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Abstract

Most biological systems employ multiple redundant actuators, which is a complicated

problem of controls and analysis. Unless assumptions about how the brain and body

work together, and assumptions about how the body prioritizes tasks are applied, it is

not possible to find the actuator controls. The purpose of this research is to develop

and apply computational tools to the analysis of arbitrary musculoskeletal models that

employ redundant actuators. Instead of relying primarily on optimization frameworks and

numerical methods or task prioritization schemes used typically in biomechanics to find a

singular solution for actuator controls, tools for feasible sets analysis are instead developed to

explore the boundaries of possible actuator controls. Previously in the literature, feasible sets

analysis has been used to analyze models assuming static poses. Here, tools that explore the

feasible sets of actuator controls over the course of a dynamic task are developed and applied

to various models of humanoid movement. The cost-function agnostic methods of analysis

developed in this work run parallel and in concert with other methods of analysis such as

principal component analysis, muscle synergies theory and task prioritization. Researchers

and healthcare professionals may potentially gain greater insights into decision-making

during behavioral tasks by layering these other tools on top of feasible sets analysis.
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Chapter 1

Introduction

Stand up. Can you tell me how you the reader controlled your muscles to perform this task?

If another person stands up, can you tell me how they controlled their muscles to perform

this task? How do the brain and body work together to decide what muscles to use in order

to perform complex behavioral tasks? When computer scientists design artificial intelligence

(AI) that can play games like Chess or Go, they use algorithms like mini-max where every

possible board state is known or a subset of all board states is used to select a solution

with the highest possibility of success. Similarly, the mammalian brain evolved a centralized

location of motor planning known as the motor cortex which works in conjunction with

aspects of the Central Nervous System (CNS) and the Peripheral Nervous System (PNS)

to produce real-time solutions for purposeful movement; however, the exact relationship

between the brain, the body, the muscles and output movement is not yet fully understood.

Instead of making presuppositions about how the nervous system and body work together,

this dissertation is an exercise in finding the chessboard where muscle control happens. As

opposed to conventional techniques of using minimization problems to arrive at a singular

optimized set of actuator controls, tools that explore families of all possible actuator controls

that satisfy specific dynamic tasks were designed.
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1.1 Motivation

In the near future, advances in computational capability will allow us to dictate the

boundaries of control for complex humanoid systems in real time. The investigation of tools

that can be used for the ad hoc analysis of musculoskeletal models has impact far beyond

clinical motion analysis of humans; however, it is a stepping stone to a new functional control

paradigms where the set of all possible controls is the game board, and aspects of the central

and peripheral nervous system are players. This dissertation will explore methods of feasible

sets analysis of musculoskeletal systems, with implications for novel real-time control of

redundant manipulator systems.

1.2 Objectives and Approach

The purpose of this research is to design a framework for obtaining sets of feasible muscle

activations based on the limitations posed by the dynamic task, the anthropometry, and the

muscle parameters. The forward problem deals with forming matrices of configuration space

or operational space parameters from sets of feasible muscle controls. The inverse problem

involves constructing feasible sets of possible muscle activations from sets of constraints

that describe configuration or operational space parameters in either the static or dynamic

domains. To these aims, approaches from biomechanics, robotics and probability theory are

synthesized into one comprehensive research product.

By using subject-specific models and a new algorithmic framework, it will lay a foundation

rooted in gait analysis of humanoid systems, which can also be quickly adapted to include

other complex behavioral tasks like running, jumping, reaching or stepping response, and

also other arbitrary musculoskeletal models.

While in silico approaches to biomechanical problems give us incredible insights into

control and the forces at work, true understanding lies in the application of obtained

knowledge to the physical systems.

To facilitate rapid clinical and research applications, along with fostering a collaborative

environment, this project will be hosted freely on GitHub. Although this research focuses on
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the motion analysis of healthy populations, these activities will certainly impact other areas,

including the design of wearable robotics, the modeling and mitigation of sports injury, and

the testing of existing rehabilitation strategies in silico among others.

This work is novel as it investigates complex dynamic tasks like running or walking

instead of previously studied static poses.

Additionally, it features a new probabilistic computed control algorithm which avoids the

use of complex quadratic optimization or controllers.

1.3 Chapter Summary

This dissertation is organized as such.

In Chapter 2, fundamental concepts critical to understanding principles of biomechanical

modeling are explored. Beginning with classical mechanics and then expanding to multibody

dynamics. Then, more complex topics like Inverse Kinematics (IK) and Inverse Dynamics

(ID) are explained. Optimization, vertex enumeration and Markov chain Monte Carlo

methods, and their relevance to this work is explained. Finally, expanding to muscle models

and the estimation of muscle forces over time.

In Chapter 3, a naive analysis of muscle end effector forces assuming static pose over

each frame of a kinematic task is explored and explained as a valid and useful method of

analysis for arbitrary tasks of various models.

In Chapter 4, the model of end-effector forces presented in Chapter 3 is expanded by

including the body inertial forces and modifying the kinematic Jacobian such that it is

dynamically consistent. Besides possible endpoint forces, set of muscle controls are shown

to be mappable to sets of any operational space parameters by way of projection operators.

In Chapter 5, the inverse problem from Chapter 4 is evaluated. Generalized forces

in configuration space are mapped to sets of possible muscle activations. The benefits

and challenges of vertex enumeration over linear programming to the analysis of biological

systems is also explained.

In Chapter 6, the framework from Chapter 5 is expanded by developing a method of

applying an experimentally determined constraint on feasible activation sets: the joint
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loading either synthesized in silico using OpenSim, or collected in the lab using subjects

with instrumented joints, such as the subjects of the Grand Challenge data sets available on

SimTK [40].

Further, in Chapter 7, muscle first order activation dynamics are used to constrain the

sets of possible muscle controls available in each delta time. A Monte Carlo Markov chain

method called Feasible Activation Space Trajectories (FAST) was developed.

An in-depth explanation of the tools and paradigms developed for this dissertation is

provided at the end of each Chapter where relevant.

Finally, concluding remarks, limitations, and future work are summarized in Chapter 8.
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Chapter 2

Literature Review

2.1 Principles of Biomechanics

2.1.1 Physics: Statics, Dynamics, Multibody Systems

The behavior of physical systems can be described in terms of the motion of particles as

functions of time. To this aim, Newton offered three fundamental laws of motion. To

start, a particle has a mass, a property that reflects on a body’s resistance to changes

in motion. Particles also have positions in Cartesian space (real world), an instantaneous

change in position called a velocity, and a change in velocity called an acceleration. Forces are

interactions such that when they are unopposed, change the motion of an object. Newton’s

first law or the law of inertia states that if the sum of the forces acting on an object is zero,

then its velocity is also zero. Newton’s second law states that changes to the momentum of a

mass is directly proportional to the applied force, or equally that F = maF = maF = ma. Finally, Newton’s

third law, or the action-reaction law, states that all the forces between two masses exist in

equal magnitude and opposite direction.

