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Robust finite-time control for spacecraft with coupled translation and attitude dynamics is investigated in the paper. An error-based
spacecraftmotionmodel in six-degree-of-freedom is firstly developed.Then a finite-time controller based on nonsingular terminal
sliding mode control technique is proposed to achieve translation and attitude maneuvers in the presence of model uncertainties
and environmental perturbations. A finite-time observer is designed and a modified controller is then proposed to deal with
uncertainties and perturbations and alleviate chattering. Numerical simulations are finally provided to illustrate the performance
of the proposed controllers.

1. Introduction

Recent years have witnessed plentiful research in space mis-
sions such as spacecraft rendezvous and docking, assembly
of large space structural systems and formation flying [1,
2]. Such space missions require spacecraft to perform large
angle slews or complex complicated translational maneuvers.
Current research mainly separates attitude motion from
translation motion. In practice, the attitude and transla-
tion motions are coupled and highly nonlinear. Further-
more, the model parameters of the spacecraft cannot be
acquired exactly, and the spacecraft is always subject to
environmental perturbations. All of above issues make it
difficult to achieve ideal control performance for spacecraft
coupled translation and attitude maneuvers. It is worth
pointing out that some previous work has proposed var-
ious approaches to solve this problem. The sliding mode
control and the state-dependent Riccati equation method
were respectively proposed to achieve six-degree-of-freedom
position and attitude maneuvers in the absence of uncer-
tainties and perturbations [3, 4]. A high-pass filter and
an output feedback control law were designed to solve

tracking control problem for a spacecraft with coupled
translation and attitude motion in the absence of trans-
lational and angular velocity measurements. Although the
abovementioned control algorithms have shown adequate
reliability, they only guaranteed asymptotic stability and
convergence. This implies that the control objective can
be completed in infinite time [5]. The capability of fast
maneuver is, however, highly desirable in many space mis-
sions.

To advance the research in the control of spacecraft
translation and attitude maneuvers, the finite-time control
for spacecraft with coupled translation and attitude dynamics
is investigated in this paper. The error-based motion model
with coupled translation and attitude dynamics is firstly
developed, and then a finite time controller is designed
to make the spacecraft achieve the desired position and
attitude in finite-time. A finite-time observer and a modified
finite-time controller are further proposed to address the
robustness of the closed-loop system in the presence ofmodel
uncertainties and environmental perturbations. Numerical
simulations are finally presented to demonstrate the perfor-
mance of proposed controllers.
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2. Problem Definition

2.1. Spacecraft Dynamics and Kinematics. Thedynamic equa-
tions of a six-degree-of-freedom (6-DOF) spacecraft, which
performs translational and rotational motion, are governed
by the following differential equations [3]:

𝑚V̇ + 𝑚𝜔
×

V = 𝑢
1
, (1)

𝐽𝜔̇ + 𝜔
×

(𝐽𝜔) = 𝜌
×

𝑢
1
+ 𝑢

2
, (2)

where 𝑚 and 𝐽 are the mass and the inertia matrix of a rigid
spacecraft, V and 𝜔 denote the spacecraft’s translational and
angular velocity, 𝜌 is the distance from the mass center of
the spacecraft to the point where the force is applied, and 𝑢

1

and 𝑢
2
represent the control force and control torque. For any

vector 𝜂 = [𝜂
1
𝜂
2
𝜂
3
]
𝑇, the skew matrix 𝜂× can be written as

𝜂
×

=
[

[

0 𝜂
3

−𝜂
2

−𝜂
3

0 𝜂
1

𝜂
2

−𝜂
1

0

]

]

. (3)

The kinematic equations of a spacecraft in 6-DOF are given
by

̇𝑟 = −𝜔
×

𝑟 + V, (4)

