30,785 research outputs found

    Finite-time internal stabilization of a linear 1-D transport equation

    Get PDF
    We consider a 1-D linear transport equation on the interval (0, L), with an internal scalar control. We prove that if the system is controllable in a periodic Sobolev space of order greater than 1, then the system can be stabilized in finite time, and we give an explicit feedback law

    Finite-time internal stabilization of a linear 1-D transport equation

    Get PDF
    We consider a 1-D linear transport equation on the interval (0, L), with an internal scalar control. We prove that if the system is controllable in a periodic Sobolev space of order greater than 1, then the system can be stabilized in finite time, and we give an explicit feedback law

    Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback

    Get PDF
    We use the backstepping method to study the stabilization of a 1-D linear transport equation on the interval (0, L), by controlling the scalar amplitude of a piecewise regular function of the space variable in the source term. We prove that if the system is controllable in a periodic Sobolev space of order greater than 1, then the system can be stabilized exponentially in that space and, for any given decay rate, we give an explicit feedback law that achieves that decay rate

    A cut finite element method for coupled bulk-surface problems on time-dependent domains

    Full text link
    In this contribution we present a new computational method for coupled bulk-surface problems on time-dependent domains. The method is based on a space-time formulation using discontinuous piecewise linear elements in time and continuous piecewise linear elements in space on a fixed background mesh. The domain is represented using a piecewise linear level set function on the background mesh and a cut finite element method is used to discretize the bulk and surface problems. In the cut finite element method the bilinear forms associated with the weak formulation of the problem are directly evaluated on the bulk domain and the surface defined by the level set, essentially using the restrictions of the piecewise linear functions to the computational domain. In addition a stabilization term is added to stabilize convection as well as the resulting algebraic system that is solved in each time step. We show in numerical examples that the resulting method is accurate and stable and results in well conditioned algebraic systems independent of the position of the interface relative to the background mesh

    Advances in the numerical treatment of grain-boundary migration: Coupling with mass transport and mechanics

    Full text link
    This work is based upon a coupled, lattice-based continuum formulation that was previously applied to problems involving strong coupling between mechanics and mass transport; e.g. diffusional creep and electromigration. Here we discuss an enhancement of this formulation to account for migrating grain boundaries. The level set method is used to model grain-boundary migration in an Eulerian framework where a grain boundary is represented as the zero level set of an evolving higher-dimensional function. This approach can easily be generalized to model other problems involving migrating interfaces; e.g. void evolution and free-surface morphology evolution. The level-set equation is recast in a remarkably simple form which obviates the need for spatial stabilization techniques. This simplified level-set formulation makes use of velocity extension and field re-initialization techniques. In addition, a least-squares smoothing technique is used to compute the local curvature of a grain boundary directly from the level-set field without resorting to higher-order interpolation. A notable feature is that the coupling between mass transport, mechanics and grain-boundary migration is fully accounted for. The complexities associated with this coupling are highlighted and the operator-split algorithm used to solve the coupled equations is described.Comment: 28 pages, 9 figures, LaTeX; Accepted for publication in Computer Methods in Applied Mechanics and Engineering. [Style and formatting modifications made, references added.

    A numerical stabilization framework for viscoelastic fluid flow using the finite volume method on general unstructured meshes

    Full text link
    A robust finite volume method for viscoelastic flow analysis on general unstructured meshes is developed. It is built upon a general-purpose stabilization framework for high Weissenberg number flows. The numerical framework provides full combinatorial flexibility between different kinds of rheological models on the one hand, and effective stabilization methods on the other hand. A special emphasis is put on the velocity-stress-coupling on co-located computational grids. Using special face interpolation techniques, a semi-implicit stress interpolation correction is proposed to correct the cell-face interpolation of the stress in the divergence operator of the momentum balance. Investigating the entry-flow problem of the 4:1 contraction benchmark, we demonstrate that the numerical methods are robust over a wide range of Weissenberg numbers and significantly alleviate the high Weissenberg number problem. The accuracy of the results is evaluated in a detailed mesh convergence study
    corecore