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Abstract 
 

Many research groups have conducted studies on Terahertz technology for various 

applications in the last decades. THz imaging for personnel screening is one 

prospective application due in part to its superior performance compared with imaging 

microwave bands. Because of the demand for the accurate detection, it is desirable to 

devise a high-performance THz imaging system for concealed threats detection. 

Therefore, this thesis presents my research on the low-cost THz imaging system for 

security detection.  

The key contributions of this research lie in investigating the linear sparse periodic 

array (SPA) THz imaging system for concealed threats detection, improving the 

traditional reconstruction algorithm of Generalized Synthetic Aperture Focusing 

Technique (GSAFT) to suppress the ghost images and applying the compressive 

sensing technique into the proposed SPA-THz imaging system to reduce the sampling 

data but maintain the image quality.  

The first part of the work is to investigate the linear sparse periodic array (SPA) and its 

configuration with large element spacing in simulation, deriving the design guideline 

for such a SPA THz imaging system. Meanwhile, the improved GSAFT reconstruction 

algorithm and multi-pass interferometric synthetic aperture imaging technique have 

been proposed to suppress the ghost image and improve the image quality, respectively. 

Secondly, the compressive sensing technique has been investigated to reduce the 

sampling data. Therefore, we have proposed the corresponding discrete CS SPA-THz 

reconstruction model and verified it in simulation. Finally, we have devised a 

simplified experimental set-up to assess the practical imaging performance, verifying 

the proposed SPA-THz imaging system. The set-up only uses 1 Tx and 1 Rx scanning 

on two separate tracks to effectively realize the proposed imaging system. The 

reconstructed images by the GSAFT and CS approaches with the measured data have 

both shown good consistency with the simulated results, respectively. And the multi-

pass interferometric synthetic aperture imaging has been experimentally proved 

effective in improving image SNR and contrast. 
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 Introduction 

1.1. Background of Security Detection 

Terahertz wave is between microwaves and infrared light waves and it generally 

refers to the frequency band ranging from 100 GHz to 10 THz. It exhibits no health 

hazard due to its non-ionizing characteristic and is capable of penetrating through 

cloud, fog and clothing. Therefore, it has various applications in communication, 

material analysis and imaging. Regarding the THz imaging, it covers radio astronomy, 

biological research, personnel screening, and radar because it not only offers a higher 

spatial resolution due to its shorter wavelength but also has spectroscopic signatures 

for identification. Besides, personnel screening for detecting concealed threats like 

handguns and explosives is increasingly demanded in a variety of public gatherings 

such as airports, train stations and critical infrastructures due to increasing terrorist 

attacks. Though THz imaging has been proven to be a useful technique for the threats 

detection in the last decades, the challenges still exist in achieving high resolution, 

real-time operation and low-cost practical implementation [1-3]. 

There are two categories of the imaging modes: active and passive imaging. 

Passive imaging system only relies on emissivity or temperature differences to form 

images of the human body and concealed items [4-19]. This kind of system is capable 

of achieving high resolution either using shorter wavelengths or synthesizing/directly 

utilizing large aperture[20], but the key to successful target identification in such 

systems is having a sufficient sensitivity to detect small radiometric temperature 

differences [5]. Thus, a noise equivalent temperature difference (NETD or NEΔT) 

below 1 K is normally desirable, especially for the detection of absorbing items 

warmed up by body contact. However, the NETD, the actual figure of merit of the 

device, is proportional to NEP/√ndetectors (NEP: Noise Equivalent Power [21]; ndetectors: 

the number of detectors) [11]. A low NETD can be achieved either by a low NEP of 

the detectors or by plenty of detectors [11]. However, this kind of system usually uses 

each detector to represent each pixel of image, so a compromise should be made 

between cost (number of detectors) and sensitivity (image quality) [5, 22]. The passive 

imaging system with high sensitive detectors like superconducting transition-edge 

sensor (TES) has a complex readout circuit and high system cost. A parallel 

https://en.wikipedia.org/wiki/Microwave
https://en.wikipedia.org/wiki/Infrared_light
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superconducting quantum interference device (SQUID) readout scheme requires 

cooling system and sensor calibration [11, 12]. Although, recently developed Kinetic 

Inductance Detectors (KIDs) that are relatively simple to fabricate and read out 

provide a practical and cost-effective solution to the operation of the large-scale arrays, 

the long cooling time still prevents system continuous operation [9]. Besides, it has 

been proposed to use an innovative scanning mechanism such as helical scanning to 

achieve a fast and simple one-channel passive millimeter wave (94 GHz) imaging 

system for security screening. However, the experimental results in indoor 

environment have not reveal the shapes of plastic gun and ceramic knife properly [14]. 

Some state of the art techniques such as real-time calibration, automatic detection, 

compressive sensing, machine learning and Convolutional Neural Network (CNN) 

have also been applied in the latest passive security screening systems [15-19]. 

Regarding the active imaging system, it seeks utilizing illumination source to improve 

the reflection from the target area and then achieves higher image contrast primarily 

through differences in the orientation, shape, and reflectivity of the body or concealed 

objects [3]. Therefore, the active imaging system has an additional advantage over 

passive imaging system in forming the shape of concealed objects, which is helpful to 

identify the threats. Although the reflection from the ambient may cause issues like 

artifacts, this can be alleviated by proper system design. Furthermore, active imaging 

systems avoids using a cooling system to achieve the high signal-to-noise ratio 

operation and high contrast for detection of concealed items [23, 24]. In either passive 

or active imaging system, four main criteria need to be addressed: frame rate, thermal 

sensitivity, field of view and system cost. Capturing speed and imaging spatial 

resolution are two critical issues for the practical implementation. Therefore, different 

techniques and approaches are being explored to improve the imaging quality while 

reducing the cost simultaneously. THz imaging systems can also be classified into 

incoherent and coherent imaging system in terms of detection technology. Also, 

according to the scanning scheme deployed, the imaging systems can be categorized 

into three classes: focal plane array (FPA) imaging system [25-29], advanced quasi-

optical imaging system [30-43] and interferometric array/synthetic aperture imaging 

system [44-50].  

FPA imaging systems use lenses or curved reflectors to physically focus the 

signal into detectors in a focal plane array. However, the FPA technique are mainly 
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applied in the passive imaging system and has two intrinsic drawbacks of high cost and 

long cooling time, as aforementioned. Therefore, the advanced quasi-optical imaging 

system uses specific large focusing quasi-optics to achieve a fast frame rate and reduce 

the cost with a fixed single transceiver [30-38, 40-43] or a compact sparse transceiver 

array [39]. Unfortunately, this kind of imaging system have not shown sufficient image 

contrast or resolution for target identification, either. 

The interferometric array/synthetic aperture imaging systems addressed in this 

thesis remove the large-scale reflectors in quasi-optic system. So the beams directly 

illuminate the target, and then techniques of interferometric imaging and synthetic 

aperture imaging are used to mathematically form the high quality image. And 2D 

scanning can be achieved by either the planar array with only electronic scanning or 

the linear array with the combination of electronic scanning and mechanical scanning. 

Since it is a synthetic aperture imaging technique, the number of detectors can be 

reduced by rotating the array around a fixed axis [45]. However, the reported imaging 

systems with linear monostatic array work only below 60 GHz because it needs a large 

number of elements/sampling points with sub-wavelength spacing [47-49].The 

monostatic approximation in FFT-SAR imaging algorithm will not allow wide array 

element spacing. Therefore, multi-static sparse array has been proposed to reduce the 

number of array elements [51-55]. Nevertheless, the first kind of multi-static linear 

array with multiple use of each transmitter and receiver has only been demonstrated at 

a frequency band of 20 – 30 GHz by simulated data, the maximum sampling spacing is 

0.37 wavelength [51, 52]. In terms of the second kind of linear sparse periodic array 

(SPA) in [53-55] , the element spacing is still small about 1.1 wavelength and 

operating frequency is relatively lower than 100 GHz. In terms of the multi-static 

planar array, however, it usually needs thousands of channels and elements that is not 

cost effective. So it has not been widely used yet [56, 57]. 

1.2. Literature Review 

1.2.1. Focal Plane Array (FPA) Imaging System 

FPA is similar to a standard CCD optical camera, which is mainly used in passive 

imaging system where each detector denotes a pixel in the image. Design 

considerations as well as several imaging systems of millimeter wave FPA have been 

generally discussed in [25]. In focal plane array imaging systems, a lens, or more 
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commonly a mirror/reflector at millimeter wave or terahertz frequency, are usually 

used to focus incoming radiation onto the detector array, forming the image.  

In theory, full sampling of the focal plane of the scene for incoherent illumination 

requires feed element spacing ∆x=
1

2
∙f ∙λ D⁄  where 𝜆 is radio wavelength, f is the focal 

length; D is the diameter of reflector-used aperture. Due to the high cost of THz 

detectors and limited detector packing density, it is not practical to fabricate an array of 

full pixels. In addition, the tight space will lead to improper illumination of antenna 

array so that the antenna efficiency is reduced dramatically. Therefore, space between 

feeds for 1-D FPA must be big enough to obtain good illumination efficiency, but that 

will decrease the image sampling density [25, 58]. To resolve this problem, interleaved 

scanning is usually carried out, which doubles the imaging time. In addition, reduced 

detectors causing the sensitivity drop will directly affects the success of passive 

imaging system [5, 59]. 

A broadband (0.6 – 1.2 THz) real-time THz camera using the HBD (hetero-

structure backward diode)-based FPA consisting of broadband planar slot antennas, 

integrated sensor devices has been developed by researchers in the Ohio State 

University, as shown in Figure 1- 1[29]. This camera has a five frames-per-second 

image acquisition speed and a sub-millimeter resolution at 0.7 THz [29]. However, the 

central area of 31 × 31 pixels mainly contributes to the image because of the spread of 

THz incident power over a wide area and off-axis aberrations caused by the small 

extended hemispherical lens used, as shown in Figure 1- 2. So the field of view (FOV) 

of this camera is too small for personnel screening.  

 

(a)                                                        (b) 

Figure 1- 1. Photograph of the broadband (0.6 – 1.2 THz) real-time camera. (a) Camera with the 

extended hemispherical lens removed (b) Microscope image of the focal plane array [29] 
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Besides, Figure 1- 3 shows a passive 89 GHz (10 GHz bandwidth) millimeter 

wave image system for personnel screening that uses Millimeter-wave Monolithic 

Integrated Circuit (MMIC) technology, which has enabled the direct detection and 

low-noise amplification of millimeter wave signals [5]. This complete MMIC-based 89 

GHz receiver has a noise figure of -5.5 dB and bandwidth of 10 GHz, consisting of low 

noise amplifiers that utilize pseudomorphic high electron mobility transistor (PHEMT) 

technology on gallium arsenide (GaAs) substrates, on-chip switches and a sensitive 

detector diode [5]. The high sensitivity, low-cost and power consumption of these 

MMIC devices have enabled NGC (Northrop Grumman Corporation) to build a 1040 

receiver focal plane array (FPA) in the camera. The camera is capable of providing 17 

frames-per-second with a MRT (minimum resolvable temperature) of 2K [5]. However, 

the results have shown that the performance is not good enough to identify the 

concealed threats as shown in Figure 1- 3 [5]. 

  

(a) 

 

(b) 
Figure 1- 2. (a) The set-up of the broadband real-time THz camera. (b) Recorded camera images 

at 0.7 THz. Left: THz image of a 1 mm wide ‘T’ slot. Right: Detail of 31 × 31 pixels around ‘T’ 

slot [29] 
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Figure 1- 3. The NGC 1040-element FPA passive millimeter wave video camera [4] and its 

screening images [5] 

Similarly, another 350 GHz passive imaging system which uses high sensitive 

detectors of superconducting transition-edge sensors (TESs) to gain a high contrast has 

been proposed [11]. The block diagram of this system has been illustrated in Figure 1- 

4. The cryogenic set-up includes a commercial closed-cycle cooling system and an 

optical cryostat. The cooling system consists of a two-stage 4He pulse tube cooler (PTC) 

in series with a two stage 4He/3He evaporation cooler. The imaging system is made up 

of optical reflectors based on free-form mirrors. Therefore, a field of view up to 2 m 

height and a diffraction limited spatial resolution in the order of 1 – 2 cm can be 

achieved at target distances of 3 – 25 m. The frame rate is up to 25 frames per second. 
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The TES signals are read out and pre-amplified by superconducting quantum 

interference devices (SQUIDs) acting as current sensors operating at temperature 

below 1K [11]. So the system with 64 detectors and its imaging result are shown in 

Figure 1- 5. It really shows a better image quality compared with the aforementioned 

passive FPA video camera. Besides the benefit from shorter wavelength, TES also 

helps to improve this image quality. Nevertheless, TES has issues of complexity and 

high cost in read out. Article states it is not economical because it has 64 detectors [11]. 

In addition, unlike the spiral form scanning scheme, which allows for calibration based 

on data redundancy [12], this linear scanning scheme has no redundancy so it does not 

have the problem of sensor calibration [11].  

 

Figure 1- 4. Block diagram of 350 GHz passive video camera using TES array [11] 

On the other hand, the relatively simple Kinetic Inductance Detectors (KID) 

camera is built in [9]. Lumped-element KIDs-as opposed to distributed KIDs-are 

designed so that the absorbing element of the detector is part of the resonator structure 

itself. In this configuration, it is possible to achieve a high filling factor in FPA without 

using additional coupling optics such as micro-lens or feed horn arrays. For example, 

Figure 1- 6 shows such an imaging system working at 350 GHz with 152 lumped-
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element KID (LEKID) and its performed image [9]. The camera uses a linear array of 

detectors housed in a cryostat retrofitted with a window of 250 mm diameter in the 

base. After going through a refractive optics system and a flat beam-folding mirror, 

incoming radiation is coupled to the detectors. A thin horizontal section of the object 

plane is observed in any one instant. This section is scanned continuously in the 

vertical direction by oscillation of the beam-folding mirror. A fast (f/0.9) triplet of 

high-density polyethylene (HDPE) lenses has been designed to keep the optics simple 

and compact, given limitations on where the focal plane array could be situated within 

the cryostat. The detector array in use is composed of 152 LEKIDs so that it is capable 

of achieving a 1 cm resolution at a target distance of 3 – 5 m. The constraint set by the 

scanning mechanism and the high noise have limited the frame rate to 2 Hz/s for an 

NEΔT of 0.1 K/frame with the camera in its current configuration [9]. As shown in 

Figure 1- 6, it not possible to reveal the shape of the concealed target well since this 

passive image system relies on the emissivity contrast to form the image. What is 

worse, this contrast will decrease around the concealed target when warmed up by the 

human body. Besides, it takes around 36 hours to cool down this demonstration system 

from room temperature with the Pulse Tube Cryocooler (PTC) cold head settling at 3.2 

K. The optical baffles on the radiation shields settle at 4.2 K and 60 K, respectively, 

and the cold lens settle with a radial temperature gradient ranging between 100 and 

150 K [9]. In the current configuration, the fridge runs for approximately 16 - 18 hours 

  

Figure 1- 5. Passive 350 GHz video imaging system with 64 detector linear scanner [11] 
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at a time at 250 mK and requires 3–4 hours for recycling [9]. Therefore, the 

continuous operation of this passive imaging system has been constrained.  

 

(a) 

 

(b) 

Figure 1- 6. (a) Passive 350 GHz  imaging system using 152 LEKIDs and (b) a snap shot from a 2 

Hz/s video in which the 350 GHz imaging system (left) were displayed simultaneously with 

frames from a standard web-cam (center) and a thermal NIR camera (right) [9] 

More FPA passive imaging systems at millimeter frequency are proposed [5, 26-

28]. An alternative principle and algorithm of imaging processing are described in [26]. 

However, FPA has also been applied in the active imaging system, which is rarely 

reported. For example, a possible schematic diagram of 64-element active FPA 

imaging system has been shown in Figure 1- 7. The optics consisting of plano-convex 

lenses with curved surfaces facing together has been designed to maximize the field of 

view. The array employs end-fire slot antennas. Each antenna is coupled to a detector 
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diode. An appropriate synchronous detector circuit at the output of the slot antennas 

converts the reflected power into a DC voltage [25].  

 

Figure 1- 7. Schematic diagram of active FPA imaging system [25] 

1.2.2. Advanced Quasi-optical Imaging System 

Another potential scheme to gain a 2-D aperture data for real time imaging is the 

advanced optical-mechanical imaging system that relies on rotating of one or more 

mirrors/reflectors to scan the target. In order to gain a high scanning speed, a 

mirror/reflector with a large aperture known as main aperture is often employed [30, 

31, 33, 35-37, 41-43]. Unlike aforementioned FPA imaging systems that may use 

mirror or reflectors to achieve the scanning, forming the image only based on 

amplitude information. This kind of advanced quasi-optical system is an active 

imaging system that uses the heterodyne transceivers to capture both amplitude and 

phase information in forming the image. There are several comparatively mature active 

THz quasi-optical imaging systems for personnel screening developed by SynView, 

Pacific Northwest National Laboratory (PNNL), and NASA Jet Propulsion Laboratory 

(JPL). The schematic diagrams of the systems are shown in Figure 1- 8. 

As shown in Figure 1- 8(a), a 645 GHz active quasi-optical system has been 

developed by SynView, consisting of two lenses, three mirrors and a beam splitter [43]. 

The beam emitted by the source is collimated by the collimator lens and then divided 

into two parts by the beam splitter. One is absorbed while the other one passes through 

the beam splitter [43]. The spherical mirror with a 102 mm diameter leads the beam to 
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the primary elliptical mirror with a 230 mm diameter, and the large plane-scanning 

mirror with a 320 mm diameter that concentrates the beam onto one object point. The 

reflected beam from the beam splitter is focused onto the detector by the focusing lens. 

 

Figure 1- 8. Schematic diagrams of the advanced THz quasi-optical imaging systems 

developed by (a) SynView (b) PNNL and (c) JPL [3] 
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The plane-scanning mirror has 5° angle of inclination with respect to its fast spinning 

axis, so an elliptical scanning pattern is achieved. The plane mirror is also rotated 

slowly along the vertical axis perpendicular to the fast one, and horizontal shift of the 

elliptical trail is realized. The resulting FOV looks like a cycloid region.  

As shown in Figure 1- 8 (b), a 350 GHz active standoff imaging system has been 

presented by PNNL, employing a high-performance heterodyne transceiver coupled to 

a near diffraction limited quasi-optical focusing and scanning system [31, 32]. The 

transceiver illuminates an off-axis reflector with a fixed focus. The beam is 

subsequently reflected from a circular plane mirror mounted on a high-speed conical 

scanner, concentrating to an object point. The conical scanner steers the circular plane 

mirror, which is mounted with a slight wedge. The wedge offsets the deviation angle, 

and the object point traces out a circular pattern when the mirror is rotated [31, 32]. 

The circular pattern is then scanned vertically to fill out the imaging area, and the FOV 

is an oval region as shown in Figure 1- 9(a). Figure 1- 9 (b) shows the prototype of this 

advanced 350 GHz quasit-optical imaging system. The transceiver horns are mounted 

1 meter from the focusing reflector that has one focus at the transceiver and the other 

focus placed at 5 m from the scanning reflector. Other focal length reflectors have also 

been fabricated which allow for operation at ranges of 2 m and 10 m. The scanning 

mirror is placed at 1 m from the focusing reflector. The scanning aperture is 1.25 m × 

2.5 m and the lateral resolution limited by diffraction is approximately 1.0 cm at 5 m. 

The system can be operated at ranges of 2, 5, or 10 meters and obtains a full 3-D image 

      

                          (a)                                                                                                           (b) 

Figure 1- 9. Active 350 GHz quasi-optical imaging system (a) Scanning pattern with 1.25 m 

(W) × 2.50 m (H) (b) Photograph of porotype [31] 
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of human body in 10 seconds. Figure 1- 10 shows one imaging result cited from [31]. 

Although it has demonstrated imaging capability, the quality and achieved resolution 

are not sufficient for accurate target identification [31]. 

 

Figure 1- 10. Photograph (left) and the reconstructed 3-D images of a man with a concealed mock 

explosive (inset) with projections shown at normal, off-normal, and 90 degree from normal (left to 

right, respectively) [31] 

The aforementioned two systems have a lot in common. Both have an electronic 

FMCW heterodyne transceiver coupled to a quasi-optical focusing system, utilizing a 

plane mirror with rotating and tilt scanning to achieve the 2D FOV. The quasi-optical 

focusing design could minimize aberrations and allow for significantly off-axis 

performance with minimal degradation. But this focusing design has a limited size, 

constraining the collection of all reflections. Compared to the above two systems, an 

improved 675 GHz imaging system has been developed by JPL that increases the 

imaging speed and the standoff distance. Both systems in SynView and PNNL will 

steer the beam after the main ellipsoidal focusing reflector. This makes them difficult 

to be used with large diameter apertures, resulting in a limited working distance for 

reasonable resolution. However, the system in the JPL, as shown in Figure 1- 8 (c), has 

achieved the beam scanning by the lightweight flat mirror placed in the feed optics of 

the main reflector, which has only a 130 mm diameter rotating about ±2.5° in elevation 

and azimuth. So the corresponding beam coverage is ±20 cm in the horizontal and 

vertical directions at 25 m standoff distance [36-38]. The use of a small lightweight 

flat mirror with 13-cm-diameter is beneficial to reduce the scanning time and increase 

the imaging speed. The scanning flat mirror is illuminated by a collimated beam rather 

than an expanding beam, and the design relaxes the tolerances on the position of the 

principal axes of scanning mirror, which otherwise will be difficult to align at 675 
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GHz. Besides fast scanning, the angular position of the flat mirror is controlled 

precisely by using a servomotor and a rotary encoder, so aberrations are suppressed 

dramatically. This 675 GHz quasi-optical imaging system works like a FMCW radar 

and it forms image based on power spectrum and peak finding algorithm [33, 37]. The 

FMCW radar is preferred over the more common pulse radar when the maximum 

power of the radiation source is too low to obtain a high signal-to-noise ratio (SNR) 

for short-duration pulses. So for the solid state Schottky diode based frequency-

multiplier THz source that produces only about 0.7 mW at 675 GHz, the fast scanning 

quasi-optical imaging system using FMCW approach has been developed as shown in 

Figure 1- 11[37]. A 1-m-diameter main aperture focuses the beam to a (two-way) spot 

size of about 1 cm at 25-m standoff. The image can be obtained in 5 seconds. Figure 1- 

12 shows the corresponding imaging results [37]. We can only roughly see the target 

shape and feel difficult to identify details if the target is smaller. Some improvements, 

such as an array set-up and time-delay multiplexing techniques are anticipated to 

increase the frame rates [35-38]. 

   

Figure 1- 11. 675-GHz THz radar. (a) Beam path (b) A photograph of the optics with an set 

showing the fast-scanning mirror mounted on an ASR-1000 rotary stage [37] 

Furthermore, a bifocal ellipsoidal Gregorian reflector system (BEGRS) based on 

the confocal Gregorian subsystem used in the JPL system has been designed by 

García-Pino et al. [41]. The nominal reflector surfaces are substituted by shaped 

surfaces to reduce the beam aberrations, and the FOV of this imaging system could be 

increased. For example, the FOV-enhanced 300 GHz imaging system proposed by 

Grajal et al. has been illustrated in Figure 1- 13 [42]. Its prototype and block diagram 

have been shown in Figure 1- 14. This imaging system has a 27 GHz bandwidth, so 
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the range resolution is 0.55 cm. Besides, the spot size at 8 m is supposed to be 1.6 cm. 

It is capable of providing a spatial cross-range resolution of about 2 cm and the 

 

Figure 1- 12. (a) Radar image revealing Play-Doh container concealed under a jacket (b) Radar 

spectra corresponding to two selected points in the radar image. In left spectrum with multi-

peaks, the farthest peak is included in the back surface reconstruction. Radar images revealing 

(c) a hidden mock handgun and (d) a bomb belt [37] 

Table. 1- 1. Specifications of active quasi-optical imaging systems developed by SynView, 

PNNL, JPL, and Grajal et al [3] 

Specifications SynView PNNL JPL Grajal et al. 

