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Abstract: Advanced Driver-Assistance Systems (ADASs) are currently gaining particular attention in
the automotive field, as enablers for vehicle energy consumption, safety, and comfort enhancement.
Compelling evidence is in fact provided by the variety of related studies that are to be found in the
literature. Moreover, considering the actual technology readiness, larger opportunities might stem
from the combination of ADASs and vehicle connectivity. Nevertheless, the definition of a suitable
control system is not often trivial, especially when dealing with multiple-objective problems and
dynamics complexity. In this scenario, even though diverse strategies are possible (e.g., Equivalent
Consumption Minimization Strategy, Rule-based strategy, etc.), the Model Predictive Control (MPC)
turned out to be among the most effective ones in fulfilling the aforementioned tasks. Hence, the
proposed study is meant to produce a comprehensive review of MPCs applied to scenarios where
ADASs are exploited and aims at providing the guidelines to select the appropriate strategy. More
precisely, particular attention is paid to the prediction phase, the objective function formulation
and the constraints. Subsequently, the interest is shifted to the combination of ADASs and vehicle
connectivity to assess for how such information is handled by the MPC. The main results from the
literature are presented and discussed, along with the integration of MPC in the optimal management
of higher level connection and automation. Current gaps and challenges are addressed to, so as to
possibly provide hints on future developments.

Keywords: optimal control; model predictive control; Advanced Driver-Assistance Systems; con-
nected vehicle; cruise control; lane keeping; path following

1. Introduction

A wide variety of systems belong to the category of Advanced Driver-Assistance
Systems (ADASs), showing differences in properties, complexity and objectives. High-
beam headlamps automation [1], road sign recognition [2-5] and fatigue and alertness
detection systems [6,7] are a few examples of ADASs aiming at improving driveability,
comfort and, most of all, safety. However, automated driving technologies might address
many other objectives, including efficient energy consumption and pollutants reduction. In
the proposed work, the authors focused their attention on this type of ADASs that, for the
sake of clarity, are grouped in three macro-categories: Cruise Control (CC), Path Following
(PF) and Lane Keeping (LK). It is worth mentioning that the vehicle dynamics models
used in these scenarios are various and strictly depend on the type of ADAS analyzed.
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A comprehensive summary of the diverse models is provided by Guo et al. [8]. As an
example, when both longitudinal and lateral dynamics are considered, a Three Degrees Of
Freedom model could be used. The latter exhaustively describes the motion, and precise
equations allow for the computation of the accelerations in both directions depending on
diverse parameters (e.g., the steering angle).

The standard Cruise Control aims at maintaining a user-defined vehicle speed (also
referred to as ‘cruising speed’). CC is a mature technology, and it is widely adopted in
passenger cars by applying classical single objective control methods. The more complex
Adaptive version of Cruise Control (ACC) is instead equipped in luxury vehicles and
allows for accelerating and decelerating depending on the setpoint vehicle speed and safe
inter-vehicular distance (IVD). This topic is widely studied in the technical literature, where
a vast diversity in control algorithms is used to achieve the aforementioned objectives. If
both safety and energy consumption reduction (and consequently pollutants reduction)
are addressed, the strategy is often named as ‘ecological ACC’ or ‘Eco-ACC’. The most
recent Cruise Control is called Cooperative Adaptive CC (CACC). It basically exploits the
information coming from the communication technologies (i.e., vehicle-to-vehicle V2V,
vehicle-to-infrastructure V2I and vehicle-to-anything V2x) to stabilize a string of vehicles
improving safety, comfort and energy reduction.

As far as Path Following (PF) is concerned, it usually denotes systems that can control
longitudinal and/or lateral dynamics where the aim is that of following a predefined (or
reference) trajectory computed a priori. The final objectives might be several depending on
how the reference has been computed. Examples of PF may be Collision Avoidance and
Lane Change systems.

In general, Lane Keeping (LK) enables the lateral adjustment of the vehicle to let it
drive in the middle of the lane. It basically controls the steering angle of the car, enhancing
stability and comfort. These systems, which involve safety aspects, are or should be
regulated in classifications, testing and homologation.