̇
𝑞
∘
=

1

2

Ω (𝜔) ⋅ 𝑞
∘

, (5)

where 𝑟 denotes the spacecraft position, and 𝑞
∘ is the

unit quaternion, which describes the attitude motion of a
spacecraft without singularities [6]. The unit quaternion 𝑞∘ is
defined as

𝑞
∘

= [

𝑞
0

𝑞
] =

[

[

[

[

cos
𝜙

2

𝑒 sin
𝜙

2

]

]

]

]

, (6)

where 𝑒 is a unit vector called the Euler axis, 𝜙 denotes the
magnitude of the Euler axis rotation, and 𝑞

0
and 𝑞 represent

the scalar and vector components of 𝑞∘, respectively, and are
subject to the constraint:

𝑞
𝑇

𝑞 + 𝑞
0
= 1. (7)

Then the attitude kinematics of (5) can be rewritten as

̇𝑞 =

1

2

(𝑞
0
𝐼 + 𝑞

×

) ⋅ 𝜔,

̇𝑞
0
= −

1

2

𝑞
𝑇

⋅ 𝜔,

(8)

where 𝑞× is the skew matrix of 𝑞.

2.2. Error-Based Spacecraft Motion Equations. Substituting
(4) and (8) into (1) yields

𝑚

..

𝑟
𝑒
+2𝑚𝑄 ̇𝑟

𝑒
+ 𝑚𝑃𝑟

𝑒
+ 𝑚Σ = 𝑢

1
, (9)

where 𝑟
𝑒
= 𝑟 − 𝑟

𝑑
, V

𝑒
= V − V

𝑑
, 𝑟

𝑑
and V

𝑑
represent the

desired position and translational velocity, 𝑄 = [𝐸 ̇𝑞]
×, 𝐸 =

[(1/2)(𝑞
0
𝐼 + 𝑞

×

)]
−1, 𝑃 = [[

̇
𝐸𝑞̇]

×

+ [𝐸 ̇𝑞]
×

[𝐸 ̇𝑞]
×

], and Σ =

[ ̇V
𝑑
+ [𝐾 ̇𝑞]

×V
𝑑
]. The error quaternion 𝑞∘

𝑒
is defined as

𝑞
∘

𝑒
= 𝑞

∘

𝑑
⊗ 𝑞

∘

, (10)

where 𝑞
∘

𝑑
represents the desired attitude quaternion and

⊗ denotes the quaternion multiplication [7, 8]. Hence, the
attitude kinematics in terms of the error quaternion is given
by

̇𝑞
𝑒
=

1

2

(𝑞
𝑒0
𝐼 + 𝑞

𝑒

×

) ⋅ 𝜔
𝑒
,

̇𝑞
𝑒0
= −

1

2

𝑞
𝑇

𝑒
⋅ 𝜔

𝑒
,

(11)

where 𝜔
𝑒
= 𝜔 − 𝜔

𝑑
, 𝑞

𝑒

× is the skew matrix of 𝑞
𝑒
, and 𝜔

𝑑

denotes the desired attitude angular velocity [8]. Substituting
(11) into (2) yields

𝐽
∗ ..

𝑞
𝑒
+Ξ ̇𝑞

𝑒
+𝑀

𝑇

𝐺 = 𝑀
𝑇

(𝜌
×

𝑢
1
+ 𝑢

2
) , (12)

where 𝑀 = [(1/2)(𝑞
𝑒0
𝐼 + 𝑞

𝑒

×

)]

−1, 𝐺 = 𝐽𝜔̇
𝑑
+ 𝜔

𝑑

×

𝐽𝜔
𝑑
,

𝐽
∗

= 𝑀
𝑇

𝐽𝑀, and Ξ = −𝐽
∗

𝑀̇
−1

𝑀 − 𝑀
𝑇

[𝐽𝑀 ̇𝑞
𝑒
]
×

𝑀

−𝑀
𝑇

[𝐽𝜔
𝑑
]
×

𝑀+𝑀
𝑇

𝜔
𝑑

×

𝐽𝑀. It is assumed that 𝑞
𝑒0

̸= 0 and𝑀
is then invertible.