Colloquially, every action has an equal and opposite reaction. All three of these laws lay

the foundations of classical mechanics. A moment is the product of the displacement to some

point and a physical parameter at that point. 1 A coupled moment of force is a joint moment
1Most commonly moments in this dissertation are discussed with relation to multibody dynamics, but

in chapter 7, a method of moments approach is used to estimate the skewness parameters of a multivariate
skew normal distribution.
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and is the product between a force and a distance known as a moment arm to that joint, or

that τ = r × Fτ = r × Fτ = r × F . Statics is the study and analysis of bodies at rest, or assumed to be at rest

where Newton’s second law is used to say that the sum of forces and moments acting on an

object is 0. Dynamics is the study of bodies in motion: the sum of forces and moments acting

on a body is equivalent to the product of the mass and acceleration of that body. Similarly,

multibody dynamics is the study of systems of rigid bodies where externally applied forces

can be summed to match the accelerations of those bodies. Generally, the motions of sets of

bodies or particles as systems or models can be described by a set of independent parameters

called generalized coordinates. Systems operate within the real world, or operational space

OOO, and their motion can be described by these generalized coordinatesQQQ in coordinate space

CCC. The first time derivatives of generalized coordinates are called generalized speeds. From

Lagrangian mechanics, one may derive sets of forces and moments known as generalized

forces using the applied forces on a model and an equation that reflects the map between

generalized coordinates and forces through computations of virtual work. While moments

perform work over an angular distance, work itself is the product of a displacement and a

force. Virtual work is the work that a force produces due to a virtual or infinitesimally small

displacement. All of these aspects of classical mechanics and their consequences are used

throughout this research.

2.1.2 Principles of Robotics and Bio-Inspired Systems

While robots ideally have one actuator or several coupled per degree of freedom (a motor

or linear actuator), biological systems usually employ redundant actuators; they have many

more muscles than degrees of freedom [18, 38]. Specifically, humanoid movement is complex

as it requires the coordination of many muscles to produce a smooth, purposeful movement;

however, the map from the neural commands to purposeful movement is not yet fully

understood. There are many ways to approach a simple behavioral task as lifting a mug

from a kinematics perspective. Similarly, there are many muscle activation patterns that are

capable of producing the same joint configuration, and consequently, the same effect at a pre-

determined endpoint. Popular in biomechanical modeling, researchers rely on optimization

frameworks that minimize an arbitrary cost function to arrive at a single solution for muscle
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activations or forces that is either dynamically or statically consistent [35]. Even if researchers

can solve for the system dynamics or kinematics uniquely, the actuator controls necessary

to produce those motions cannot be solved uniquely in conjunction with the deterministic

components of the generalized forces, such as the gravitational, centrifugal or Coriolis

contributions. Trivially, there are a lot of ways one can use his or her biceps and triceps

to hold the elbow in a static configuration. The Jacobian is a map between the generalized

coordinates of a multi-body system and the Cartesian coordinates of the OOO. However, there is

also a minimum kinetic energy pseudoinverse of the Jacobian that can account for aspects of

the Coriolis, centrifugal and gravitational effects called the dynamically consistent Jacobian

inverse J+J+J+. J+J+J+ is found by weighting the Jacobian by the inverse mass matrix or the inertial

matrix of the bodies of the system. For a set of generalized coordinates QQQ in configuration

or coordinate space CCC, the generalized coordinate forces, ΓΓΓ, for an arbitrary system, can be

constructed as follows:

M(QQQ)Q̈̈Q̈Q+ C(QQQ, Q̇̇Q̇Q)Q̇̇Q̇Q+G(QQQ) = ΓΓΓ (2.1)

Where MMM is the system mass matrix, CCC is a vector containing the contributions of

centrifugal and Coriolis effects, and GGG is a vector of the contributions of gravitational

effects. Aspects of humanoid movement like the dynamically consistent support constrained

Jacobian, J̄s̄Js̄Js have been implemented in the control of bio-inspired robotics, but has largely

been unused in the analysis of models of human movement [68, 85].

2.1.3 Experimental Data to Subject Specific Model

The objective of biomechanical modeling is to construct physics-based simulations of

behavioral tasks by finding the motion of a subject using camera data, and subsequently using

Equation 2.1 to find the dynamics. Simulations provide an alternative or complementary

method for evaluating complicated systems as compared to traditional experimentation. The

primary strengths of simulations include the high volume of trials that can be completed

in a short amount of time, as well as the diminished costs. Clinicians and researchers

conventionally use data-tracking simulations of biological systems; however, ideally they
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Computed Control Other Analyses

Figure 2.1: Modeling begins with data acquisition, and in silico models can only ever be
as good as the acquired data allows.

both desire predictive simulations [120]. The first approach involves minimizing the error

between the position of simulated points on the human body and their corresponding points

from motion tracking data (Figure 2.1). The second approach requires the definition of

some output parameter and the minimization of a performance variable, such as energy

expenditure, to achieve the desired results. Chapter 7 of this dissertation deals with

making predictive simulations that identify muscle activations. Both of these types of

simulations have been used to help analyze and optimize the mechanics of sports and clinical

rehabilitation, but these algorithms are generalized tools that are used in many fields from

video game development to forensics. In particular, the clinical application of musculoskeletal

modeling is challenging. Clinicians aim at understanding and/or preventing injuries, but

have to use ”fuzzy” data collected with sub-optimal tools like surface EMG or motion

capture markers. However, simulation techniques allows researchers to gain insights into

parameters that are necessarily impossible to explore through experimentation [77, 78, 79].

Some tertiary parameters cannot be easily collected such as muscle forces and joint moments
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or loads; however they are essential to understanding how biological systems move in the

world. Subject specific simulations of movement by tracking motion capture data has proven

to be a powerful tool in determining these quantities.

Scaling

Model scaling is a procedure to scale the physical dimensions, masses and inertial properties

of the bodies that compose a multibody system using subject specific measurements such

that the error between the experimental data markers and the computer model markers

is minimized. As the total length of the muscle-tendon unit is purely a function of the

geometry, tools like OpenSim [30, 31] will scale muscle tendon unit (MTU) lengths to reflect

the change in the dimensions of bodies that compose a multibody system. 2

Inverse Kinematics (IK)

IK is the process of recovering the motion or kinematics of a subject inOOO from motion capture

or camera data and mapping it to the configuration space CCC of the generalized coordinates

of a model in silico. IK is a procedure to back out an estimation of the trajectory in OOO using

experimental markers, and map it to a trajectory in CCC.