In 2014, the Society of Automotive Engineers (SAE) proposed the J3016 standard
about “Taxonomy and Definitions for Terms Related to Driving Automation Systems for
On-Road Motor Vehicles”, which is currently at its 4th update [9]. This standard aims at
defining a common background to identify and classify the systems embedded in a vehicle,
ranging from no automation to full automation in all driving scenarios. This categorization
might be helpful when referring to the commercial field. However, in the authors’ opinion,
it cannot be exhaustively descriptive when referring to the research field. Indeed, some
ADASs could be classified between SAE level 2 and SAE level 5 depending on the system
implementation, their capability to be used in only one, few or all driving conditions and
the potential request to the driver of taking control of the vehicle. Hence, the authors did
not include any SAE J3016-based categorization in this literature review.

A variety of algorithms can be used to control the vehicle and achieve the different
aforementioned automated strategies. Controllers based on dynamic programming [10,11]
are widely used in the offline computation of reference trajectories as in [12], where infor-
mation coming from V2V are exploited to control and rightsize a Battery Electric Vehicle
(BEV). The Equivalent Consumption Minimization Strategy (ECMS) [13] might also be used
in ADAS, as in [14,15], where this controller provides the real-time energy management of
Hybrid Electric Vehicles (HEVs). The ECMS is also used to enhance energy consumption
and comfort in a platoon [16]. Rule-based and fuzzy logic controllers mainly refer to hu-
man experience or heuristics. The main shortcomings of a rule-based algorithm in general
consist of the calibration effort required along with the lack of optimality. In a CACC
framework, the fuzzy controller can be used to maintain the desired reference trajectory
given the distance and speed errors by using the if-then-else rule-based approach, as ex-
plained in [17,18]. In addition, these algorithms might also be used in cooperative merging
sequence problems to improve safety and traffic flow. As an example, Ding et al. [19]
propose a rule-based control strategy for connected and automated vehicles in highway
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scenarios by considering as main parameters the total travel time and the total delay caused
by merging.

Machine learning techniques (especially Reinforcement Learning) are also currently
used to design driving trajectory [20], considering longitudinal acceleration and lateral
lane-changing operations [21] and coordinating vehicles in lane selection operations within
a multi-lane traffic scenario [22].

However, most of the studies found in the recent literature exploit algorithms based
on Model Predictive Control (MPC) since it can usually offer higher performances than
standard control methods, and the actual hardware can fulfil the higher computational
effort. The MPC complexity makes the approach to the specific literature for those who
are interested in the topic difficult. The lack of review work in this field, in the authors’
knowledge, and the great scientific interest retained by the topic prompted the authors
to focus this manuscript on MPC as applied to ADAS. Indeed, the principal objective
of this study is to provide an exhaustive review of the various MPC-based algorithms,
thus providing the readers with the key elements to select the optimal control strategy
when it comes to automated driving scenarios. Moreover, the present paper is meant to be
accessible to researchers with different backgrounds.

Different databases were analyzed in this review, including among all Scopus, Science
Direct, IEEE, MDPI and Springer. The research has been performed by using the following
keywords: model predictive control, MPC, lane keeping, path following, path tracking,
cruise control, adaptive cruise control, cooperative cruise control, receding horizon and
ADAS. About 350 papers were originally examined by the authors, and only the most
relevant to the aforementioned research topic have been included in the following analysis,
i.e., approximately 160 studies.

The remaining sections are organized as follows: firstly an overview of the MPC
strategy is provided, where the main characteristics of the controller are introduced along
with brief historical facts. Then, starting from Section 3, the focus is shifted towards
more specific sections of the MPC such as prediction, cost function and constraints. In
these sections, a vast number of examples are presented in order to not only comprehend
the different parts of the MPC yet to explore the diverse applications. In Section 6, the
capability of the MPC to embed information coming from the connectivity is addressed.
The following section hence provides an overview of the numerical and experimental
results found in the articles considered in this study. Finally, a brief discussion on higher
levels of automation is brought up and a comprehensive summary of these sections can be
found in the conclusions.