Center Frequency 645 GHz 350 GHz 675 GHz 300 GHz 

Bandwidth 10 GHz 9.6 GHz 28.8 GHz 27 GHz 

Primary Aperture 

Diameter 
23 cm 50 cm 100 cm 60 cm 

Imaging Speed 9 s  

(Measurement time) 
10 s 1 s 0.5 s 

Standoff Distance 0.75 ~ 1.5 m 2 ~ 10 m 4 ~ 25 m 8 m 

FOV 
20 cm×30 cm 

(at 1 m) 

1.25 m×2.5 m 

(at 5 m) 

0.4 m×0.4 m 

(at 25 m) 

0.5 m×0.9 m 

(at 8 m) 

Lateral Resolution 4 mm at 1 m 10 mm at 5 m 5 mm at 4 m 16 mm at 8 m 

Range Resolution 42 cm Null 0.7 cm 1 cm 
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scanning area of 100 cm × 50 cm. Figure 1- 15 shows the target scenario under test 

where a mock explosive is hidden under a T-shirt worn on mannequin, and the 

reconstructed image based on most powerful detection [42]. It is noted that the image 

quality is not sufficient for target discrimination. The specifications of the four active 

standoff imaging systems are listed in Table. 1- 1. 

 

 

Figure 1- 13. (a) Profile of the baseline CEGRS antenna and main geometrical parameters (b) 

CEGRS antenna and target plane (c) Front view of the target plane and beam trajectory (d) 

Side view of the target plane [42] 
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Figure 1- 14. (a) Photograph of prototype with labels introducing the electronics and antenna 

subsystems (b) Block diagram of the radar system at 300 GHz [42]. 

 

(a) 
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(b) 

Figure 1- 15. (a) Target scenario with a mock explosive concealed underneath a T-shirt (b) Image 

reconstruction based on most powerful detection. An offset of 1.8 m is present in the 

measurements due to the extra length of the electrical path in the millimeter-wave and scanning 

antenna subsystems [42] 

In addition, Figure 1- 16 shows the schematic diagram of an advanced optical-

mechanical scanning THz imaging scheme at 0.2 THz that uses both heterodyne 

architecture and synthetic aperture imaging techniques [30]. The system uses a pillbox-

like transceiver antenna to generate a fan-beam with its wide side lying along the 

vertical direction (x-direction) and narrow side lying along the horizontal direction (y-

direction). Based on the fast rotation of the small sub-reflector, the fan-beam can 

quickly scan along the y-direction. Combining the linear scanning along the x-

direction by the motorized stage, the phase and amplitude of reflected signal in a 2-D 

aperture can be collected to reconstruct a focusing image of target. In the above 

imaging scheme, the high resolution in the y-direction can be directly achieved by the 

focusing of the main reflector while the high resolution in the x-direction can be 

obtained by the synthetic aperture technique. The results have shown that the system 

has a d = 0.45 m focusing distance, 7 mm horizontal resolution and 4 mm vertical 

resolution with a 10 GHz bandwidth, and the entire reconstruction requires 3 seconds. 

Figure 1- 17 and Figure 1- 18 show the experimental resolution, we can see the 
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theoretical resolutions can be basically achieved with the wideband operation. Besides, 

Figure 1- 19 compares the experimental imaging performance of wideband operation 

but with the target tilted. It can be seen from the Figure 1- 19 (b) that the image quality 

will deteriorate with the increase in tilted angles of target. Finally, Figure 1- 20 shows 

the experimental 3-D images of a man wearing a T-shirt and a concealed plastic cap 

gun with different views. Similarly, we can only gain the best image quality in Figure 

1- 20 (c) in which the wideband operation is used and there is no tilted view angle. 

  

(a) 

 

(b) 

Figure 1- 16. 0.2 THz imaging scheme combining fan-beam scanning and synthetic aperture 

technique. (a) Schematic diagram and (b) Heterodyne transceiver [30] 
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Figure 1- 19. (a) Photograph and 0.195 – 0.205 THz reconstructed images of six square metallic 

patches with (b) no tilted angle in either the horizontal or vertical direction (c) 10° tilted angle in 

the horizontal direction (d) 10° tilted angle in the vertical direction (e) 30° tilted angle in the 

horizontal direction and (f) 30° tilted angle in the vertical direction [30] 

 

Figure 1- 17. (a) Photograph of target of four 

fan-shaped metallic strips and (b) 

corresponding 0.2 THz single-frequency 

reconstructed image [30] 

 

Figure 1- 18. (a) Photograph of target of 

metallic strips and (b) corresponding  

wideband 0.195 – 0.205 THz 

reconstructed image [30] 
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Figure 1- 20. (a) Photograph of mannequin target under test (b) corresponding 0.2 THz single-

frequency reconstructed image, and wideband (0.195 – 0.205 THz) 3-D images of a mannequin 

wearing a T-shirt and a concealed plastic cap gun with (c) front view (d) 35° left-side view and (e) 

35° right-side view, respectively [30] 
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In addition to the aforementioned quasi-optical imaging systems using a single 

transmitter-receiver(TR) pair, an TR array can also be integrated with such a kind of 

quasi-optical scheme, as shown in Figure 1- 21 [39].  The experimental set-up consists 

of 4 Tx and 16 Rx with 4 mm Tx element spacing, operating at 340 GHz with 16 GHz 

bandwidth. The scanning area is 1.8 m × 0.9 m at 4 m distance and the corresponding 

theoretical resolutions is 1.5 cm. The mechanical scanning time costs 2 s and extra 1 s 

is needed to reconstructed the 3 D image. In addition, Burg’s method as an efficient 

and widely used power spectral density (PSD) estimation algorithm can achieve higher 

resolution and lower side-lobes than the FFT algorithm [39]. The corresponding 

experimental imaging results reconstructed by FFT and Burg-based method are shown 

in Figure 1- 22 and Figure 1- 23, respectively [39]. However, the images in Figure 1- 

23 have not shown sufficient details to identify the concealed weapons due to the small 

aperture of array used and the intrinsic drawback of picking up echoes in this scanning 

scheme. 

 

(a) 

 

(b) 

Figure 1- 21. (a) Schematic diagram of the 340 GHz quasi-optical imaging system (b) 

Experimental imaging scenario of a human carrying a concealed handgun model [39] 
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Figure 1- 22. 3-D images reconstructed by using FFT algorithm with different azimuth view 

angles. (a) −60° (b) −20° (c) 20° (d) 60° [39] 

 

Figure 1- 23. 3-D images reconstructed by using Burg-based method with different azimuth view 

angles. (a) −60° (b) −20° (c) 20° (d) 60° [39] 

In my opinion, in the above advanced quasi-optical imaging systems, no matter 

whether they use synthetic aperture technique or not, the imaging inherently rely on 

receiving the reflected signals from the target. Small focusing reflectors have 

advantage of compact size but cannot achieve a large scanning aperture or FOV. The 

beam has abbreviations at wide scanning angle. In contrast, large-scale reflector causes 

disadvantages in cost and size. 
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1.2.3. Interferometric Array Imaging System  

In order to perform fast and high performance THz imaging, one promising 

solution is to employ the interferometry technique. Therefore, signals at two or more 

points in space with the proper delay are used to produce the brightness distribution 

[44]. This technique measures both amplitude and phase of the incoming signals. If a 

sufficient number of sampling points in the aperture plane are measured, the original 

brightness distribution can be synthesized (imaged) through standard Fourier inversion. 

The raw images after inversion can be improved through standard image 

reconstruction techniques to reduce ambiguities (called side-lobes) in the images [44]. 

In contrast to the aforementioned advanced quasi-optical imaging system, the 

interferometric array imaging system discussed in this section has eliminated the 

quasi-optics for beam focusing or scanning. 

The interferometric/synthetic aperture imaging combines the THz signals 

collected from various pairs of detectors to reconstruct the image. It does not require 

the source to be phase coherent with the detector, so it has some flexibility in 

integrating a high power source with an independent detection array [44, 45, 50]. The 

interferometric array consists of individual detectors or sensors measuring the 

amplitude and phase of incoming THz radiation. As a wave front of THz radiation 

encounters the array, each pair of detectors as shown in Figure 1- 24(a) measures one 

spatial Fourier component of the incoming THz signal as determined, known as a 

baseline. Each spatial Fourier component is represented as a point in the Fourier 

transform plane (also known as the u-v plane). In order to image the source, additional 

measurements from other baselines must be carried out. For a given number of 

detectors N, there are N × (N-1)/2 possible baseline combinations, as shown in Figure 

1- 24(b). An image is reconstructed from the spatial Fourier components of all the 

different pair combinations. The quality of an image depends on the coverage of the u-

v plane, i.e. the number of different points generated in the u-v plane. This in turn 

depends on the arrangement of the detecting elements of the interferometric array. 

Efficient u-v plane coverage with a small number of detectors may be achieved by 

rotating the array about a fixed axis. If measurements are made 10 times during the 

rotation of an N element planar or spherical array, the equivalent number of baselines 

will be 10 times of N × (N-1)/2. This will improve image quality and equivalently lead 

to a reduction in the number of required detectors in the array for a given image quality. 
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This aperture synthesis technique is capable of achieving a larger effective collecting 

area hence spatial resolution is increased without fully populated antennas [60]. The 

primary disadvantage of this system/technique is that the close-range large-aperture 

operation causes the depth of focus to be very short. Therefore, the image of a target 

with significant depth, such as the human body, cannot be reconstructed in complete 

focus. However, wideband holographic imaging even allows to form a 3D image, 

which overcomes the short focus depth of single frequency holographic imaging [47]. 

     

(a)                                                                 (b) 

Figure 1- 24. Interferometric set-up. (a) TR pair (b) Array imaging system [61] 

I. Dense Array Imaging System: Quasi-monostatic Linear Array 

For example, a single-frequency 35-GHz transceiver has been used to generate an 

image of a clothed mannequin with a large concealed metallic handgun, as shown in 

Figure 1- 25(a) and (b) [47]. The hologram image shows the raw data, which are input 

to the BP based FFT image reconstruction algorithm (see Appendix I). The 

reconstructed image shows the resolution of about 5 mm, and the handgun can be 

easily recognized in the image. The image of the mannequin body shows the artifacts 

due to complex interference from varying reflection points on the body at different 

ranges. This effect will be largely eliminated when the wide-band 3-D imaging 

technique is used. Moreover, a reconstructed 350-GHz image of a Glock-17 has been 

shown in Figure 1- 25(c). In the image, the aperture is 25 cm × 25 cm, and the depth to 

the target is 7.4 cm. The hologram consists of 512 × 512 data points, sampled with an 

interval of approximately 0.5-mm. The scanning takes approximately 10 min. This 

image has shown a resolution of less than 1 mm. Due to a very large number of 

samples required at a high frequency for achieving a high resolution image, a trade-off 

should be made in a practical weapon detection system. 
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(a)                                       (b)                                               (c) 

Figure 1- 25. Target of a mannequin carrying a concealed handgun of (a) 35-GHz hologram (raw 

input data) and (b) corresponding reconstructed 35-GHz image and (c) reconstructed 350-GHz 

image of a Glock-17 9-mm handgun [47] 

The 3-D imaging technique employing active, wideband, coherent RF 

transceivers has been proposed to optimize the quality of the images from data 

gathered from a 2-D aperture. These data are sampled at sub-wavelength (often 0.25 to 

0.5 wavelengths) intervals. This increases the time of data acquisition dramatically for 

mechanically scanning method. However, a practical application demands a full-body 

scan in about 1–2 s (or less). In addition, a full-body scan requires sampling at less 

than one-wavelength spacing over an aperture of at least 0.70 m × 2.0 m [47]. In this 

case, switched antenna arrays may be used to eliminate mechanical scanning on one or 

both axes of the aperture. This is typically accomplished by creating a dense linear or 

planar antenna array and electronically sequencing across the array with use of 

electronically controlled microwave or millimeter-wave switches [47]. The simplest 

configuration of a sequentially switched linear array has two column arrays of 

transmitter antennas and receiver antennas, separately [47]. This combined array can 

simulate a single transceiver array. A transmitter and receiver pair effectively sample 

one spatial point. The array is sequentially sampled by switching on the first 

transmitter antenna and the first receiver antenna and collecting the first spatial sample. 

The second transmitter antenna can then be switched on and the second sample 

collected (with the first receiver antenna still switched on). The second receiver 

antenna is then switched on (with the second transmitter antenna still on while the first 

transmitter antenna switched off) to collect the third spatial sample [51]. This process 

is then continued across the array [51]. This technique still requires approximately one 

antenna per spatial sample, but allows the antennas to be separated by twice the 

distance and separates the T and R functions, which improves array performance [49, 

51, 52, 62]. A block diagram of such an imaging system operating from 27 to 33 GHz 
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has been shown in Figure 1- 26. There are 128 antenna elements organized as an upper 

row of 64 transmitter antennas, and a lower row of 64 receiver antennas. A logic 

circuitry sequences transmitter and receiver antennas to transmit from one antenna and 

receive the wide-band signal from each of the two neighboring antennas in the receiver 

row. This configuration places a virtual sampling point halfway in between each 

transmitter and receiver antenna. The transmitter row and receiver row are offset by 

half the antenna, thus, the effective sample spacing is one-half of the single-row 

antenna spacing [47]. 

The wide-band millimeter-wave imaging system has been tested extensively on 

personnel carrying concealed weapons [47]. Figure 1- 27 shows a significant 

improvement in image quality by improving the single-frequency millimeter-wave 

imaging system to wide-band imaging operation. The single-frequency images show 

obvious degradation due to lack of focus over many parts of the image. In addition, 

some degradation is apparent due to poor sensitivity in the single-frequency 

transceiver. In contrast, the wide-band images are fully focused due to the 3-D image 

reconstruction. Besides, an apparent higher dynamic range has been obtained in wide-

band imaging operation due to better focus and the high-sensitivity transceiver [47]. 

 

Figure 1- 26. Block diagram of 27 – 33 GHz quasi-monostatic linear array imaging system [47] 
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 (a)                                                                               (b) 

Figure 1- 27. (a) Reconstructed single-frequency (35 GHz) images of a man (b) Reconstructed 

wide-band (27 – 33 GHz) images of the same man [47] 

Figure 1- 28 shows six wide-band (27 – 33 GHz) images of a man carrying two 

concealed handguns and several innocuous items. The first image shows a Glock-17 

handgun tucked at the beltline underneath the man’s shirt. The second image shows a 

small handgun in the man’s left-hand-side pants pocket. The third image shows a paper 

checkbook in the left-hand-side back pocket. The fifth image shows a leather wallet in 

the man’s right-hand-side back pocket [47]. 

In addition to this planar imaging technique, a cylindrical imaging technique and 

an alternative polarimetric technique are also studied under such an imaging scheme 

[48, 49, 63]. The distinct advantage is that a single scan can be acquired and used to 

inspect the person from all angles. Figure 1- 29 shows such cylindrical scanning 

images of a mannequin taken in the range of 40 – 60 GHz [49]. These images were 

obtained by using the standard cylindrical image reconstruction algorithm. Various 

small and medium sized objects including a Glock handgun were placed on the 

mannequin. These objects have been readily revealed when viewing an animation of 

the reconstructed images over all angles. The single aspect image presented in Figure 

1- 29 (center) emphasizes the concealed handgun on the lower left thigh. The 40 – 60 

GHz frequency range allows extremely high lateral in the order of 3 mm and range 

resolution of approximately 7.5 mm [49]. In addition, the polarimetric technique can 

be used to enhance detection of many concealed objects. For linear polarization, a co-

polarized configuration (transmitter and receiver use the same polarization) tends to 
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receive strong reflections from smooth surfaces like human body. A cross-polarized 

configuration (transmitter and receiver use orthogonal polarization) tends to reject the 

reflection from smooth surfaces and accentuates raised edges, corners and dihedrals. 

This behavior is apparent by comparing the results from Figure 1- 29 (center, co-

polarized) and Figure 1- 29 (right, cross polarized) [49]. 

 

Figure 1- 28. Reconstructed wide-band (27 – 33 GHz) images of a man carrying concealed 

handguns and innocuous items [47] 

 

Figure 1- 29. Reconstructed wideband (40 – 60 GHz) images with cylindrical scanning of a 

clothed mannequin. Left image: cylindrical image reconstruction (linearly polarized, transmit 

vertical, receive vertical); Center image: another angle from left-image set emphasizing a 

concealed handgun; Right image: linear cross-polarized image (transmit vertical, receive 

horizontal) at the same angle as the center co-polarized image [49] 
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II. Two-Column Multi-static Sparse Array with Multiple TR Combinations 

Implicit the two-column array sampling technique described above is the quasi-

monostatic approximation. This approximation is that transmitter and receiver 

antennas separated near each other effectively operate as a single transmitter-receiver 

(TR) antenna placed at the midpoint of the line joining the phase centers of both 

antennas. This approximation introduces a path length or phase error that is not 

significant for closely spaced antennas, but will be more significant for the multi-static 

array configuration [51, 52]. Therefore, the two-column sparse array sampling 

technique has been proposed in order to save cost with the utilization of multi-static 

set-up [51, 52]. It essentially uses a multi-static approach in which each single 

transmitter is coupled to a number of receivers. Therefore, this multiple use of each 

transmitter and receiver produces a more finely sampled array without the cost and 

complexity of a fully populated array [51, 52]. 

This kind of array can be analyzed using an effective sampling concept [52]. As 

shown in Figure 1- 30, the left Tx array, Array 1, has N1 elements over a unit cell 

length D with a spacing of D/N1. The right Rx array, Array 2, has N2 elements over a 

unit cell length D with a spacing of D/N2. The total number of unit is Nc [52]. In order 

to meet the requirement close separation between transmitter and receiver, only 

separations of less than D are used. Therefore, each Tx element in Array 1 has 2N2 

effective samples available. Larger separations could be used. However, these will 

result in redundant sampling. An elegant arrangement that meets the uniform dense 

sampling requirement is obtained when N1 and N2 are set to be unequal (N2 > N1 is 

typically assumed), and they are assumed to share no common factors. In general, the 

number of samples per unit cell is Nsamples = 2N1 ∙ N2, and the effective sampling 

spacing is Δy = D/(2N1 ∙ N2). A convenient figure of merit for the sparse multi-static 

array is the number of effective samples divided by the number of antennas required 

(per unit cell), or Nsamples / Nantennas = 2N1 ∙ N2 / (N1 + N2) [52]. 

A series of array configurations with increasing sparsity is shown in Figure 1- 31. 

The left blue circles represent locations of Tx antennas, and the right red circles 

represent locations of Rx antennas. Points in the connection lines between 

representative T and R locations indicate the effective sample locations. The 1:1 array 

shown in Figure 1- 31 (a) is equivalent to the currently deployed airport screeners and 

achieves approximately one sample per antenna (Nsamples / Nantennas = 2N1 ∙ N2 / (N1 + 
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N2)). The 1:2 array achieves approximately 1.33 samples per antenna. The 2:3 

configuration achieves approximately 2.4 samples per antenna, and the 3:4 

configuration achieves approximately 3.43 samples per antenna [51]. 

 

Figure 1- 30. Effective sampling analysis of two-column multi-static sparse array [52] 

 

        (a)                                                                  (b) 
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            (c)                                                                   (d) 

Figure 1- 31. Effective sampling for (a) 1:1 (b) 1:2 (c) 2:3 (d) 3:4 arrays [51] 

An important issue of implementing the multi-static sparse array in imaging 

application is that there are significant path length differences between effective 

transceiver samples due to the different baseline separations of the paired transmitter 

and receiver antennas [51]. The path length differences can be compensated using the 

array calibration techniques that essentially range or phase-shift the transceiver data to 

remove the error. The array calibration techniques are approximate because they 

assume a direction of wave travel in order to estimate the path error [51]. The 

GSAFT( Generalized Synthetic Aperture Focusing Technique) algorithm is capable of 

producing better results because it uses the exact Tx and Rx locations for each sample 

location while the FFT-SAR (Fast Fourier Transform-Synthetic Aperture Radar) 

algorithm assumes that the T and R antennas are effectively located at the midpoint 

sample position [51]. 

The effectiveness of the sparse array technique has been explored using the data 

simulated for a variety of sparse array configurations in [51]. For all configurations 

simulated, a 1 m linear array length and a frequency range of 20 – 40 GHz with 1024 

samples are used. The target is defined as a collection of two letter-F test targets each 

is composed of 9-point scatters separated by 3.0 cm. And two F letters are centered 

with respect to the array and at ranges of 0.5 m and 1.0 m, respectively. The individual 
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sparse arrays are denoted by N1:N2: Nc (number of transmitters per unit cell: number 

of receivers per unit cell: number of unit cells). 

Figure 1- 32 shows the imaging results in a 2:3:24 array reconstructed by using 

both GSAFT and FFT-SAR methods. In this array configuration, both reconstruction 

techniques yield similar results since the separation between Tx and Rx locations is not 

wide in the low sparsity array. So the calibrated quasi-monostatic approximation is 

reasonably accurate. This array has a unit cell length of 4.17 cm, 48 Tx antennas, 72 

Rx antennas, 287 samples, 0.35-wavelength (at 30 GHz) sampling spacing and 2.35 

samples/antenna [51]. 

 

(a)                                                                           (b) 

Figure 1- 32. 35-dB dynamic range images reconstructed by using (a) the FFT-SAR technique and 

(b) the multi-static GSAFT technique with a 2:3:24 array configuration [51] 

Figure 1- 33 shows the imaging results in a 3:4:12 array. In this array 

configuration, the FFT-SAR algorithm shows some artifacts of the F at 0.5m, which is 

probably due to the wide baseline between Tx and Rx antennas. The GSAFT 

reconstruction shows no artifacts for either F. This array has a unit cell length of 8.33 

cm, 36 Tx antennas, 48 Rx antennas, 283 samples, 0.35-wavelength (at 30 GHz) 

sampling spacing and 3.29 samples/antenna [51]. 

Figure 1- 34 shows the imaging results in a 5:6:5 array. In this array configuration, 

the FFT-SAR algorithm shows significant artifacts for both F letters, which are likely 

due to the wider baseline between Tx and Rx antennas. The GSAFT reconstruction 

shows some moderate artifacts for the F at 0.5 m and no artifacts at 1.0 m. In addition, 

the GSAFT algorithm shows a sharper lateral focus than the FFT-SAR algorithm, 

possibly due to the more exact treatment of the T and R locations. This array has a unit 
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cell length of 20 cm, 25 Tx antennas, 30 Rx antennas, 281 samples, 0.33-wavelength 

(at 30 GHz) sampling spacing and 4.93 samples/antenna [51]. 

 

(a)                                                                          (b) 

Figure 1- 33. 35-dB dynamic range images reconstructed by using (a) the FFT-SAR technique and 

(b) the multi-static GSAFT technique with a 3:4:12 array configuration [51] 

 

(a)                                                                           (b) 

Figure 1- 34. 35-dB dynamic range images reconstructed by using (a) the FFT-SAR technique and 

(b) the multi-static GSAFT technique with a 5:6:5 array configuration [51] 

The two-column multi-static sparse array demonstrated here can be used to reduce 

the cost and complexity of a full array without significantly reducing system 

performance. Performance of a variety of imaging arrays has been demonstrated 

through numerical simulation. The quasi-monostatic approximation, upon which the 

two-column multi-static sparse array technique is based, holds well for targets at 

greater distances from the array, and for arrays with small maximum T/R baseline 

separations. The FFT-SAR algorithm also works well in these cases with the described 

array calibration techniques. The GSAFT algorithm accurately reconstructs images 

based on the exact Tx and Rx locations, and therefore does not require that the quasi-
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monostatic approximation is strictly valid. However, in highly sparse arrays, such as 

the 5:6:5 array, the baselines are very widely separated that thereby introduce some 

artifacts as observed in Figure 1- 34. It is important to note that the GSAFT technique 

is simple but computationally expensive. Therefore, the FFT-SAR technique is often 

preferred, especially for 3-D imaging configurations [51]. 

III. Multi-static Linear Sparse Periodic Array Imaging System 

A multi-static linear sparse periodic array (SPA) places the transmitter elements at 

two ends of receiver elements and all the TR combinations are used to record the echo 

data for image reconstruction [64]. The feature of this array is that the radiation pattern 

of its effective aperture has a suppressed side lobe due to properly distributed Tx and 

Rx elements, which is helpful to gain a high quality image (see detailed introduction in 

2.1). Based on this kind of sparse array, many imaging systems have been proposed 

and studied [53-55, 65-67]. For example, Figure 1- 35 shows a SPA consisting of 4 

transmitter and 8 receiver elements working from 2.8 GHz to 19.5 GHz. The width of 

the transmitter array is 0.5 m (18.6λc) and the receiver array is 0.412 m (15.3λc), so it 

produces a uniformly distributed effective aperture with a spacing of 1.1λc. Figure 1- 

36 shows the experimentally imaging results at a range distance of 0.5 m using this 

SPA when scanning mechanically in the vertical direction compared to the one using 

the 2-D synthetic aperture radar (SAR) technique where a monostatic transceiver scans 

along two dimensions [53]. In both approaches, the shape of the mannequin and 

weapon have been basically reconstructed completely, and the weapon can be 

identified to some extent. In summary, the SPA-SAR configuration has generated 

comparable the results as the 2-D SAR. Instead of 51 antenna pairs required for the 

SAR data acquisition in the azimuth plane, only 12 antennas have been used in the 

SPA imaging system, thus demonstrating the advantage of such SPA imaging system 

[53]. 

