system, a map of the scene coherence is obtained. Subtle disturbances of the ground are detected as areas of low coherence in the surface clutter. This thesis investigates extending CCD to monitor the ground in a forest. It is formulated as a multichannel dual-layer coherence estimation problem, where the coherence of scattering from the ground is estimated after suppressing interference from the canopy by vertically beamforming multiple image channels acquired at slightly different grazing angles on each pass. This 3D SAR beamforming must preserve the phase of the ground response. The choice of operating wavelength is considered in terms of the trade-off between foliage penetration and change sensitivity. A framework for comparing the performance of different radar designs and beamforming algorithms, as well as assessing the sensitivity to error, is built around the random-volume-over-ground (RVOG) model of forest scattering. If the ground and volume scattering contributions in the received echo are of similar strength, it is shown that an L-band array of just three channels can provide enough volume attenuation to permit reasonable estimation of the ground coherence. The proposed method is demonstrated using an RVOG clutter simulation and a modified version of the physics-based SAR image simulator PolSARproSim. Receiver operating characteristics show that whilst ordinary single-channel CCD is unusable when a canopy is present, 3D SAR CCD permits reasonable detection performance. A novel polarimetric filtering algorithm is also proposed to remove contributions from the ground-trunk double-bounce scattering mechanism, which may mask changes on the ground near trees. To enable this kind of polarimetric processing, fully polarimetric data must be acquired and calibrated. Motivated by an interim version of the Ingara airborne imaging radar, which used a pair of helical antennas to acquire circularly polarised data, techniques for the estimation of polarimetric distortion in the circular basis are investigated. It is shown that the standard approach to estimating cross-talk in the linear basis, whereby expressions for the distortion of reflection-symmetric clutter are linearised and solved, cannot be adapted to the circular basis, because the first-order effects of individual cross-talk parameters cannot be distinguished. An alternative approach is proposed that uses ordinary and gridded trihedral corner reflectors, and optionally dihedrals, to iteratively estimate the channel imbalance and cross-talk parameters. Monte Carlo simulations show that the method reliably converges to the true parameter values. Ingara data is calibrated using the method, with broadly consistent parameter estimates obtained across flights. Genuine scene changes may be masked by coherence loss that arises when the bands of spatial frequencies supported by the two passes do not match. Trimming the spatial-frequency bands to their common area of support would remove these uncorrelated contributions, but the bands, and therefore the required trim, depend on the effective collection geometry at each pixel position. The precise dependence on local slope and collection geometry is derived in this thesis. Standard methods of SAR image formation use a flat focal plane and allow only a single global trim, which leads to spatially varying coherence loss when the terrain is undulating. An image-formation algorithm is detailed that exploits the flexibility offered by back-projection not only to focus the image onto a surface matched to the scene topography but also to allow spatially adaptive trimming. Improved coherence is demonstrated in simulation and using data from two airborne radar systems.Thesis (Ph.D.) -- University of Adelaide, School of Electrical & Electronic Engineering, 202

    Efficient algorithms for three-dimensional near-field synthetic aperture radar imaging [online]

    Get PDF

    Aeronautical engineering: A continuing bibliography with indexes (supplement 319)

    Get PDF
    This report lists 349 reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles

    Study on THz Imaging System for Concealed Threats Detection.

    Get PDF
    PhD ThesisMany research groups have conducted studies on Terahertz technology for various applications in the last decades. THz imaging for personnel screening is one prospective application due in part to its superior performance compared with imaging microwave bands. Because of the demand for the accurate detection, it is desirable to devise a high-performance THz imaging system for concealed threats detection. Therefore, this thesis presents my research on the low-cost THz imaging system for security detection. The key contributions of this research lie in investigating the linear sparse periodic array (SPA) THz imaging system for concealed threats detection, improving the traditional reconstruction algorithm of Generalized Synthetic Aperture Focusing Technique (GSAFT) to suppress the ghost images and applying the compressive sensing technique into the proposed SPA-THz imaging system to reduce the sampling data but maintain the image quality. The first part of the work is to investigate the linear sparse periodic array (SPA) and its configuration with large element spacing in simulation, deriving the design guideline for such a SPA THz imaging system. Meanwhile, the improved GSAFT reconstruction algorithm and multi-pass interferometric synthetic aperture imaging technique have been proposed to suppress the ghost image and improve the image quality, respectively. Secondly, the compressive sensing technique has been investigated to reduce the sampling data. Therefore, we have proposed the corresponding discrete CS SPA-THz reconstruction model and verified it in simulation. Finally, we have devised a simplified experimental set-up to assess the practical imaging performance, verifying the proposed SPA-THz imaging system. The set-up only uses 1 Tx and 1 Rx scanning on two separate tracks to effectively realize the proposed imaging system. The reconstructed images by the GSAFT and CS approaches with the measured data have both shown good consistency with the simulated results, respectively. And the multi-pass interferometric synthetic aperture imaging has been experimentally proved effective in improving image SNR and contras