2. Overview on Model Predictive Control Algorithms

As previously mentioned, the present review aims at providing an exhaustive expla-
nation of the MPC methodology as applied to ADASs. To this scope, it is worth starting
with a general overview about this controller.

Model Predictive Control is a family of control methods in which an open-loop
optimization problem is solved using a plant model to predict future behaviours starting
from state measurement or estimation. The periodical update of the state vector permits
the correction of the controller behaviour. In this manner, a blend of classical feedback
and optimal controls is obtained, with the advantages of both and with the possibility of
an online implementation. In general, the MPC algorithm can be synthesized as follows:

e adynamical plant model is required to predict the behaviour of the system in a specific
prediction horizon by using a control law;

e initial conditions are needed to define the status of the system and are usually either
imposed or obtained by using appropriate sensors;

e  the optimal control law, which optimizes a predefined performance index (or cost func-
tion) over the prediction horizon, is computed by using appropriate numerical methods

e the optimal control is only applied in the control horizon, the system is hence updated,
and the process is re-iterated.
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A general MPC controller can be schematically illustrated as in Figure 1, in which the

subsystems analyzed in the following sections are highlighted in green.
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Figure 1. Synthetic flow diagram of a general model predictive control.

The first applications of MPC date back to the 70s, and they suffered from a low
computational capability. Therefore, they were mainly used in chemical plants [23] whose
characteristic times were sufficiently long and compatible with the hardware resources of
the time. However, thanks to the technology progress, MPC has been applied in a variety
of fields, including the combined heat and power systems [24], the energy management
strategy in HEVs [25] and Heat, Ventilation and Air Conditioning (HVAC) systems [26], as

an example.

Focusing on the MPC applied to ADAS, Figure 2 illustrates the geographical distribution
of published papers regarding the different analyzed scenarios. This figure has been obtained
by exploiting the Scopus database using as keywords “Model Predictive Control” along with

the different frameworks (i.e., Cruise Control, Lane Keeping and Path Following).
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Figure 2. Geographical data analysis of the papers on MPC use in ADAS found in the Scopus
database: (a) percentage distribution; (b) Path Following; (c) Cruise Control; and (d) Lane Keeping.
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An analysis of the data obtained was carried out, splitting the studies among the
different commercial areas. Namely, the North American Free Trade Agreement (NAFTA),
Asia-Pacific (APAC), Europe, Middle East and Africa (EMEA) and Latin America (LATAM).
The few papers that were not categorized by Scopus have been included in the “other”
area. Herein belongs the research papers of the multinational industry sector.

More specifically, Figure 2a reports the distribution of the articles published by institu-
tions belonging to the aforementioned geographical area, normalized to the total number of
articles. Figure 2b—d report the number of published studies over a time horizon of 30 years
for the considered ADAS, Path Following, Cruise Control and Lane Keeping solutions.
The figures prove for a major interest in the Path Following application, with a threefold
number of studies with respect to the other two analyzed ADAS systems.

3. Prediction

As previously stated, a fundamental part of an MPC controller is the prediction of the
system evolution throughout a specific time horizon. What is included in the considered
system and how its evolution is forecasted depend on the specific formulation of the MPC.
In the literature, different techniques are used to face prediction problems and are applied
to different cases. The most common are enlisted in what follows:

e  Ego-vehicle behaviour (e.g., speed, fuel or energy consumption, emissions and trajec-
tory error)

e  Predecessor vehicle behaviour (e.g., speed and lane changing). Such case involves the
human driver behaviour modelling

e  Traffic conditions (e.g., Traffic Light (TL) and Road Side Unit (RSU))
As far as the models used for the prediction are concerned, a further discussion can

be performed:

Dynamic state system model

Machine Learning (ML) techniques (e.g., ANN, CNN, RL and DL)

Stochastic process modelling (e.g., Autoregressive models and Markov Chains)

Adaptive and robust version or a combination of the previous ones

The choice of the prediction method depends on the scenario and the defined system
boundaries, and the two will hence be considered in a joint discussion in the following. In
the last part of the section, the prediction horizon influence will also be discussed.