In practice, the mass and the inertia matrix cannot be
known exactly, and only nominal ones are available. Fur-
thermore, the environmental perturbations, including gravity
gradient, atmospheric drag, geomagnetic torque, and solar
radiation, always affect translation and attitude maneuver.
Hence the uncertainties and perturbations are taken into
account, and (9) and (12) can be, respectively, rewritten as

𝑚
0

..

𝑟
𝑒
+2𝑚

0
𝑄 ̇𝑟

𝑒
+ 𝑚

0
𝑃𝑟

𝑒
+ 𝑚

0
Σ = 𝑢

1
+ 𝛿

1
, (13)

𝐽
∗

0

..

𝑞
𝑒
+Ξ

0
̇𝑞
𝑒
+𝑀

𝑇

𝐺
0
= 𝑀

𝑇

(𝜌
×

𝑢
1
+ 𝑢

2
) + 𝛿

2
, (14)

where 𝛿
1
= 𝑓

1
− Δ𝑚(

..

𝑟
𝑒
+2𝑄 ̇𝑟

𝑒
+ 𝑃𝑟

𝑒
+ Σ), 𝛿

2
= 𝑀

𝑇

(𝑓
2
+

(Δ𝐽𝑀𝑀̇
−1

𝑀 − [Δ𝐽𝑀 ̇𝑞
𝑒
]
×

𝑀 − [Δ𝐽𝜔
𝑑
]
×

𝑀 + 𝜔
𝑑

×

Δ𝐽𝑀) ̇𝑞
𝑒
−

Δ𝐽𝑀

..

𝑞
𝑒
−Δ𝐽𝜔̇

𝑑
− 𝜔

𝑑

×

Δ𝐽𝜔
𝑑
) ⋅ 𝑚 = 𝑚

0
+ Δ𝑚, 𝑚

0
and Δ𝑚

denote the nominal and uncertain parts of𝑚, 𝐽 = 𝐽
0
+ Δ𝐽, 𝐽

0

andΔ𝐽 are the nominal and uncertain parts of 𝐽,𝑓
1
and𝑓

2
are

the bounded perturbations, and 𝐽∗
0
, Ξ

0
, and 𝐺

0
are nominal

functions of 𝐽∗, Ξ and 𝐺, which can be readily obtained by
(12) and thus omitted here. According to (13) and (14), the
error-based spacecraft motion equations in the presence of
uncertainties and perturbations can then be given by

𝐶
1

..

𝑥
𝑒
+𝐶

2
̇𝑥
𝑒
+ 𝐶

3
𝑥
𝑒
+ 𝐶

4
= 𝐾𝑢 + 𝛿, (15)

where 𝐶
1
= [

𝑚0𝐼 0

0 𝐽
∗

0

], 𝐶
2
= [

2𝑚0𝑄 0

0 Ξ0

], 𝐶
3
= [

𝑚0𝑃 0

0 0
], 𝐶

4
=

[

𝑚0Σ

𝑀
𝑇
𝐺0

], 𝐾 = [
𝐼 0

𝑀
𝑇
𝜌
×
𝑀
𝑇 ], 𝑥

𝑒
= [

𝑟𝑒

𝑞𝑒
], 𝑢 = [ 𝑢1𝑢2 ], 𝛿 = [

𝛿1

𝛿2

], and
𝐼 is an identity matrix.
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2.3. Definition and Lemma

Definition 1. Consider the following autonomous system:

𝑥̇ = 𝑓 (𝑥, 𝑡) 𝑓 (0, 𝑡) = 0 𝑥 ∈ 𝑅
𝑛

, (16)

where 𝑓 : 𝑅 → 𝑅
𝑛 is non-Lipschitz continuous on an

open neighborhood 𝑅 of the origin 𝑥 = 0. The equilibrium
𝑥 = 0 of (16) is finite-time convergent if there is an open
neighborhood 𝑈 of the origin and a function 𝑡