Furthermore, another SPA has been proposed particularly optimised for near field 

imaging operating in the range of 75-90 GHz and at 0.6 m target distance [55]. Figure 

1- 37(a) shows the first array (SPAFF) that is the aforementioned conventional SPA 

design based on far-field assumptions. Figure 1- 37 (b) shows the optimized SPA for 

the near field (SPANF) scenario, which is based on the proposed design procedure [55]. 

Both sparse arrays consist of a receiver array with LR = 0.6 m length and ΔzR = 24 

mm Rx element spacing; this leads to NR = 26 receiver channels. High lateral 
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Figure 1- 35. SPA design. (a) Set-up configuration (b) Corresponding effective aperture and 

(c) Array constructed in the experiment [53] 

 

Figure 1- 36. Imaging using SAR and SPA-SAR system. (a) Mannequin under test carrying a 

handgun (b) Image reconstructed by using 2-D SAR (c) Image reconstructed by using SPA-

SAR. Zoomed-in images of handgun of (d) 2-D SAR and (e) SPA-SAR [53] 

 



Introduction 

52 

resolution and optimal target illumination are achieved by two separated dense 

transmitter array sections with length LT,B and ΔzT = 2 mm Tx element spacing. The 

lengths of the transmitter array sections of SPAFF are LT,B = 22 mm, which leads to the 

total number of NT = 24 transmitter elements. In order to keep a moderate number of 

transmitter channels, the length of each transmit array in SPANF is limited to LT,B = 30 

mm, which leads to 36 transmitter elements.  

     

 (a)                                                                               (b) 

Figure 1- 37. (a) Traditional SPA design (SPAFF) based on far field assumption (b) optimized SPA 

design (SPANF) for near field imaging [55]. 

 

     (a)                                                                           (b) 

Figure 1- 38. Characteristics CT(u), CR(u), and CE(u) of the transmitter, receiver, and multi-static 

SPAFF arrays in the range of (a) array far field (Zt →∞) and (b) array near field (Zt = 0.6 m) [55] 

Figure 1- 38 shows the characteristics (PSF: Point Spread Function) of the 

traditional SPA design in Figure 1- 37(a) at a far field distance and at a near field 

distance Zt of 0.6 m. We can see the characteristics at near field distance differs from 

that at a far field assumption where the null of Tx pattern locates at the grating lobes of 

the Rx pattern. Since the grating lobes of Rx pattern slightly shift away from the null 

positons of Tx pattern, the characteristic of the effective array will have risen side lobe 
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as shown in Figure 1- 38 (b). However, this side lobe can be suppressed in the 

optimized SPAFNF array of Figure 1- 37 (b) since the null of Tx pattern will be 

optimized at the grating lobes of the Rx pattern again. As shown in Figure 1- 39, the 

side lobe level of SPANF for near field imaging has improved by 9 dB compared to 

SPAFF for near field imaging. Figure 1- 40 shows the images obtained using SPANF. 

Figure 1- 41 have compared the imaging performance of both SPAFF and SPANF. The 

SPANF has demonstrated a certain degree of superiority to the SPAFF [55].  

 

Figure 1- 39. Multi-static characteristics CE(z) of SPAFF and CE, opt(z) of SPANF in the array near 

field range (Zt = 600 mm) [55]. 

  

Figure 1- 40. Measured imaging scenario with two (1) point targets (2) a step wedge made of wax 

(3) a Siemens star test pattern (4) a pair of scissors (5) a screw wrench and images ( magnitude in 

decibels) of broadband reconstruction with array SPANF (a) complete image (b) zoom of Siemens 

star test pattern [55] 
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Figure 1- 41. Measured imaging scenario with male mannequin. The front is assembled with (1) a 

step wedge made of wax, (2) step wedge made of polyethylene, (3) wrench, (4) cent coins, (5) 

ceramic knife, (6) bag with sodium chloride, (7) wax stripe, and the images ( magnitude in 

decibels) of broadband and coherently averaged reconstruction of male mannequin using (a) Array 

SPAFF and (b) Array SPANF [55] 

IV. Multi-Static Planar Array Imaging System 

In order to further increase the imaging rate, the mechanical scanning along one 

dimension in the 1-D array scheme can also be replaced by the electronic scanning, so 

the 2-D array imaging system has been proposed and investigated [56, 57, 68, 69]. 

However, this scheme is not cost effective so it is not dominant in the industry and 

academia. Take a planar multi-static sparse array imaging system proposed by 

researchers in Rohde & Schwarz GmbH & Co. KG as an example [56], it operates in 

the band  of 72 - 80 GHz and has demonstrated a lateral resolution of 2 mm at 0.5 m 

distance, as shown in the measured imaging results in Figure 1- 42 and Figure 1- 43. 

However, in order to achieve an array aperture of around 50 cm × 50 cm, 4 × 4 clusters 

resulting in a total of 736 Tx antennas and 736 Rx antennas are used, as shown in the 

Figure 1- 44. The imaging system is fully shown in Figure 1- 45. Besides, a stepped-

frequency continuous-wave (SFCW) radar operating from 70 GHz to 80 GHz for 

personnel screening has been proposed, using nonuniform sampling approach to offer 

high resolution but simultaneously reduce the ambiguities and allow a moderate 

number of sampling points [57]. Figure 1- 46 shows this imaging system and its block  
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Figure 1- 42. Measured target of the USAF resolution test pattern placed in front of a bed of nails 

test object prepared with pyramidal absorbers. (a) Photograph (b) Reconstructed image [56] 

 

(a) 

 

(b) 

Figure 1- 43. Measurements of a person. (a) Carrying a small concealed handgun (b) Carrying a 

concealed clasp knife [56] 
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Figure 1- 44. Multi-static planar sparse array geometry with 4 × 4 clusters. Horizontal lines 

represent Tx arrays and vertical lines represent Rx arrays [56] 

 

             (a)                                                                    (b) 

Figure 1- 45. Photographs of full electronic imaging system with 736 Tx and 736 Rx antennas, 

showing the front and backside of the system. (a) 16 clusters Array (b) Signal generating and 

processing hardware [56] 

diagram. It has an aperture of 1 m × 2 m to guarantee a 2 mm lateral resolution, 

consisting of 32 clusters with 94 Tx and 94 Rx antennas in each cluster, so it results in 

3008 transmitter and 3008 receiver antenna in total. On the other hand, a densely 

sampled aperture, with the same size and 3 mm antenna spacing, would require about 

334 × 667 = 223112 receiver or transmitter antennas to achieve the same resolution 

and illumination properties. Thus, the sparse array design requires only 3% of the 

sensors compared with the densely sampled aperture while keeping optimal image 

quality [57]. Figure 1- 47 and Figure 1- 48 show the maximum intensity projection 
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(MIP) of the reconstruction of a male person holding a test pattern. The person has 

been scanned by the 2-D imaging system using an equidistant frequency sweeping and 

nonuniform frequency sweeping, respectively. Both approaches are capable of 

generating high quality images. The proposed nonuniform frequency sweeping 

approach leads to reduction of the range ambiguities that are visible in Figure 1- 47(a), 

which has been further verified by the zoomed-in details shown in Figure 1- 48 [57]. 

 

Figure 1- 46. 2-D SFCW imaging system and its block diagram [57] 
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(a)                                                                       (b) 

Figure 1- 47. MIP of (a) Equidistant SFCW sweeping (b) Nonuniform SFCW sweeping [57] 

 

(a) 
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(b)                                                                          (c) 

Figure 1- 48. (a) Test pattern and zoomed-in reconstruction in Figure 1- 47 (b) Equidistant SFCW 

sweep (c) Nonuniform SFCW sweep [57] 

1.3. Challenges and Motivations 

As reviewed in previous sections, current imaging products mainly work at 

microwave or low millimeter wave band due to the maturity of the technology. 

However, they are suffering relatively poor image resolution due to long wavelength. 

Therefore, it is desirable to develop an imaging system operating in a high frequency 

band. But there are challenges in two aspects. The first challenge is how to achieve a 

fast imaging without compromising image quality. The second one is how to keep the 

cost low for the practical implementation while maintaining image quality. The 

researchers have shown that the passive imaging scheme has the advantage of fast 

frame rate, but it suffers from insufficient sensitivity to detect small radiometric 

temperature differences. The solutions of using a large number of detectors or high 

sensitive detectors such as TES and KIDs either increase the system cost or requires a 

long cooling time that blocks the continuous operation of the imaging system. The 

active imaging system has an intrinsic merit of better imaging quality and needs many 

more array elements/channels due to the requirement of Nyquist sampling criterion. 

Therefore, the key concern is to find a proper scheme and system design that can 

reduce the system cost while maintaining a good image quality and a fast frame rate. 

The FPA imaging system usually has drawbacks of low resolution because of fewer 

detectors used and a bulky size due to the use of lens. The advanced quasi-optic 

imaging system that relies on mechanical movement of mirrors/reflectors to 

accomplish a fast scanning is not only bulky and costly, but also needs almost normal 
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incident of the wave on the object, which is difficult to be guaranteed in practice 

especially at wide scanning angle [30, 70]. 

In terms of interferometric array imaging system, heterodyne transceiver and 

synthetic aperture focusing technique can improve the image quality significantly. 

Accordingly, the quasi-monostatic sequentially switched antenna arrays have been 

developed successfully by PNNL in many near real-time systems including the 

commercial products currently deployed at airports worldwide. The primary cost of 

quasi-monostatic sequentially switched arrays comes from the number of antenna 

elements, which is under the restriction of sub-wavelength sampling, and this increases 

the complexity of the switching matrix behind the antenna array too. Therefore, its 

operation frequency only reaches up to 60 GHz [47-49]. Although multi-static array 

also known as MIMO array may offer a promising and practical way to solve these 

problems [53-55, 65, 66], especially the multi-static sparse linear array imaging system 

as introduced before with multiple TR combinations. However, it is only verified at a 

frequency range of 20 – 40 GHz in simulation. And the minimum TR elements utilized 

is 55 with a sampling spacing of 0.33 wavelength at 30 GHz [51]. Therefore, it is 

necessary to explore the multi-static sparse array imaging in THz band. 

This project aims to investigate a THz imaging system for concealed threats 

detection based on the linear sparse periodic array. It requires a comprehensive study 

on the THz SPA imaging system, including the scheme set-up, simulation, theoretical 

analysis, assessment and experimental evaluation. In order to further reduce the cost of 

this imaging scheme, we have proposed an improved image reconstruction algorithm 

to increase the array element spacing. Therefore, we need to gain a full knowledge of 

this kind of THz imaging scheme after the study, deriving a complete design principle 

and procedures for practical implementation. In addition, in order to save data 

acquisition time, we have proposed to apply the compressive sensing technique to this 

imaging scheme, not only proposing the CS-SPA reconstruction model, but also 

demonstrating its feasibility using both the simulated and measured imaging data.  

1.4. Organisation of the Thesis 

The rest of the thesis is organized as follows: 

Chapter 2 firstly gives a detailed introduction on the linear sparse periodic array 

(SPA) that is particularly suitable for the imaging application. After that, the potential 
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THz imaging schemes using this SPA have been proposed. Finally, some basic 

definitions and specifications used to assess the imaging system have been introduced, 

including the point spread function, reconstruction algorithm based on generalized 

synthetic aperture focusing technique. 

Chapter 3 mainly shows the comprehensive imaging simulation of using SPA 

operating at 0.22 THz, including different configurations with different element 

spacing, ghost images generation and suppression, wideband 3D imaging and imaging 

on targets with curved surface. Finally, two larger SPA arrays working at 220 GHz and 

94 GHz separately for two different scanning schemes have been proposed for more 

realistic target imaging, including the dielectric, curved surface and full body model. 

Chapter 4 firstly introduces the compressive sensing (CS) theory and its 

advantage using two simple examples, which shows its potential to reduce the 

sampling points or channels when applied in the proposed SPA-THz imaging system. 

Afterwards, the corresponding discrete CS-SPA reconstruction model has been 

proposed and verified using the simulated data.  

Chapter 5 mainly presents the experimental results and essential analysis of this 

proposed SPA-THz imaging system. At the beginning, the experimental set-up of this 

THz imaging system has been introduced. Afterwards, the measured imaging results 

have been analyzed in comparison with the simulated ones in the realistic scenario. 

Finally, the experimental images reconstructed by the Generalized Synthetic Aperture 

Focusing Technique (GSAFT), improved GSAFT and CS reconstruction approaches 

have been compared, demonstrating the feasibility of improved GSAFT for ghost 

images suppression and the capability of CS application in reducing the sampling 

points or elements/channels in the future practical implementation of proposed SPA-

THz imaging system. 

Chapter 6 summarizes the research work in this thesis and points out the future 

work. 
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 THz Imaging Theory and the 

Proposed THz Imaging System Using SPA 

2.1. Introduction to Linear Sparse Periodic Array (SPA) 

The interferometric array imaging system uses amplitude and phase information 

to construct an image through a mathematical focusing algorithm, integrated with 

synthetic aperture technique that allows using fewer antennas to gain a large effective 

collecting area hence further increasing the imaging resolution. However, the quasi-

monostatic sequentially switched antenna arrays developed by PNNL in commercial 

systems in use at airports have high cost and complexity, this limits its operation 

frequency up to 60 GHz by 2014 [1-3]. For example, the currently deployed L-3 

Safeview system in use at airports operates in the band of 24.25 – 30 GHz; it consists 

of 384 antennas in each of transmitting and receiving arrays [4]. To the best of my 

knowledge, there are commercial products working around 100 GHz but they are not 

prevalent, yet. The THz security screening system still stays in the lab, facing 

challenges in practice. 

The primary cost and complexity of quasi-monostatic sequentially switched arrays 

come from a large number of array elements used. The sparse array also known as 

MIMO array that is categorized as multi-static scenario offers a promising and 

practical way to ease these problems [5-9]. However, the design of randomly 

distributed elements in a sparse array is a difficult task. Without a simple mathematical 

solution to this problem, it is very challenging to design an optimal sparse array. In 

addition to the two-column multi-static sparse array that uses repeatable  Tx and Rx 

units with different spacing, another multi-static sparse array named linear sparse 

periodic array (SPA) uses “effective aperture” concept as a design guideline [10], in 

which two-way radiation pattern of this effective aperture has the low side lobe level 

that is ideal for imaging. SPA makes full use of TR combinations so it can further 

reduce the number of elements. The effective aperture of an array is simply the 

receiver aperture that would produce an identical two-way radiation pattern if the 

transmitter aperture were a point source (It is noted that the definition is different from 

the effective sampling aperture, which is the length from the phase centre of first 

sampling points to the last one). In the far field range or the focal region of a phased 
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array, the continuous wave 1-D (dimensional) radiation pattern PT,1-D(s) is given by the 

Fourier transform of the transmitter aperture function aT,1-D(x/λ) as equation (2- 1) [10]. 

 2 ( )

T,1-D T,1-D( ) ( ) ( )i x sx x
P s a e d 

 




    (2- 1) 

where the transmitter aperture function describes the transmitter element weighting as 

a function of the element position, s = cos(φ), φ is the azimuth angle measured from 

the array (axis), and x/λ is the element location in wavelengths (see Figure 2- 1). 

Similarly, the radiation pattern PR,1-D(s) is given by the Fourier transform of the 

receiver aperture function aR,1-D(x/λ) [10].  

It is worth noting that this equation (2- 1) is same to the array factor (AF) for an 

M-element linear array, as shown in equation (2- 2). 

 ( cos )

(1 D)

1

m

M
j kx

m

AF e






   (2- 2) 

where xm is the position of m-th element.  

 

Figure 2- 1. Coordinate system for relating the aperture function a(𝑥/𝜆) to the 1-D radiation 

pattern PT/R,1-D(s) [10] 

The two-way or pulse-echo 1-D radiation pattern PTR,1-D(s) can be derived from 

equations  (2- 3) by the product of the transmitter 1-D radiation pattern PT,1-D(s) and 

the receiver 1-D radiation pattern PR,1-D(s) [10]. 

 
TR,1-D T,1-D R,1-D( ) ( ) ( )P s P s P s   (2- 3) 

φ 
x/λ 

PT/R,1-D(s)/AF(1-D)

a(xm/λ)

Element
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 This is equivalent to the Fourier transform of convolution of the transmitter 

aperture function aT,1-D(x/λ) and the receiver aperture function aR,1-D(x/λ), as shown in 

equation (2- 4) [10]. 

 
TR,1-D T,1-D R,1-D( ) { ( ) ( )}P s F a x a x     (2- 4) 

From the definition of an effective aperture, it follows that the 1-D effective 

aperture ETR,1-D(x/λ) of the system can be derived by the convolution of the 1-D 

transmitter aperture function and 1-D receiver aperture function as equation (2- 5) [10].  

 
TR,1-D T,1-D R,1-D( ) ( ) ( )E x a x a x      (2- 5) 

Since the two-way radiation pattern of the TR array is given by the Fourier 

transform of the effective aperture, we can design the TR array by selecting the 

transmitter and receiver aperture functions such that a desired effective aperture is 

obtained. A desired effective aperture usually has approximately λ/2 element spacing 

(which ideally assures Nyquist sampling criterion satisfied so that phase shift between 

2 sampling points is less than π), a smooth aperture shape, so the grating lobes in the 

two-way radiation pattern that affect the imaging performance can be suppressed [10]. 

Therefore, the design principle of linear sparse periodic array (SPA) can be concluded 

as follow. The array consists of Nt transmitter elements with a spacing of dt, half 

placed at two ends of the Nr-elements receiver array with a spacing of dr that equals 

to 0.5 ∙ Nt ∙ dt (Positions of transmitter and receiver elements are exchangeable). As a 

result, the corresponding effective array will have Nt ∙ Nr elements with an identical 

spacing of dt except for the central one with an element spacing of 2∙dt [10]. The 

aperture length of this effective array is Nt ∙ Nr ∙ dt that is equal to Lt+Lr. 

 

Figure 2- 2. Illustration of element distributions of TR linear sparse array and corresponding 

effective array [10] 
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As one example of 8 transmitter antennas located at the two ends of 8 receiver 

antennas with the spacing of half wavelength whose aperture functions are shown in 

Figure 2- 3, it is seen that the side lobes of one-way radiation pattern of Rx exactly 

locates the null of the Tx beam. Thus, the effective aperture with 64 elements with half 

wavelength spacing can be gained as shown in Figure 2- 4, whose side lobes can be 

minimized well for imaging and this is verified by the two-way radiation pattern 

shown in Figure 2- 4. However, there is a far-field imaging assumption in radiation 

pattern. When target is closer to the aperture than the far-field distance, radiation 

patters directly gained by the Fourier transform of aperture functions would have a few 

distortions. They cannot predict the imaging performance accurately, thus point spread 

functions (PSFs) should be utilized to slightly modify above TR distribution to further 

improve the imaging performance [7, 11].  

 

Figure 2- 3. Aperture functions of receiver and transmitter arrays and their one-way radiation 

patterns (in dB) 

 

Figure 2- 4. Effective aperture function of the sparse array and its two-way radiation pattern (in 

dB) 
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2.2. Proposed THz Imaging System with SPA 

This kind of imaging system utilizing electronic scanning and mechanical 

scanning methods probably have two kinds of set-ups that are shown in Figure 2- 5 

and Figure 2- 6. The difference in two set-ups lies in mechanical scanning approach 

along one direction. A linear sparse periodic array with switches is used to 

electronically scan along one (like horizontal) direction. In the application, Tx 

antennas are turned on and off sequentially. While one Tx antennas is on, all Rx 

antennas record the received data for each combination of Tx-Rx elements. When all 

combinations are recorded, the output beam moves to illuminate the next spot along 

the other direction by either mechanical rotation of the optic reflector like shown in 

Figure 2- 5 or array movement as shown in Figure 2- 6 and then the above procedure is 

repeated until the full 2D aperture data are gained to reconstruct the image. The 

proposed THz SPA imaging system uses synthetic aperture technique to achieve a 

high-quality image. Theoretically, a higher-quality image due to multi-pass 

interferometric synthetic aperture imaging can be carried out by a single radar/system 

scanning in different passes [12]. Besides the mechanical scanning, the SPA in the 

proposed imaging system can also move positions along the electronic scanning 

direction to gain several phase-correlated datasets that correspond to each single-pass 

synthetic aperture image. Therefore, an improved multi-pass interferometric synthetic 

aperture image can be synthesized when necessary. Furthermore, images at different 

frequencies can be utilized to reduce the ambiguity and form 3D image. 

 

Figure 2- 5. Schematic illustration of the THz-SPA imaging system with rotating reflector 
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(a) 

 

(b) 

Figure 2- 6. Schematic illustration of THz imaging system with SPA (a) vertical and (b) horizontal 

scanning 

2.3. Theoretical Analysis on the Proposed THz Imaging System 

2.3.1. Point Spread Function 
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In addition, the one-way radiation pattern of equation (2- 2) can be generalized 

into a form for 2-D (planar) array as shown in equation (2- 6), which has randomly 

distributed elements as shown in Figure 2- 7. 

 ( sin cos sin sin )

(2 D)

1 1

m n

M N
j kx ky

m n

AF e
   



 

  (2- 6) 

where (xm,yn) is the position of element with indexes (m, n) along x and y axes, φ and θ 

are the azimuth and elevations angles in spherical coordinate system.  

 

Figure 2- 7. Coordinate system for relating the planar aperture function to 2-D radiation pattern 

Equation (2- 6) is based on the far field assumption, similarly in equation (2- 2). 

Accordingly, we can gain a more general calculating equation taking account of the 

target distance particularly for this SPA imaging system, as shown in equation (2- 7) 

and equation (2- 8), which are also the point spread functions (PSFs) of the transmitter 

and receiver arrays, respectively. 
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wherein p,w

toR and q,w

roR as shown in Figure 2- 8 and calculated as equation (2- 9) are 

the vectors between the position
p,w p,w

t t
(x ,y ) of pth transmitter element at wth mechanical 

scanning position and the position 
q,w q,w

r r
(x ,y ) of qth receiver element at wth mechanical 

scanning position to the target point o, respectively. 

 

, , 2 , 2 2

, , 2 , 2 2
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to t o t o o

q w q w q w

ro r o r o o

R x x y y z

R x x y y z

    

    

 (2- 9) 

 

Figure 2- 8. Imaging schematic with a multi-static array (SPA) 

Therefore, the planar two-way radiation pattern/PSF of this array (imaging 

system)-the product of planar one-way radiation pattern/PSF of transmitter and 

receiver arrays can be derived in equation (2- 10). 
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It is worth noting that equations (2- 7) ~ (2- 10) can be used to assess the 

performance for both near and far range imaging scenarios. In addition, the 1-D 

radiation patter/PSF is the slice of 2-D radiation patter/PSF. For example, Figure 2- 9 

shows the 2-D PSFs of Tx, Rx and SPA in simulation. The simulation details are 

concluded in Table. 2- 1. Figure 2- 10 shows the corresponding 1-D PSFs, we can see 

that 1-D PSFs of Tx and Rx in Figure 2- 10 (a) are the (Y = 0) slices of 2-D PSFs in 

Figure 2- 9 (a) and (b). Similarly to the Figure 2- 10 (b) and Figure 2- 9 (c). Besides, 

the X-horizontal and Y-vertical resolutions are 3.906 mm and 2.50 mm, verified by the 

first nulls of PSFs in Figure 2- 10 (d).  

Table. 2- 1.  Details of imaging system in MATLAB simulation on PSF 

Frequency 220 GHz 

SPA 8 Tx + 8 Rx 

Tx element spacing dt & mechanical scanning interval 

 (total scanning length) 
6 mm & 4 mm (0.3 m) 

Mechanical scanning length 0.3 m 

Target distance 1.1 m 

Resolutions (Horizontal & Vertical directions) 3.91 mm & 2.50 mm 

     

(a) 
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(b) 

     

(c) 

Figure 2- 9. 2-D (a) PSFTx (b) PSFRx and (c) PSFSPA 

  

      (a)                                                                         (b) 
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          (c)                                                                         (d) 

Figure 2- 10. 1-D PSFs of (A) Tx and Rx (b) SPA (c) vertical scanning and (d) zoomed-in PSFs 

along two dimensions 

2.3.2. Spatial and Frequency Sampling 

Data sampling and image reconstruction will require that the data and the 

subsequent image be discretized. Traditional theory requires this sampling or 

discretization to meet the Nyquist sampling criterion. The satisfied sampling along an 

aperture is determined by a number of factors including the wavelength, size of the 

aperture, size and distance of the target [1, 5]. The Nyquist criterion will be satisfied if 

the phase shift from one sample point to the next is less than π rad [1, 5]. The worst 

case will occur for a target very near to the aperture and the sample points near the 

edge of the aperture, as shown in Figure 2- 11 [1, 5].  