A common choice used in many applications is that of adopting a dynamic system
model to be integrated over time. Various explicit system formulations are employed,
such as time-invariant systems, either linear or non-linear. A linear model often requires
integration techniques that are computationally less expensive, thus allowing for the
realization of online controllers. On the other hand, non-linear systems can mimic reality
with higher fidelity. The type of dynamic system and the number of equations (i.e., state
variables) strongly influences the computational burden. Thus, a trade-off between model
complexity and computational effort should be accepted with a fixed hardware system.

However, a nonlinear system can be usually linearized in the neighbourhood of the
point of interest, e.g., the latest state measurement. Such an approach provides accurate
results only if the prediction time horizon is relatively short. Thus, the prediction horizon
plays a crucial role in the controller performances, and its choice is deepened in the late
part of this section.

The prediction certainly must consider the whole scenario, including vehicles string,
driver behaviour, road geometry and other environmental factors. Some techniques proved
for a higher capability in dealing with specific problems and corresponding trends can be
extrapolated from the literature. When the prediction of vehicle-related behaviour is of
interest, simple mathematical models are suitable and allow for satisfactory performance.
For some applications, such as ACC controllers, an elementary model resulting in the
assumption of a constant speed for the preceding vehicle over the prediction horizon, can
be successfully used [27]. Even though it might appear as a strong hypothesis, a good
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performance can be achieved due to the short duration of the prediction horizon and
the re-updating process. Such simple models are also effective in issuing eco-driving
controllers, which require the full knowledge of the vehicle control actions to minimize
overall fuel consumption [28]. However, many complex systems were also proposed in
the literature to improve the controllers” performances. Caldas, and Grassi Jr [29] used
a nonlinear vehicle model to improve the future state estimation of the preceding vehicle,
using the instantaneous radar measurement and the distance from the traffic light (TL) as
an input. Nonlinear models, which consider information from V2I communication with TL,
can effectively predict the predecessor vehicle’s speed, as Schmied et al. demonstrated [30].

The development of such deterministic mathematical models can be challenging and
often unsuitable when the focus is shifted on predicting the human driver behaviour. In
these cases, the use of Machine Learning (ML)-based algorithms or of stochastic methods
is preferred. The formers represent a broad class of techniques that can train a complex
model (i.e., auto-tuning the model parameters) starting from available data to produce the
desired outputs.

In the last several decades, within the exploitation of Artificial Intelligence (AI), ML
applied to ADAS systems has started to be more and more common. Successful applications
have been reported for vehicle velocity prediction [31,32], lane detection [33], ACC [34],
ECO-ACC [35], lane changing detection [36] and EMS with V2x connectivity [37]. This
widespread diffusion is mainly due to the algorithms’ ability to properly predict and
identify a wide range of behaviours. These data-driven methods can substitute a standard
dynamic system model or act as a system model companion that predicts some specific
future behaviour. Among the ML techniques, Deep Learning (DL) is particularly suited
for big data problems, which can include the elaboration of data from Light Detection
and Ranging (Lidar) and camera systems [38]. In particular, the DL is a class of ML
techniques where multi-layer (i.e., deep) neural networks are used. Two notable subfamilies
of models belonging to DL are Convolutional Neural Networks (CNNs) and Recurrent
ones (RNNSs). The former are characterized by the use of convolution to extract features
maps from the input tensor data and then elaborate them. This characteristic makes CNNs
particularly suitable for image processing and other perception data. In an RNN, the
neurons output is recursively fed as an input, providing the network with a dynamic
behaviour. Another notable ML algorithm family is Reinforcement Learning (RL). Due
to their peculiar capability of learning by previous system operations, these algorithms
have received greater attention from the scientific community for application in the ADAS
field [39-42]. Ozkan et al. [35] used a Gated Recurrent Unit, a type of RNN, to predict the
future behaviour of the preceding human-driven vehicle based on the recording of the last
several seconds provided by sensors. Lee et al. [36] used a CNN to improve the comfort
and safety of an ACC. The developed system elaborates a simplified image given by the
sensor fusion of radar and a camera to predict the probability of the preceding vehicle to
either keep or change the lane.