Residual Reduction (RRA)

Models are often incomplete, either by design or by failure of the data acquisition. Besides

techniques like adding additional reserve actuators to account for discrepancies in the

recorded external loads and the dynamics of the model, RRA, scaling and IK are used

iteratively to reduce the marker errors between the experimental marker data recorded

through camera systems like Vicon and the virtual markers placed on a model of the subject

in silico.
2It is also possible to improve the model fit by scaling the muscle parameters like the peak isometric

force (F 0F 0F 0) (which OpenSim’s scaling tool will not change) using laboratory measurements of force or to scale
model parameters using the cross-sectional geometry of the muscles obtained via fluoroscopy; however, these
procedures are not explored in this work. They should be in future works.
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Inverse Dynamics (ID)

ID is the process of identifying the generalized forces (Equation 2.1) that occur at each time

frame along a model’s trajectory in CCC as functions of the inertial and mass properties of the

individual bodies and any externally applied forces that compose the model. ID generalized

forces ΓtaskΓtaskΓtask are not the same as joint contact forces and this distinction is made important

in Chapter 6. ΓtaskΓtaskΓtask output from ID are the joint torques necessary to move the model along

the model kinematics in a forward dynamic simulation, whereas the joint contact forces are

functions of the muscle activation. To constrain controls by the joint contact force is a more

stringent constraint than to just constrain by the joint moment ΓtaskΓtaskΓtask.

Computing Muscle Activations

The typical approach to studying multi-joint biomechanical systems involves the use of

complex physical modeling with sophisticated softwares such as AnyBody or OpenSim

[19, 31, 43]. In this dissertation, tools are designed using the OpenSim application

programming interface (API) coupled with MATLAB or Python along with robust I/O

in C++ which offer unparalleled flexibility for users and user-developers, but the paradigms

employed here can easily be adapted to any choice of musculoskeletal modeling platform

[58, 67, 68]. OpenSim is a powerful open-source multi-platform, multi-user space that

allows users to design and simulate models human movement and musculoskeletal dynamics.

OpenSim is notable because it possesses an algorithm for computing a possible set of muscle

activations called computed muscle control (CMC). Computed Control is the process of back

calculating the actuator controls or activations necessary to drive the model in a forward

dynamic simulation along the trajectory specified by IK. Depending on the model complexity,

computed control can involve determining the muscle fiber lengths and muscle activations

by starting from an equilibrated model, or it can involve just muscle activations, ignoring

the abstraction between muscle active and passive elements, and allowing users to perform

an additional post hoc analysis to gain insight into tendon parameters, passive forces, and

muscle properties.
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Figure 2.2: Inputs and outputs of the static optimization procedure featured in OpenSim
from the simTK confluence site [88].

Static Optimization (SO) SO (Figure 2.2) uses ΓtaskΓtaskΓtask to solve a linear program (LP) to

find a valid set of controls. In SO, the constraints (Equations 2.2, 2.3) are similar to the

structures used in Chapter 3.

m∑
i=1

(am×1am×1am×1 �F 0
m×1F 0
m×1F 0
m×1)Rm×cRm×cRm×c = ΓtaskΓtaskΓtask (2.2)

Additionally, SO can be expanded to concern with more complex muscle parameters:

m∑
i=1

(am×1am×1am×1 � f(F 0F 0F 0, lMlMlM , vMvMvM))Rm×cRm×cRm×c = ΓtaskΓtaskΓtask (2.3)

The key distinction between the techniques used in this dissertation and SO is that

SO uses ΓtaskΓtaskΓtask to decompose the joint moment by each muscle contribution according to a

performance criteria (Equation 2.4) whereas this dissertation avoids optimizing controls.

SO uses the objective function:

min
m∑
i=1

am×1am×1am×1
P (2.4)

Where each ai is a muscle activation which is minimized according to an arbitrary

constant P . By contrast, in Chapter 5, FAS computes the vertex enumeration of activation

space boundaries using LRS which performs a pivoting algorithm known as reverse search

[10].

Computed Muscle Control (CMC) CMC is another optimization-based muscle coor-

dination strategy generator which works by determining the activations necessary to tend
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Figure 2.3: Controls system featured in OpenSim CMC from the simTK confluence site
[88].

generalized coordinates in the current discrete time of a dynamic musculoskeletal model

configurational space toward a desired acceleration command [97].

CMC finds the muscle activations using a combination of SO and PID control law:

Q̈∗Q̈∗Q̈∗(t+ δt) = Q̈expQ̈expQ̈exp(t+ δt) + kvkvkv[Q̇expQ̇expQ̇exp(t)− Q̇̇Q̇Q(t)] + kpkpkp[QexpQexpQexp(t)−QQQ(t)] (2.5)

CMC is performing an ad hoc forward dynamic-type analysis (Figure 2.3) where it tries

to drive the model in the direction of Q̈∗Q̈∗Q̈∗ and minimize the error between the simulation

and the experimental data derived generalized coordinates, speeds and accelerations. As per

Equation 2.5, CMC identifies the necessary changes to the actuator states needed to produce

Q̈∗Q̈∗Q̈∗. CMC’s SO procedure features two possible objectives known as the fast (Equation 2.7)

and slow (Equation 2.6) targets.

The slow target:

min
m∑
i=1

aaa2 +
c∑
j=1

www(Q̈∗Q̈∗Q̈∗ − Q̈̈Q̈Q)2 (2.6)

The fast target:

min∑m
i=1 aaa

2

s.t. ∀j ∈ c, |Q̈∗Q̈∗Q̈∗ − Q̈̈Q̈Q| ≤ ε
(2.7)
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The slow target features a computationally expensive optimization while the fast target

avoids this issue by allowing a tolerance on Q̈̈Q̈Q.

In Chapter 7, a novel computed control method called Feasible Activation Space

Trajectories (FAST) is developed that trades the use of controllers and objective functions

for sampling from Gaussian distributions. FAST is similar to SO as it returns sets of

muscle activations without returning fiber lengths information; however, FAST returns many

possible trajectories that satisfy the first order activation dynamics and the ID constraint

and similar to SO, the tendon analysis or muscle analysis can be performed post hoc. If

the information about the model kinematics (Q̈̈Q̈Q, Q̇̇Q̇Q,QQQ) and the applied externals, and by

extension the ΓtaskΓtaskΓtask are known, FAST relies on sampling from a probability distribution that

maps to locations within feasible activation space.

2.2 Optimization and Sampling Frameworks

It can help to understand the underlying mechanisms of CMC, SO, and the tools of this

dissertation. While mathematicians like Gauss [41] and Newton offered iterative methods

of arriving at an optimal solution for a problem, the concept of linear and nonlinear

programming, and formal mathematical optimization were products of necessity of the

Second World War. Optimization was born out of the adage: ”America faced two chief

problems in WWII: Atlantic and Pacific.” How do Americans ship 15 metric tons of M3

Stuart across the ocean to counter the German offensive in the most efficient way possible?