𝑠
, such that

every solution trajectory 𝑥(𝑡) of (16) starting from the initial
point 𝑥

0
∈ 𝑈

0
/{0} is well defined and unique in forward time

for 𝑡 ∈ [0, 𝑡
𝑠
) and satisfies

lim
𝑡→ 𝑡𝑠

𝑥 (𝑡, 𝑥
0
) = 0. (17)

Here 𝑡
𝑠
is called the settling time of the initial state 𝑥

0
. The

equilibrium of (16) is finite-time stable if it is Lyapunov stable
and finite-time convergent [9, 10].

Lemma 2. For any vector ] = []
1
]
2
⋅ ⋅ ⋅ ]

𝑛
]
𝑇, if 0 < 𝜅 < 2,

then the following inequality holds [8]:

‖]‖
𝜅

≤

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
]
𝑖

󵄨
󵄨
󵄨
󵄨

𝜅

, (18)

where ‖ ⋅ ‖ denotes the vector Euclidean norm.

Lemma 3. Consider the nonlinear system (14). Suppose that
𝜒 is a 𝐶1 function defined on a neighborhood 𝑈 ⊂ 𝑅

𝑛 of the
origin, and the real number 𝑐 > 0 and 0 < 𝜕 < 1, such that (1) 𝜒
is positive definite on𝑈; (2) ̇𝜒 + 𝑐𝜒

𝜕 is negative semidefinite on
𝑈. Then, there exists an area 𝑈

0
⊂ 𝑅

𝑛 such that any 𝜒 which
starts from 𝑈

0
can reach 𝜒 = 0 in finite time. The settling time

𝑡
𝑠
satisfies [8]

𝑡
𝑠
≤

𝜒
1−𝜕

0

𝑐 (1 − 𝜕)

. (19)

3. Controller Design

3.1. Control Objective. The aim of robust finite-time control
applied to spacecraft with coupled translation and attitude
dynamics is to design a controller such that (𝑟

𝑒
= 0, V

𝑒
= 0,

𝑞
𝑒
= 0, 𝜔

𝑒
= 0) can be achieved in finite time in the presence

of model uncertainties and perturbations.

3.2. Finite-Time Controller. For the system (15), we propose
the following controller andTheorem 4:

𝑢 = (𝐶
−1

1
𝐾)

−1

(𝐶
−1

1
𝐶
2
̇𝑥
𝑒
− 𝛼 ̇𝑥

𝑒
− 𝛽

𝑑

𝑑𝑡

𝑥
𝑎/𝑏

𝑒

+𝐶
−1

1
𝐶
3
𝑥
𝑒
+ 𝐶

−1

1
𝐶
4
− 𝑘 sgn (𝑠) ) ,

(20)

where 𝑠 = ̇𝑥
𝑒
+𝛼𝑥

𝑒
+𝛽𝑥

𝑎/𝑏

𝑒
, 𝑎, 𝑏 are positive odd numbers with

𝑏 > 𝑎, and 𝛼, 𝛽, 𝑘 > 0.

Theorem 4. For system (15), controller (20) can drive the
system state 𝑥

𝑒
to the equilibrium in finite time.

Proof. The candidate Lyapunov function is defined as

𝑉
1
=

1

2

𝑠
𝑇

⋅ 𝑠. (21)

Computing the first-order derivative of 𝑉
1
yields

𝑉̇
1
= 𝑠

𝑇

⋅ ̇𝑠 = 𝑠
𝑇

(

..

𝑥
𝑒
+𝛼 ̇𝑥

𝑒
+ 𝛽

𝑑

𝑑𝑡

𝑥
𝑎/𝑏

𝑒
)

= 𝑠
𝑇

𝐶
−1

1
(𝐾𝑢 + 𝛿 − 𝐶

2
̇𝑥
𝑒
− 𝐶

3
𝑥
𝑒

−𝐶
4
+ 𝛼𝐶

1
̇𝑥
𝑒
+ 𝛽𝐶

1

𝑑

𝑑𝑡

𝑥
𝑎/𝑏

𝑒
) .

