1,039 research outputs found

    A Survey on Formation Control of Small Satellites

    Get PDF

    Docking Manoeuvre Control for CubeSats

    Get PDF
    Rendezvous and Docking missions of small satellites are opening new scenarios to accomplish unprecedented in-obit operations. These missions impose to win the new technical challenges that enable the possibility to successfully perform complex and safety-critical manoeuvres. The disturbance forces and torques due to the hostile space environment, the uncertainties introduced by the onboard technologies and the safety constraints and reliability requirements lead to select advanced control systems. The paper proposes a control strategy based on Model Predictive Control for trajectory control and Sliding Mode Control for attitude control of the chaser in last meters before the docking. The control performances are verified in a dedicated simulation environment in which a non-linear six Degrees of Freedom and coupled dynamics, uncertainties on sensors and actuators responses are included. A set of 300 Monte Carlo Simulation with this Non-Linear system are carried out, demonstrating the capabilities of the proposed control system to achieve the final docking point with the required accuracy

    Robust Finite-Time Control for Spacecraft with Coupled Translation and Attitude Dynamics

    Get PDF
    Robust finite-time control for spacecraft with coupled translation and attitude dynamics is investigated in the paper. An error-based spacecraft motion model in six-degree-of-freedom is firstly developed. Then a finite-time controller based on nonsingular terminal sliding mode control technique is proposed to achieve translation and attitude maneuvers in the presence of model uncertainties and environmental perturbations. A finite-time observer is designed and a modified controller is then proposed to deal with uncertainties and perturbations and alleviate chattering. Numerical simulations are finally provided to illustrate the performance of the proposed controllers

    Robust Finite-Time Control for Spacecraft with Coupled Translation and Attitude Dynamics

    Get PDF
    Robust finite-time control for spacecraft with coupled translation and attitude dynamics is investigated in the paper. An error-based spacecraft motion model in six-degree-of-freedom is firstly developed. Then a finite-time controller based on nonsingular terminal sliding mode control technique is proposed to achieve translation and attitude maneuvers in the presence of model uncertainties and environmental perturbations. A finite-time observer is designed and a modified controller is then proposed to deal with uncertainties and perturbations and alleviate chattering. Numerical simulations are finally provided to illustrate the performance of the proposed controllers

    AUTONOMOUS SPACECRAFT RENDEZVOUS WITH A TUMBLING OBJECT: APPLIED REACHABILITY ANALYSIS AND GUIDANCE AND CONTROL STRATEGIES

    Get PDF
    Rendezvous and proximity operations are an essential component of both military and commercial space missions and are rising in complexity. This dissertation presents an applied reachability analysis and develops a computationally feasible autonomous guidance algorithm for the purpose of spacecraft rendezvous and proximity maneuvers around a tumbling object. Recent advancements enable the use of more sophisticated, computation-based algorithms, instead of traditional control methods. These algorithms are desirable for autonomous applications due to their ability to optimize performance and explicitly handle constraints (e.g., safety, control limits). In an autonomous setting, however, some important questions must be answered before an algorithm implementation can be realized. First, the feasibility of a maneuver is addressed by analyzing the fundamental spacecraft relative dynamics. Particularly, a set of initial relative states is computed and visualized from which the desired rendezvous state can be reached (i.e., backward reachability analysis). Second, with the knowledge that a maneuver is feasible, the Model Predictive Control (MPC) framework is utilized to design a stabilizing feedback control law that optimizes performance and incorporates constraints such as control saturation limits and collision avoidance. The MPC algorithm offers a computationally efficient guidance strategy that could potentially be implemented in real-time on-board a spacecraft.http://archive.org/details/autonomousspacec1094560364Major, United States Air ForceApproved for public release; distribution is unlimited

    Observer-based controller design with disturbance feedforward framework for formation control of satellites

    Get PDF
    Copyright © 2015 The Institution of Engineering and TechnologyIn this study, a bespoke sliding mode non-linear observer and a linear controller framework is proposed for achieving robust formation control of a cluster of satellites in the case of a circular reference orbit. Exploiting the structure of the satellite dynamics, a non-linear observer is proposed based on super-twist sliding mode ideas. The observer estimates the states and any unknown bounded disturbances in ‘finite time’. The stability properties of the observers are demonstrated using Lyapunov techniques. A distributed controller, based on the estimated states and the relative position output information, depending on the underlying communication topology, is proposed. A polytopic representation of the collective dynamics which depends on the eigenvalues of the Laplacian matrix associated with the communication topology is used to synthesise the gains of the proposed control laws. A simulation example is used to demonstrate the efficacy of the proposed approach

    Advances in Spacecraft Systems and Orbit Determination

    Get PDF
    "Advances in Spacecraft Systems and Orbit Determinations", discusses the development of new technologies and the limitations of the present technology, used for interplanetary missions. Various experts have contributed to develop the bridge between present limitations and technology growth to overcome the limitations. Key features of this book inform us about the orbit determination techniques based on a smooth research based on astrophysics. The book also provides a detailed overview on Spacecraft Systems including reliability of low-cost AOCS, sliding mode controlling and a new view on attitude controller design based on sliding mode, with thrusters. It also provides a technological roadmap for HVAC optimization. The book also gives an excellent overview of resolving the difficulties for interplanetary missions with the comparison of present technologies and new advancements. Overall, this will be very much interesting book to explore the roadmap of technological growth in spacecraft systems

    Laboratory Experimentation of Guidance and Control of Spacecraft During On-Orbit Proximity Maneuvers

    Get PDF
    The article of record is available from http://www.intechopen.com/books/mechatronic-systems-simulation-modeling-and-control/laboratoryexperimentation-of-guidance-and-control-of-spacecraft-during-on-orbit-proximity-maneuversThe traditional spacecraft system is a monolithic structure with a single mission focused design and lengthy production and qualification schedules coupled with enormous cost. Additionally, there rarely, if ever, is any designed preventive maintenance plan or re-fueling capability. There has been much research in recent years into alternative options. One alternative option involves autonomous on-orbit servicing of current or future monolithic spacecraft systems. The U.S. Department of Defense (DoD) embarked on a highly successful venture to prove out such a concept with the Defense Advanced Research Projects Agency’s (DARPA’s) Orbital Express program. Orbital Express demonstrated all of the enabling technologies required for autonomous on-orbit servicing to include refueling, component transfer, autonomous satellite grappling and berthing, rendezvous, inspection, proximity operations, docking and undocking, and autonomous fault recognition and anomaly handling (Kennedy, 2008). Another potential option involves a paradigm shift from the monolithic spacecraft system to one involving multiple interacting spacecraft that can autonomously assemble and reconfigure. Numerous benefits are associated with autonomous spacecraft assemblies, ranging from a removal of significant intra-modular reliance that provides for parallel design, fabrication, assembly and validation processes to the inherent smaller nature of fractionated systems which allows for each module to be placed into orbit separately on more affordable launch platforms (Mathieu, 2005)
    • …
    corecore