Along with ML, stochastic methods can also be used to model the system behaviour
for a wide operating range. The most common statistical methods used in the ADAS
field are the autoregressive models [43,44], both linear and nonlinear ones: Markov Chain
and Hidden Markov Chain. They are effectively used for the prediction of the demanded
torque/power [45,46], predecessor vehicle position [47], human driving errors [48], and
lane changing maneuvers [49-53]. The autoregressive model is a stochastic technique that
describes random processes in which the state is linearly linked with past observations.
Instead, the Markov Chain is a more sophisticated model based on the use of a transition
matrix, which applies to random processes with the Markov property (i.e., the future state
depends on the present state alone). When some of the process states are not observable, the
method is referred to as Hidden Markov Chain. In [44], short-term forecasts are performed
by considering an autoregressive model that takes the previous speeds as input to estimate
the vehicle future positions.
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A common Markov chain application is the modelling of human drivers’ dynamic
behaviour. This modelling can be integrated with stochastic model predictive control
(SMPC) for calculating optimal advisory speeds, taking into account the tracking errors.
One crucial point in these controllers is the transition matrix determination, which often
requires extensive driving tests. A clear example is the work of Xuewei Qi et al. [48],
where a driver-in-the-loop (DiL) connected Eco-Approach and Departure (EAD) system
considering human driver error was developed. The system used a Markov Chain, with
a transition matrix given by DiL data, to predict human error and correct the speed advice
to improve the vehicle fuel consumption. The capability to predict human driver behaviour
is also useful for predicting the speed profile of the preceding vehicle. This information is
crucial for developing an effective Eco-ACC system that can account for the uncertainty in
the preceding vehicle behaviour [54].

The traffic conditions also involve lateral manoeuvre (i.e., lane change), which affect
both longitudinal and lateral ADAS. The ADAS for lane change manoeuvre computes the
trajectories according to the estimated status of neighbouring vehicles for a safe lane change.
Deterministic and probabilistic predictions are usually adopted for other traffic participants’
states. The former assumes that the vehicles surrounding the ego-vehicle maintain their
current movement during a finite time-horizon and would not recognize unexpected
driving situations. SMPC can hence be successfully adopted to overcome this downside.
To further overcome the drawbacks of the deterministic prediction, several researchers
concentrated on the prediction of the probability behaviours of the ego surrounding
vehicles. In particular, Suh et al. [55] developed a lane change decision algorithm, whose
architecture is based on an SMPC approach to calculate the desired steering angle and
longitudinal acceleration.

The stochastic modelling of a system by also considering uncertainty can potentially
lead to a more robust controller, which is of interest for industrial applications due to safety
and reliability regulations’ requirements. An adaptive version of almost all types of predic-
tion models is proposed in the literature to improve the robustness against uncertainty in
vehicle models, parameter identification and external uncertainty.

The nature of the plant model strongly influences the controller performance in
terms of prediction accuracy. The more the modelled system is nonlinear, the more the
performance in terms of prediction accuracy derates. This phenomenon can be mitigated
by employing the adaptive version of the MPC. The prediction model can adapt to the
operating conditions by updating the plant model and the related nominal conditions rather
than using more sophisticated nonlinear models. Such updates are then kept constant
throughout the prediction horizon and optimal control problem resolution, whereas they
can change with time. Several works are present at state of the art regarding this type of
MPC applied to scenarios where the V2V-V2I-V2X connection is used to improve the vehicle
energy management or the longitudinal or lateral dynamics. In the field of path tracking
problems, Lin et al. [56] proposed a method for updating the vehicle model dynamics based
on the recursive least squares algorithm so as to online estimate the cornering stiffness
of the tire and the road friction coefficient. These adaptive controllers also proved to be
more robust than the conventional ones [57]. For the sake of clearness, robust controllers
would be ones that can face unpredictable system change and sensor measurement errors
while maintaining nominal performances [58]. The controller robustness is not easy to
mathematically account for and demonstrate. Often, it passes through the determination of
feasible or admissible set in the space state [59]. If there are no feasible points that can lead to
the desired set point, the nearest admissible solution is often chosen (Dixit et al. [58]). A similar
framework is also represented in [60]. The robustness can be required when obstacles are
present on-road and must therefore be avoided. This case is analyzed in [61], where the
authors added a random variable to represent the possibility of encountering an obstacle.