Mathematicians like Dantzig realized that systems of inequalities had spaces or sets of

solutions, but it took the brilliance of people like Dantzig to realize that military commands

could be mapped mathematically as objective functions. At the same time that science is

waking up to nuclear energy, mathematics is formalizing optimization. After the development

of the simplex algorithm by Dantzig in 1947 [25], there was a Cambrian explosion of various

methods of solving optimization problems that have largely been forgotten due to their

inferiority with the simplex and dual simplex methods. Methods that iterate on the interior

of feasible space are often called interior-point methods. On the contrary, Simplex methods

travel on the edges of feasible space. Duality, often credited to Dantzig, Tucker, Kuhn, and
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Gale, or Von Neumann, is the beautiful relationship of linear programs with systems of the

form Ax ≤ b where for a primal problem (Equation 2.8) with an objective function C and

inequalities b ≥ A:

min

 C

A b

 (2.8)

That there is a dual problem (Equation 2.9) where the constraints from the primal become

the variables of the dual problem, and variables of the primal similarly become constraints

of the dual:

max

 b

AT C

 (2.9)

Additionally, The objective direction becomes inverted: minimization of the primal

problem maps to a maximization of the dual. Duality states that if the primal or dual

has a solution, then the other also has a solution and that the optimal values for both

problems are equal. These ideas are exploited in this research, primarily in Chapter 7.

As for the role of optimization in biomechanics [48, 49], it is likely that the CNS and the

inherent mechanical properties of the musculoskeletal system work in conjunction to select

feasible sets of muscle activations, and that the CNS is probably doing much more than simple

cost minimization. Prior research has shown that least squares minimization of the sum

of muscle activations while accounting for residual boundary errors, or objective functions

that minimize metabolic or energy expenditures have been very effective in developing

simulations with high biomechanical fidelity that are sometimes able to closely mimic the

EMG after signal processing [97, 98]; however, it is much more plausible that the motor

cortex coordinates muscles not based on energy expenditure, but based on many elements

one of which can be that optimization; However, this aspect of neuromechanics is hotly

debated: see Section 2.3.
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2.2.1 Linear Programming (LP)

Also known as linear optimization, LP is a method of solving linear systems subject to a

cost function that sets a direction and level, navigate a feasible space and find a minimized

value.

In LP, the typical form of such an inequality is:

Ax ≤ b

s.t.

∀xi ∈ x, xi ≥ 0

∀bi ∈ b, bi ≥ 0

(2.10)

Note that the optimization variables and constraints are strictly positive in the canonical

form; however, there exist tools that one can use to deal with negative values.

In Equation 2.10, the expression

Ax ≤ b

Is dual to the expression

−Ax ≥ −b

And the expression:

Ax = b

Is dual to the joint expression

Ax ≤ b

−Ax ≤ −b

Similarly, for the objective itself:max x is dual to min−x.

The inequality Ax ≤ b can be transformed into an equality statement by introducing a

slack variable: Ax+si = b. In the cases where Ax ≥ b, artificial variables can be introduced:
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Figure 2.4: the simple quadratic cone z2 ≥ ∑ a2
i .

Ax − si + vi = b. The concepts of introducing slack and artificial variables to transform a

set of inequalities into a matrix that can be row operated upon are core concepts in LP. 3

The application of LP to solving kinematics and dynamics problems is well-founded.

Principle of least action, energy minimization, etc are all good presuppositions about how

mechanical system function. The problem comes from when attempting to use optimization

to gain insights into biological control. Again, it is possible for people to flex biceps and

triceps to perform an elbow flexion, or to relax biceps and triceps to perform the exact

same elbow flexion, the only difference being tertiary parameters that are not captured in

the kinematics like joint forces or fiber stiffness: parameters that cannot be captured in the

laboratory setting without fluoroscopy or other forms of instrumentation.

2.2.2 Quadratic (QP), Conic (CP) and Nonlinear Programming

(NLP)

QP is a logical extension of LP to linearly constrained quadratic systems and can be

considered a subset of general nonlinear optimization. Similarly, CP is an optimization

over the intersection of the reals and a convex cone.
3The idea of injecting artificial and slack variables is the fundamental aspect of solving simplex methods,

which is not necessary per se in this research, but is related to the double description and reverse search
methods used in the Computational Geometry/vertex enumeration problem. One may also think about
these variables as the ”residuals” of the system. LP,CG, and later in Chapter 7, Markov chain Monte Carlo
(MCMC) methods are all very intrinsically linked by the nature of interior point methods and simplex
methods.
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Cones (Figure 2.4) are just special subsets of vector space where any positive linear

combinations of the elements will also result in an element of the cone. Conic programming

is a nice tool for optimization because it allows mathematicians4, to optimize nonlinear

objectives and constraints by describing the program in the domain of the cone. The following

program is used in Chapter 7 for activations ai and constraints of the form b− Aa ≥ 0:

max
a

m∑
i=1

log (bi − ATi a) (2.11)

Equation 2.11 can be modeled as a cone program:

max
α

(bi − Aia, 1, αi) ∈KKKexp

Where KKKexp is the exponential cone described by a1 ≥ a2e
a3
a2 where α ≥ ex ⇔ (α, 1, a) ∈

KKKexp is a section of KKKexp.

MATLAB users should be familiar with optimization tools such as fmincon, a gradient-

based nonlinear optimization problem solver that is frequently used in the literature.

NLP solvers are nice for finding optimal solutions of nonlinear systems like the map from

muscle parameters (fiber length lm, fiber velocity vm, activation a) to muscle forces fm. NLP

suffers from the same problem as LP since a parameter gets optimized, but it does not

necessarily reflect the black box that defines neural control. CP is however used in Chapter

7 to find the analytical center of the boundaries of feasible activations.

2.2.3 Vertex Enumeration

Vertex enumeration involves solving every exterior point of an LP problem without explicitly

selecting a cost function, and in that way, vertex enumeration through computational

geometry (CG) is cost-agnostic, yet, extremely computationally costly. Currently, some

of the best tools available for performing vertex enumeration of linear systems are LRS and

MPLRS [9, 10, 8, 13, 14]. LRS uses an algorithm called reverse search to navigate on the

edges of feasible space [12]. This is very intrinsically related to the simplex method for LP
4And Wall St. quants.
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where pivots on the simplex tableau navigate along edges of feasible space [11]. There is a

drought in the biomechanists toolbox for feasible space solvers [16].

2.2.4 Markov Chain Monte Carlo Methods

In probability theory, Markov Chain Monte Carlo (MCMC) methods are just classes of

algorithms that deal with sampling from various types of distributions. ”Central” points

within a linear system are of particular importance in MCMC, because starting a Markov

chain at a more central position generally reduces the mixing time or the number of iterations

until the sample distribution is close to the distribution from which proposals for future steps

are drawn. The hit-and-run (HAR) algorithm [2] explored in Chapter 7 arrives at the steady

state distribution in at most O(d2γ2
κ) as a function of the number of rows of a matrix defining

the linear system, d, and the matrix condition number γκ. In Chapter 3, some strategies like

Tikhonov regularization are briefly touched to account for singular configurations during a

quasi-static analysis; however, this strategy is not good for multibody systems control in the

dynamic domain. It is very typical to deal with systems that cross singular configurations

like the full extension of the elbow or the knee which causes blow-ups to the mechanical

advantage and equivalently, the matrix condition. The Dikin walk later explored in Chapter

7 arrives at the steady state distribution within O(dm) [22] from a warm-start. Note that

the Dikin walk is condition number invariant or similarly, that it is affine-invariant. Linear

transformation or conditioning applied to the activation space has no effect on the mixing

time of the Dikin walk. Warmness is just a measure of a markov chain for how close the

initial distribution is to the proposal distribution where future steps are drawn from. As

the number of samples taken from the proposal distribution approaches inf, the sample

distribution approaches the shape of the proposal distribution.

