889 research outputs found

    Finite time dual neural networks with a tunable activation function for solving quadratic programming problems and its application

    Get PDF
    In this paper, finite time dual neural networks with a new activation function are presented to solve quadratic programming problems.The activation function has two tunable parameters,which give more flexibility to design the neural networks.By Lyapunov theorem, finite-time stability can be derived for the proposed neural networks, and the actual optimal solutions of the quadratic programming problems can be obtained in finite time interval. Different f rom the existing recurrent neural networks for solving the quadratic programming problems, the neural networks of this paper have a faster convergent speed,at the same time, they can reduce oscillation when delay appears,and have less sensitivity to additive noise with careful selection of the parameters.Simulations are presented to evaluate the performance of the neural networks with the tunable activation function.In addition, the proposed neural networks are applied to estimate parameters at for an energy model of belt conveyors.The effectiveness of our methods are validated by theoretical analysis and numerical simulations.National Science Foundation of China (61374028,61174216 and 51177088), the Grant National Science Foundation of Hubei Provincial (2013CFA050), the Scientific Innovation Team Project of Hubei Provincial Department of Education (T201103), the Graduate Scientific Research Foundation of China Three Gorges University (2014PY069).http://www.elsevier.com/locate/neucomhb201

    Supervised cross-modal factor analysis for multiple modal data classification

    Full text link
    In this paper we study the problem of learning from multiple modal data for purpose of document classification. In this problem, each document is composed two different modals of data, i.e., an image and a text. Cross-modal factor analysis (CFA) has been proposed to project the two different modals of data to a shared data space, so that the classification of a image or a text can be performed directly in this space. A disadvantage of CFA is that it has ignored the supervision information. In this paper, we improve CFA by incorporating the supervision information to represent and classify both image and text modals of documents. We project both image and text data to a shared data space by factor analysis, and then train a class label predictor in the shared space to use the class label information. The factor analysis parameter and the predictor parameter are learned jointly by solving one single objective function. With this objective function, we minimize the distance between the projections of image and text of the same document, and the classification error of the projection measured by hinge loss function. The objective function is optimized by an alternate optimization strategy in an iterative algorithm. Experiments in two different multiple modal document data sets show the advantage of the proposed algorithm over other CFA methods

    Neural Networks for Fast Optimisation in Model Predictive Control: A Review

    Full text link
    Model Predictive Control (MPC) is an optimal control algorithm with strong stability and robustness guarantees. Despite its popularity in robotics and industrial applications, the main challenge in deploying MPC is its high computation cost, stemming from the need to solve an optimisation problem at each control interval. There are several methods to reduce this cost. This survey focusses on approaches where a neural network is used to approximate an existing controller. Herein, relevant and unique neural approximation methods for linear, nonlinear, and robust MPC are presented and compared. Comparisons are based on the theoretical guarantees that are preserved, the factor by which the original controller is sped up, and the size of problem that a framework is applicable to. Research contributions include: a taxonomy that organises existing knowledge, a summary of literary gaps, discussion on promising research directions, and simple guidelines for choosing an approximation framework. The main conclusions are that (1) new benchmarking tools are needed to help prove the generalisability and scalability of approximation frameworks, (2) future breakthroughs most likely lie in the development of ties between control and learning, and (3) the potential and applicability of recently developed neural architectures and tools remains unexplored in this field.Comment: 34 pages, 6 figures 3 tables. Submitted to ACM Computing Survey

    Lost in translation: Toward a formal model of multilevel, multiscale medicine

    Get PDF
    For a broad spectrum of low level cognitive regulatory and other biological phenomena, isolation from signal crosstalk between them requires more metabolic free energy than permitting correlation. This allows an evolutionary exaptation leading to dynamic global broadcasts of interacting physiological processes at multiple scales. The argument is similar to the well-studied exaptation of noise to trigger stochastic resonance amplification in physiological subsystems. Not only is the living state characterized by cognition at every scale and level of organization, but by multiple, shifting, tunable, cooperative larger scale broadcasts that link selected subsets of functional modules to address problems. This multilevel dynamical viewpoint has implications for initiatives in translational medicine that have followed the implosive collapse of pharmaceutical industry 'magic bullet' research. In short, failure to respond to the inherently multilevel, multiscale nature of human pathophysiology will doom translational medicine to a similar implosion

    Reliably-stabilizing piecewise-affine neural network controllers

    Full text link
    A common problem affecting neural network (NN) approximations of model predictive control (MPC) policies is the lack of analytical tools to assess the stability of the closed-loop system under the action of the NN-based controller. We present a general procedure to quantify the performance of such a controller, or to design minimum complexity NNs with rectified linear units (ReLUs) that preserve the desirable properties of a given MPC scheme. By quantifying the approximation error between NN-based and MPC-based state-to-input mappings, we first establish suitable conditions involving two key quantities, the worst-case error and the Lipschitz constant, guaranteeing the stability of the closed-loop system. We then develop an offline, mixed-integer optimization-based method to compute those quantities exactly. Together these techniques provide conditions sufficient to certify the stability and performance of a ReLU-based approximation of an MPC control law

    Design and analysis of three nonlinearly activated ZNN models for solving time-varying linear matrix inequalities in finite time

    Get PDF
    To obtain the superiority property of solving time-varying linear matrix inequalities (LMIs), three novel finite-time convergence zeroing neural network (FTCZNN) models are designed and analyzed in this paper. First, to make the Matlab toolbox calculation processing more conveniently, the matrix vectorization technique is used to transform matrix-valued FTCZNN models into vector-valued FTCZNN models. Then, considering the importance of nonlinear activation functions on the conventional zeroing neural network (ZNN), the sign-bi-power activation function (AF), the improved sign-bi-power AF and the tunable sign-bi-power AF are explored to establish the FTCZNN models. Theoretical analysis shows that the FTCZNN models not only can accelerate the convergence speed, but also can achieve finite-time convergence. Computer numerical results ulteriorly confirm the effectiveness and advantages of the FTCZNN models for finding the solution set of time-varying LMIs

    Dynamic Neuromechanical Sets for Locomotion

    Get PDF
    Most biological systems employ multiple redundant actuators, which is a complicated problem of controls and analysis. Unless assumptions about how the brain and body work together, and assumptions about how the body prioritizes tasks are applied, it is not possible to find the actuator controls. The purpose of this research is to develop computational tools for the analysis of arbitrary musculoskeletal models that employ redundant actuators. Instead of relying primarily on optimization frameworks and numerical methods or task prioritization schemes used typically in biomechanics to find a singular solution for actuator controls, tools for feasible sets analysis are instead developed to find the bounds of possible actuator controls. Previously in the literature, feasible sets analysis has been used in order analyze models assuming static poses. Here, tools that explore the feasible sets of actuator controls over the course of a dynamic task are developed. The cost-function agnostic methods of analysis developed in this work run parallel and in concert with other methods of analysis such as principle components analysis, muscle synergies theory and task prioritization. Researchers and healthcare professionals can gain greater insights into decision making during behavioral tasks by layering these other tools on top of feasible sets analysis
    • …
    corecore