    Metasurfaces for ultrathin optical devices with unusual functionalities

    Get PDF
    Metamaterials are artificial materials that are made from periodically arranged structures, showing properties that cannot be found in nature. The response of a metamaterial to the external field is defined by the geometry, orientation, and distribution of the artificial structures. Many groundbreaking discoveries, such as negative refraction, and super image resolution has been demonstrated based on metamaterials. Nevertheless, the difficulty in three-dimensional fabrication, especially when the operating band is located in the optical range, hinders their practical applications. As a two-dimensional counterpart, a metasurface consists of an array of planar optical antennas, which locally modify the properties of the scattered light. Metasurfaces do not require complicated three-dimensional nanofabrication techniques, and the complexity of the fabrication is greatly reduced. Also, the thickness of a metasurface can be deep subwavelength, making it possible to realize ultrathin devices. In this thesis, geometric metasurfaces are utilized to realize a series of optical devices with unusual functionalities. Phase gradient metasurface is used to split the incident light into left-handed polarized (LCP) and right-handed polarized (RCP) components, whose intensities can be used to determine the polarization state of the incident light. Then we propose a method to integrate two optical elements with different functionalities into a single metasurface device, and its overall performance is determined by the polarization of the incident light. After that, a helicity multiplexed metasurface hologram is demonstrated to reconstruct two images with high efficiency and broadband. The two images swap their positions with the helicity reversion of the incident light. Finally, a polarization rotator is presented, which can rotate the incident light to arbitrary polarization direction by using the non-chiral metasurface. The proposed metasurface devices may inspire the development of new optical devices, and expand the applications of metasurfaces in integrated optical systems

    Research and Technology Objectives and Plans Summary (RTOPS)

    Get PDF
    This publication represents the NASA research and technology program for FY-93. It is a compilation of the Summary portions of each of the RTOP's (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOP's is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number

    A Priori Knowledge-Based Post-Doppler STAP for Traffic Monitoring with Airborne Radar

    Get PDF
    Die Verkehrsüberwachung gewinnt aufgrund des weltweiten Anstiegs der Verkehrsteilnehmer immer mehr an Bedeutung. Sicherer und effizierter Straßenverkehr erfordert detaillierte Verkehrsinformationen. Häufig sind diese lediglich stationär, räumlich stark begrenzt und meist nur auf Hauptverkehrsstraßen verfügbar. In dieser Hinsicht ist ein Ausfall des Telekommunikationsnetzes, beispielsweise im Falle einer Katastrophe, und der damit einhergehende Informationsverlust als kritisch einzustufen. Flugzeuggetragene Radarsysteme mit synthetischer Apertur (eng. Synthetic Aperture Radar - SAR) können für dieses Szenario eine Lösung darstellen, da sie großflächig hochauflösende Bilder generieren können, unabhängig von Tageslicht und Witterungsbedingungen. Sie ermöglichen aufgrund dieser Charakteristik die Detektion von Bewegtzielen am Boden (eng. ground moving target indication – GMTI). Moderne GMTI-Algorithmen und -Systeme, die prinzipiell für die Verkehrsüberwachung verwendbar sind, wurden in der Literatur bereits diskutiert. Allerdings ist die Robustheit dieser Systeme oft mit hohen Kosten, hoher Hardwarekomplexität und hohem Rechenaufwand verbunden. Diese Dissertation stellt einen neuartigen GMTI-Prozessor vor, der auf dem Radar-Mehrkanalverfahren post-Doppler space-time adaptive processing (PD STAP) basiert. Durch die Überlagerung einer Straßenkarte mit einem digitalen Höhenmodell ist es mithilfe des PD STAP möglich, Falschdetektionen zu erkennen und auszuschließen sowie die detektierten Fahrzeuge ihren korrekten Straßenpositionen zu zuordnen. Die präzisen Schätzungen von Position, Geschwindigkeit und Bewegungsrichtung der Fahrzeuge können mit vergleichsweise geringerer Hardware-Komplexität zu niedrigeren Kosten durchgeführt werden. Ferner wird im Rahmen dieser Arbeit ein effizienter Datenkalibrierungsalgorithmus erläutert, der das Ungleichgewicht zwischen den Empfangskanälen sowie die Variation des Dopplerschwerpunkts über Entfernung und Azimut korrigiert und so das Messergebnis verbessert. Darüber hinaus werden neue und automatisierte Strategien zur Erhebung von Trainingsdaten vorgestellt, die für die Schätzung der Clutter-Kovarianzmatrix wegen ihres direkten Einflusses auf die Clutter-Unterdrückung und Zieldetektion essentiell für PD STAP sind. Der neuartige PD STAP Prozessor verfügt über drei verschiedene Betriebsarten, die für militärische und zivile Anwendungen geeignet sind, darunter ein schneller Verarbeitungsalgorithmus der das Potential für eine zukünftige Echtzeit-Verkehrsüberwachung hat. Alle Betriebsarten wurden erfolgreich mit Radar-Mehrkanaldaten des flugzeuggetragenen F-SAR-Radarsensors des DLR getestet
    corecore