2.2.5 SLAM: Simultaneous Localization and Mapping

SLAM is an MCMC-based technology that runs roomba®. As a robot moves in OOO (Figure

2.5), the SLAM problem is to estimate the OOO parameters XXX that define the state of the robot

and to iteratively update a map which describes the environment particularly in situations
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Figure 2.5: As a roomba cleans a room, it makes a map of the space by sampling points
in OOO [ben].

where the true state or the true boundaries of the space cannot be known. There are many

approaches to solving the SLAM problem which generally involves some method of MCMC

[15].

Kalman Filter Also known as linear quadratic estimation, the kalman filter is an approach

to solving the SLAM problem and involves two key steps [111]. First, in the prediction step,

a kalman filter estimates what the current position of the robot is in OOO along with the

uncertainty of these estimates. Second, the observations of the robot’s actual state are used

to weigh updates to the future frame guess. This process is iterative. Imagine a spacecraft

in a far off solar system with NASA scientists controlling the craft on Earth. Kalman

filters are considered a type of Hidden Markov Model as the only information related to

OOO parameters XXX is data gathered from the craft’s sensors returns and that information is

the only data which can be used to perform course corrections. By contrast, in Chapter

7, a novel computed control algorithm called Feasible Activation Space Trajectories (FAST)

exploits that the state space that describes the set of all possible muscle activations available

at each discrete time is wholly defined already based on the relationship between the muscles

and the ΓtaskΓtaskΓtask necessary to drive the model along the kinematic trajectory and definitionally

constructed: as if the roomba already knew what the room looked like.
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2.3 Neural Control

This research deals with finding the landscape where the brain and body work together

to produce purposeful movement. To generate a purposeful movement, first, a neural

command is given to excite certain muscles, the electrical potential of which can be recorded

with electromyography (EMG) [116]. Second, muscle-tendon dynamics based on length

(lm) and velocity (vm) properties of the muscle and tendon produce muscle forces. Third,

musculoskeletal geometry defines the location of joints, the direction of muscle forces, and

muscle moment arms to produce joint moments. Lastly, given these moments, multi-joint

dynamics determines accelerations and reactions producing the movement observed. How

the human body moves affects subsequent neural commands that adjust the movement, and

further affects the length and velocity of each muscle-tendon, the direction of muscle forces

and moment arms, and the resulting dynamics of the multi-body system.

Central Nervous System (CNS)

Purposeful movement emerges from the synthesis of the sensory data of the surroundings

and neural commands issues by the CNS and primarily the motor cortex. The CNS consists

primarily of the brain and spinal cord. It accumulates the sensory data of experiences like

sights and proprioception (awareness of a person’s own body in the world) and uses it in

some capacity to dictate the signals to send to the peripheral nervous system.

Peripheral Nervous System (PNS)

The PNS can be subdivided into the somatic and autonomic nervous systems. The autonomic

nervous system (ANS) largely governs the involuntary biological responses: Things like

heart rate, digestion, and the fight-or-flight response. Regarding musculoskeletal control,

the somatic nervous system (SNS) is more important to consider in models as it governs

voluntary movement of skeletal muscles (muscles that attach to bones via tendons and govern

purposeful movements) While the ANS governs involuntary motor control, it does work in

conjunction with the SNS. The stove feels hot and sensory neurons relay sense data, the

ANS induces changes to organs in acute stress response or in prediction to pain, and the
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Figure 2.6: The electrical signal of the action potential of the motor neuron is transformed
into a chemical signal at the neuromuscular junction by way of receptors like nicotinic
acetylcholine receptor (nAChRs) and Ca++-gated channels.

SNS participates via reflexes making the hand move away. Then other pathways work to

return the body to homeostasis.

Unfortunately, while these overarching pathways are known, the exact relationship

between the CNS, PNS, and body is not yet fully understood.

Nerves

Neurons are the fundamental unit of a nerve and are specialized cells within the body that

carry electrical impulses. The nervous system consists primarily of three basic types of

neurons each with different function: sensory neurons, motor neurons, and interneurons

[42]. Sensory neurons carry impulses from tissues and organs to the CNS. Interneurons

21



connect various cells within the CNS. Motor neurons relay impulses from the CNS to effector

cells. Nerve signals are just electrical signals called action potentials that propagate along

a neuron’s dendrites. Specifically the motion of Na+ and K+ during the action potential

induces the release of neurotransmitters at synapses that induces further signal transduction.

Modeling Excitation and Activation

Muscles are composed of units called motor units. These motor units are coordinated

together via depolarization or action potentials to produce force; however, muscles cannot

simply produce forces instantaneously [45]. The transduction of action potentials along

motor neurons and the subsequent formation of actin-myosin cross bridges within muscle

myofibrils produces the forces whose reactions can be observed in the lab (Figure 2.6) [96].

This accumulation of Ca++ ions that produces the cross bridge formation is referred to as

muscle activation. The firing of action potentials of the motor neurons is known as excitation.

The relationship between muscle activation and excitation is often modeled as a first order

dynamical system 5. Despite musculoskeletal systems displaying high levels of redundancy,

there is a gap in the knowledge as to how or if this redundancy is ’considered’ by the CNS

when the physiological parameters like the muscle strength are altered by disorder or disease

[80]. Previous studies have shown any particular surgical or therapeutic approach may not

improve function in all individuals equally and particular surgical or therapeutic approaches

that aid one patient, may harm another [56, 57]. Because the joint configurations can be

produced by a wide combination of muscle activations, which can be represented as FAS

to achieve the same functional tasks, it is important to develop subject-specific treatment

methods. Gait impairments which reduce an individual’s gait symmetry or weaken muscles,

change the volume of FAS. Patient-specific modeling and simulation along with predictive

tools using feedback control have been previously used to design new metrics that aim to

improve surgical and rehabilitation outcomes [68]. Ultimately, no studies have laid out

a standardized and individualized metric that would quantitatively describe exactly how

a doctor should modify the musculoskeletal system to achieve normal function which this

paper seeks to lay out the groundwork to perform. Also, there have not been parallels
5This relationship is further explored in Chapter 7.
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Figure 2.7: A muscle sarcomere produces force by binding crossbridges between actin and
myosin filaments. Titin forms an elastic element within the muscle fibers themselves. Many
sarcomeres together in parallel and series form a muscle.

drawn between the feasible neural command space, which is distinct from FAS, and the

measured EMG, making it difficult to investigate the neural origin of muscle coordination

[107, 108, 110].

Thelen2003 [96], and Winters1995 [115]:

da

dt
= u− a
τ(a, u) (2.12)

Muscles and Muscle Models

Generally when researchers devise models that map the parameters of a muscle to the

output force, they have to consider these various active and passive elements (Figure 2.7).