(22)

Substituting the controller (20) and employing Lemma 3 yield

𝑉̇
1
= 𝑠

𝑇

(−𝑘 sgn (𝑠) + 𝐶−1
1
𝛿) ≤ −𝜆𝑠

𝑇 sgn (𝑠) ≤ −𝜆 ‖𝑠‖

= −√2𝜆𝑉
1/2

1
,

(23)

where ‖𝐶−1
1
𝛿‖ ≤ Ω, 𝜆 = 𝑘 − Ω ≥ 0, and Ω, 𝜆 are positive

constants. Then 𝑠 = 0 is achieved in finite time according to
Lemma 3. The system is therefore transformed as

̇𝑥
𝑒
= −𝛼𝑥

𝑒
− 𝛽𝑥

𝑎/𝑏

𝑒
. (24)

Another candidate Lyapunov function is defined as

𝑉
2
=

1

2

𝑥
𝑇

𝑒
⋅ 𝑥

𝑒
. (25)

Computing the first-order derivative of 𝑉
2
yields

𝑉̇
2
= 𝑥

𝑇

𝑒
⋅ ̇𝑥

𝑒
= 𝑥

𝑇

𝑒
(−𝛼𝑥

𝑒
− 𝛽𝑥

𝑎/𝑏

𝑒
)

≤ −𝛽𝑥
𝑇

𝑒
⋅ 𝑥

𝑎/𝑏

𝑒
≤ −2

(1+𝜀)/2

𝛽𝑉
(1+𝜀)/2

2
,

(26)

where 𝜀 = 𝑎/𝑏, and then 𝑥
𝑒
= 0 is achieved in finite time

as well as ̇𝑥
𝑒
can converge to 0. According to (11), 𝜔

𝑒
= 0 is

also achieved in finite time. Namely, (𝑟
𝑒
= 0, V

𝑒
= 0, 𝑞

𝑒
= 0,

𝜔
𝑒
= 0) is achieved in finite time.

Remark 5. The controller (20) contains a nonlinear element
𝛽(𝑑/𝑑𝑡)𝑥

𝑎/𝑏

𝑒
, such that singularity arises if

𝑑

𝑑𝑡

(𝑥
𝑎/𝑏

𝑒
) = −𝛼

𝑎

𝑏

𝑥
𝑎/𝑏

𝑒
− 𝛽

𝑎

𝑏

𝑥
2𝑎/𝑏−1

𝑒
, (27)

and the inequality 𝑎/𝑏 > 0.5 is therefore required to avoid
controller singularity.

3.3. Observer-Based Finite-Time Controller. In practice, the
model uncertainties and perturbations can affect the sta-
bility of the closed-loop system. Previous studies have pro-
posed various approaches to solve this problem [11–15]. In
Theorem 4, 𝑘 ≥ Ω is required. If there exist larger uncer-
tainties and perturbations, 𝑘 should be then increased to
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guarantee the stability of the closed-loop system, which will
enlarge the chattering. To alleviate the chattering problem
and deal with the coupled dynamics, the observer approach
is widely investigated [16–18]. Linear observers are designed
for hybrid systems which contain coupling dynamics in [16].
A disturbance observer is proposed to reduce inherent chat-
tering in [17]. We propose the following finite-time observer
andTheorem 6.The system’s dynamics and kinematics in (15)
become