 

Figure 2- 11. Illustration of Nyquist sampling criterion for aperture spatial sampling 

Therefore, the worst case will have a phase shift of 2k|r1-r2| where 2 is for round 

trip and k = 2π/λ is the wavenumber [1, 5]. It is not more than 2kdx since dx is the 

hypotenuse. Therefore, the sampling interval can be derived as 

Target

Aperture

r1

r2

Distance D

L2

L1

dx



THz Imaging Theory and the Proposed THz Imaging System Using SPA 

79 

 

4
dx


    (2- 11) 

This result is more restrictive than it is usually required since the target is often at 

a moderate distance from the aperture. Consequently, practical imaging systems can 

often employ sampling intervals in the order of λ/2 [1]. 

The required frequency sampling is determined in a similar way. The phase shift 

resulting from a change in wavenumber Δk is 2ΔkDmax, where Dmax is the maximum 

target range [1]. 

Requiring that this phase shift be less than π rad yields Δk <  π/(2Dmax) or 

 

max4

c
f

D
     (2- 12) 

where Δf is the required frequency sampling interval [1]. 

Alternatively, the number of frequency samples in a bandwidth of B must be 

 max
2

( 2 )
f

D
N

c B
    (2- 13) 

This is an interesting result since it indicates that per range resolution cell needs 

two frequency samples where the range resolution is defined by c/2B [1]. 

2.3.3. Imaging Algorithms 

I. Generalized Synthetic Aperture Focusing Technique 

For the monostatic imaging system using raster scanning scheme or mono-static 

array shown in Figure 2- 12, the Fast Fourier Transform (FFT) based on the back 

propagation (BP) algorithm can be used to reconstruct the image [1], see details in 

Appendix I. It is an interferometric imaging using both incoming amplitudes and phase 

of each TR pair to form the image on the target plane. And the TR separation is small 

compared to the target distance, so the phase error caused by approximation of using 

the central positon rather than the exact Tx and Rx positions to calculate the phases to 

target is neglectable. However, regarding the SPA configuration being a multi-static 
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scenario, aforementioned approximation and reconstruction algorithm are not 

applicable. Therefore, Generalized Synthetic Aperture Focusing Technique (GSAFT) 

using exact Tx and Rx positions to calculate the phase difference is required, as shown 

in equation (2- 14). 
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    (2- 14) 

wherein g is the reflectivity function that is used to depict the target, forming the image, 

S is the S-parameters, p,w

toR  and q,w

roR  are the vectors between the position 
p,w p,w

t t
(x ,y )

of pth transmitting antenna at wth mechanical scanning position and the position 

q,w q,w

r r
(x ,y )  of qth receiving antenna at wth mechanical scanning position to the target 

point o, as calculated in equation (2- 9). We can see equation (2- 14) equals to S-

parameters multiplied by PSF depicted in equation (2- 10), which is also named as 

imaging system response.  

Like the multi-pass interferometric synthetic aperture radar (inSAR) achieving 

imaging with the exact same radar systems on the same aircraft (or spacecraft) flying 

by in different passes [12-15], the proposed SPA imaging system can also use multi-

pass phase-correlated datasets to improve the image quality. Therefore, the SPA can 

simply move positions along the electronic scanning direction with a number of N, 

collecting N phase-correlated data. The corresponding reconstruction is shown in 

equation (2- 15). 
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where 
p,w

to,nR  and 
p,w

ro,nR are the vectors in the nth path between the position
p,w q,w

t,n t,n
(x ,y ) of 

pth transmitting antenna at wth mechanical scanning position and the position 

p,w p,w

r,n r,n
(x ,y ) of qth receiving antenna at wth mechanical scanning position to the target 

point o, as calculated in equation (2- 16). 
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 (2- 16) 

Regarding the reconstruction algorithm of 3D image using wideband operation, 

based on the GASFT in equation (2- 14), the average of amplitudes of different 

frequencies at each specific (x, y, z) position are calculated to represent each pixel at 

this position, as depicted in equation (2- 17) in which Nf is the number of frequency 

samples. 
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Figure 2- 12. Imaging schematic with a monostatic array 

II.  Improved GSAFT Proposed for Ghost Images Suppression 

As depicted in equation (2- 14) based on GSAFT, each pixel (point) in the desired 

image space is evaluated by all the recorded data of each TR combination.  However, 

this kind of reconstruction method will cause ghost images when the sampling spacing 
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is large. Therefore, we introduce a weighting function fg into the traditional GSAFT 

imaging algorithm in order to filter the echoes data for each point reconstruction [16]. 

The working concept of the proposed imaging algorithm is illustrated in Figure 2- 13 

and equation (2- 18). Due to the weighting function fg , each imaging target point is 

synthesized by the specific recorded data within coverage area instead of all the 

recorded data in traditional imaging algorithm. Thus, the weighting function is defined 

by equations (2- 19) ~ (2- 21) [16]. 
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then g 1f   (2- 20) 

else g 0f   (2- 21) 

wherein p,w

toR  and q,w

roR  are the vectors same as  shown in equation (2- 9). In addition, 

Rx and Ry are two independent thresholds/radiuses around half of ΔSx and ΔSy, which 

would be introduced in section 3.2.2. 

 

Figure 2- 13. Illustration on working concept of the improved GSAFT imaging algorithm 

proposed for suppressing ghost images 
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2.3.4. Specifications of Imaging System 

Field of view (FOV) of an imaging system depicts the area that can be seen by 

this imaging system, so it is crucial to an imaging system. It is related to the scanning 

aperture and the surface curvature of the target that affects the path of the reflection. 

 The resolution of an imaging system is the minimum separation that can be 

identified. There are two categories of range resolution and cross-range resolution. The 

resolution obtained in the image can be determined by examining the extent or width 

of the coverage in the spatial frequency domain [1]. In one dimension, uniform 

frequency coverage (rectangular function) width of Δk results in a spatial pulse width 

of 2π/Δk. For a 3-D image reconstruction, the spatial frequency coverage is a polar 

region as shown in Figure 2- 14 [1]. If this region is approximated as rectangular, then 

the width in the kx-direction is approximately 4kcsin(θb/2) where kc is the wavenumber 

at the center frequency and θ is the minimum of the full beam width of the antenna or 

the angle subtended by the aperture[1]. This results in a cross-range resolution along x-

direction of 

 

= min( ,2arctan( ))
2

4 sin( 2) x
HPBW

c
x

L

D
 








  (2- 22) 

where Lx is the scanning aperture along x-direction. Cross-range resolution along the y-

direction will be same except that the beam-width may be different. The cross-range 

resolution can also be predicted by the point spread function, which has been 

demonstrated in Figure 2- 10 (b). For an aperture-limited imaging system in which 

target distance D is much larger than scanning aperture length or the receiver antenna 

has about 180° beam width, θmin is equal to 2∙arctan(Lx/(2D)) so δx = λc/(2Lx)∙D. This 

prediction agrees well with the equation (2- 23) proposed to estimate the resolution of 

a SPA that does not take account of the beam-width due to omnidirectional radiation 

pattern of point source assumption [10], 

 =c c L D     (2- 23) 
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where L is the aperture length of effective array, illustrated as Ld in Figure 2- 2 or the 

two times of mechanical scanning length in order to estimate the resolution along 

mechanical scanning direction. 

 

Figure 2- 14. Spatial frequency coverage in the range and cross-range directions [1] 

The range resolution of an imaging system can be gained by the wideband 

imaging operation, derived by equation  (2- 24) where the B is the frequency 

bandwidth of the system [1]. 
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   (2- 24) 

The SNR of the image, unlike the SNR of the imaging system, is a concept used 

to quantitatively assess the image quality, defined as the ratio of difference in 

brightness between bright and dark areas to the standard deviation of the dark area in 

equation (2- 25) [17]. 

 
( )

bright dark

I

dark

B B
SNR

B


   (2- 25) 

where 
brightB  and  

darkB  are the mean brightness of the target area and non-target area. 

σ(Bdark) is the standard deviation of the dark area brightness [17]. 
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2.4. Summary 

This chapter has introduced the fundamental design guideline and working 

principle of the linear sparse periodic array that provides a high imaging quality with 

fewer array elements. This kind of array is anticipated to be applied in several potential 

THz imaging schemes, which will be assessed in the following work. Besides, the 

multi-pass interferometric synthetic aperture imaging technique and the improved 

GSAFT reconstruction algorithm have been proposed to apply in the system. Finally, 

the point spread function, imaging algorithms and several specifications used to assess 

the imaging performance have been introduced. 
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 Simulation Study and Assessment 

of the Proposed THz Imaging Scheme 

3.1. Introduction to Simulation Methods 

Computational electromagnetics (CEM) is applied to model the interaction 

between electromagnetic fields with the objects such as antenna, aircraft and their 

environment [1-3]. This simulation as an effective method to assure the practical 

performance is essential to the design of device or system. The methods in CEM can 

be categorized into three types because of solver type used [2, 3]. The integral equation 

solver based methods include popular Method of Moments (MOM), Finite Integration 

Technique (FIT) and Fast Multipole Method (FMM). Differential equation solvers 

based methods include Finite Element Method (FEM) and Finite Difference Time 

Domain (FDTD) Method. The other methods include electric current based Physical 

Optics (PO) and electric field based Geometric Optics (GO) [2].  

Most widely used CEM simulation tools are CST Studio Suite based on Finite 

Integration Technique (FIT) [4, 5], Ansys HFSS based on FEM [6] and Altair 

FEKOTM based on MOM and FEM [1, 7]. However, all these methods have their own 

limitations. MOM has difficulties in modeling inhomogeneous, interior of conducting 

enclosures and dielectrics with non-linearity. FEM is not suitable for efficient 

modeling of thin wires, large radiation problems and Eigen value problem due to its 

unstructured mesh. FDTD is difficult in modeling structure with sharp edges. 

Therefore, each method has its specialized application as shown in Figure 3- 1, and 

these commercial computational tools now incorporate several solvers with different 

methods for various scenarios [7]. FEKOTM is originally effective in handling large 

structures like large-scale phase array. Besides, as MOM based software, the 

Multilevel Fast Multipole Method (MLFMM) in FEKOTM is more efficient, which 

reduces the memory complexity and solving complexity [8]. The FEKOTM is suitable 

not only for large-scale and complicated 3D objects such as reflect-array and aircraft, 

but also for the far field imaging that involves a long target distance of free space up to 

meters. Therefore, we have chosen the FEKOTM as our imaging simulation tool. In 

addition, the hybrid method of MOM and PO in FEKOTM enables the imaging 

simulation with various targets on a limited Random-access Memory (RAM) resource 
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and within an acceptable time [9]. For example, the MOM/PO or MLFMM/PO hybrid 

method can be employed for a large pure metallic target with smooth surface in which 

the MOM or MLFMM are used as the global solver while the PO is used as the local 

solver for the target [9]. PO is based on finding the current density induced on a 

surface, so it is applicable in large scatters. For extremely large metallic target, the 

Large Element PO (LE-PO) can be used instead of PO, which allows much larger 

mesh sizes that lead to dramatic computational cost savings compared to standard PO 

[9]. However, if the target includes the dielectric, the PO method is not applicable. So 

the Ray-Launching Geometrical Optics (RL-GO) method that is also sometimes 

referred as Shooting and Bouncing Rays (SBR) should be adopted [1, 9]. This is a 

field-based method in which the equivalent currents on geometric plane are set up 

using ray tracing. GO meshing elements are much larger than those in the MOM and 

PO. Therefore, the mesh storage is reduced remarkably, so it is very suitable for 

electrically large PEC and dielectric objects with multiple reflections [9]. It is worth 

mentioning that the RL-GO in hybrid simulation approach can be coupled with the 

MOM rather than MLFMM. Beside, since the elements in the SPA are uniform, we 

can also use the equivalent source of its far field instead of the real element model to 

further save the computational time and RAM resource, especially for a large array and 

target. In summary, the full workflow of this simulation study has been concluded in a 

flow chart of Figure 3- 2. Based on the desired imaging specifications, the 

configurations of SPA and mechanical scanning are firstly designed according to the 

design guideline we proposed. Then, the full wave simulation is conducted in FEKOTM. 

 

Figure 3- 1. Applications of various computational methods [7] 
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Thereafter, the simulated data are input to imaging program in MATLAB thus the 

target image is reconstructed.  

 

Figure 3- 2. Flow chart of imaging simulation study including the imaging simulation in FEKOTM 

and the image reconstruction in MATLAB 

3.2. Comprehensive Simulation Study and Results Analysis 

3.2.1. Imaging Performance of Different SPA Configurations 

In the first stage of simulation study, a pyramidal horn has been chosen as the 

element to form the SPA working for 0.22 THz imaging. The geometry of the 

pyramidal horn is illustrated in Figure 3- 3 and the radiation pattern at 0.22 THz 

(shown in Figure 3- 3) demonstrates that it has a 3 dB beam width of about 42° and a 

peak gain of 12.95 dB. Due to this wide beam-width in simulation study, the spatial 

resolution is normally predicted by equation (2- 23) for an aperture-limited imaging 

system. 

In this simulation study, the SPA consists of 8 transmitting and 8 receiving 

elements as configured in Figure 2- 2. Therefore, the real array aperture Lt equals 

36·dt, and the virtually effective array aperture Ld equals 64·dt. The target in the 

simulation drawn in Figure 3- 4 (a) is placed at a distance of D = 1 m from the 

scanning plane of TR sparse array. So the spatial resolution along the direction of array 

orientation can be predicted by the equation (2- 23). Different schemes consisting of 
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different element spacing of dt and beam mechanical scanning spacing dv, shown in 

Table. 3- 1, are studied to assess the corresponding imaging performance. And the 

reconstructed images are compared in Figure 3- 4 (b), Figure 3- 4 (c) and Figure 3- 4 

(d), respectively. 

 

Figure 3- 3. Geometry and radiation pattern at 0.22 THz of the pyramidal horn 

                     

(a)                                                             (b) 

       

(c)                                                              (d) 

Figure 3- 4. Target (a) drawing and reconstructed images with 20-dB dynamic range of (b) 

Scheme I (c) Scheme II and (d) Scheme III 

As shown in Figure 3- 4 (b), when the real array aperture is narrower than the 

target width (like scheme I), the target cannot be reconstructed completely. That is 

because the FOV of such a THz SPA imaging system for detecting a flat target 
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detection is 0.5 ∙ dt ∙ Nt ∙ Nr as shown in equation (3- 1), which is the length between 

the first and last sampling points as illustrated in Figure 3- 5 and derived on the basis 

of SPA configuration (introduced in Chapter 2.1). This FOV principle of equalling to 

the sampling aperture also applies to the mechanical scanning approach or electronic 

scanning of other kinds of arrays.  

  ( 1) 0.5 0.5dr Nr dt Nt dt Nt Nr            (3- 1) 

So the FOV of scheme I is 80 mm, consequently the area beyond ±40 mm cannot 

be reconstructed in Figure 3- 4 (b) while the target image can be reconstructed 

completely in Figure 3- 4 (c) of scheme II and in Figure 3- 4 (d) of scheme III. 

Moreover, it is found that Figure 3- 4 (d) shows a superior resolution compared to 

Figure 3- 4 (c) because the array in scheme III has a longer real and virtual effective 

array aperture.  

 

Figure 3- 5. Field of view of the SPA imaging system 

Target Plane

Practical FOV

RxTx Tx

Lt

dtdtdr

Tx Number: Nt

Rx Number: Nr

Table. 3- 1. Schemes (8 Tx & 8 Rx) with different Tx element spacing and same 41 

mechanical scanning spots (dv = 4 mm, total scanning length: 160 mm) 

               Parameters(mm) 

Schemes 
dt FOV Lt Ld Theoretical resolution 

 Scheme I 
2.5 

(1.83λ) 
80 90 160 1.364

1000 8.525
160

  

  Scheme II 
4 

(2.93λ) 
128 144 256 1.364

1000 5.328
256

  

   Scheme III 
6 

(4.40λ) 
192 216 384 1.364

1000 3.552
384

  
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3.2.2. Large Sampling Spacing and Ghost Images Period 

Although the scheme II and scheme III can be adopted for the THz imaging 

system to detect and reconstruct images successfully, a wider (>4.40λ) element 

spacing is still desired to further reduce elements and sampling points. Moreover, the 

knowledge on the relationship between element spacing of dt as well as mechanical 

scanning spacing dv and corresponding imaging performance is needed for a design 

guideline. Therefore, parametric study has been conducted and the results are 

presented as follows. 

Firstly, we have studied the effect of mechanical scanning interval, keeping the 

array element spacing same with scheme III of dt = 6 mm (4.40) and increasing the 

mechanical scanning interval from 4 mm to 6 mm. The reconstructed image as shown 

in Figure 3- 6 (a) indicates that the ghost images will emerge periodically along the 

mechanical scanning direction when directly using traditional GSAFT reconstruction 

algorithm if this mechanical sampling interval is too large. Besides, we found that the 

large array element spacing dt will also cause ghost images along the electronic 

scanning direction, as shown in Figure 3- 6 (b) with dt = 12 mm and dv = 6 mm. 

Although we can crop the image to eliminate the pseudo targets, we do not know 

where and what area we should crop when we conduct a practical personnel screening. 

Thus, we need to study the cause of this issue and fundamentally suppress it. 

   

(a)                                                                           (b) 

Figure 3- 6. The reconstructed images with 20-dB dynamic range of (a) dt = 6 mm, dv = 6 mm 

and (b) dt = 12 mm, dv = 6 mm 

In the simulation, we have discovered that the ghost images along two dimensions 

become dense with the increase of the array element spacing and mechanical scanning 

interval, respectively. As is known to us all, the grating lobes emerge in a broadside 

array when the uniform element spacing becomes larger than one wavelength. 
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Similarly, the grating lobes in a radiation pattern of a uniform array become dense with 

the increase of array element spacing. 

The grating lobes in a broadside array periodically appear at the angle of θB (angle 

measured from perpendicular to the array as shown in Figure 3- 7) that can be 

calculated from equation (3- 3) derived from equation (3- 2), which depicts the 

forming condition of the grating lobes in a uniform array, 

 sin 2Bk ds N      (3- 2) 

 sin B ds     (3- 3) 

wherein k is wave number. λ is wavelength, N is the number of element. ds is Tx 

element spacing along electronic scanning direction by the SPA. As one example, one 

radiation pattern of SPA with dt = 6 mm is shown in Figure 3- 8.  

 

Figure 3- 7.  Radiation of a broadside array 

 

Figure 3- 8. The estimated equivalent radiation pattern of a SPA with dt = 6 mm 

y
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Therefore, we speculate the period of ghost images calculated by equation (3- 4) after 

we obtain the θB, 

 tan BS D                                               (3- 4) 

wherein D is the target distance, ΔS is predicted period of ghost images. Regarding the 

mechanical scanning direction, the ds in equation (3- 3) is equal to 2 ⋅ dv. That is 

because the 2 ⋅ dv  element spacing will be required for a  uniform TR array to 

electronically sample these data with an interval of dv, as illustrated in Figure 3- 9.  

That is also why the image of Figure 3- 6 (b) with dt = 12 mm and dv = 6 mm has 

same periods of ghost images along both directions. 

In order to verify the proposed cause of ghost images, the ghost image periods ΔS 

for different element spacing of linear sparse periodic arrays are calculated that agree 

quite well with those obtained in reconstructed images in simulation, as shown in 

Table 3-2. Therefore, we have confirmed that these ghost images are really caused by 

the grating lobes. The quantitative relationship between sampling spacing (array 

element spacing and mechanical moving spacing) and the period of target images is 

depicted in equations (3- 2) ~ (3- 4).  

 

Figure 3- 9. Illustration of the mechanical scanning by an equivalent array 

Based on scheme III in Table. 3- 1, we have kept configuration of dt = 6 mm 

unchanged, increasing mechanical scanning spacing dv to 6 mm (27 sample spots, 

scanning length 156 mm) and 8 mm (21 sample spots, scanning length 160 mm), 

respectively. The reconstructed images by traditional and improved GSAFT 
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approaches are compared in Figure 3- 10.  It is seen that the two-dimensional spatial 

resolutions in Figure 3- 10 are same with that in Figure 3- 4 (d) since their schemes 

have the same array aperture and near vertical scanning length, but artifacts are 

enhanced as mechanical scanning spacing increases. However, as shown in Figure 3- 

10 (a) and Figure 3- 10 (c), images directly reconstructed by traditional GSAFT have 

the ghost image along the mechanical scanning direction, which can be successfully 

suppressed by the improved GSAFT in Figure 3- 10 (b) and Figure 3- 10 (d). In 

addition, the contrast and resolutions in Figure 3- 10 (b) have no noticeable 

Table. 3- 2. Period calculations of ghost images in different array element spacing at 1 m target 

distance (Units: mm) 

dt λ/dt Calculated ΔS Simulated ΔS 

6 0.2273 233.38 234 

8 0.1705 172.99 174 

10 0.1364 137.65 140 

12 0.1136 114.38 116 

16 0.0852 85.54 86 

    

(a)                                                                          (b) 

    
(c)                                                                         (d) 

 Figure 3- 10. Reconstructed images with 20-dB dynamic range of dt = 6 mm, dv = 6 mm (a) 

with traditional GSAFT (b) with the improved GSAFT and of dt = 6 mm, dv = 8 mm (c) with 

traditional GSAFT (d) with the improved GSAFT 
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deterioration but the number of mechanical scanning spots is reduced from 41 of 

scheme III in Table. 3- 1 to 27. If the number is reduced further to 21, real and pseudo 

target images will overlap a little (dt = 6 mm, dv = 8 mm), causing image to degrade 

too much as shown in Figure 3- 10 (c), but the improved GSAFT approach can still 

help to reconstruct the target image successfully as shown in Figure 3- 10 (d). 

Secondly, we have kept mechanical scanning spacing of dv = 6 mm unchanged 

and studied the effect of array element spacing dt by increasing it to 8 mm (5.87λ), 10 

mm (7.33λ)  and 12 mm (8.80λ), respectively. The reconstructed images with both 

algorithms have been compared in Figure 3- 11. Similarly, the ghost images arise and 

can be suppressed well with the improved GSAFT algorithm [10, 11]. Comparing 

Figure 3- 11 (b) and Figure 3- 11 (d) with Figure 3- 10 (b), it is seen that the horizontal 

spatial resolution increases with the increase of element spacing since both the real and 

effective array aperture are lengthened, but the artifacts(strips) are enhanced as well. In 

addition, it is demonstrated from Figure 3- 11 (f) with the array element spacing of 12 

mm (8.80) that the real target can still be recognized in the extreme situation where 

the real target image is tightly surrounded by the pseudo target images having the 

comparable quality . 

    

(a)                                                                         (b) 

    

(c)                                                                          (d) 
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(e)                                                                         (f) 

Figure 3- 11. Reconstructed images with 20-dB dynamic range of dt = 8 mm, dv = 6 mm (a) with 

traditional GSAFT (b) with the improved GSAFT, of dt = 10 mm, dv = 6 mm (c) with traditional 

GSAFT (d) with the improved GSAFT and of dt = 12 mm, dv = 6 mm (e) with traditional GSAFT 

(f) with the improved GSAFT 

In the aforementioned simulation studies, it is shown that the ghost images caused 

by employing large spacing of mechanical scanning steps can be effectively 

suppressed. Then, we have conducted advanced simulations of wideband imaging of 

more realistic targets, further assessing such a THz imaging system. 