Experiment characterized muscle moment arms, or the relationship between muscle force

and the joint moment it subsequently produces [117]. Musculoskeletal models (Figure 2.8)

rely on muscle tendon actuators to apply tension to bodies along lines of action. Typically,

researchers use Hill-type models (Equation 2.12) to simulate first order activation dynamics

[5, 6, 7].

Generally, when researchers are making a mathematical model of biological phenomena,

they want to design something that is robust enough to accurately reflect the biological reality
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bone
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Figure 2.8: Muscles attach to bones via tendons. Tendons are modeled as elastic elements
in Hill type models of the MTU. The total length of the MTU is purely a function of the
geometry of the relevant bodies, but the individual muscle fiber length and tendon slack
lengths are functions of the muscle state along with orientation of the bodies.
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under various test cases, without compromising too much on computational speed. The

abstraction of muscle excitations from motor neurons (Figure 2.6) to the muscle activations

(reflection of Ca2+ ions in muscle cells) is often represented as a 1st order differential

equation; however, surface EMG (sEMG) collected in the lab itself is subject to a rigorous

process of normalization, rectification and application of signal filter. Muscles in models like

Millard2012 [71] or Thelen2003 [96] have two states: fiber length (lm), also known specifically

as the length of the muscle of the muscle-tendon unit and not the total length of the MTU6,

and the before described muscle activation level, a.

Muscles operate on a force length velocity curve (Figure 2.9) from which two gains , cl
and cv can be extracted which reflect on the changes to force due to the normalized length of

muscles and the velocity of muscle fibers [5, 6]. By assuming an inextensible tendon during

a particular instantaneous time, muscle force can be computed by:

fm = f0(aƒL(lm)ƒV (vm) + ƒPE(lm)) cosαfm = f0(aƒL(lm)ƒV (vm) + ƒPE(lm)) cosαfm = f0(aƒL(lm)ƒV (vm) + ƒPE(lm)) cosα (2.13)

Briefly, some competing theories of recruitment strategies are explored.

Muscle Synergies Theory

Muscle coordination strategies that attempt to reflect the biological reality as opposed to

the optimal possibility need to consider how the CNS might choose which muscles to use

when constructing a muscle coordination algorithm to determine realistic feasible activations

[57, 118]. One hypothesis is that motor units are organized at the neural level instead of

mechanical and that the CNS decides which muscles to use for actively coordinated movement

based on muscle synergies [70, 95, 102, 103]. In the muscle synergy hypothesis, the brain

organizes muscles at the neural level into groups according to their function [23]. Instead

of the CNS and PNS controlling individual muscles, it is thought that the nervous system

controls muscle groups by way of the agonist muscles. Typically, musculoskeletal systems are

highly redundant in that there are generally more muscles than there are kinematic degrees of

freedom or joints and the muscle synergy hypothesis is an answer to the apparent paradoxes
6which is exactly determined as a function of the geometry
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Figure 2.9: From De Sapio 2008 [28]. A muscle’s active force is a function of the velocity
and length of the muscle fiber, and the muscle activation a. The passive component of the
MTU’s force is just a function of the fiber length.
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of control imparted by muscle redundancy. Despite the body being highly redundant at the

mechanical level, both neural and physiological attributes work in conjunction to produce

purposeful movement; however the creation of synergies that can mimic the kinematics or

EMG does not imply that CNS is using muscle synergies. Muscle synergies analysis is similar

to principal components analysis. Of course if the number of components is sufficiently large

enough, it is possible to describe the system closely: it is a mathematical principle that

always works. A gap in the knowledge exists in the exact roles that each aspect of the

nervous system play in force selection. The efforts developed in this project will help to shed

light on the muscle synergy hypothesis and whether muscle coordination is at the neural or

at the muscular level, but ultimately it will shed light on how the motor cortex deals with

muscle redundancy.

Cost-Minimization Theory (CMT)

Cost minimization theory of neural control assumes the a priori presupposition that the

nervous system is attempting to minimize a parameter like energy or tension in the MTUs

over the course of a behavioral task [105, 106].

Task Prioritization A typical approach used in the control of bio-inspired systems

or continuum robotics is the use of a primary task such that the end effector moves

towards the desired goal with an additional secondary task of minimizing a parameter as

in CMT. Task prioritization is a popular control paradigm stemming in humanoid robotics

with the presupposition that the mind has a hierarchical structure of tasks that which it

satisfies over the course of a kinematic task and that behavioral modifications mid-task are

simply reorientation of weightings on specific tasks in the prioritization scheme. Tasks can

encompass a wide assortment of basal behaviors like ”keep the head above the chest” which

matches observed reality and runs contrary to using solely CMT [27, 84, 85].

Feasibility Theory

A synthesis of the biomechanist’s toolbox and feasible sets analysis arrives with feasibility

theory: a conceptual and computational framework for understanding and describing feasible
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activation spaces [24]. This framework is novel in that it poses as an umbrella for several

of the before-described theories on neuromuscular control that all attempt to characterize

the high dimensional space that bounds possible controls. Feasibility Theory has been

demonstrated in feasible activation space of the seven muscles of the index finger producing

static fingertip force consists of a 3-dimensional polytope in 7-dimensional space; however,

this paradigm is applicable to all tendon-driven systems [52].

The introduction of feasibility Theory is particularly impactful, since it tackles the

challenge of describing the nature of high-dimensionality of feasible activation spaces. This

dissertation adapts paradigms conceived in feasibility theory and constructs tools that allow

for the feasible sets analysis of dynamic tasks. Via spatiotemporal tunneling (Figure 2.10) as

theorized in [24], each frame of the kinematic task is assumed to be in dynamic equilibrium

where the inertial forces can be solved uniquely while the muscles’ contributions are state-

dependent and described as an n-dimensional space. Each individual frame volume can be

overlapped or connected via the shortest euclidean distance between frames which can give

insights into control.

Previous research in feasible sets analysis of musculoskeletal system has largely focus

on models assuming static poses or under the assumption of statics over the course of a

kinematic task. By contrast, this dissertation provides expansions on feasible sets analysis

for the exploration of arbitrary dynamic tasks of arbitrary models. In feasible sets analysis

of manipulator systems, the muscle moment arms, peak isometric forces and the kinematic

Jacobian based on the generalized coordinates to construct feasible spaces. These feasible

spaces can be constructed using computational geometry and describe explicitly what is

allowed in terms of muscle activations, joint moments, and end effector generalized forces

(forces and moments). Feasible sets analysis provides us with a rigorous framework for static

task analysis that can be built up to study sets of neural commands for dynamic tasks. The

bounds of muscle activation for tasks like gait have been previously described in the literature

[87, 89]; However, instead of robustly defining the activation space through CG, researchers

used LP to find the upper and lower bounds on feasible controls [90], which are both lower

fidelity data sets and essentially useless for constructing controls paradigms, but does have

utility for identifying muscles that are necessary for a specific task. Prior static analyses of

28



Figure 2.10: Spatiotemporal tunneling through sets of feasible controls over time.
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redundant manipulator systems highlight without any assumptions about control very few

if any muscles are necessary to perform static tasks. While this assumption is incorrect, it

can provide some insight into dynamic tasks and feasible areas are robust regardless of the

assumption.