̇𝑦
1
= 𝑦

2
,

̇𝑦
2
= 𝜏 + 𝑑 − 𝐹 (𝑦

2
) ,

(28)

where 𝑦
1
= 𝑥

𝑒
, 𝑦

2
= ̇𝑥

𝑒
, 𝜏 = 𝐶

−1

1
𝐾𝑢, 𝑑 = 𝐶

−1

1
𝛿, and 𝐹(𝑦

2
) =

𝐶
−1

1
𝐶
2
̇𝑥
𝑒
+ 𝐶

−1

1
𝐶
3
𝑥
𝑒
+ 𝐶

−1

1
𝐶
4
. The observer is given by

̇
𝑦̂
2
= 𝜏 +

̂
𝑑 − 𝐹 + 𝜇

1
sgn (𝑠

1
) + 𝜇

2
𝑠
𝜎

1
,

̇
̂
𝑑 = 𝜇

1
sgn (𝑠

1
) + 𝜇

2
𝑠
𝜎

1
,

(29)

where
∧

(⋅) denotes the observed value of (⋅), 𝑠
1
= 𝑦

2
− 𝑦

2
, 0 <

𝜎 < 1, 𝜇
1
, 𝜇

2
> 0. Then we propose the following controller

andTheorem 6:

𝑢 = (𝐶
−1

1
𝐾)

−1

(𝐶
−1

1
𝐶
2
̇𝑥
𝑒
− 𝛼 ̇𝑥

𝑒
− 𝛽

𝑑

𝑑𝑡

𝑥
𝑎/𝑏

𝑒

+𝐶
−1

1
𝐶
3
𝑥
𝑒
+ 𝐶

−1

1
𝐶
4
− 𝑘 sgn (𝑠) − ̂

𝑑) .

(30)

Theorem 6. For system (15), controller (30) can drive the
system state 𝑥

𝑒
to the equilibrium in finite time.

Proof. The proof includes two consecutive steps:

(1) 𝑑 can converge to ̂
𝑑 in finite time;

(2) under the condition of Step (1), (𝑥
𝑒
= 0, ̇𝑥

𝑒
= 0) can

be further achieved in finite time.

Proof of Step (1). The candidate Lyapunov function is defined
as

𝑉
3
=

1

2

𝑠
𝑇

1
⋅ 𝑠
1
. (31)

Computing the first-order derivative of 𝑉
3
yields

𝑉̇
1
= 𝑠

𝑇

1
⋅ ̇𝑠
1
= 𝑠

𝑇

1
( ̇𝑦

2
−

̇
𝑦̂
2
)

= 𝑠
𝑇

1
(𝑑 −

̂
𝑑 − 𝜇

1
sgn (𝑠

1
) − 𝜇

2
𝑠
𝜎

1
) ,

(32)

where 𝑑 is a bounded vector, and then it can be assumed that
‖𝑑 −

̂
𝑑‖ ≤ 𝜇

1
. Equation (32) can be rewritten as

𝑉̇
1
≤ −𝜇

2
𝑠
𝑇

1
𝑠
𝜎

1
≤ −2𝜇

2
𝑉
(1+𝜎)/2

1
, (33)

where 0 < ((1 + 𝜎)/2) < 1. Then 𝑠
1
= 0 is achieved in

finite time by Lemma 3; namely 𝑦
2
= 𝑦

2
holds in finite

time 𝑡
𝑠
. According to (28) and (29), it can be concluded that

̇𝑦
2
=

̇
𝑦̂
2
and 𝑑 = ̂

𝑑 hold in finite time 𝑡
𝑠
. Hence the candidate

Lyapunov function is defined as

𝑉
3
=

1

2

𝑠
𝑇

⋅ 𝑠. (34)

Computing the first-order derivative of 𝑉
3
yields

𝑉̇
3
= 𝑠

𝑇

⋅ ̇𝑠 = 𝑠
𝑇

(

..