3.2.3. Wideband 3D Imaging Test 

 In practical application, we prefer to three dimensional (3D) image rather than 

2D flat image that helps to identify the target/weapons. Therefore, we have roughly 

studied how to achieve a 3D image with the wideband operation in simulation. The 

target in this simulation has the same shape as Figure 3- 4 (a) but with a thickness of 

20 mm, placed 1 m far away from the scanning plane. In addition, it requires a 15 GHz 

bandwidth in order to achieve a 10 mm range-resolution according to c/2B in equation 

(2- 13). Therefore, the operating frequencies in the simulation are in the band of 210 – 

230 GHz with an interval of 1.25 GHz, which is much larger than the interval of 75 

MHz required by the frequency sampling criterion of equation (2- 12) to save 

computational time. The SPA consists of 6 Tx and 10 Rx with the Tx element spacing 

dt of 6 mm and the mechanical scanning spacing dv is 6 mm same with the scanning 

scheme in Figure 3- 10 (a). Besides, 27 vertical sampling points are recorded at each 

operating frequency, so theoretical resolutions derived from equation (2- 23) are 3.79 

mm and 4.37 mm along horizontal and vertical directions, respectively. According to 

3D imaging algorithm in equation (2- 17), thickness of target can be obtained and three 

views of target image are shown in Figure 3- 12. In Figure 3- 12 (a), we found that 20 

mm thickness of the target has been clearly indicated. Figure 3- 12 (b) has shown a 
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higher resolution compared to previous single frequency imaging consequently the 

smallest hole can be clearly identified. However, the surfaces and edges in the 

reconstructed image are not smooth. That is because the sampling frequency points in 

this simulation are much less than required by the criterion. Besides, Figure 3- 12 (c) 

implies that the image along the mechanical scanning Y- direction has shown a better 

image quality than the electronic scanning X- direction of the array.  

 

(a) 

 

          (b) 
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   (c)  

Figure 3- 12. Three views of the reconstructed 3D Image. (a) Perspective view (b) Top view and 

(c) Side view 

3.2.4. Targets with Wide Width and Curved Surface 

In addition to the aforementioned small and flat targets, we have investigated the 

imaging on a wide target as wide as a human body and target having a curved surface 

that is more like a human body. Besides the default MLFMM solution dealing with 

long free space, local solutions of physical optics (PO) or large element physical optics 

(LE-PO) are adopted on the targets to save computational time. 

Firstly, pure metallic target with a 0.8 m width has been tested in the imaging 

simulation. The SPA consisting of 14 Tx and 16 Rx with a spacing dt = 7 mm is 

utilized and horizontally placed as schematic Figure 2- 6 (a), so real array length Lt is 

833 mm, and its effective sampling length (FOV on a flat target) is 784 mm. The 

vertical mechanical scanning spacing is as large as 6 mm and only 81 scanning points 

are recorded. Therefore, theoretical horizontal and vertical resolutions are 3.48 mm 

and 5.68 mm at a target distance of 4 m, respectively, calculated by using equation (2- 

23). The targets, the reconstructed images in linear and decibel units are compared in 

Figure 3- 13. As we can see, the reconstructed image in the central area has the best 

quality so the smallest slots with dimensions of 3 mm × 5 mm is clearer. It degrades at 

two edges since the phase shift increases, as implied in Figure 2- 11, but the slots with 

dimensions of 5 mm × 7 mm have been still resolved very well. In addition, the 

reconstructed image beyond the FOV (784 mm) is deteriorated obviously, agreeing 

with our previous observation. In summary, the results are consistent with the 
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anticipation, demonstrating that the SPA can be built into a large array for imaging a 

large-scale target. 

  

(a) 

 

(b) 

 

(c) 

Figure 3- 13. Wide metallic flat target. (a) Drawing and reconstructed images in (b) linear (c) 

decibel units 

Secondly, the surface of human body is not as flat as a mirror. The curved surface 

of human body will reflect the incident beams to different directions from the incident 

path according to the angle of arrival and the curvature.  Therefore, it is necessary to 

study this effect before we build the real imaging system. However, the linear sparse 

periodic array can have two possible placements to the curved target. One is as shown 

in Figure 2- 6 (a) that the array is placed horizontally so it is parallel to the curved 

surface. But the other one is shown in Figure 2- 6 (b) that the array is placed vertically 

so it is perpendicular to the curved surface. Therefore, we have conducted simulation 

of both schemes, showing the results as follows. 

One linear sparse periodic array consisting of 14 Tx and 16 Rx elements is placed 

on a plane as shown in Figure 2- 6 (a) to illuminate a target at a distance of 4 m. The 

SPA has a length of 595 mm with a 560 mm effective sampling length (practical FOV), 

and the mechanical scanning length is 564 mm. Two different configurations of 

forwarded Tx orientation and 4° inward tilted Tx orientation have been simulated. The 
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4° is the half of angle subtended by the target width, equalling to tan-1 ( L (2D)⁄ ) in 

which L is the width of the target and D is the target distance, as illustrated in Figure 3- 

14 (a). Therefore, the main beams of titled Tx elements have been directed to the target 

centre. The details of the target and its reconstructed images with two different 

configurations have been shown in Figure 3- 14 (b), (c) and (d).  

 

(a) 

 

(b) 

 

(c) 

 
(d) 

Figure 3- 14.  (a) Imaging diagram (b) wide metallic target with curved surface, and its 

reconstructed images with 25-dB dynamic range having (c) forwarded Tx orientation and (d) 4° 

inward tilted Tx orientation 
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It can be found from the results in Figure 3- 14 that two edges of the target cannot 

be imaged. This can be  explained by the method of ray tracing as illustrated in Figure 

3- 15. In order to simplify the explanation, Tx and Rx positions are represented by one, 

but the principle based on ray tracing applies to the separated Tx and Rx positions too. 

Since the target has a curved surface, the receiver placed at the point A can only pick 

up the echo data from left side of target point B2 instead of left side of target B1 that is 

the edge of effective sampling length (FOV on a flat target). Therefore, the SPA that 

has a 560 mm FOV on a flat target can only record data within the aperture shorter 

than 560 mm. Besides, since the practical field of view (FOV) depends on the target 

distance, surface curvature of the target and the characteristics of receivers including 

positions, beam-width and orientations, only 4° inward tilted angle Tx cannot help to 

broaden the FOV, as compared in Figure 3- 14 (b)  and Figure 3- 14 (c).  

 

Figure 3- 15. Ray tracing of the illumination and reflections of the target with curved surface 
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In comparison, the same SPA placed as scheme in Figure 2- 6 (b) has also been 

simulated. The angle interval along mechanical scanning direction in simulation is 

0.07 degree that corresponds to about 4.89 mm at a target distance of 4 m, the same 

scanning aperture about 560 mm × 560 mm has been undertaken for comparison. 

Besides, the difference of directly forwarded beams named scheme 1 in Figure 3- 16 (a) 

and output beams with tilted incident angels named scheme 2 in Figure 3- 16 (b) has 

been investigated. The SPA scanning path of both schemes in simulation is a circle arc 

with radius of 4 m. The curved surface of both schemes in simulation is an elliptical 

arc with minor axis of 60 mm and major axis of 560 mm as shown in Figure 3- 14 (b). 

 

   (a) 

 

    (b) 

Figure 3- 16. Illustrations of cylindrical scanning system of (a) scheme 1 (b) scheme 2 
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Specifically, the central axes of elements are perpendicular to the flat surface in 

scheme 1 while they are perpendicular to the circle-scanning path rather than the 

curved surface (the curvatures of target surface and circle-scanning path are different) 

pointing to the circle center in scheme 2. Therefore, it is seen that this circular 

scanning path cannot help to broaden the FOV in this simulation due to the limited 

scanning aperture, as shown in Figure 3- 17 of reconstructed images for these two 

configurations. Similar to previous study on scheme of Figure 2- 6 (a), only part of 

target can be imagined due to the curved surface although the mechanical scanning 

aperture is 560 mm. In addition, there is no obvious improvements of titled 

illumination in scheme 2 due to single frequency imaging operation and different 

curvatures between target surface and scanning path. 

Therefore, the imaging system as shown in Figure 2- 5 or any quasi-optic imaging 

systems achieving the scanning by rotating the reflectors will face a problem of 

missing reflection from the target when the rotating reflector is rotated so that the 

incident and reflected beams are tilted. This limits its imaging performance like image 

quality or field of view (FOV), which has been demonstrated in the references [12-14]. 

 

(a) 

     

 

(b)  

Figure 3- 17. Reconstructed images with 25-dB dynamic range of (a) scheme 1 and (b) scheme 2 
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3.3. Assessment of the Proposed Imaging Scheme on Body Model 

3.3.1. 220 GHz Imaging of Body Chunk 

The imaging performance of the proposed multi-static SPA-THz imaging system 

has been widely studied in above comprehensive simulations. Finally, we desire to 

take account of human body effects using more realistic target model in the simulation. 

Since now targets become more complicated and PO algorithm is not supported for 

dielectric, hybrid simulation method in the FEKOTM of method of moments (MOM) 

and ray launching geometrical optics (RLGO) on the target is chosen to save PC 

resource. To save computational time, we have firstly simulated some metallic patches 

on a chunk of human body phantom (800 mm × 100 mm × 5 mm) as shown in Figure 

3- 18 with a relative permittivity of 5.3 and a loss tangent of 0.75 at 220 GHz which 

are provided by GRASP (General Reflector Antenna Software Package) technical 

support at TICRA Provider. It is worth mentioning that these values should vary on 

operating frequency if wideband imaging is adopted. 

 

 

Figure 3- 18. Metal targets in front of a chunk of human body phantom (800 mm × 100 mm × 5 

mm) 
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The SPA utilized in this simulation consists of 14 transmitters and 16 receivers 

with a transmitter element spacing of 7 mm (5.13λ). So it has a real aperture length of 

0.833 m and a 0.784 m wide FOV on a flat target, which is supposed to achieve a 

theoretical resolution of 3.5 mm at 4 m. Moreover, the simulation set-up is same as 

Figure 2- 6 (a) where the planar scanning has been used and the SPA is placed 

horizontally. The vertically mechanical scanning interval is set as 12 mm (8.80λ), and 

41 scans are recorded, which thus can provide a 5.68 mm vertical resolution. Both 

resolutions have also been verified by the simulated point spread function (PSF) in 

Figure 3- 19. It is worth mentioning that more dense scans are required in the practical 

application for imaging a taller target. Besides, we have also simulated the imaging of 

the target concealed under a thin (Nylon-610) clothing of 0.5 mm with a relative 

permittivity of 2.84 and a loss tangent of 0.012 based on the FEKOTM material library. 

 

Figure 3- 19. Simulated PSF along two directions of the scheme configuration 

The image of the exposed metallic patches on the human body chunk is 

reconstructed by the improved GSAFT reconstruction method, as shown in Figure 3- 

20. It has demonstrated that the smallest patches can be distinguished in the central 

part of image, indicating a horizontal resolution of 3.5 mm achieved. However, the 

resolution is getting poorer towards the two edges of the image because phase shift 

rises [15]and the FOV (0.784 m) is narrower than the width of body chunk. Regarding 

the concealed target underneath a thin clothing, the reconstructed image has been 
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shown in Figure 3- 21. We can see the image contrast being improved when 

comparing it to the Figure 3- 20, because the relative permittivity and loss tangent of 

the thin (Nylon-610) clothing are lower.  

 

Figure 3- 20. The image of metallic targets and human body surface reconstructed by the 

improved GSAFT reconstruction method (20-dB dynamic range) 

 

Figure 3- 21. The image of metallic targets and human body surface concealed underneath a thin 

(Nylon-610) clothing (800 mm × 100 mm × 0.5 mm) reconstructed by the improved GSAFT 

reconstruction method with full data (20-dB dynamic range) 

3.3.2. 94 GHz Imaging of Body Chunk and Full Body Model 

The imaging simulation operating at 94 GHz has been carried out in comparison. 

Since wavelength increases, the larger spacing subject to wavelength allows reduction 

in array elements as well as mechanical scanning points. For example, in order to 

achieve 0.825 m width of FOV, there are only 10 transmitting (Tx) antennas and 11 

receiving(Rx) antennas placed horizontally as Figure 2- 6(a) with Tx element spacing 

of 15 mm (4.70λ). The array element in simulation has a 3 dB HPWB of 42° with a 

peak gain of 12.78 dB as shown in Figure 3- 22 so the theoretical resolution is 7.75 

mm at 4 m target distance predicted by array effective aperture of (2- 23). The target in 

the simulation is the same one in 220 GHz imaging simulation shown in Figure 3- 18 

except for a relative permittivity of 5.79 and a loss tangent of 1.29 at 94 GHz for 

chunk model derived from online database [16]. The images of targets exposed to the 

air or concealed underneath a 0.5 mm thick clothing (Nylon-610) have been shown in 

Figure 3- 23. From the results, it is seen that the theoretical resolution has been 

achieved because the second smallest patches with dimensions of 5 mm × 7 mm can be 

identified. The image quality including resolution and contrast degrades a little due to 

low operating frequency but the number of array elements/channels is also reduced.  
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Figure 3- 22. Geometry and radiation pattern at 94 GHz of the pyramidal horn 

 

(a) 

 

(b) 

Figure 3- 23. Results of 94 GHz imaging simulation with 10 Tx and 11 Rx placed horizontally 

that are reconstructed by the improved GSAFT reconstruction method (20-dB dynamic range). 

The images of metallic targets and human body surface (a) directly exposed to the air or (b) 

concealed underneath a 0.5 mm thick (Nylon-610) clothing (800 mm × 100 mm × 0.5 mm) 

Furthermore, the larger arrays with 14 Tx and 16 Rx elements have been 

investigated. The first large array has Tx element spacing of 7.366 mm so that it is 

capable of providing a resolution of 7.75 mm at 4 m target distance same as last small 

array. The corresponding reconstructed image based on simulated data is shown in 

Figure 3- 24 (a), which do not show an improvement compared with Figure 3- 23 (a). 

The Tx element spacing in the second large array increases to 15 mm so the FOV 

width is 1.68 m and the theoretical resolution is 3.81 mm at 4 m target distance 

predicted by array effective aperture of equation (2- 23). The corresponding 
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reconstructed image is shown in Figure 3- 24 (b). The contrast and resolution have 

been improved in this configuration but non-uniform ripples are obvious. 

 

(a) 

 

(b) 

Figure 3- 24. Results of 94 GHz imaging simulation with 14 Tx and 16 Rx placed horizontally 

that are reconstructed by the improved GSAFT reconstruction method (20-dB dynamic range). Tx 

Element Spacing of (a) 7.366 mm and (b) 15 mm 

In contrast, the imaging scenario using the set-up of Figure 2- 6 (b) has also been 

studied in which the last second larger SPA in Figure 3- 24 (b) is placed vertically. The 

physical array length is 1.785 m with a 1.68 m FOV (on a flat target). The target in the 

simulation, as shown in Figure 3- 25 (a), is 5 sets of metallic patches on a column of 

human body phantom (1600 mm × 100 mm × 5 mm) that has a relative permittivity of 

5.79 and a loss tangent of 1.29 at 94 GHz obtained from online database [16]. The 15 

mm transmitter element spacing leads to a 0.873 m period of ghost images, which is 

smaller than the target height of 1.6 m so the reconstructed images will overlap. Thus, 

reconstructions of using the traditional and improved GSAFT reconstruction 

algorithms have been compared in Figure 3- 25 (b) and Figure 3- 25 (c). The results 

have shown that the target image, as expected, deteriorates since ghost images have 

overlapped, but this issue can be significantly alleviated by using the improved 

GSAFT algorithm we proposed [17]. Besides, the sampling interval of circular 

scanning is 0.3°, and data at 41 horizontal positions corresponding to about 0.838 m 

width at 4 m are recorded for the image reconstruction. Thus, theoretical 3.80 mm and 

7.64 mm resolutions along vertical and horizontal directions can be derived by 

equation (2- 23), which have been also implied by the point-spread functions (PSFs) in 
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Figure 3- 26. The slot of 5 mm × 7 mm in Figure 3- 25 (c) can be identified at a 4 m 

target distance, which verifies the theoretical resolutions.  

 

(a)                                             (b)                                         (c) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3- 25. Target (a) drawing and images with 20-dB dynamic range reconstructed by (b) 

traditional and (c) improved GSAFT reconstruction algorithms 
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Figure 3- 26. PSFs of vertical SPA scanning and horizontal mechanical scanning 

In addition, we have also conducted the simulation on a full body model with a 

flat surface. The model is 4 m far away from the scanning plane, having a total 

dimension of 0.8 m × 1.7 m × 0.005 m. The full body models having metallic patches 

placed in the central and left side have been shown in Figure 3- 27. The number of 

mechanical scanning in simulation is 237 and the angle interval is 0.05625° 

corresponding to 3.925 mm at 4 m distance. Therefore, theoretical resolutions along 

horizontal and vertical directions in this scenario should be 6.89 mm and 3.80 mm 

derived by equation (2- 23), respectively. The corresponding images reconstructed 

with the traditional and improved GSAFT reconstruction algorithms have been 

compared in Figure 3- 28. From the results, we can clearly identify the metallic 

patches on the body surface, which verifies the theoretical resolutions achieved. In 

addition, we can find that the improved GSAFT reconstruction method suppresses 

ghost images successfully as expected, this allows us to use larger array element 

spacing to reduce the array elements and related channels, saving the system cost. 
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 (a)                                                                     (b) 

Figure 3- 27. Models of full body with flat skin surface and metallic targets on the (a) center (b) 

left-side 

    

(a)                                                                           (b) 
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(c)                                                                          (d) 

Figure 3- 28. Reconstructed images with 20-dB dynamic range of flat surface body models having 

the metallic target in the center with (a) traditional and (b) improved GSAFT reconstruction 

algorithms or in the left side with (c) traditional and (d) improved GSAFT reconstruction 

algorithms 

Finally, in our study in 3.2.4 and references [12, 14], we have already known that 

the curved surface or tilted incident angle deflect incident beams and the target cannot 

be fully reconstructed. Therefore, we have tested this effect again on a full human 

body model that partially has a curved surface, as shown in Figure 3- 29 (a). The angle 

interval of mechanical scanning is 0.05625° corresponding to 3.925 mm at target plane 

of 4 m distance. The body model and its reconstructed image have been compared in 

Figure 3- 29. We can see that the curved shin surface has not been fully reconstructed 

while two arms are reconstructed successfully. This result is same with our speculation 

based on the previous study in 3.2.4. It perfectly demonstrates that the curvature at two 

edges of curved surface deflects the incident beams away from the receivers while two 

arms in this model have a flat surface so they do not have this issue. There are 

solutions possibly to solve this problem: one is to rotate the T/R array over 180 degree 

as most commercial imaging products do, the other one is to place extra transmitters at 

sides of the array to make reflections from the curved surface propagate into the 

receivers [14]. 
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(a)                                                               (b) 

Figure 3- 29. Full body of curved skin surface. (a) Model and (b) its image with 20-dB dynamic 

range reconstructed by using improved GSAFT algorithm 

Therefore, based on the comprehensive simulation study above, the guidelines on 

designing this THz imaging system with a linear sparse periodic array can be 

summarized as follows. 

Determine the scanning aperture according to the interested FOV, target distance 

and desired resolution with equation (2- 22) and (2- 23). 

Derive the Tx element spacing and mechanical scanning interval with equation (3- 

3) and (3- 4) to assure the ghost images not appear into the interested FOV, or this 

spacing can be increased if using the suppressing reconstruction algorithm we have 

proposed [11]. 

Calculate the number of array elements and mechanical sampling points 

according to the sampling spacing, interested FOV and desired resolution. 

3.4. Summary 

This chapter has firstly introduced the widely used solvers in electromagnetic 

simulation and the various simulation methods we used to deal with different imaging 
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circumstances. Afterwards, the comprehensive simulation studies have been conducted 

to investigate the array configuration with different number, spacing of array elements, 

and different scanning paths, wideband 3D imaging and performance of imaging of 

more realistic targets. It has revealed the issue of the ghost images and effects of the 

targets on curved surface. We thus verified that the proposed improved GSAFT 

reconstruction algorithm is effective to suppress the ghost images. Besides, the 

complete imaging on the targets with a curvature can be achieved by using a sufficient 

scanning aperture or the extra transmitters.  

Finally, we have conducted the simulations of imaging on a small body chunk and 

a full body model to verify the prosed imaging system thus derived the design 

guideline, demonstrating the superior imaging performance when using the proposed 

SPA imaging configuration. 
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 Compressive Sensing and Its 

Application in Proposed Imaging Scheme 

4.1. Introduction to Compressive Sensing (CS) Method 

The Nyquist Sampling Theorem states that a band-limited continuous-time signal 

can be sampled and perfectly reconstructed from its samples if the sampling frequency 

is greater than twice of the highest frequency component of the signal. This requires a 

large amount of sampling data. As a breakthrough, the compressive sensing has been 

proposed [1-3]. It demonstrates a signal or image, unknown but supposed to be 

compressible by a known transform, (e.g. wavelet or Fourier), can be accurately 

reconstructed with fewer measurements than the nominal number of data points. The 

samples are nonadaptive and measure ‘random’ linear combinations of the transform 

coefficients. Approximate reconstruction is obtained by solving the transform 

coefficients consistent with measured data for having the smallest possible l1 norm, 

which is the sum of the absolute vector values as seen in Appendix II [1, 3, 4]. A full 

introduction to compressive sensing including signal models, sensing matrices, 

recovery theory, reconstruction algorithms and applications has been given in [5].  A 

systematic review on compressive sensing concepts, implementations and applications 

has been presented in [6]. Classical algorithms for compressive sensing of images have 

been compared, focusing on total variation algorithms in comparison with l1 norm 

minimization algorithms in [7]. Reconstruction algorithms, transform domain 

formulations and applications have been reviewed in [8, 9]. Besides, compressive 

sensing in electromagnetics by 2015, including the state-of-the-art advances of CS 

formulations, methods and applications in electromagnetics has been fully reviewed in 

[10].  

CS technique has been widely used in array synthesis, communications, and 

various imaging applications [8-10] including biomedical applications such as 

computed tomography (CT), magnetic resonance imaging (MRI) and radar imaging 

such as stepped-frequency continuous-wave ground penetrating radars [11], through-

the-wall radar imaging[12] and SAR/ISAR imaging [13-17]. This technique is useful 

to save sampling time with fewer data but without noticeable loss in quality of target 

image, which is promising to improve the imaging rate for efficient security detection. 
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However, the researches for security detection are either on low frequency bands 

below 100 GHz [18-20] or simulation studies due to the technical difficulties and high 

cost in implementing a THz imaging system with a large scale of array [21]. The 

imaging performance of CS integrated into SAR imaging has been studied utilizing a 

stepped-frequency radar at Ka band (26.5 - 40 GHz), but experimental targets under 

test are only three simple corner reflectors [16]. A novel centralized sparse 

representation based on SAR (Synthetic Aperture Radar) imaging approach has been 

proposed to improve the image quality and reduce the reconstruction time, but it 

operates at C band (RADARSAT-1) [17]. Near-field 3-D MMW imaging using a fast 

CS method based on an interpolation-free holographic algorithm has been proposed in 

comparison with the Fourier-based imaging, which operates at 72 – 76 GHz in 

simulation and 92 – 94 GHz in experiment [18]. CS imaging performance on human 

profile (curved object) has been compared with SAR imaging approach with a multi-

static portal system working in the range of 60 – 66 GHz, but there is no information 

on resolution or target identification [19]. CS application in a raster scanning scheme 

utilizing a mono-static TR pair at 100 GHz has been experimentally studied, compared 

with Fourier-transform-based CS (FT-CS) method and Definition-based CS method 

[20]. Therefore, we decide to study the CS application in THz imaging system 

operating at 220 GHz with a multi-static linear sparse periodic array, proposing the 

corresponding SPA CS reconstruction model to further reduce the sampling data but 

maintain the high image quality. In addition, we investigate the CS imaging operation 

at 94 GHz as a reference. 

Firstly, we introduce the traditional CS measurement and recovery. Its 

measurement process can be described as a matrix form as shown in equation (4- 1), 

which is illustrated in form of diagram in Figure 4- 1. An unknown signal  𝑋𝑁×1 , if it 

is not sparse, generally can be transformed into a sparse form 𝑆𝑁×1  in the another 

domain by a known sparse basis matrix 𝛹𝑀×𝑁  that corresponds to the transform such 

as Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT), Discrete Wavelet 

Transform (DWT). Then it can be projected onto a low dimension measurement 

domain by a known observation matrix Φ𝑀×𝑁 wherein M is much less than N.  