Current research is moving towards the synthesis of the robotics tools for dynamical

analyses and feasible sets analysis to develop dynamically consistent sets of acceleration-

based parameters instead of singular optimized or minimized solutions that don’t always

reflect the biological reality. Conveniently, moving from moments to end effector forces is

a linear map so operations like J̄Ts̄JTs̄JTs \ ΓtaskΓtaskΓtask = FFF can be performed to find the dynamically

consistent generalized forces FFF . However, the inverse operation is complicated because an

infinitely large set of feasible activations yield the same end effector generalized force. To

sidestep the issue posed by having multiple competing theories of neural control that can

not be immediately validated feasible sets analysis is a higher order abstraction that make

no assumptions about neural control and runs in parallel with any of these theories. Many

researchers are moving away from methods that perform cost function-based analysis, and

are shifting towards a cost-agnostic analysis.

2.4 Feasible Sets Analysis

Feasible sets analysis through LP, QP, CP, or CG are popular methods of problem solving

that have been applied to many fields. A feasibility analysis can be considered a borrowed

term from finance. These tools are cost-agnostic methods of analysis that find families of

solutions subject to some specified boundaries. At the most elementary level, what are the

different ways one can spend 10 USD on apples and oranges, where oranges (O) are 2.00 and

apples (A) are 1.00 USD?

Three nontrivial boundary conditions become immediately obvious (Equations 2.14).

Spend some money on A, spend some money on O, or spend some money on O and A.
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0 ≤ 2O ≤ 10

0 ≤ 1A ≤ 10

2O + 1A ≤ 10

(2.14)

This method of analysis can be quickly adapted to any redundant system including the

analysis of muscle controls in musculoskeletal modeling. Ex.:What are the different ways I

can activate muscle 1(m1) with moment arm r1 , and muscle 2(m2) with r2 such that my

joint moment is 10 Nm?

A mathematical framework for the analysis of tendon driven limb systems which accounts

for muscle redundancy is feasible sets analysis [89]. Feasible sets analysis meshes well with

existing understanding of biomechanics and modeling paradigms [87]. In this methodology,

each of the muscles in a multi-joint system can be described as having a peak isometric

force (F0) obtained from cadaver experimentation, and an activation with range [0.0, 1.0].

Activation is an abstraction from muscle excitation that reflects the true signal from the CNS

and instead maps on the accumulation of ions.7 The set of all possible muscle activations

under some set of constraints is defined as the Feasible Activation Space (FAS). While

feasible sets analysis has been used in the study of static poses and particularly in the

study of simplistic tendon driven limb models such as 3 joint finger models, this dissertation

investigates feasible sets over time by considering dynamics and muscle physiology beyond

[108]. Designing a framework that allows us to investigate the feasible mechanical outputs

and the feasible activations that produce those mechanical outputs over time through the

duration of a behavioral task, will allow us to both gain fundamental insights into the neural

control of those behavioral tasks and to design metrics that help improve rehabilitation and

surgical strategies.

2.4.1 Feasible Activation Space (FAS)

Despite musculoskeletal systems displaying high levels of redundancy, there is a gap in the

knowledge as to how or if this redundancy is ’considered’ by the CNS when the physiological
7This relation is explored more in Chapter 7 beyond the above section regarding Thelen and Winters

muscle models.
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parameters like the muscle strength or lm are altered by disorder or disease [20, 91, 99].

Previous studies have shown any particular surgical or therapeutic approach may not improve

function in all individuals equally and particular surgical or therapeutic approaches that aid

one patient, may harm another [56, 57]. Because the joint configurations can be produced

by a wide combination of muscle activations, which can be represented as FAS to achieve

the same functional tasks, it is important to develop subject-specific treatment methods.

Gait impairments which reduce an individual’s gait symmetry or weaken muscles, change

the volume of FAS. Patient-specific modeling and simulation along with predictive tools

using feedback control have been previously used to design new metrics that aim to improve

surgical and rehabilitation outcomes [68]. Ultimately, no studies have laid out a standardized

and individualized metric that would quantitatively describe exactly how a doctor should

modify the musculoskeletal system to achieve normal function which this paper seeks to

lay out the groundwork to perform. Also, there have not been parallels drawn between the

feasible neural command space, which is separate from FAS, and the measured EMG, making

it difficult to investigate the neural origin of muscle coordination [107, 108, 110].

2.5 Biological Need

This dissertation developed tools using healthy subject data sets; however, there is a clinical

need for tools that can provide insights into neuromusculoskeletal disorders at various

levels. While these tools and paradigms are tested using data from healthy populations or

synthesized in silico, all the tools in this dissertation can be applied to the study of various

patient populations. In Chapter 6, a procedure using the feasible sets analysis of a subject

with instrumented knee is shown: having clinical relevance to the analysis of osteoarthritis

(OA). Generally, clinicians use a relatively small number of metrics to determine treatments.

Along with being constrained to a small subset of all possible dynamically or kinematically

related parameters, clinicians can only ever interpret the quantities that they can directly

measure and quantities that may be extremely important for understanding purposeful

movement are either impossible to measure or very challenging to measure. Physics-based

modeling attempts to fill that gap by offering researchers and clinicians access to parameters
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that are necessarily impossible to measure in the laboratory setting such as the joint loading

or muscle fiber lengths. Additionally, this dissertation offers researchers interested in neural

networks based on CMC or SO output, a platform to magnify the size or variability of their

training sets 8.

2.5.1 Gait and Balance Disorders

Every year, over 27,000 people in the US die from falls alone and brain-related injury due

to falls has only increased over the past 10 years. By conservative estimates, the CDC

detects approximately 35% of older adults suffer from some sort of abnormal gait. There are

47.5 million adults in the U.S. who have a disability and roughly 795,000 people experience

a disabling stroke each year. As the aging population grows each year, the number of

individuals with gait impairments will only grow, suggesting that there is a great clinical

desire for effective treatments. Related to gait disorders, Stroke is the leading cause of long-

term disability in the United States [100]. Therefore, it is of the utmost importance to design

frameworks that permit the rapid evaluation and rehabilitation of abnormal or asymmetric

gait to improve the lives of the impaired or elderly. The origin of muscle coordination

whether it be neural or biomechanical, is highly debated so tools that explore the families of

activations without applying assumptions about control are valuable. This dissertation offers

structures for conceiving effective subject-specific gait retraining metrics and methodologies.

Feasible sets analysis rests in parallel to existing biomechanics paradigms like SO, CMC,

RRA, muscle synergies analysis and task prioritization.