The above-described methods can also be combined one to another to overcome single
limitations. For example, Wikstrom et al. [62] used two different methods for predicting
a short-time horizon and a long-time one. The former is referred to by using a stochastic
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approach whereas the latter is addressed to by exploiting the information from the TL
infrastructure, which is in turn used to predict the predecessor vehicle behaviour.

Further, whatever prediction system is chosen, the two main parameters that affect the
performance of the proposed MPC controllers are the prediction horizon and the sample
time. Unfortunately, not all works report or discuss these two factors. Takahama et al. [63],
in the simulation-based part of their work, used a sample time (Ts) of 0.05 s with a prediction
horizon of 20 timesteps and a control horizon of one step, leading to a prediction horizon
of about 1s. In [64], the authors used a sample time of 0.5s and a prediction horizon of 10
s to simulate an ECO-ACC in a WLTP drive cycle. Moreover, they studied the effect of
the prediction horizon on the performance of the proposed controller by exploiting a DP
algorithm. The latter proved that a prediction horizon of 20 s resulted in performance
degradation of about 3% with respect to the optimal one set by the fuel consumption. In
fact, too-small a prediction horizon can lead to non-smooth vehicle operation in case of
a sudden change in the road environment. On the other hand, too-large a horizon can
produce a performance derating together with unfeasible computational calculations. In
Table 1, the sampling, the prediction and the control horizon time used in the reviewed
papers is reported. Some outliers with uncommon values are found, but a general trend
can be extrapolated. For PF applications, 50 ms is a common choice for the sample time,
while the prediction horizon is kept around 1s. Due to the lower dynamics content, a higher
sampling time can generally be used in LK and CC applications, which allow for a longer
prediction horizon.

Table 1. Examples of sampling time, prediction and control horizons used in the literature for different advanced-driving

assistance systems.

ADAS Sampling Time [s] Prediction Horizon [s] Control Horizon [s] Reference
PF 0.02 0.5 0.1 [58]
PF 0.04 0.5 0.2 [56]
PF 0.05 0.5 0.25 [56]
PF 0.05 0.75 0.25 [56]
PF 0.05 0.5 0.2 [60]
PF 0.02 1 0.3 [65]
PF 0.02 1 0.3 [66]
PF 0.05 2 0.05 [67]

ACC 0.05 1 0.05 [63]
ACC 0.1 1 0.4 [68]
ECO-ACC 0.5 10 - [64]

CACC 0.5 2.5 - [69]

CACC 0.5 20 - [62]
LK 0.025 0.175 - [70]
LK 0.2 2 - [71]
LK 0.05 15 - [72]
LK 0.0025 0.0375 0.0075 [73]
LK 0.01 1 0.3 [74]

A general conclusion can be drawn from the presented data. The literature is con-
stantly focusing on robust and reliable solutions and ML appears to be a promising horizon.
ML techniques, combined to stochastic models are the most promising ones. In particular,
the DL can exploit the great data stream from the environment sensing unit (i.e., camera,
lidar, radar), which seems to be a prerequisite for full automation vehicles. The main
issue deriving from the use of such models is related to their training. As a matter of fact,
a large and well-structured dataset, with all possible scenarios, is required to achieve good
training quality [75,76]. In this context, the DL and RL, which can assure a progressive
CAV learning of the scenario, are well-suited, efficient and good performing solutions for
future systems.
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4. Cost Function in MPC Problems

The present section focuses on the cost function implemented in Model Predictive
Control (MPC) strategies for ADASs applications.