𝑥
𝑒
+𝛼 ̇𝑥

𝑒
+ 𝛽

𝑑

𝑑𝑡

𝑥
𝑎/𝑏

𝑒
)

= 𝑠
𝑇

𝐶
−1

1
(𝐾𝑢 + 𝛿 − 𝐶

2
̇𝑥
𝑒
− 𝐶

3
𝑥
𝑒

−𝐶
4
+ 𝛼𝐶

1
̇𝑥
𝑒
+ 𝛽𝐶

1

𝑑

𝑑𝑡

𝑥
𝑎/𝑏

𝑒
)

= 𝑠
𝑇

(−𝑘 sgn (𝑠) + 𝑑 − ̂
𝑑)

(35)

𝑑 can converge to ̂
𝑑 in finite time 𝑡

𝑠
, then the following

inequality holds after 𝑡
𝑠
:

𝑉̇
3
= 𝑠

𝑇

(−𝑘 sgn (𝑠)) ≤ −√2𝑘𝑉1/2

3
, (36)

𝑠 = 0 is therefore achieved in finite time according to
Lemma 3, and the system is transformed to (24). The proof
of Step (2) can be readily accomplished by following the line
of Theorem 4 and thus omitted here. Actually, 𝑥

𝑒
= 0 is the

terminal attractor of system (24).

Remark 7. It can be seen that the existence of sign function
in the controllers (20), (30), and the observer (29) can lead
to chattering problem. To alleviate the undesirable high-
frequency chattering, the following function is adopted to
replace sign function [8]:

Δ (𝑧) =

{
{
{

{
{
{

{

sgn (𝑧) if |𝑧| ≥ 𝜉

|𝑧|
𝜄

|𝑧|
𝜄

+ 𝜉

if |𝑧| < 𝜉,
(37)

where 𝜉, which is a positive constant, denotes the thickness
of boundary layer, and 0 < 𝜄 < 1. In fact, chattering
phenomenon also exists in switched systems [19, 20].

4. Numerical Simulation

In this section, simulations of a rigid spacecraft in 6-DOF
are presented to illustrate the above observer-based controller
(30) with the function (37). The spacecraft parameters are
given by

𝐽
0
=
[

[

1000 −50 −10

−30 1000 −40

−20 −40 800

]

]

kg ⋅m2

,

𝑚
0
= 1000 kg,

Δ𝐽 ≤ 10% 𝐽
0
, Δ𝑚 ≤ 10%𝑚

0
.

(38)



Mathematical Problems in Engineering 5

0 50 100 150

0

5

10

15

20

25

Time (s)

−5

−10

−15

−20

𝑟 𝑒
(m

)

𝑟𝑒1
𝑟𝑒2
𝑟𝑒3

Figure 1: Position errors.
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Figure 2: Velocity errors.

The initial position and attitude are

𝑟 (0) = [25 −20 18]

𝑇m, V (0) = 0
3×1

m/s,

𝑞
∘

(0) = [0.93 0.22 −0.21 0.19]

𝑇

, 𝜔 (0) = 0
3×1

deg /s,

𝜌 = 0
3×1

m,
(39)

and the desired position and attitude are

𝑟
𝑑
= 0

3×1
m, V

𝑑
= 0

3×1
m/s,

𝑞
𝑑
= 0

3×1
, 𝑞

0𝑑
= 1, 𝜔

𝑑
= 0

3×1
deg /s.

(40)
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Figure 3: Euler parameter errors.
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Figure 4: Angular velocity errors.

The parameters of controller (30) and the disturbance are

𝛼 = 0.05, 𝛽 = 0.2, 𝑘 = 0.12,

𝑎 = 7, 𝑏 = 9,

𝜇
1
= 0.12, 𝜇

2
= 2, 𝜎 = 0.68,

𝜉 = 0.001, 𝜄 = 0.6,

𝑓 = [

(5 × 10
−3

)
3×1

(6 × 10
−3

)
3×1

] sin (0.025𝑡) (m/s
2

N ⋅m) .

(41)
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Figure 5: Observed value error.
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Figure 6: Control force.