 
1 1 1 1M M N N M N N N N M N NY X S S             (4- 1) 
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Figure 4- 1. Illustration of CS measurement process with a measurement matrix Φ and a transform 

matrix Ψ 

The measurement matrix Φ𝑀×𝑁  must allow the reconstruction of the length-N 

signal X from M < N measurements. Since M < N, this problem appears ill-

conditioned. A necessary and sufficient condition for this simplified problem to be 

well conditioned is the isometry constant δ2K < 1 or even δ3K < 1 with a more strict 

condition [2, 4, 22, 23]. The isometry constant δK is defined as the smallest quantity 

for any
T

c R such that ΘT obeys 

 
2 2 2

2 2 2
(1 ) (1 )K T Kc c c        (4- 2) 

for all subsets {1, , }T N , T K , ΘT with the dimension of K T is the 

submatrix consisting of the columns indexed by T from Θ. This condition is referred to 

as the Restricted Isometry Property (RIP) [2, 4, 22, 23]. If the ΘM×N satisfies RIP, the 

unknown SN×1 can be approximately recovered from fewer measurements YM×1 by 

solving equation (4- 1). After that, the unknown signal XN×1 can be reconstructed by 

multiplying SN×1 with ΨMN×MN
-1 . The RIP depicted in equation (4- 2) can also be simply 

interpreted as measurement matrix ΦM×N is incoherent to sparse basis function ΨM×N 

[23]. However, both the RIP and incoherence can be achieved with high probability 
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simply by selecting Φ as a random matrix. And the Gaussian measurement matrix is 

proved to be universal such that Θ meets the RIP [23]. 

The CS reconstruction aims to find the K-th sparse coefficient vector in N × M 

translated null space by solving [1, 4, 23] 

 
0

min subject to
S

S S y     (4- 3) 

where ‖𝑆‖0 = ∑ |𝑆𝑖|
0𝑁

𝑖=1  is called l0 –‘norm’ as seen in Appendix II. However, solving 

(4- 3) is unstable and difficult. The theory has proven that the l0 problem can be 

approximated by l1 problem obeys [1, 4, 23] 

  
1

min subject to
S

S S y     (4- 4) 

where ‖𝑆‖1 = ∑ |𝑆𝑖|
1𝑁

𝑖=1 . The proper reconstruction algorithms have two categories of 

convex optimization methods and greedy methods. Commonly used convex 

optimization methods include Basis Pursuit (BP), Basis Pursuit De-Noise (BPDN), 

Least Absolute Shrinkage and Selection Operator (LASSO) and adaptive gradient-

based algorithm[8, 9]. The greedy methods have two groups: greedy pursuit methods 

and thresholding based methods. Greedy pursuit methods involve the orthogonal 

matching pursuit (OMP) and compressive sampling matching pursuit (CoSaMP) that 

are widely used in practical applications [8, 9]. Thresholding based methods include 

Iterative Shrinkage Thresholding (IST) Algorithm and the improved version: Two-step 

Iterative Shrinkage-Thresholding (TwIST) Algorithms for fast convergence [8, 9, 13].  

OMP is an iterative greedy algorithm that selects at each step the column of Θ 

which is most correlated with the current residuals. This column is then added into the 

set of selected columns. The algorithm updates the residuals by projecting the 

observation y onto the linear subspace spanned by the columns that have already been 

selected and the algorithm then iterates. Compared with other alternative methods, a 

major advantage of the OMP is its simplicity and easy implementation, but iterations 

cost much time for 2D data like image processing [24]. SPGL1 (Spectral Projected-

gradient for L1 minimization) solves the basis-pursuit problem by solving a sequence 

of Lasso problems with different values of maximum allowable l1 norm of signal. Its 
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high efficiency in memory and computational time makes it suitable for large-scale 

problems [7, 25, 26]. Thus, it has been adopted widely for image reconstruction in this 

thesis. 

Secondly, taking a simple signal x(t) depicted by equation (4- 5) as an example, 

we illustrate the CS sampling and reconstruction as follow: 

 
1 2 3( ) 2 cos(2 ) 3 cos(2 ) 4 cos(2 )x t f t f t f t                 (4- 5) 

wherein f1 = 15 Hz, f2 = 8 Hz, f3 = 2 Hz. The x(t) in time domain and frequency domain 

have been shown in Figure 4- 2 in which the x(t) in time domain, as shown in Figure 4- 

2(a), is depicted with a sampling frequency of 200 Hz (10 times of the lowest 

frequency) and 200 sampling points in one time-period. Besides, we can see three 

frequency components in the Fast Fourier Transform (FFT) of x(t) shown in Figure 4- 

2(b), which corresponds to f1 = 15 Hz, f2 = 8 Hz and f3 = 2 Hz correctly with correct 

amplitudes. Since there are only three nonzero entries in the frequency domain of x(t), 

it is a 3-sparse signal. Although x(t) does not show a sparse characteristic in the time 

domain, it has a sparse characteristic in the frequency domain so its sparse form can be 

firstly reconstructed by CS reconstructing method and then transformed back into the 

time domain to get the approximated x(t). 

Figure 4- 3(a) shows the randomly sampled data from x(t) with a number of 40, 

which comprises the measured y(t) in equation (4- 1). The observation matrix Φ or 

called as measurement matrix used here consists of random uniform integers that 

works as the index to select 40 samples from x(t). The FFT of under-sampled y(t) has 

also been shown in Figure 4- 3 (b) in comparison with the FFT of original x(t) in 

Figure 4- 2 (b), we can see it has an obvious loss compared with the original signal. 

Finally, regarding the reconstruction process, the orthogonal matching pursuit (OMP) 

algorithm has been used with online-shared program codes [3, 24, 27]. Therefore, the 

reconstructed signal by CS method has been compared with the original one as well as 

the one with a uniform sampling number of 40 in Figure 4- 4. We can see that the 

reconstruction using CS method is in better agreement with the original signal x(t) than 

that using the uniform sampling. The difference between them is too tiny to 

discriminate, but the sampling ratio can reduce by 80% (from 200 Hz to 40 Hz) when 

using CS technique. However, the difference between the original signal and 
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uniformly under-sampled one is not too much, that is because the original signal x(t) is 

a simple one with 3 non-zeros entries. 

 

(a) 

 

(b) 

Figure 4- 2. Original x(t) (sampling rate 200 Hz) in (a) time domain and (b) frequency domain 



Compressive Sensing and Its Application in Proposed Imaging Scheme 

123 

 

(a) 

 

(b) 

Figure 4- 3. Under-sampled signal of x(t) in (a) time domain and (b) frequency domain 

Finally, in order to further demonstrate the merits of CS technique, we take a 

standard photo image, Lena shown in Figure 4- 5 (a), as an example. The testing image 

originally has 512 × 512 pixels. The reconstructed images by using 50% data and 
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the CS reconstruction approach of SPGL1 solver with Discrete Cosine Transform 

(DCT) sparse basis, Fast Fourier Transform (FFT) sparse basis and Haar-type Discrete 

Wavelet Transform (Haar-DWT) sparse basis have been compared in Figure 4- 5 (b), 

(c) and (d). We can see that the FFT and Haar-DWT sparse basis can provide better 

image quality than the DCT sparse basis in this example. The image reconstructed by 

using the CS approach with FFT is uniform while the image by using the CS approach 

with Haar-DWT is clean.  

 

 

Figure 4- 4. The comparison between the reconstructed signal x(t) with less uniform sampling 

points (Number = 40), CS-OMP approach (Number = 40) and the original signal x(t) 
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(a)                                                                   (b) 

  

(c)                                                             (d) 

Figure 4- 5. (a) Standard photo image-Lena (512 × 512 pixels) and images reconstructed by using 

50% data and CS-SPGL1 approach with (b) DCT sparse basis (c) FFT sparse basis and (d) Haar-

DWT sparse basis 

In addition, we have investigated the reconstruction using OMP and SPGL1 

solvers in Figure 4- 6 and Figure 4- 7, respectively. Figure 4- 6 (a) and (b) are 

reconstructed by using OMP and FFT sparse basis with 40% and 70% data while 

Figure 4- 6 (c) and (d) are reconstructed by using OMP and Harr-DWT sparse basis 

using 40% and 70% data. We can see that only 40% data used is already sufficient to 

reconstruct the image with an obvious loss of the quality. When the data used is up to 

70%, the loss decreases significantly. Besides, the CS reconstruction of using SPGL1 

solver has improved the image quality a little in this example. We can see the 

difference when using two different sparse representation approaches and two different 

solvers. 
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(a)                                                                      (b) 

  
(c)                                                                  (d) 

Figure 4- 6. Lena images reconstructed by using the CS-OMP approach with FFT sparse basis. (a) 

40% data (b) 70% data and Haar-DWT sparse basis (c) 40% data (d) 70% data 

  

(a)                                                             (b) 
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(c)                                                                   (d) 

Figure 4- 7. Lena images reconstructed by using the CS-SPGL1 approach with FFT sparse basis. 

(a) 40% data (b) 70% data and Haar-DWT sparse basis (c) 40% data (d) 70% data 

It is shown in the above example that the CS technique has a particular advantage 

of reconstructing a signal with fewer measurements. Nevertheless, different sparse 

representation bases or solvers have their own suitable applications or advantages, so 

most researches in past years have mainly focused on the fields like sparse 

representation, observation matrix and reconstruction algorithms. Regarding its 

application in THz imaging, it is different from the aforementioned photo example in 

which the original signal x(t) or image Lena are known in advance so the measurement 

Y are directly sampled parameters from the desired X or S in equation (4- 1). However, 

what we are able to measure in the THz imaging application are usually some 

parameters such as amplitude and phase of reflections rather than the sampled pixels 

from the target image. So these parameters should be transformed into the unknown 

target image by the specific correlation that corresponds to the imaging system 

response. Therefore, an applicable CS reconstruction model integrated with system 

response should be firstly developed.  

4.2. Proposed Discrete Multi-static CS Reconstruction Model for 

the THz SPA Imaging Scheme 

In this active SPA-THz imaging system, the echo data/S-parameters sg between 

pth transmitter and qth receiver at wth mechanical scanning position is the 

superposition of the target reflectivity function g(x, y, z) multiplied by the roundtrip 

phases of 
,

tg

p wR  and 
,

rg

q wR , calculated as equation (4- 6).  
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 , ,( )

, ,( , ) ( , , )
tg rg
p w q wjk R R

g p w q ws Tx Rx g x y z e dxdy
 

 
  (4- 6) 

wherein 
,

tg

p wR  and 
,

rg

q wR  are calculated as equation (4- 7) with the simplification that the 

array has the position at z axis of zero. 

 

2 2 2

, , ,

2 2 2

, , ,

( ) ( )

( ) ( )

tg t t

p w p w p w

rg r r

q w q w q w

R x x y y z

R x x y y z

    

    

   (4- 7) 

Accordingly, a discrete version of sg(Txp,w, Rxq,w) can be derived as equation (4- 

8), which supposes the target reflectivity function g(x, y, z) is discretized as U × V 

grids while the fully sampled S-parameters sg has Nt·Nr × W sampling positions in 

which W is the total number of SPA mechanical moving positions. 

 
, ,
, ,( )

, ,

1 1

( , ) ( , )
u v u v
p w q w

U V jk R R

g p w q w

u v

s Tx Rx g u v e
 

 

     (4- 8) 

wherein ,

,

u v

p wR  and ,

,

u v

q wR , the discrete version of 
,

tg

p wR  and 
,

rg

q wR , are calculated as 

equation (4- 9). 

 

, 2 2 2

, , , , , ,

, 2 2 2

, , , , , ,

( ) ( ) ( )

( ) ( ) ( )

u v t g t g g

p w p w u v p w u v u v

u v r g r g g

q w q w u v q w u v u v

R x x y y z

R x x y y z

    

    

   (4- 9) 

Inversely, the target image at point o reconstructed by the traditional Generalized 

Synthetic Aperture Focusing Technique (GSAFT) can be derived by equation (4- 10) 

[28], 

 

, ,
, ,( )

, ,

1 1 1

( ) ( , )
u v u v
p w q w

W Nt Nr jk R R

o g p w q w

w p q

g r s Tx Rx e


  

     (4- 10) 
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It is worth mentioning that it is already an under-sampled imaging system because 

the Nt·Nr·W is much less than U·V that usually has the spacing meeting the Nyquist 

sampling criterion. 

In order to utilize standard 1-D CS reconstruction algorithm, the discrete SPA 

imaging model sg in equation (4- 8) should be reshaped into a 1-D column vector of Sg 

as shown in equation (4- 11) in which sg(p·q,w) is the simplified form of sg(Txp,w, 

Rxq,w), similarly in H(p·q,w) [29]. 

 

1

s (1 1,1)

( ,1)

(1 1, )

( , )

(1 1,1) (1,1)

( ,1) ( ,1)

=

(1 1, ) (1, )

( , ) ( , )

g

g

Nt Nr W

g

g

s Nt Nr
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s W

s Nt Nr W
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H Nt Nr g U

H W g V

H Nt Nr W g U V

  

 
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 

  
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   
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   
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 (4- 11) 

wherein 

 

1,1 1,1 ,1 ,1
, , , ,

1, 1, , ,
, , , ,

( ) ( )

( ) ( )

,( , ) ,

, , ,

U U
p w q w p w q w

V V U V U V
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   

   


  







  (4- 12) 

Afterwards, in order to apply CS reconstruction, the equation set of discrete SPA-

CS imaging model complying with equation (4- 1) can be gained as equation (4- 13), 
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  (4- 13) 

where⋅∗ represents element-wise multiplication, ΨMN×MN
-1 ΨMN = I. Binary mask A is a 

randomly distributed sampling matrix that only contains 1 (sampled) and 0 (ignored), 

which makes each row of matrix H active or inactive, so Sy is a M-length vector 

sampling from the original S-parameters matrix Sg recorded by this THz SPA imaging 

system. When A is full of 1 (M = Nt·Nr·W), the full data collected by this SPA-THz 

imaging system can be used to reconstruct the target image, while M is less than 

Nt·Nr·W, the sampling data has been further reduced. In addition, the target images 

reconstructed with the traditional GSAFT approach are set as reference in comparison. 

Since the large matrixes used in this paper (we use 32 Gigabytes of RAM to 

execute the CS processing on matrix with 18144 × 18144 elements smoothly in 

Microsoft Windows MATLAB platform) demand a large amount of computer resource, 

we have utilized the SPGL1 solver that is particularly suitable for the large-scale 

sparse reconstruction to obtain the CS result [25, 26]. What we have solved is to 

minimize the l1 norm of the sparse form Xg of target reflectivity function g subjected 

to the condition shown in equation (4- 14) where the σ is the tolerance between the 

solution and measured data. Target reflectivity function g can be gained after the roots 

Xg are gained. The root-mean-square deviation (RMSD) also known as root-mean-

square error (RMSE) defined in equation (4- 15) is used to quantitatively measure the 

difference between reconstructed target reflectivity function 
,

ˆ
u v

g  and reference of true 

target reflectivity function
,u v

g . 

 
1 2

min subject to
Sg

Xg Xg Sy      (4- 14) 
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4.3. Simulation Assessment of the Image Reconstruction Using 

the Proposed Discrete Multi-static CS Model 

4.3.1. The Metal Target in Free Space 

We have conducted the CS reconstruction using the simulated data of Figure 3- 4 

(d) - scheme III in Table. 3- 1. The Tx element spacing is 6 mm and the mechanical 

scanning step is 6 mm, respectively. When 30% randomly chosen simulated data of S-

  

(a)                                                                         (b) 

  

(c)                                                                          (d) 

  

(e)                                                                         (f) 

Figure 4- 8. Images with 20-dB dynamic range reconstructed by using GSAFT approach with 

(a) 30% simulated data (b) 70% simulated data, by using CS approach of SPGL1 solver with 

FFT sparse basis (c) 30% simulated data (d) 70% simulated data,  with Discrete Cosine 

Transform (DCT) sparse basis (e) 30% simulated data (f) 70% simulated data 
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parameters are used, the reconstructed images by using the traditional GSAFT 

approach, CS approaches of SGPL1 solver with Fast Fourier Transform (FFT) sparse 

basis and SPGL1 solver with discrete cosine transform (DCT) sparse basis have been 

compared in Figure 4- 8 (a), (c) and (e). The results of using 70% simulated data of S-

parameters have been compared in Figure 4- 8 (b), (d) and (f). The corresponding root-

mean-square deviations (RMSDs) with a reference of GSAFT reconstruction of 100% 

sampling data are calculated and shown in Figure 4- 9. It is shown that the traditional 

GSAFT approach does not reconstruct the target image successfully when the data 

used is not full. Thus, the RMSD has the highest value with GSAFT reconstruction. 

However, the CS reconstruction approach reconstructs the target image successfully 

even though 30% measured S-parameters data are used, so RMSD drops significantly 

and it becomes lower when 70% date are used. In addition, comparing the CS image 

using FFT sparse basis to the CS image using DCT sparse basis, we can see that the 

sparse representation with DCT sparse basis has shown a better image quality. This has 

also been verified by a lower RMSD of using CS-DCT reconstruction in Figure 4- 9. 

Therefore, the CS reconstruction with DCT sparse basis has been used in all the 

following studies in this thesis. 

 

Figure 4- 9. Root-mean-square deviations (RMSDs) of Figure 4- 8 (a) ~ (f) in which different 

methods and data are used 

4.3.2. The Target on Human Body 
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The simulation on the small chunk of human body phantom (800 mm × 100 mm × 

5 mm) shown in Figure 3- 18 has been used to assess the CS image reconstruction. The 

body phantom model has a relative permittivity of 5.3 and a loss tangent of 0.75, the 

image reconstructed by the proposed CS reconstruction approach using only 50% data 

in comparison with the improved GSAFT using 100% data, as shown in Figure 4- 10. 

Similarly, we have also reconstructed the target concealed under a thin (Nylon-610) 

clothing of 0.5 mm with a relative permittivity of 2.84 and a loss tangent of 0.012 by 

the proposed CS reconstruction approach using 50% data compared with the 

reconstruction with the improved GSAFT using 100% data in Figure 4- 11. Both 

results have demonstrated that the proposed discrete SPA CS model for image 

 

(a) 

 

(b) 

Figure 4- 10. The images of metal targets and human body (800 mm × 100 mm × 5 mm) surface 

reconstructed by (a) the improved GSAFT reconstruction approach with full data (b) CS 

reconstruction approach with 50% data (20-dB dynamic range) 

 

(a) 

 

(b) 

Figure 4- 11. The images of metal targets and human body surface concealed under a thin 

(Nylon-610) clothing (800 mm × 100 mm × 0.5 mm) reconstructed by (a) the improved GSAFT 

reconstruction approach with full data (b) CS reconstruction approach with 50% data (20-dB 

dynamic range) 
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reconstruction can provide a comparable image quality to the traditional reconstruction 

approach with an obvious reduction of data. 

In addition, the simulated data of the small chunk of human body phantom (1600 

mm × 100 mm × 5 mm) in chapter 3.3.2 has also been used to perform the CS image 

reconstruction. It has been demonstrated that the improved GSAFT reconstruction 

proposed by us enables to suppress ghost images caused by the large element spacing, 

as presented in Figure 4- 12 (b) and (c). The reconstructed images by the CS 

reconstruction approach with 100% (14 × 16 × 41 = 9184 sampling points), 50% and 

30% of data collected by above SPA are compared in Figure 4- 12 (d), (e) and (f). The 

corresponding root-mean-square deviations (RMSDs) with a reference of Figure 4- 12 

(c) are calculated and shown in Figure 4- 13. 

 

 (a)                           (b)                   (c)                   (d)                    (e)                   (f) 

Figure 4- 12. Target (a) drawing and images with 20-dB dynamic range reconstructed by (b) 

traditional and (c) improved GSAFT imaging algorithms as well as by the proposed CS approach 

with (d) 100 % (e) 50% (f) 30% of data collected by SPA 
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Figure 4- 13. Root-mean-square deviations (RMSDs) of Figure 4- 12 (b), (d), (e) and (f) with a 

reference of Figure 4- 12 (c) 

It indicates from results that aliasing/artifacts in Figure 4- 12 (c) caused by too 

sparse receiver elements can be alleviated obviously with help of the CS reconstruction 

approach, so the RMSDs improve significantly by reducing from 4.72 to 2 below. In 

addition, 50% randomly chosen data is already enough to reconstruct an image as good 

as the image reconstructed by the improved GSAFT approach with full data. 

Furthermore, the image reconstructed with the CS approach using 30% data only 

deteriorates little, which only causes 0.042 drop in RMSD. Therefore, the image 

reconstruction approach based on the CS technique is not only capable of reducing the 

sampling points/data acquisition time without obvious loss in image quality, but also 

suppressing the appearance of ghost images since the data is randomly sampled. 

4.4. Summary 

This chapter has firstly introduced the compressive sensing theory including 

concept, recovery and state-of-the-art researches, giving two examples to show its 

working principle of sampling and reconstruction that demonstrates its advantage in 

approximating the original signal with few measurements. Consequently, the discrete 

multi-static CS reconstruction model for the proposed SPA imaging system has been 
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proposed based on the CS technique integrated with the imaging system response. 

Finally, this proposed CS model has been assessed based on the simulated data in 

comparison with the reconstructed image using the improved GSAFT. The results 

have demonstrated that this CS imaging approach is capable of not only reconstructing 

the high image quality with few sampling data, but also suppressing the ghost images 

successfully. 
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 Evaluation on Proposed 

Experimental  THz-SPA Imaging System 

5.1. Introduction to the Experimental THz-SPA Imaging System 

After the comprehensive simulation study, we need to have the proof-of-concept 

tests in the lab. Thus, we built an experimental system to verify the proposed imaging 

system and reconstruction approaches. However, the implementation of this SPA 

needs to employ a large number of Tx and Rx channels, which are expensive and for 

which it is difficult to achieve identical channels. Alternatively, we can use one Tx and 

one Rx element to fast scan the required positions in the proof-of-concept experiment. 

Besides, the Tx positions in Figure 5- 1 (a) are on the both sides of the Rx array, it is 

not possible to scan Tx positions in one go. Therefore, it is more convenient to let Tx 

and Rx elements scan on two different tracks separated by a distance STR as shown in 

Figure 5- 1 (b).  

 

(a) 

 

(b) 

Figure 5- 1. Configuration of SPA in which Tx and Rx are (a) lined up (b) located on the different 

scanning tracks separated by as distance STR 

Accordingly, the experimental system is set up as shown in Figure 5- 2. For 

achieving the vertical scanning, the target is mounted on the NSI 2000 scanner [1] to 

move vertically, which inversely imitates a relatively mechanical scanning of the array 

to a fixed target. For realizing the electronic scanning of SPA, two THz modules for 

transmitting and receiving THz wave highlighted in blue in Figure 5- 2 move to each 

dt

Tx Rx

Lr

dr

Lt

dt
Lr

dr

Lt
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Tx Rx
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Tx and Rx element positions in the SPA, which are mounted on two linear horizontal 

scanning stages separated by a gap STR as shown in Figure 5- 1 (b). This experimental 

set-up only uses one Tx channel and one Rx channel to imitate the Tx and Rx arrays, 

respectively. This experimental approach not only avoids using a large number of real 

elements/channels with high cost, but also eliminates the phase calibration issue in the 

experiment. In addition, this set-up can also provide a possible solution to low-cost 

practical implementation of THz SPA imaging system.  

 

(a) 

 

(b) 
Figure 5- 2. (a) Schematic (b) Array configuration of practical THz-SPA experimental imaging 

system 
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5.2. Analysis on Realistic Simulation and Measured Imaging 

Results 

5.2.1. 220 GHz Imaging Performance 

I. Analysis on Effect of TR Separation 

Because exact positions of each Tx and Rx elements are used to calculate phases 

for imaging of GSAFT as depicted in equation (2- 14) [2],  we can theoretically 

investigate the point spread function (PSF) defined by equation (2- 10) in MATLAB to 

study the effect of separation between Tx and Rx arrays, which does not take account 

of scattering and multi-reflections. Besides, it is assumed that all reflections do not 

have any attenuation during one return or any amplitude scaling for different paths to 

simplify the case. The mechanical scanning length in simulation is 0.3 m with an 

interval of 4 mm. Accordingly, the PSFs at 220 GHz with a 1.1 m target distance of 

three schemes separated by a Tx/Rx track gap (STR) of 121 mm, 181 mm and 241 mm 

have been simulated respectively, as shown in Figure 5- 3. In Figure 5- 3 (a), we can 

see that all configurations nearly have same PSFs along the electronic scanning 

direction except for a little shift of null in both sides. However, the PSF along the 

vertical direction of lined-up SPA has the deepest null. The null is getting shallower 

and shifts with the increase of the track separation. Therefore, it should be better to 

keep this separation as small as possible in implementation. Finally, we have chosen 

181 mm as the separation distance since this is the minimum gap for the smooth 

scanning movement of Tx and Rx mixers heads. 