In general, an Optimal Control Problem (OCP) finds as a solution the trajectory for
which the minimum value of an objective function Jocp is achieved. This is in general
expressed as follows in Equation (1) [77]:

Jocp [x(8), u(t)] = E[(x(tena)] + [ F[x(t), u(t)]dt @

in which x(t) and u(t) are the state variables and control inputs, respectively; E and F are
the endpoint cost and the running cost functions. The former depends only on the final
state of the control problem whereas the latter is a function of the states and controls taken
during the time. To exhaustively describe the OCP, the constraints need to be identified
accordingly to the scenario. An exhaustive description of constraints is provided to the
reader in Section 5.

When referring to the MPC formulation of the cost function, different variables are
considered and used depending on the problem analyzed. However, the overall structure is
often similar to the one found in Equation (2), which is extrapolated from Garcia et al. [78]:

p-1 m—1

Tmec [x(8), u(t)] = x"(p) Py x(p) + 3} xT (i) Qx(i) + ), u” (i) Rui) @
i=0 i

Il
—

where Py, Q and R are weighting matrices that are tuned in each control problem to
guarantee the stability; p and m are the prediction and the control horizons, respectively.
Several objective functions may even embed a fourth term representing the variation in
control input Au. What considerably changes in each formulation are the state variables and
the control inputs. These two parameters are explained below to exhaustively understand
the different objective functions.

Among the scenarios (i.e., path tracking, lane keeping, Adaptive Cruise Control, the
Cooperative Adaptive Cruise Control and energy management) taken into account in
this research, it is seen how only small differences are found when the problem is similar.
However, the optimization depends strictly on the choice of the state variables and control
inputs, mainly owing to the fact that the control strategy computed optimizes the just
mentioned parameters. Therefore, depending on the particular scenario depicted, the
solution might be different due to diverse cost functions.

The general problem often found in the literature is the path tracking in longitudinal
and/or lateral directions. The coupling of these two directions is mainly achieved through
the state-space equations describing the motion of the vehicle. Given that the main objective
is that of following a predefined trajectory, the state variables are the difference between the
actual position and/or velocity to the references (i.e., the errors), whereas the control input
is the vehicle acceleration. When the lateral dynamic is considered, the steering angle and
the yaw rate are added as control input and state variable, respectively [60,65-67,77-89]. It
is worth mentioning that no further analyses on the works just cited is brought up, owing
to the fact that all the studies use the same state variables and control inputs.

Concerning the cost functions of the Adaptive Cruise Control (ACC) problem, the
primary objective is to follow a preceding vehicle ensuring a safety distance, which might
be translated into tracking a reference distance. The reference term is often computed using
a spacing Equation, as follows:

Axy, ref = Dxg 0+ h -vg ®3)

where Axy s is the reference inter-vehicular distance of the k-th vehicle (i.e., the controlled
vehicle); Axy o is a certain initial space gap; h and vy are the time headway and the velocity
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of the k-th vehicle. This value is often found among the state variables along with the
relative velocity between lead and ego vehicles and are the main parameters minimized
when using MPC in the ACC framework [29,90-104].

In the literature, the ACC can be exploited to enhance energy consumption. Herein, the
main difference with the aforementioned scenario is that traction and braking torques/forces
are found among the control variables. In doing so, the powertrain has to be taken into
account. Thus, an enhancement of the energy efficiency could be achieved [105-107].

In the Cooperative Adaptive Cruise Control (CACC), the knowledge of the preceding
vehicle acceleration is exploited to ensure the car string stability and reduce even further
accelerations and decelerations, thus providing efficient energy consumption. The objective
of CACC is similar to the ACC aim, i.e., minimizing the tracking error on a predefined
distance, maintaining the relative speed as close to zero as possible while reducing the accel-
eration rate (jerk). The preceding acceleration enters the formulation often as a disturbance
of the system and can be handled by switching to the robust type of MPC [44,50,108-123].
CACC could also consider the lateral dynamics and therefore lane keeping is performed,
thus adding to the state variables the lateral position and velocity errors which are then
minimized [114].

