765 research outputs found

    Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning

    Full text link
    The operation of groups of heavy-duty vehicles (HDVs) at a small inter-vehicular distance (known as platoon) allows to lower the overall aerodynamic drag and, therefore, to reduce fuel consumption and greenhouse gas emissions. However, due to the large mass and limited engine power of HDVs, slopes have a significant impact on the feasible and optimal speed profiles that each vehicle can and should follow. Therefore maintaining a short inter-vehicular distance as required by platooning without coordination between vehicles can often result in inefficient or even unfeasible trajectories. In this paper we propose a two-layer control architecture for HDV platooning aimed to safely and fuel-efficiently coordinate the vehicles in the platoon. Here, the layers are responsible for the inclusion of preview information on road topography and the real-time control of the vehicles, respectively. Within this architecture, dynamic programming is used to compute the fuel-optimal speed profile for the entire platoon and a distributed model predictive control framework is developed for the real-time control of the vehicles. The effectiveness of the proposed controller is analyzed by means of simulations of several realistic scenarios that suggest a possible fuel saving of up to 12% for the follower vehicles compared to the use of standard platoon controllers.Comment: 16 pages, 16 figures, submitted to journa

    Considerate and Cooperative Model Predictive Control for Energy-Efficient Truck Platooning of Heterogeneous Fleets

    Full text link
    Connectivity-enabled automation of distributed control systems allow for better anticipation of system disturbances and better prediction of the effects of actuator limitations on individual agents when incorporating a model. Automated convoy of heavy-duty trucks in the form of platooning is one such application designed to maintain close gaps between trucks to exploit drafting benefits and improve fuel economy, and has traditionally been handled with classically-designed connected and adaptive cruise control (CACC). This paper is motivated by demonstrated limitations of such a control strategy, in which a classical CACC was unable to efficiently handle real-world road grade and velocity transient disturbances without the assistance of fleet operator intervention, and is non-adaptive to varied hardware and loading conditions of the operating truck. This automation strategy is addressed by forming a cooperative model predictive control (MPC) for eco-platooning that considers interactions with trailing trucks to incentivize platoon harmonization under road disturbances, velocity transients, and engine limitations, and further improves energy economy by reducing unnecessary engine effort. This is accomplished for each truck by sharing load, maximum engine power, transmission ratios, control states, and intended trajectories with its nearest neighbors. The performance of the considerate and cooperative strategy was demonstrated on a real-world driving scenario against a similar non-considerate control strategy, and overall it was found that the considerate strategy significantly improved harmonization between the platooned trucks in a real-time implementable manner.Comment: Appears in IEEE ACC 2022. 6 pages, 6 figure

    Fuel-efficient driving strategies

    Get PDF
    This thesis is concerned with fuel-efficient driving strategies for vehicles driving on roads with varying topography, as well as estimation of road grade\ua0and vehicle mass for vehicles utilizing such strategies. A framework referred\ua0to as speed profile optimization (SPO), is introduced for reducing the fuel\ua0or energy consumption of single vehicles (equipped with either combustion\ua0or electric engines) and platoons of several vehicles. Using the SPO-based\ua0methods, average reductions of 11.5% in fuel consumption for single trucks,\ua07.5 to 12.6% energy savings in electric vehicles, and 15.8 to 17.4% average\ua0fuel consumption reductions for platoons of trucks were obtained. Moreover,\ua0SPO-based methods were shown to achieve higher savings compared to\ua0the commonly used methods for fuel-efficient driving. Furthermore, it was\ua0demonstrated that the simulations are sufficiently accurate to be transferred\ua0to real trucks. In the SPO-based methods, the optimized speed profiles were\ua0generated using a genetic algorithm for which it was demonstrated, in a\ua0discretized case, that it is able to produce speed profiles whose fuel consumption\ua0is within 2% of the theoretical optimum.A feedforward neural network (FFNN) approach, with a simple feedback\ua0mechanism, is introduced and evaluated in simulations, for simultaneous estimation of the road grade and vehicle mass. The FFNN provided road grade\ua0estimates with root mean square (RMS) error of around 0.10 to 0.14 degrees,\ua0as well as vehicle mass estimates with an average RMS error of 1%, relative\ua0to the actual value. The estimates obtained with the FFNN outperform road\ua0grade and mass estimates obtained with other approaches