 

(a) 
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       (b) 

 

       (c) 

 

        (d) 

Figure 5- 3. 220 GHz PSFs of different SPA at 1.1 m. (a) Full view (b) Main beam zoomed along 

the horizontal direction and (c) Full view (d) Main beam zoomed along the vertical direction 
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We firstly conducted simulations of schemes in Table. 5- 1 (same as Table. 3- 1 in 

chapter 3.2.1) where the SPA is configured in a line as Figure 5- 1 (a), the mechanical 

scanning length is 0.2 m. The SPA consists of 8 Tx and 8 Rx with the element having 

a 3 dB beam width of about 42° and a peak gain of 12.95 dB as shown in Figure 3- 3. 

The target replaced by a model of realistic rectangular metallic plate (145 mm × 120 

mm × 5 mm). There are a number of holes (diameters of 6 cylinder holes are 6 mm and 

7 mm; top and bottom diameters of 4 screw holes are 5 mm and 8 mm) on the target

Table. 5- 1. Schemes (8 Tx & 8 Rx) with different Tx element spacing and same 41 

mechanical scanning spots (dv = 4 mm, total scanning length: 160 mm) 

               Parameters(mm) 

Schemes 
dt FOV Lt Ld Theoretical resolution 

 Scheme I 
2.5 

(1.83λ) 
80 90 160 1.364

1000 8.525
160

  

  Scheme II 
4 

(2.93λ) 
128 144 256 1.364

1000 5.328
256

  

   Scheme III 
6 

(4.40λ) 
192 216 384 1.364

1000 3.552
384

  

   

       (a)                                                           (b) 

       

(c)                                                               (d) 
Figure 5- 4. (a) Target photo and reconstructed images with 20-dB dynamic range of (b) 

Scheme I and (c) Scheme II and (d) Scheme III in Table. 3- 1 in Chapter 3.2.1 

 

4 (3 used) screw holes

(circular truncated cone)

Top D = 5 mm

Bottom D = 8 mm

D = 6 mmD = 7 mm D = 7 mm

D = 6 mmD = 7 mm D = 7 mm
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 that can be used as resolution identification. Moreover, the distance D to the target is 

set to be 1.1 m. The photograph of the realistic target and the images reconstructed 

with simulated data in different configurations have been shown in Figure 5- 4. As 

shown in Figure 5- 4 (b), when the real array aperture is narrower than the target width 

(like scheme I, 90 mm), the target cannot be imaged completely. Therefore, in scheme 

II with a FOV slightly smaller than the target width, the target can be imaged with 

blurred edges as shown in Figure 5- 4 (c). In scheme III, the target can be imaged 

completely as shown in Figure 5- 4 (d). Moreover, scheme III shows a superior 

resolution in Figure 5- 4 (d) compared to that in Figure 5- 4 (c). 

In order to study the effect caused by the separation STR of Tx and Rx, we use 

configurations of Figure 5- 4 (d) but replace the mechanical scanning length with 0.3 

m to conduct further simulation [3]. The reconstructed images of the testing target 

locating in the centre (0, 0) of the scanning area illuminated by the SPA, configured as 

in Figure 5- 1 (a) and (b), are compared in Figure 5- 5 (a) and (b), respectively. 

 

    

(a)                                                                           (b) 

    

 (c)                                                                         (d)  
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(e)                                                                         (f) 

Figure 5- 5. Reconstructed images with 20-dB dynamic range of scheme III in Table. 3- 1. The 

target placed at the centre A(0,0) of the SPA with Tx and Rx (a) lined up (b) separated vertically 

by 181 mm. The target palced at B(0,70) of the SPA with Tx and Rx (c) lined up (d) separated 

vertically by 181 mm. The target palced at C(-20,70) of the SPA with Tx and Rx (e) lined up (f) 

separated vertically by 181 mm 

Similarly, the reconstructed images of the testing target locating in the B and C of the 

scanning area, illustrated in Figure 5- 6, are compared in Figure 5- 5 (c), (d) and (e), (f), 

respectively. The results has indicated that different target positions within the FOV 

will affect the image quality slightly. The vertical separation (STR) of 181 mm between 

Tx and Rx will not affect the simulated images much, only adding a few artificial 

shades, which agrees with the analysis in Figure 5- 3. 

 

Figure 5- 6. Target center locates at positions A, B and C of the scanning area 
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II. Results of Imaging on Pure Metallic Target Using the Experimental Set-up 

In order to investigate the effects caused by the beam properties, a WR3 band 

standard pyramidal horn having a peak gain of 23.68 dB and about 12° HPBW at 220 

GHz has been used as the SPA element in imaging simulation study, which is the same 

as the one used in the experiment. Therefore, four configurations indicated in Table. 5- 

2 have been simulated, and the reconstructed images are compared in Figure 5- 7. 

Comparing Figure 5- 7 (a) with Figure 5- 5 (b) in different beam properties, we can see 

that the sharp beam has a deteriorated image quality in the central part of the image 

that corresponds to the SPA centre, which is caused by a narrower Tx illuminating area. 

This has been further verified when compared Figure 5- 7 (a) and Figure 5- 7 (c), the 

image quality in the central part has been improved at a longer object distance with 

widening of the beam-width. Besides, it demonstrates that the image always has the 

best quality in the centre of scanning area if comparing Figure 5- 7 (a) with Figure 5- 7 

(b) in which the target is placed at (-30,-20) [4]. Finally, when comparing Figure 5- 7 

(c) and Figure 5- 7 (d) in different mechanical scanning interval of dv, we have not 

seen an obvious improvement when the interval dv is reduced from 4 mm to 2.5 mm. 

That is because the 4 mm mechanical scanning interval has already reached to a 

theoretical interval of 4.12 mm derived by equation (2- 22), for an acceptable 

resolution [5, 6]. 

Table. 5- 2. Comparison between simulated and experimental results with a 0.3 m mechanical 

scanning length and the SPA referring to Figure 5- 2(b) consisting of WR3 pyramidal standard 

horns 

Cases Target Position/mm dv/mm Identified holes 

Config.S1 in Figure 5- 7 (a) (0,0) at 1.1 m 4 10 

Config.S2 in Figure 5- 7 (b) (-30,-20) at 1.1 m 4 10 

Config.S3 in Figure 5- 7 (c) (0,0) at 1.4 m 4 10 

Config.S4 in Figure 5- 7 (d) (0,0) at 1.4 m 2.5 10 

Config.M1 in Figure 5- 9(a) at 1.1 m 4 8 

Config.M2 in Figure 5- 9(b) at 1.1 m 4 9 

Config.M3 in Figure 5- 9(c) at 1.4 m 4 10 

Config.M4 in Figure 5- 9(d) at 1.4 m 2.5 10 
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  (a)                                                                         (b) 

   

(c)                                                                         (d) 

Figure 5- 7. Images with 20-dB dynamic range reconstructed by using simulated data in various 

configurations in Table. 5- 2. (a) Configuration S1 (b) Configuration S2 (c) Configuration S3 and 

(d) Configuration S4 

Figure 5- 8 (a), (b) and (c) show the photographs of experimental set-up of the 

whole system, the close view of the linear scanning stages that imitates the sparse 

periodic array, and the NSI 2000 scanning system [1] with the mounted target whose 

movement inversely imitates the mechanical scanning of the array to the target in 

practice. The horns utilized in the experiment are WR3 (220 – 325 GHz) standard 

pyramidal horns with a peak gain of about 23.81 dB at 220 GHz, and the typical output 

power from the THz mixer head at 220 GHz is -13 dBm (0.05 mW). 
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(a)  

  

(b) 

 
(c) 

Figure 5- 8. The photographs of the experimental set-up. (a) Full view of the system, close view of 

(b) the horizontal linear scanning stages and (c) target mounted on the NSI 2000 vertical scanning 

system  
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The experimental images of this metallic plate target properly placed at the 

distance of 1.1 m and 1.4 m are reconstructed in Figure 5- 9 (a), (c) and (d). The target 

position in Figure 5- 9 (b) moves 40 mm at x-axis compared to Figure 5- 9 (a). It is out 

of the FOV, so the left edge of target cannot be imagined. In addition, the simulated 

results in Figure 5- 7 have shown that a little farther target distance can help to 

improve the image quality when the sharp beam is used. This has been experimentally 

verified again by comparing Figure 5- 9 (a) and Figure 5- 9 (c) with different target 

distance. In addition, the vertical mechanical scanning intervals of 4 mm and 2.5 mm 

with a same scanning length of 0.3 m at a target distance of 1.4 m are reconstructed in 

Figure 5- 9 (c) and (d) as well. Theoretically, a finer scanning interval can provide a 

higher image SNR based on equation (2- 25) [5, 7]. Accordingly, the image SNRs in 

Figure 5- 9 (c) and (d) are 20.49 dB and 22.27 dB, respectively. There is only 1.78 dB 

improvement because this improvement is becoming less with the increase in sampling 

interval and the 4.0 mm sampling interval has already reached to the theoretical 

sampling interval threshold of 4.12 mm derived by equation  (2- 22) [5, 6]. 

    

(a)                                                                         (b) 

   

(c)                                                                         (d) 

Figure 5- 9. Images with 20-dB dynamic range reconstructed by using experimental data in 

various configurations in Table. 5- 2. (a) Configuration M1 (b) Configuration M2 (c) 

Configuration M3 (d) Configuration M4 
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Therefore, the experimental results are summarized in Table. 5- 2 in comparison 

with the simulated results. The number of holes that can be identified are used to be a 

rough measure of imaging performance. It is worth mentioning that there are three 

fixing screws in the experiments that fill the holes, which make them barely visible in 

the reconstructed images. Therefore, taken account of the target lateral position along 

x-axis, the experimental results have already shown an excellent consistency with the 

simulated results in Figure 5- 7. Therefore, the feasibility of the proposed THz imaging 

scheme is verified in experiment. 

In addition to above single-pass synthetic aperture imaging, the proposed  SPA 

imaging system can work in a multi-pass interferometric synthetic aperture imaging 

mode, as introduced in 2.3.3.I. This mode allows the SPA to move the positions along 

the electronic scanning direction, collecting datasets of several single-pass synthetic 

aperture image to synthesize a multi-pass interferometric synthetic aperture image, as 

depicted in equation (2- 15) based on traditional GSAFT. 

We have also tested this imaging mode in the experiment using the proposed 

experimental set-up and same configurations referring to Figure 5- 9 (a) and (c). Since 

we have used 1 Tx and 1 Rx moving along the electronic scanning direction to imitate 

the SPA, we can use the movement of target along the electronic scanning direction to 

realize this interferometric measurement. In chapter 3.2.1, we have demonstrated in 

simulation that the target needs to be placed within the FOV of 0.5⋅dt⋅Nt⋅Nr in order to 

reconstruct the image completely (FOV edge is at ±96 mm in this configuration). This 

has been further verified by the reconstructed single-pass synthetic aperture imaging 

results in Figure 5- 10 and Figure 5- 11 where the target is placed at 1.1 m and 1.4 m 

from the array, respectively. And the target movement interval at x-axis is 20 mm. 

Accordingly, when the target moves out of the FOV along x-axis, the part of the target 

cannot be imagined. Furthermore, the difference caused by different target positions 

has also been revealed in simulated results in Figure 5- 7 (a), (b) and experimental 

results in Figure 5- 9 (a), (b). However, this impact will become relatively slight when 

the target moves within the FOV as demonstrated in Figure 5- 5, Figure 5- 10 (c), (d) 

and Figure 5- 11 (b), (c). 



Evaluation on Proposed Experimental  THz-SPA Imaging System 

151 

    

(a)                                                                       (b) 

     

(c)                                                                     (d) 

Figure 5- 10. Reconstructed single-pass synthetic aperture images with 25-dB dynamic range of 

target at different x-axis positions. (a) Position x1 (b) Position x2 (c) Position x3: Figure 5- 9(a) 

(d) Position x4. (Mechanical scanning length is 0.3 m with an interval of 4 mm, target distance = 

1.10 m) 

     

(a)                                                                      (b) 

     

(c)                                                                      (d) 

Figure 5- 11. Reconstructed single-pass synthetic aperture images with 25-dB dynamic range of 

target at different x-axis positions. (a) Position x1 (b) Position x2: Figure 5- 9(c) (c) Position x3 

(d) Position x4. (Mechanical scanning length: 0.3 m, interval: 4 mm, target distance: 1.40 m) 

Two images reconstructed by equation (2- 15) using multi-pass interferometric 

synthetic aperture focusing technique have been shown in Figure 5- 12 (a) and (b), 

corresponding to Figure 5- 10 and Figure 5- 11. The corresponding image signal to 

noise ratios (SNRs) defined as the ratio of difference in brightness between bright and 
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dark areas to the standard deviation of the dark area in equation (2- 25) are compared 

in Figure 5- 13. Comparing to the single-pass synthetic aperture imaging results, the 

multi-pass interferometric synthetic aperture technique has improved image quality 

significantly including image contrast and SNR. In Figure 5- 12 (a), there are 9 holes 

that can be identified which is more than any image in Figure 5- 10. In addition, the 

artifacts in background (blue area) are less while the target image (red area) is uniform, 

so the contrast is improved, leading SNR increases by about 2.76 dB. Similarly, the 

image SNR increases by about 4.60 dB after using multi-pass interferometric synthetic 

aperture technique in Figure 5- 12 (b). In addition, because the target image has been 

reconstructed more completely, the image SNRs in Figure 5- 11 and Figure 5- 12 (b) 

are higher than Figure 5- 10 and Figure 5- 12 (a). 

      

(a)                                                                     (b) 

Figure 5- 12. Reconstructed multi-pass interferometric synthetic aperture images with 25-dB 

dynamic range based on (a) Figure 5- 10 (b) Figure 5- 11 

 

Figure 5- 13. Image signal to noise ratios (SNRs) of Figure 5- 10, Figure 5- 11 using single-pass 

synthetic aperture technique and Figure 5- 12 using multi-pass interferometric synthetic aperture 

technique 
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III. Experimental Results of Imaging on Simplified Body Chunk 

In addition to the pure metallic target, the target of patches etched on the dielectric 

substrate (260 mm × 180 mm × 1.6 mm) imitating the mannequin as shown Figure 5- 

14 have been tested in the experiment. The SPA consists of 8 Tx and 8 Rx with WR3 

standard pyramidal horns operating at 220 GHz and the Tx element spacing is 6 mm. 

The target distance is 1.40 m and mechanical scanning length is 0.5 m with a step of 

2.5 mm, so the theoretical resolutions are 3.20 mm and 1.90 mm along horizontal and 

vertical directions according to equation (2- 22).  

  

(a)                                                                       (b) 

Figure 5- 14. The photograph of target under test (a) without and (b) with some absorbers 

The reconstructed single-pass images of the target in Figure 5- 14 (a) have been 

shown in Figure 5- 15 (a) to (c) with a 10 mm position variation along the electronic 

scanning direction and the multi-pass interferometric synthetic aperture image has 

been shown in Figure 5- 15 (d). Similarly, the reconstructed single-pass images of the 

target in Figure 5- 14 (b) have been shown in Figure 5- 16 (a) to (e) and the multi-pass 

interferometric synthetic aperture image has been shown in Figure 5- 16 (f). The 

corresponding image SNRs are compared in Figure 5- 17. The single-pass synthetic 

aperture images show that the artifacts in the background are high while high power 

(red area) spreads on the non-metallic surface, which degrades image contrast 

indicated as low SNRs. It is because of deteriorating focusing caused by much more 

scattering from the unsmoothed surface of dielectric substrate. As a result, this should 
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be significantly improved by using multi-pass interferometric synthetic aperture 

technique and more datasets, which has been verified successfully in Figure 5- 15 (d) 

and Figure 5- 16 (f) where the image SNRs improve by about 4.10 dB and 8.50 dB 

indicated in Figure 5- 17. 

(a)        (b) 

(c)                                                                    (d) 

Figure 5- 15.(a)-(c) Single-pass synthetic aperture images of the target shown in Figure 5- 14(a) 

placed differently with an interval of 10 mm along the electronic scanning direction and (d) the 

corresponding multi-pass interferometric synthetic aperture image(25-dB dynamic range) 

(a)             (b) 
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(c)                                                                    (d) 

   

(e)                                                                      (f) 

Figure 5- 16. (a)-(e) Single-pass synthetic aperture images of the target shown in Figure 5- 14(b) 

placed differently with an interval of 10 mm along the electronic scanning direction and (f) the 

corresponding multi-pass interferometric synthetic aperture image (25-dB dynamic range) 

 

Figure 5- 17. Image signal to noise ratios (SNRs) of Figure 5- 15 and Figure 5- 16 
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Therefore, the multi-pass interferometric synthetic aperture imaging technique can 

be used in the proposed THz-SPA imaging system to improve the imaging 

performance. This can be simply deployed by allowing the SPA to move the position 

along the electronic scanning direction. Since the scanning aperture is not increased 

too much while the sampling data is dense, the image contrast and SNR can be 

improved more obvious. However, this approach will cost more time on data 

acquisition. Therefore, this kind of system in practice can normally operate in single-

pass synthetic aperture mode one by one and produce each corresponding image 

simultaneously. When the single-pass synthetic aperture image is clear to identify, the 

imaging is finished early. If not, it continues scanning next pass and the improved 

multi-pass interferometric synthetic aperture image can be finally produced to deal 

with complex circumstance. 

5.2.2. 94 GHz Imaging Performance 

In comparison, we have investigated the imaging at 94 GHz using the traditional 

GSAFT imaging algorithm on three configurations as illustrated in Figure 5- 18 and 

the parameters are listed in Table. 5- 3. The experimental set-up is same with Figure 5- 

2. Both configurations 1 and 2 have 10 Tx elements and 10 Rx elements but with 

different Tx element spacing, so the effective length of configuration 2 is twice as long 

as configuration 1. In contrast, we keep the Tx element spacing in configuration 1 and 

3 same but double the number of Rx elements in configuration 3, so the effective 

length is doubled as well, same as configuration 2. Besides, we made the last left-side 

Tx element denoted by letter A as a reference whose positions in three configurations 

are same.  Meanwhile, the target has been placed slightly to the left side, closing to the 

referenced Tx element to assure a good illumination and the corrugated horns utilized 

in the experiments as shown in Figure 5- 19  have a measured peak gain of about 17.19 

dB and a HPBW at H plane of about 13°. Therefore, the practical resolution taking 

account of this narrow beam-width can be calculated by equation (2- 15) [6, 8], as 

shown in Table. 5- 3. The simulations were conducted in the commercial software of 

FEKOTM by using a horn with a similar HPBW at H plane in comparison with the 

experiments. So the simulated pattern of the horns used in the imaging simulation and 

the measured H plane pattern of the horns used in the experiments are compared in 

Figure 5- 19 in which the operation frequency is 94 GHz. 
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Figure 5- 18.  Positions of three SPA configurations in simulation 

Table. 5- 3. The parameters in three SPA configurations and practical resolutions calculated by 

equation (2- 22) (Units: mm) 

Configuration Tx & Rx Lt θb HPBW Practical Resolutions at 1.3 m 

1 (dt=5) 10 & 10 275 12.075° 13° 7.586 mm 

2(dt=10) 10 & 10 550 23.888° 13° 7.048 mm 

3(dt=5) 10 & 20 525 22.832° 13° 7.048 mm 

Consequently, the images based on the simulated and measured data have been 

compared in (a) and (b) of Figure 5- 20, Figure 5- 21 and Figure 5- 22, respectively. 

As shown in the simulated results, three configurations have shown similar resolutions 

of around 7.0 mm, as indicated in Table. 5- 3. It indicates that the resolution is 

improving toward to the array centre since the phase shift between sampling points is 

decreasing while the image quality is deteriorating (here, this means to increasing 

contrast) since the illumination from the Tx elements placed at two ends is becoming 

weaker. Therefore, the reconstructed image of configuration 1 has shown the best 

resolution and image quality since its target is close to both the Tx elements and array 

centre due to its compact array size. In addition, the resolution in configuration 2 and 3 

deteriorates a little since the target is far away from the array centre and the contrast at 

right edge of the target is worse since the illumination from Tx elements becomes 

weaker. In contrast, the experimental images have already shown a consistent 

resolution with the simulated ones except that the image quality (contrast) in a small 

part in image of configuration 1 deteriorates a little. That is because, in addition to the 

difference in illumination power at the centre and two edges of the target, the sampling 

by this SPA technique has one central sampling point missed, as one example of 8 Tx 

145 mm
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Lr1=225 mmA B

85 mm

Lr2=450 mm

Lr3=475 mm

x

y

O

Conf.1

Conf.2

Conf.3
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x3=157.5 mm

x2=150 mmTx1
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and 8 Rx illustrated in Figure 5- 23. This effect has already been indicated in the 

simulated image in configuration 1 where the centre position of the array corresponds 

to the axis x = 32.5 mm in the image. Furthermore, it has also been verified in our 

simulation and experimental studies at 220 GHz that this issue will become more 

obvious when the beam width is relatively narrow to the target distance or element 

spacing. As shown in Figure 5- 19 (b), the pattern (out of HPBW) of the horns used in 

the experiments is already little bit narrower than the ones in simulation. In addition, 

the practical sensitivity of the imaging system is not as ideal as the simulated one, 

which is equivalent to further reducing the beam width. Fortunately, this issue can be 

solved by reducing the element spacing, using wider beam-width or increasing the 

target distance. 

 

(a)                                                                              (b) 

Figure 5- 19.  (a) Linear SPA scanning stages in the experiment with corrugated horns operating at 

94 GHz (b) Comparison between the measured H plane pattern of the horns used in the 

experiments and the simulated pattern in configurations study (f = 94 GHz) 

   

(a)                                                                          (b) 

Figure 5- 20.  Reconstructed images of the configuration 1 in Table. 5- 3. (a) Simulated data (b) 

Measured data (20-dB dynamic range) 
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(a)                                                                          (b) 

Figure 5- 21.  Reconstructed images of the configuration 2 in Table. 5- 3. (a) Simulated data (b) 

Measured data (20-dB dynamic range) 

   

(a)                                                                          (b) 

Figure 5- 22.  Reconstructed images of the configuration 3 in Table. 5- 3. (a) Simulated data (b) 

Measured data (20-dB dynamic range) 

 

Figure 5- 23.  Illustration of a SPA with 8 Tx & 8 Rx and its 64 positions in the effective aperture 

5.3. Analysis between the Measured GSAFT and CS Imaging 

Results 

5.3.1. 220 GHz Imaging Performance 
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We firstly use the simulated echo data of Figure 5- 7 (a) to verify the proposed CS 

reconstruction approach at THz band [9]. Theoretically, it provides a resolution of 

3.906 mm in the X-horizontal direction and 2.50 mm in the Y-vertical direction at 

target plane, respectively , which corresponds to the first nulls of point spread 

functions (PSF) in Figure 5- 24. In order to investigate the performance of CS 

reconstruction, the images reconstructed by GSAFT and CS approaches with 100%, 

80%, 50%, 30% simulated sampling data are compared in Figure 5- 25, respectively. 

The results indicate that the GSAFT reconstruction fails to reconstruct the target image 

if the full sampling data is not used while the CS approach can still provide a high 

quality image. Specifically, the image reconstructed by the CS approach with only 50% 

sampling data can gain almost the same image quality as the GSAFT approach using 

the full data, only inducing a little more artifacts in the background. In addition, even 

though the proportion of sampling data used drops to 30%, the target and holes can 

still be recognized in the CS reconstruction [9].  

     

(a)                                                                              (b) 

Figure 5- 24. Point spread function. (a) Planar (b) X = 0 mm (vertical direction) and Y = 0 mm 

(horizontal direction) 

     

(a)                                                                   (b) 
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(c)                                                                   (d) 

    

(e)                                                                    (f) 

    

(g)                                                                      (h) 

Figure 5- 25. Images with 25-dB dynamic range reconstructed by the GSAFT approach with (a) 

100% (b) 80% (c) 50% (d) 30% simulated sampling data; and the CS approach with (e)100% (f) 

80% (g) 50% (h) 30% simulated sampling data 

To verify it in the experiment, the images reconstructed by GSAFT and CS 

approaches with 100%, 80%, 50%, 30% measured echo data of Figure 5- 10 (d) are 

compared in Figure 5- 26, respectively. It is found that the measured results do not 

look as good as the simulated ones. The resolution is getting poorer and more artifacts 

appear on the measured images due to the noise and multiple reflections. The smallest 

holes on the target can still be identified when the image is constructed using CS 

approach with 80% measured data as shown in Figure 5- 26 (f). However, it is hard to 

tell the smallest holes when the images are constructed using CS approach with less 

measured data as shown in Figure 5- 26 (g) (50%) and Figure 5- 26 (h) (30%), 
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respectively. Therefore, one needs to strike a balance between the image quality and 

reducing sampling data in the practical application. 

