26,442 research outputs found

    Bayesian power-spectrum inference for Large Scale Structure data

    Full text link
    We describe an exact, flexible, and computationally efficient algorithm for a joint estimation of the large-scale structure and its power-spectrum, building on a Gibbs sampling framework and present its implementation ARES (Algorithm for REconstruction and Sampling). ARES is designed to reconstruct the 3D power-spectrum together with the underlying dark matter density field in a Bayesian framework, under the reasonable assumption that the long wavelength Fourier components are Gaussian distributed. As a result ARES does not only provide a single estimate but samples from the joint posterior of the power-spectrum and density field conditional on a set of observations. This enables us to calculate any desired statistical summary, in particular we are able to provide joint uncertainty estimates. We apply our method to mock catalogs, with highly structured observational masks and selection functions, in order to demonstrate its ability to reconstruct the power-spectrum from real data sets, while fully accounting for any mask induced mode coupling.Comment: 25 pages, 15 figure

    Comparison of Langevin and Markov channel noise models for neuronal signal generation

    Full text link
    The stochastic opening and closing of voltage-gated ion channels produces noise in neurons. The effect of this noise on the neuronal performance has been modelled using either approximate or Langevin model, based on stochastic differential equations or an exact model, based on a Markov process model of channel gating. Yet whether the Langevin model accurately reproduces the channel noise produced by the Markov model remains unclear. Here we present a comparison between Langevin and Markov models of channel noise in neurons using single compartment Hodgkin-Huxley models containing either Na+Na^{+} and K+K^{+}, or only K+K^{+} voltage-gated ion channels. The performance of the Langevin and Markov models was quantified over a range of stimulus statistics, membrane areas and channel numbers. We find that in comparison to the Markov model, the Langevin model underestimates the noise contributed by voltage-gated ion channels, overestimating information rates for both spiking and non-spiking membranes. Even with increasing numbers of channels the difference between the two models persists. This suggests that the Langevin model may not be suitable for accurately simulating channel noise in neurons, even in simulations with large numbers of ion channels

    A study of data coding technology developments in the 1980-1985 time frame, volume 2

    Get PDF
    The source parameters of digitized analog data are discussed. Different data compression schemes are outlined and analysis of their implementation are presented. Finally, bandwidth compression techniques are given for video signals

    Implementacija digitalnog generatora obojenog šuma bez množila

    Get PDF
    Colored noise can be generated by filtering of the white noise. It is a simple task. However, it becomes challenging if high operating speed of the generator is required. The realization of digital filter generally requires one multiplication per coefficient. Therefore, a high operating speed is achieved only with the cost of several generalpurpose multipliers. In this paper, a multiplierless realization of the colored noise generator is proposed. It is based on the filtering of 1-bit random signal by a finite impulse response filter. The design of the generator is described and its implementation is considered. Furthermore, an application is described in which the proposed generator is used in mitigation of undesired effects caused by nonlinearities in an analog to digital converter.Obojeni šum može se generirati filtriranjem bijelog šuma. To je jednostavan postupak. Međutim, on postaje izazovan ako se od generatora traži velika brzina rada. Realizacija digitalnog filtra u pravilu zahtijeva jedno množenje po koeficijentu. Zato se velika brzina rada može postići samo uz cijenu većeg broja množila opće namjene. U ovom radu predložena je realizacija generatora obojenog šuma koja ne sadrži množila. Ona se temelji se na filtraciji 1-bitnog slučajnog signala pomoću filtra s konačnim impulsnim odzivom. Opisano je projektiranje generatora te je razmotrena njegova implementacija. Nadalje, opisana je primjena u kojoj je predloženi generator iskorišten za smanjivanje utjecaja nelinearnosti u analogno digitalnom pretvorniku

    Mixing Bandt-Pompe and Lempel-Ziv approaches: another way to analyze the complexity of continuous-states sequences

    Get PDF
    In this paper, we propose to mix the approach underlying Bandt-Pompe permutation entropy with Lempel-Ziv complexity, to design what we call Lempel-Ziv permutation complexity. The principle consists of two steps: (i) transformation of a continuous-state series that is intrinsically multivariate or arises from embedding into a sequence of permutation vectors, where the components are the positions of the components of the initial vector when re-arranged; (ii) performing the Lempel-Ziv complexity for this series of `symbols', as part of a discrete finite-size alphabet. On the one hand, the permutation entropy of Bandt-Pompe aims at the study of the entropy of such a sequence; i.e., the entropy of patterns in a sequence (e.g., local increases or decreases). On the other hand, the Lempel-Ziv complexity of a discrete-state sequence aims at the study of the temporal organization of the symbols (i.e., the rate of compressibility of the sequence). Thus, the Lempel-Ziv permutation complexity aims to take advantage of both of these methods. The potential from such a combined approach - of a permutation procedure and a complexity analysis - is evaluated through the illustration of some simulated data and some real data. In both cases, we compare the individual approaches and the combined approach.Comment: 30 pages, 4 figure

    Computation in Finitary Stochastic and Quantum Processes

    Full text link
    We introduce stochastic and quantum finite-state transducers as computation-theoretic models of classical stochastic and quantum finitary processes. Formal process languages, representing the distribution over a process's behaviors, are recognized and generated by suitable specializations. We characterize and compare deterministic and nondeterministic versions, summarizing their relative computational power in a hierarchy of finitary process languages. Quantum finite-state transducers and generators are a first step toward a computation-theoretic analysis of individual, repeatedly measured quantum dynamical systems. They are explored via several physical systems, including an iterated beam splitter, an atom in a magnetic field, and atoms in an ion trap--a special case of which implements the Deutsch quantum algorithm. We show that these systems' behaviors, and so their information processing capacity, depends sensitively on the measurement protocol.Comment: 25 pages, 16 figures, 1 table; http://cse.ucdavis.edu/~cmg; numerous corrections and update
    corecore