    Research on Information Flow Topology for Connected Autonomous Vehicles

    Get PDF
    Information flow topology plays a crucial role in connected autonomous vehicles (CAVs). It describes how CAVs communicate and exchange information with each other. It predominantly affects the platoon\u27s performance, including the convergence time, robustness, stability, and scalability. It also dramatically affects the controller design of CAVs. Therefore, studying information flow topology is necessary to ensure the platoon\u27s stability and improve its performance. Advanced sliding mode controllers and optimisation strategies for information flow topology are investigated in this project. Firstly, the impact of information flow topology on the platoon is studied regarding tracking ability, fuel economy and driving comfort. A Pareto optimal information flow topology offline searching approach is proposed using a non-dominated sorting genetic algorithm (NSGA-II) to improve the platoon\u27s overall performance while ensuring stability. Secondly, the concept of asymmetric control is introduced in the topological matrix. For a linear CAVs model with time delay, a sliding mode controller is designed to target the platoon\u27s tracking performance. Moreover, the Lyapunov analysis is used via Riccati inequality to guarantee the platoon\u27s internal stability and input-to-output string stability. Then NSGA-II is used to find the homogeneous Pareto optimal asymmetric degree to improve the platoon\u27s performance. A similar approach is designed for a nonlinear CAVs model to find the Pareto heterogeneous asymmetric degree and improve the platoon\u27s performance. Thirdly, switching topology is studied to better deal with the platoon\u27s communication problems. A two-step switching topology framework is introduced. In the first step, an offline Pareto optimal topology search with imperfect communication scenarios is applied. The platoon\u27s performance is optimised using a multi-objective evolutionary algorithm based on decomposition (MOEA/D). In the second step, the optimal topology is switched and selected from among the previously obtained Pareto optimal topology candidates in real-time to minimise the control cost. For a continuous nonlinear heterogeneous platoon with actuator faults, a sliding mode controller with an adaptive mechanism is developed. Then, the Lyapunov approach is applied to the platoon\u27s tracking error dynamics, ensuring the systems uniformly ultimately bounded stability and string stability. For a discrete nonlinear heterogeneous platoon with packet loss, a discrete sliding mode controller with a double power reaching law is designed, and a modified MOEA/D with two opposing adaptive mechanisms is applied in the two-step framework. Simulations verify all the proposed controllers and frameworks, and experiments also test some. The results show the proposed strategy\u27s effectiveness and superiority in optimising the platoon\u27s performance with multiple objectives

    A Review of Model Predictive Controls Applied to Advanced Driver-Assistance Systems

    Get PDF
    Advanced Driver-Assistance Systems (ADASs) are currently gaining particular attention in the automotive field, as enablers for vehicle energy consumption, safety, and comfort enhancement. Compelling evidence is in fact provided by the variety of related studies that are to be found in the literature. Moreover, considering the actual technology readiness, larger opportunities might stem from the combination of ADASs and vehicle connectivity. Nevertheless, the definition of a suitable control system is not often trivial, especially when dealing with multiple-objective problems and dynamics complexity. In this scenario, even though diverse strategies are possible (e.g., Equivalent Consumption Minimization Strategy, Rule-based strategy, etc.), the Model Predictive Control (MPC) turned out to be among the most effective ones in fulfilling the aforementioned tasks. Hence, the proposed study is meant to produce a comprehensive review of MPCs applied to scenarios where ADASs are exploited and aims at providing the guidelines to select the appropriate strategy. More precisely, particular attention is paid to the prediction phase, the objective function formulation and the constraints. Subsequently, the interest is shifted to the combination of ADASs and vehicle connectivity to assess for how such information is handled by the MPC. The main results from the literature are presented and discussed, along with the integration of MPC in the optimal management of higher level connection and automation. Current gaps and challenges are addressed to, so as to possibly provide hints on future developments

    Impacts of Connected and Automated Vehicles on Energy and Traffic Flow: Optimal Control Design and Verification Through Field Testing

    Get PDF
    This dissertation assesses eco-driving effectiveness in several key traffic scenarios that include passenger vehicle transportation in highway driving and urban driving that also includes interactions with traffic signals, as well as heavy-duty line-haul truck transportation in highway driving with significant road grade. These studies are accomplished through both traffic microsimulation that propagates individual vehicle interactions to synthesize large-scale traffic patterns that emerge from the eco-driving strategies, and through experimentation in which real prototyped connected and automated vehicles (CAVs) are utilized to directly measure energy benefits from the designed eco-driving control strategies. In particular, vehicle-in-the-loop is leveraged for the CAVs driven on a physical test track to interact with surrounding traffic that is virtually realized through said microsimulation software in real time. In doing so, model predictive control is designed and implemented to create performative eco-driving policies and to select vehicle lane, as well as enforce safety constraints while autonomously driving a real vehicle. Ultimately, eco-driving policies are both simulated and experimentally vetted in a variety of typical driving scenarios to show up to a 50% boost in fuel economy when switching to CAV drivers without compromising traffic flow. The first part of this dissertation specifically assesses energy efficiency of connected and automated passenger vehicles that exploit intention-sharing sourced from both neighboring vehicles in a highway scene and from traffic lights in an urban scene. Linear model predictive control is implemented for CAV motion planning, whereby chance constraints are introduced to balance between traffic compactness and safety, and integer decision variables are introduced for lane selection and collision avoidance in multi-lane environments. Validation results are shown from both large-scale microsimulation and through experimentation of real prototyped CAVs. The second part of this dissertation then assesses energy efficiency of automated line-haul trucks when tasked to aerodynamically platoon. Nonlinear model predictive control is implemented for motion planning, and simulation and experimentation are conducted for platooning verification under highway conditions with traffic. Then, interaction-aware and intention-sharing cooperative control is further introduced to eliminate experimentally measured platoon disengagements that occur on real highways when using only status-sharing control. Finally, the performance of automated drivers versus human drivers are compared in a point-to-point scenario to verify fundamental eco-driving impacts -- experimentally showing eco-driving to boost energy economy by 11% on average even in simple driving scenarios
    • …
    corecore