    

(a)                                                                   (b) 

    

(c)                                                                    (d) 

    

(e)                                                                   (f) 

     

(g)                                                                   (h) 

Figure 5- 26. Experimental images with 25-dB dynamic range reconstructed by the GSAFT 
approach with (a) 100% (b) 80% (c) 50% (d) 30% measured sampling data; and the CS approach 

with (e) 100% (f) 80% (g) 50% (h) 30% measured sampling data 
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5.3.2. 94GHz Imaging Performance 

As shown above, it has been demonstrated in simulation and experiments that CS 

can alleviate the aliasing/artifacts and reconstruct images successfully with much less 

data. Next, we have investigated the CS reconstruction at 94 GHz based on the 

experimental data of the configurations in Table. 5- 3 [10]. Therefore, the experimental 

images of the configuration 1 reconstructed by the traditional GSAFT approach and 

the proposed CS approach with 100%, 80%, 60%, 40%, 20% sampling data are shown 

in Figure 5- 27. Similarly, the experimental images of the configuration 2 and 3 are 

shown in Figure 5- 28 and Figure 5- 29, respectively. It is shown that the traditional 

GSAFT approach is not capable of reconstructing the target properly when the data 

randomly redundancy is large (>20%). On the contrary, the proposed CS approach is 

capable of achieving the image reconstruction even when the data randomly 

redundancy is as large as 80%. The proposed CS approach is capable of reconstructing 

a good quality image with only 40% sampling data, compared to 100% data using the 

traditional GSAFT approach [10]. 

   

(a)                                                                             (b) 

   

(c)                                                                            (d) 
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(e)       (f) 

(g)      (h) 

(i)                                                                           (j)  

Figure 5- 27.  Reconstructed images in configuration 1 with 100% experimental data by (a) 

GSAFT approach (b) CS approach; 80% experimental data by (c) GSAFT approach (d) CS 

approach; 60% experimental data by (e) GSAFT approach (f) CS approach; 40% experimental 

data by (g) GSAFT approach (h) CS approach; 20% experimental data by (i) GSAFT approach (j) 

CS approach (20-dB dynamic range) 
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(a)                                                                             (b) 

   

(c)                                                                             (d) 

   

(e)                                                                             (f) 

   

(g)                                                                            (h) 
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(i)                                                                             (j) 

Figure 5- 28. Reconstructed images in configuration 2 with 100% experimental data by (a) 

GSAFT approach (b) CS approach; 80% experimental data by (c) GSAFT approach (d) CS 

approach; 60% experimental data by (e) GSAFT approach (f) CS approach; 40% experimental 

data by (g) GSAFT approach (h) CS approach; 20% experimental data by (i) GSAFT approach (j) 

CS approach (20-dB dynamic range) 

   

(a)                                                                            (b) 

   

(c)                                                                            (d) 
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(e)                                                                            (f) 

   

(g)                                                                           (h) 

   

(i)                                                                            (j) 

Figure 5- 29.  Reconstructed images in configuration 3 with 100% experimental data by (a) 

GSAFT approach (b) CS approach; 80% experimental data by (c) GSAFT approach (d) CS 

approach; 60% experimental data by (e) GSAFT approach (f) CS approach; 40% experimental 

data by (g) GSAFT approach (h) CS approach; 20% experimental data by (i) GSAFT approach (j) 

CS approach (20-dB dynamic range) 

Finally, we have assessed the effect of signal noise on this CS reconstruction 

scheme using the simulated data in configuration 1 with the added Gaussian noise of 3 

different grades of signal to noise ratio (SNR): 5 dB, 10 dB and 15 dB, respectively.  

The images are constructed based on 80% of the data chosen randomly and compared 

in Figure 5- 30. It is shown that the obvious artifacts will appear when the SNR is 
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lower than 10 dB, leading to the degradation of the image quality. When the SNR 

being increased to 15 dB, the noise almost has no effect on the constructed image. 

Therefore, we should always keep the SNR higher than 15 dB in the Rx channel in the 

experiment [10].  

   

 (a)                                                                           (b) 

   

(c)                                                                            (d) 

Figure 5- 30. The images with 20-dB dynamic range reconstructed by the proposed CS approach 

with 80% of the simulated data of the Configuration 1. (a) No added noise, and added Gaussian 

noise in (b) 5 dB SNR (c) 10 dB SNR and (d) 15 dB SNR 

5.4. Summary 

This chapter has mainly evaluated the proposed SPA imaging system working at 

220 GHz and 94 GHz in simulation and experiment, respectively. Firstly, the 

experimental set-up has been proposed that only uses 1 Tx and 1 Rx channels to 

imitate the electronic scanning of a SPA. Besides, the effect of separation between Tx 

and Rx has been analyzed by the simulated PSF in MATLAB, which shows that the 

separation in practice has little impact on the imaging performance. It has also been 

verified in the following reconstructed images using the simulated and measured data.  

Secondly, a good consistency between the images reconstructed using the realistic 

simulated data and measured data has verified the proposed scanning scheme and the 
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imaging system using a SPA. Thus, the desired resolution and contrast have been 

achieved in the experimental imaging system. Besides, we have experimentally 

verified the multi-pass interferometric synthetic aperture imaging performance that can 

be deployed in the proposed THz-SPA imaging system as a complementary mode to 

improve the image quality. Finally, the proposed CS THz-SPA reconstruction model 

has also been evaluated by using the simulated and measured data. The consistent 

results between the simulation and experiment have proved that the CS technique can 

be used to reduce the sampling points and hence save the data acquisition time. 
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 Summary and Future Work 

6.1. Summary 

THz imaging is a promising technique for concealed threats detection for 

personnel screening due to its merits of short wavelength and strong penetrating ability. 

The passive THz imaging system has a poor resolution and difficulties in long-time 

operation constrained by the cooling system. Therefore, the active imaging system has 

become a popular solution, but it is still facing challenges in achieving the low cost 

and high frame rate. Both challenges are usually in conflict with the high image quality, 

so a proper imaging system is desired to balance the imaging performance and the 

system cost. Therefore, the THz imaging system using electronic scanning scheme of 

an array has been proposed. It is capable of achieving the fast scanning and high 

resolution due to the synthetic aperture technique used. However, the traditional THz 

imaging system using a uniform array demands a large number of elements/channels 

in order to form a large aperture that is the prerequisite for achieving the high 

resolution, leading to a high cost. Therefore, the linear sparse periodic array (SPA) 

properly designed by using the effective aperture concept has been proposed, which is 

feasible to provide a high imaging performance with fewer elements because of 

lengthened aperture of the effective array. However, the element spacing used in the 

current publications needs to be smaller than one wavelength. It is either impractical to 

place THz antenna elements or costly when a large number of elements are used. 

Therefore, we have investigated the linear sparse periodic array with large element 

spacing in two different configurations operating at 0.22 THz and 94 GHz, 

respectively. Besides, we have conducted a wide range of simulation studies on 

various targets that gradually approach to the realistic target in practice. The simulation 

studies have revealed the knowledge in relationship between SPA configuration and 

corresponding imaging performance including FOV, resolution and effect of dielectric 

permittivity. This leads to the design guideline for such a THz imaging system with a 

SPA. In addition, we have improved the traditional reconstruction algorithm of 

Generalized Synthetic Aperture Focusing Technique (GSAFT) particularly for 

suppressing the ghost images. This improved GSAFT approach allows us to use a 

large element spacing in the SPA. It has achieved the comparable performance to the 
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reconstruction using the traditional GSAFT. Meanwhile, in order to deal with complex 

circumstances, we have proposed to use the multi-pass interferometric synthetic 

aperture mode where different datasets are collected with different SPA positions to 

reconstruct a quality-improved image. 

Bedsides, we have also investigated the reconstruction approach based on the 

compressive sensing technique and proposed the discrete SPA-THz CS reconstruction 

model for the proposed SPA-THz imaging system. It integrates the CS technique with 

the system response of the proposed SPA-THz imaging system. The images 

reconstructed by this approach with the simulated data have successfully verified the 

proposed model, demonstrating its advantage of reducing the sampling points but 

maintaining the high image quality simultaneously. 

Finally, we have experimentally verified the proposed SPA-THz imaging system, 

the improved GSAFT reconstruction approach and the proposed CS reconstruction 

approach. We have firstly investigated the effect caused by the separation of Tx and 

Rx arrays in MATLAB simulation, revealing it acceptable to separate Tx and Rx 

arrays in the traditional SPA into two lines. Therefore, we have proposed the 

simplified experimental set-up that only uses 1 Tx and 1 Rx scanning along two 

separated linear tracks to imitate the electronic scanning of the linear sparse periodic 

array. This set-up is practical and economical for the implementation. The images 

reconstructed with the measured data have achieved the desired image quality, 

showing the great consistency with the simulated results. Besides, we have performed 

multi-pass interferometric synthetic aperture imaging with the measured data, showing 

its improvement on the image contrast, SNR and resolution. This can be deployed in 

the proposed SPA-THz imaging system as a complementary mode to provide a finer 

image when necessary. Therefore, the derived design guidelines and the proposed 

SPA-THz imaging system in this thesis have been fully verified and evaluated. 

6.2. Key Contributions 

My key contributions in this thesis are summarized as follows. 

1. Literature on the imaging system for security detection has been fully reviewed, 

especially focusing on the application of THz imaging technique. This provides 

readers with a full knowledge in the state-of-the-art research. 
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2. An improved Generalized Synthetic Aperture Focusing Technique has been 

proposed to suppress the ghost images so that the larger element spacing in Linear 

Sparse Periodic Array (SPA) can be used. 

3. Comprehensive simulation has been conducted to investigate the SPA-THz 

imaging system for security detection, revealing the knowledge of estimating 

imaging performance such as FOV and resolution. This leads to the design 

guideline for such a kind of SPA-THz imaging system. 

4. The CS imaging algorithm for reducing the sampling data has been explored. 

So discrete CS reconstruction model particularly for such a multi-static SPA-THz 

imaging system has been proposed and verified. 

5. The effect of TR separated on two scanning tracks has been investigated, 

revealing its negligible impact. Thus, a practical experimental set-up for testing 

the proposed SPA imaging system has been designed, only using 1 Tx and 1 Rx 

channels separated on two linear stages to imitate the electronic scanning of SPA.  

6. Numerical and experimental verification of the proposed SPA imaging scheme 

have been compared. The experimental results agree well with the numerical 

simulated results, further verifying the proposed SPA-THz imaging system and 

the proposed CS reconstruction approach. Besides, I have demonstrated the multi-

pass interferometric synthetic aperture imaging as a complementary mode feasible 

to improve the image quality for dealing with complex circumstance when 

necessary. 

6.3. Future Work 

Although the CS technique can save the data acquisition time, its reconstruction is 

time-consuming due to the iterations needed in solving the equation set, so this should 

be improved by exploring new imaging algorithm. Besides, the computer vision 

techniques such as deep learning are anticipated to be applied to improve the 

efficiency and accuracy of target identification. But this requires large amount of data 

to train the model. 

In addition, low side-lobe level is helpful to suppress the ambiguities in the 

reconstructed image, so it is desired to optimize the traditional linear sparse periodic 

array (SPA) to gain a lower side lobe level. The goal can be achieved by adjusting the 
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positions of Tx elements and increasing the number of Tx elements in the traditional 

SPA. Furthermore, it is desired to keep exploring other kinds of arrays potential for 

high-quality imaging application. 

Regarding the experimental test, on the one hand, more experiments on imaging 

of dielectric board with printed metallic strips are desired. Moreover, the scenario of 

imaging of a wood board stuck with kinds of realistic targets such as knife, scissor and 

plastic items can be tested in next stage. On the other hand, the wideband imaging 

operation, circular scanning scheme and polarimatric imaging technique can also be 

tested in the future when the conditions permit. 



List of Publications in PhD Period 

175 

List of Publications in PhD Period 

Journal Papers 

[1]. Shaoqing Hu, Chao Shu, Yasir Alfadhl and Xiaodong Chen, “THz Imaging 

System Using Compressed Sensing”, IET Microwaves Antennas & 

Propagation, Vol.14, No.11, pp.1157-1161, September, 2020. 

[2]. Chao Shu, Shaoqing Hu, Yuan Yao, Yasir Alfadhl and Xiaodong Chen, “W-band 

Grooved-Wall Circularly Polarized Horn Antenna”, IET Microwaves Antennas 

& Propagation, Vol.14, No.11,pp.1171-1174, September, 2020. 

[3]. Shaoqing Hu, Chao Shu, Yasir Alfadhl and Xiaodong Chen,” A THz Imaging 

System Using Linear Sparse Periodic Array”, IEEE Sensors Journal, Vol.20, 

No. 6, March 15, 2020.  

[4]. Shaoqing Hu, Chao Shu, Yasir Alfadhl and Xiaodong Chen,” W Band Imaging 

System Using Sparse Periodic Linear Antenna Array and Compressive Sensing”, 

IEEE Access, Vol.7, pp. 173603-17611, December, 2019.  

[5]. Chao Shu, Junbo Wang, Shaoqing Hu, Yuan Yao, Junsheng Yu, Yasir Alfadhl 

and Xiaodong Chen, “A Wideband Dual Circular Polarization Horn Antenna for 

mmWave Wireless Communications”, IEEE Antennas and Wireless 

Propagation Letters, Vol.18, No.9, pp. 1726-1730, July, 2019. 

[6]. S.Hu, X.Chen, D.Zhao, Y.Yao, “Wideband Circularly Polarized Cavity Backed 

Monopole Antenna for Global Navigation Satellite Systems”, IET Microwaves 

Antennas & Propagation, Vol.11, No.4, 2016, pp.503-512, April, 2017. 

Conference Papers 

[7]. Shaoqing Hu, Chao Shu, Xiaodong Chen and Kai Wang, “THz Personnel 

Screening System with Multi-pass Interferometric Synthetic Aperture 

Technique”, The 13th UK-Europe-China Workshop on Millimeter-Waves and 

Terahertz Technologies (UCMMT 2020), Tianjin, China, August, 2020. (First 

Prize of Best Student Paper Award) 

[8]. Chao Shu, Shaoqing Hu, Yuan Yao and Xiaodong Chen, “Deep-Learning-based 

Inverse Modelling with CMA-ES as Applied to the Design of A Wideband High-

isolation Septum Polarizer”, 2020 IEEE International Symposium on Antennas 

and Propagation/USNC-URSI Radio Science Meeting (APS/URSI 2020), 

Montreal, Canada, July, 2020. 

[9]. Shaoqing Hu, Chao Shu, Xiaodong Chen and Kai Wang, “Element Mutual 

Coupling Effect in a Wideband Planar Aperiodic Sparse Phased Array”, The 14th 

European Conference on Antennas and Propagation(EuCAP 2020), Copenhagen, 

Denmark, March, 2020. 

[10]. Shaoqing Hu, Chao Shu, Yasir Alfadhl, Xiaodong Chen and Kai Wang, “Design 



List of Publications in PhD Period 

176 

of Wideband Planar Aperiodic Sparse Phased Array”, 2019 International 

Symposium on Antennas and Propagation (ISAP 2019), Xi’an, China, October, 

2019. 

[11]. Shaoqing Hu, Chao Shu and Xiaodong Chen, “Experimental Verification of a 

THz SPA Imaging System Using Compressive Sensing”, The 12th UK-Europe-

China Workshop on Millimeter-Waves and Terahertz Technologies (UCMMT 

2019), London, United Kingdom, August, 2019. 

[12]. Shaoqing Hu, Chao Shu, Xiaodong Chen and Kai Wang, “Optimization of A 

Wideband Planar Sparse Array Based on Danzer Aperiodic Tiling”, 2019 IEEE 

International Symposium on Antennas and Propagation and USNC-URSI Radio 

Science Meeting (AP-S/URSI 2019), Atlanta, United States, July, 2019. 

[13]. Shaoqing Hu, Xiaodong Chen and Yasir Alfadhl, “Study on 94GHz Imaging 

System Using Sparse Periodic Linear Antenna Array and Compressive Sensing”, 

The 11th UK-Europe-China Workshop on Millimeter-Waves and Terahertz 

Technologies (UCMMT 2018), Hangzhou, China, September, 2018. 

[14]. Shaoqing Hu, Xiaodong Chen and Yasir Alfadhl, “A THz Imaging System Using 

Sparse Antenna Array”, The 43rd International Conference on Infrared, 

Millimeter and Terahertz Waves (IRMMW-THz 2018), Nagoya, Japan, 

September, 2018. 

[15]. Shaoqing Hu, Min Zhou, Xiaodong Chen and Yasir Alfadhl, “Suppressing Ghost 

Images for Synthetic Aperture THz Imaging with Large Sampling Spacing”, The 

12th European Conference on Antennas and Propagation(EuCAP 2018), London, 

United Kingdom, April, 2018. 

[16]. Shaoqing Hu, Min Zhou, Xiaodong Chen and Yasir Alfadhl, “Study on a Sparse 

Antenna Array for Terahertz Imaging”, The 10th UK-Europe-China Workshop on 

Millimeter-Waves and Terahertz Technologies (UCMMT 2017), Liverpool, 

United Kingdom, September, 2017. 

[17]. Chao Shu, Shaoqing Hu, Yuan Yao and Xiaodong Chen, “High-gain Reflector 

Antenna with Beam Steering for Terahertz Wireless Communications”, The 10th 

UK-Europe-China Workshop on Millimeter-Waves and Terahertz Technologies 

(UCMMT 2017) , Liverpool, United Kingdom, September, 2017. 

[18]. Min Zhou, Shaoqing Hu, Yasir Alfadhl and Xiaodong Chen, “Investigation of 

THz Image Reconstruction by Inverse Convolution Algorithm”, The 10th UK-

Europe-China Workshop on Millimeter-Waves and Terahertz Technologies 

(UCMMT 2017), Liverpool, United Kingdom, September, 2017. 

 

http://www.eecs.qmul.ac.uk/people/view/4725/dr-yasir-alfadhl


Appendix I: FFT-Based Back Propogation Reconsctruction Algorithm 

177 

Appendix I: FFT-Based Back Propogation 

Reconsctruction Algorithm 

 

Figure I-1. Monostatic scanning scheme 

For the monostatic scanning scenario including the raster scanning scheme or the 

electronic scanning scheme with an array, its separation between Tx and Rx is very 

small when compared to the target distance so that both of them can be replaced by 

their central point to calculate the phase in the image reconstruction. Consequently, the 

high efficient reconstruction based on back propagation algorithm and Fast Fourier 

Transform can be employed, the derivation is shown in (I- 1) ~ (I- 10). As shown in 

Figure I-1, the response S(x, y) at the transceiver will simply be the superposition of 

each point on the target Sg(x’, y’, zo) multiplied by the roundtrip phase to that point or 
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where k is wavenumber. The exponential term in (I- 1) denotes a spherical wave 

emanating from (x, y), which can be decomposed into a superposition of plane-wave 

components 

 
2 2 2

0( ') ( ')2 ( ') ( ') x y zo jk x x jk y y jk zj k x x y y z

x ye e dk dk
       

    (I- 2) 

where kx and ky are the Fourier-transform variables corresponding to x and y, 

respectively. The spatial wavenumbers will range from -2k to 2k for propagating 

waves. 

Submitting the relation (I- 2) into the equation (I- 1), we can get 

 

o

( ' ')

2D Fourier Transform of Sg(x',y',z )

( , ) [ ( ', ', ) ' ']x y x y z oj

o x y

j k x k y k x k y k z
S x y Sg x y z e dx dy e dk dk

   
     (I- 3) 

Using the 2-D Fourier transform definition described in the Appendix III 

  ' ' 2( , ) ( ', ')x y DF k k FT Sg x y    (I- 4) 

Submitting the Fourier-transform relation (I- 4) into (I- 3) and using the Fourier 

transform definitions in the Appendix III, we can get 

 

( )

' '

1

2 ' '

( , ) ( , )

[ ( , ) ]

x yz o

z o

j k x k yjk z

x y x y

k zj

D x y

S x y F k k e e dk dk

FT F k k e










  (I- 5) 

 
' ' 2( , ) [ ( , )] z ojk z

x y DF k k FT S x y e


    (I- 6) 

Therefore, the inversion for the image yields 

 1

2 2g( ', ') [ [ ( , )] ]z ojk z

D DS x y FT FT S x y e
   (I- 7) 

From the dispersion relation for electromagnetic plane waves 
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 2 2 2 24x y zk k k k      (I- 8) 

 2 2 24z x yk k k k     (I- 9) 

Thus, the reconstruction algorithm is summarized by 

 
2 2 2( 4 )1

2 2g( ', ') [ [ ( , )] ]x y oj k k k z

D DS x y FT FT S x y e
      (I- 10) 
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Appendix II: Lp Norms and Compressive 

Sensing Reconstruction 

Firstly, we need to introduce the definitions of lp-norm involved in the CS 

reconstruction. Let p ≥ 1 be a real number. The p-norm (also called lp-norm) of vector 

x=[x1, x2, x3…., xn ] is 

 1/

1

( )
n

p p

ip
i

x x


   (II- 1) 

When p =1, we get the taxicab norm or Manhattan norm. When p = 2, we get 

the Euclidean norm, and as p approaches ∞, the p-norm approaches the infinity 

norm or maximum norm: 

 max i
i

x x

   (II- 2) 

The p-norm is related to the generalized mean or power mean. 

Another function is named l0 "norm" by David Donoho. The quotation marks 

warn that this function is not a proper norm. For example, scaling the vector x by a 

positive constant does not change the "norm". Defining 00 = 0, the zero "norm" of x is 

equal to 

 00 0

1 2 nx x x    (II- 3) 

So it is the number of non-zero entries of the vector x. This is not a norm because 

it is not homogeneous. Despite these defects as a mathematical norm, the non-zero 

counting "norm" is useful in scientific computing, information theory, and statistics–

notably in compressive sensing in signal processing and computational harmonic 

analysis.  

Let y be the under-sampled data and Θ the measurement matrix, the CS model 

can be written as 
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 y = Θx  (II- 4) 

As (II- 4) is an underdetermined system, it has infinite solutions. CS theory offers 

an alternative way to solve this by enforcing a sparsity constraint on the solution: 

 
0

min
x

x  subject to y x   (II- 5) 

Unfortunately, (II- 5) is computationally difficult to solve. A more general 

approach is to relax the l0 norm to l1 norm: 

 
1

min
x

x  subject to y x   (II- 6) 

This minimization problem is often known as Basis Pursuit (BP). Considering the 

imaging system is always accompanied with noise, (II- 6) is commonly solved by 

rewriting it as a Basis Pursuit De-Noise (BPDN) problem: 

 
1

min
x

x  subject to 
2

y x    (II- 7) 

and σ is a nonnegative real parameter that defines the noise level. 
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Appendix III: Spatial Fourier-Transform 

Definitions 

Fourier transform is helpful to convert a function not only between time-domain 

and frequency-domain, but also between space-domain and spatial-frequency domain. 

Typically, the time or space function will be denoted with a lower case letter while the 

frequency-domain function will be denoted with a capital letter. All versions of the 

Fourier-transform operator will often be denoted by FT. The inverse Fourier transform 

operator will often be denoted by FT-1. A function f and its Fourier transform F are 

defined as a Fourier-transform pair denoted by 

 f F   (III- 1) 

The temporal Fourier transform and its inverse are defined by 

 ( ) ( ) FT{ ( )}j tF f t e dt f t     (III- 2) 

 11
( ) ( ) { ( )}

2

j tf t F e d FT F  


    (III- 3) 

The 1-D spatial Fourier transform and its inverse are defined as 

 
1( ) ( ) { ( )}xjk x

x DF k f x e dx FT f x


    (III- 4) 

 1

1

1
( ) ( ) { ( )}

2
xjk x

x x D xf x F k e dk FT F k


    (III- 5) 

The 2-D spatial Fourier transform and its inverse are defined as 

 
( )

2( , ) ( , ) { ( , )}x yj k x k y

x y DF k k f x y e dxdy FT f x y
 

    (III- 6) 
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( )

2

1

2

1
( , ) ( , )

(2 )

{ ( , )}

x yj k x k y

x y x y

D x y

f x y F k k e dk dk

FT F k k












 (III- 7) 

The 3-D spatial Fourier transform and its inverse are defined as 

( )

3

( , , ) ( , , )

{ ( , , )}

x y zj k x k y k z

x y z

D

F k k k f x y z e dxdydz

FT f x y z

  




 (III- 8) 

( )

3

1

3

1
( , , ) ( , , )

(2 )

{ ( , , )}

x y zj k x k y k z

x y z x y z

D x y z

f x y z F k k k e dk dk dk

FT F k k k



 








 (III- 9) 