It might also happen that the cost function is composed of different terms aiming
at optimizing diverse objectives. As an example, Caldas and Grassi [29] have proposed
a cost function made of five different terms in order to: minimize acceleration and braking
phases in inclined roads; track a velocity reference; maximize comfort by minimizing the
lateral acceleration and keep the vehicle speed lower than a threshold value; and minimize
fuel consumption of the vehicle. Moreover, a similar structure of the cost function is
found in [110] where three terms are to be achieved: the minimization of the reference
trajectory error, the maximization of the comfort and the minimization of the battery
energy consumption.

5. Constraints in MPC Problems

The formulation of MPC always requires the definition of the constraints. These might
be different, accordingly to the problem analyzed, but a common pattern may be identified
based on the application of the controller. Referring to the path tracking (both longitudinal
and lateral), the constraints are often set to ensure stability, thus requiring the sideslip angle
and the yaw rate to be below a certain value (i.e., a value that changes accordingly to the
vehicle characteristics). Moreover, it happens that bounded values for acceleration and
steering angle are set to comply with the physics of the problem [60,65-67,78-83,85-89].

Similar constraints may be found in collision avoidance scenarios, where the main
objective is also to follow for a certain path. Nevertheless, in this type of problems the
controller is also constrained to a minimum distance to be ensured between the vehicles.
This distance might be computed using the worst case scenario or by simply considering
all the events [77,84].

Concerning an MPC strategy applied to both ACC and CACC, constraints are similar
and are hence explained together. In these scenarios, inter-vehicular distance IVD is often
bounded to be lower than a certain value (i.e., considering road occupancy for minimizing
the impact on the traffic) and higher than a safety distance. Along with the distance,
operational ranges are also provided to velocity, acceleration and acceleration rate to
ensure passenger comfort [29,44,50,90-104,108-122].

There might be solutions of ACC oriented to the minimization of the fuel economy
(often referred to as Eco-ACC) where constraints are set to the traction and braking forces
not to exceed certain physical values. In this type of controller, the instantaneous rate of
the forces just mentioned is also limited [105-107].

6. Connectivity

This section focuses on connectivity in MPC-based ADASs. In ADASs scenario, the
characteristics in terms of connectivity are becoming increasingly important. The main
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motivations are the enhancement of traffic throughput, road safety and energy savings.
Among ADASs, Lane keeping and Cooperative Adaptive Cruise Control (CACC) are the
most widely analyzed at the-state-of-art. CACC aims at enhancing the performance of
Adaptive cruise control (ACC) systems. The latter mainly exploits on-board sensors, such as
radar or LiDAR, to evaluate the position and the distance of the vehicle in front. However,
these sensors have some drawbacks, such as the limited sensing range and limited field of
action. Vehicle-to-everything (V2X) communication technologies are showing great per-
formance in overcoming these demanding tasks. Indeed, they feature extended operating
range, both in term of field of view and sensing range [124]. Specifically, V2X technologies
allow the communication between a vehicle and the surrounding environment gaining
information not only relating to other vehicles, infrastructure and traffic but also relating
to weather, road conditions and accidents. Given their general definition, these systems
incorporate vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian
(V2P) communication channels. How this information is handled depends on the control
method used as well as the problem under analysis. As previously mentioned, model
predictive control in ADASs applications field has shown a great potential in managing
multiple control objectives subject to well-defined sets of constraints. MPC-based con-
trollers exploit the information received from V2X systems, often used in combination with
on-board sensors, in the prediction part. The prediction model varies depending on the
case but the information received allows increasing the prediction accuracy resulting in
better performance. Focusing on V2V communication, it takes place through dedicated
short-range communications (DSRC) standards, i.e., short-range wireless communication
channels. The information flow direction can be univocal or bi-univocal. The exchanged
data are different depending on the applicatio