The simulation results are given as follows. Figures 1 and
2 show the position and translational velocity errors, while
Figure 3 presents the error quaternion and Figure 4 is the
angular velocity errors. As shown, 𝑟

𝑒
, V

𝑒
, 𝑞

𝑒
, and 𝜔

𝑒
converge

to zero in 50 seconds. The observed value error 𝛿
𝑒
= 𝛿 −

̂
𝛿 is

given in Figure 5, which represents the observed error of 𝛿
1
.

The finite-time observer can estimate 𝛿
1
in a relatively short

period. The control force and control torque are shown in
Figures 6 and 7, respectively. As can be seen, the chattering
problem is effectively alleviated.
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Figure 7: Control torque.

5. Conclusion

Robust finite-time control for spacecraft with couple trans-
lation and attitude dynamics is addressed in this paper.
Two finite-time controllers are proposed in the presence
of model uncertainties and environmental perturbations.
It should be noted that the controllers have demonstrated
superior performance, which can drive spacecraft position
and attitude to the desired trajectory in finite time rather
than in the asymptotic sense. To alleviate the chattering and
increase the robustness of closed-loop system, a finite-time
observer is designed. The observer can estimate the value
of uncertainties and perturbations in finite time and then
guarantee the global finite-time stability. Numerical simula-
tions are finally presented to demonstrate that the proposed
controllers have fast maneuvers performance and are robust
to model uncertainties and environmental perturbations.

List of Symbols

𝑎, 𝑏, 𝜀: Positive odd numbers
𝐹(𝑦

2
): System state matrix

𝐽: Inertia matrix of a rigid spacecraft
𝑞
∘: Unit quaternion
𝑞
∘

𝑑
: Desired quaternion

𝑞
𝑒0
, 𝑞

𝑒
: Scalar and vector components of 𝑞∘

𝑒

𝑡
𝑠
: Settling time

𝑢
2
: Control torque

𝑄, 𝑃, Σ: Gain matrixes
𝐽
∗

, Ξ, 𝐾: Gain matrixes
𝑠: Switching surface
V, V

𝑑
: Spacecraft’s translational velocity, desired

translational velocity
𝑉
𝑖
: Lyapunov function

𝛼, 𝛽: Positive odd numbers
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𝛿
𝑒
: Observed value error

𝜔, 𝜔
𝑑
: Spacecraft’s angular velocity, desired angu-

lar velocity
𝜂, ]: Any vector
𝜙: Magnitude of the Euler axis rotation
𝑐, 𝜕: Real number
𝜉: Thickness of boundary layer
(⋅)

𝑇: Transpose of matrix or vector (⋅)
∧

(⋅): Observed value of (⋅)
𝑒: Unit vector called the Euler axis
𝐼: Identity matrix
𝑚: Mass of a rigid spacecraft
𝑞
0
, 𝑞: Scalar and vector components of 𝑞∘

𝑞
∘

𝑒
: Error quaternion

𝑟, 𝑟
𝑑
, 𝑟
𝑒
: Spacecraft position, desired position, posi-

tion error
𝑢
1
: Control force

𝑢: Control vector
𝐶
1
, 𝐶

2
, 𝐶

3
, 𝐶

4
: Gain matrixes

𝐺: Gain vector
𝑠
1
: Error of 𝑦

2
and 𝑦

2

𝜏: Generalized control vector
𝑘, 𝜇i, 𝜎, 𝜄: Positive numbers
𝑑, 𝛿: Generalized disturbance vector
𝑥
𝑒
, 𝑦

𝑖
: State vector

𝜌: Distance from themass center of the space-
craft to the point where the force is applied

𝜂
𝑖
, ]
𝑖
: 𝑖th scalar components of 𝜂,]

𝜅,Ω, 𝜆: Constants
𝜒: Function defined on a neighborhood
(⋅)

×: Skew matrix of vector (⋅)
(⋅)

0
, Δ(⋅): Nominal and uncertain parts of (⋅)

Sgn: Sign function.
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