8invaluable in clinical motion analysis where subject data sets are very typically n < 10
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Chapter 3

A Naive Approach: Pseudo-Static

Analysis of End-Effector Forces

3.1 Chapter Background

This chapter focuses on an analysis of force generating capacity at the end effector over the

course of a kinematic task. Naive refers to the false premise of a multibody system remaining

static on each discrete time of a kinematic task. Occam’s Razor tells us to avoid multiplying

parameters without necessity: simpler models that still accurately reflect reality are valuable.

When researchers model phenomena, they always weigh between computational complexity

and accuracy of insights. In this way, electrical engineers can meaningfully use Kirchhoff’s

Circuit Laws (KVL) to select resistive elements in circuits while KVL is meaningless to

physicists who should only be concerned with Maxwell’s equations for dealing with flux over

vector fields and electromotive forces. Newtonian Mechanics itself is an approximated model

of reality. It fails to account for planetary motion offered in Kepler’s Laws, and yet no one will

force mechanical engineers to solve dynamics problems with quantum mechanics. For slow

behavioral tasks like gait or elderly reaching, it is reasonable to assume statics because the

centrifugal and Coriolis force contributions will be low. Paradigms that make false premises,

such as SO which ignores the muscle parallel elastic element and tendon extensibility, can

offer accurate controls approximations for some tasks of some models [117, 119, 121, 122, 124].
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Summary of Variables and Terms

For some arbitrary actuated multibody system (MBS):
DOF degrees of freedom

RRR the set of real numbers or sometimes the real field

RnRnRn n-dimensional Euclidean space

⊂,∈, |,∃,∀ subset,element of, such that, there exists, for all

t time

∆t discrete time delta

XXX → YYY Map set XXX to set YYY

x 7→ f(x) Map element x to element f(x)

f : XXX → YYY , x 7→ f(x) function definition

MTU muscle tendon unit actuator

m number of MTU in MBS

c number of generalized coordinates in MBS

j number of joints in MBS

b number of bodies in MBS

M set of m MTU in MBS

B set of b bodies in MBS

J set of j joints in MBS

CCC coordinate vector space (CCC ⊆ RcRcRc)

OOO operational vector space (OOO ⊆ R6R6R6)

AAA activation vector space (AAA ⊂ RmRmRm | AAA = [0, 1]m)

QQQ vector of c generalized coordinates of MBS, (QQQ ∈ CCC)

XXX vector of 6 parameters defining positions and orienta-

tions, (XXX ∈ OOO)
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AAA vector of m MTU activations, (AAA ∈ AAA)

FFF vector of m MTU forces, (FFF ∈ RmRmRm)

lmlmlm vector of m MTU fiber lengths, (lmlmlm ∈ RmRmRm)

vmvmvm vector of m MTU fiber velocities, (vmvmvm ∈ RmRmRm)

lll vector of m MTU total lengths, (lll ∈ RmRmRm)

Rc×mRc×mRc×m muscle moment arms matrix of MBS

J6×cJ6×cJ6×c kinematic Jacobian matrix of MBS

J+J+J+ Moore-Penrose pseudoinverse of JJJ

J−TJ−TJ−T Inverse Transpose of JJJ

Ẋ̇ẊX first time derivatives of XXX,˙̇̇ : XXX → Ẋ̇ẊX, x 7→ ẋ = ∂x
∂t

ΓΓΓ set of c joint moments of MBS, (ΓΓΓ ∈ CCC | ∀ci ∈ CCC ∃ Γ ∈ ΓΓΓ)

ΓΓΓc×m moments matrix of MBS

FFF vector of generalized forces, FFF ∈ OOO | FFF = (vvv,ωωω) =

(Fx, Fy, Fz,Mx,My,Mz)

FFF 6×m endpoint force matrix of MBS

⊕ Minkowski Sum

FFF endpoint force space, ⊕FFF

Sets are abstract collections of concrete or abstract objects called elements. Vectors are

elements of a vector space, and a vector space is just a set that holds vectors. Vector spaces

are special sets where vector addition and scalar multiplication are defined. 1 In Euclidean

spaces, vectors are elements with magnitudes and directions that map to tuples of parameters

in Cartesian space. Similarly, a matrix is a tuple of tuples. This research features rigorous

formulations dealing with sets, vectors, vector spaces, and matrices.

What does static force generating capacity along a kinematic task even represent? Forces

are interactions between a body and its environment or between two bodies that induces a

change to the motion of said body. Without contact, there is no force, unless, of course,

considering influences of gravity, electromagnetism or nuclear forces. The concept of an end
1Technically, vector spaces are defined over things called fields which are just sets where +,−,×,÷ are

defined and act as if using these operators on real numbers. There won’t be any proofs dealing with fields
in this research, but the comprehension can be useful to understand how sets relate to spaces, vectors and
matrices.
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Figure 3.1: Applied joint moment (blue) can be mapped to the end effector force (red) using
the kinematic Jacobian, J . In the static domain, this output force is literally the resultant
force due thanks to the propagation of moment along the end effector. In a dynamic domain,
this vector represents an operational space command ~F (red) that reflects on the acceleration
of end effector in operational space.

effector force without contact, reflects more closely to the robotics concepts of OOO command

vector ~F than generalized forces that actually exist in OOO like contact forces (Figure 3.1).

It maps to the vector of end effector accelerations Ẍ̈ẌX in OOO while ignoring centrifugal and

Coriolis contributions to that force. OOO commands FFF at the end effectors of kinematic chains

of MBS in OOO map to sets of moment commands ΓΓΓ in coordinate space CCC, and map to sets

of muscle activation commands AAA in activation space AAA.

Sets of FFF map to sets of end effector Ẍ̈ẌX based on the current configuration of the

generalized coordinates QQQ. The possible forces that the end effectors may apply and the

ways that an organism may accelerate its end effectors are directly related to the capacity

of biological systems and floating base robots to position the center of mass (COM) and

perform complex behaviors like balance control. To produce changes to virtual generalized

coordinates that describe the relative location of the MBS in OOO, MBS must use their end

effectors to move their base node or COM or otherwise be influenced by external loads FextFextFext.

FFF is a vector-valued function of the model pose QQQ, and the model actuator states AAA, lmlmlm,

and vmvmvm. These vectors can each be constructed from the muscle set by the functional:
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0

Figure 3.2: A simple 1 DOF model with 2 muscle-tendon actuators, highlighting the muscle
redundancy problem.

f :M→ z,m 7→ zm | ∀z ∈ ZZZ = {lmlmlm, vmvmvm,AAA, or any other muscle parameters...} (3.1)

Similarly, vectors of the generalized coordinates can be constructed from the set of

coordinates (Equation 3.1). Remember from Chapter 2 that the product of forces and

distances are a moment known as Γ that does work over an angular distance about a joint.

There exists a relationship that maps the moments about model joints assuming a static

pose to the force at the end of a kinematic chain for MBS.

For MBS with a set of generalized coordinates QQQ and a set of MTU M, consider the

simplest non-trivial case (Figure 3.2). Here, one joint is actuated by 2 MTU. Each muscle

contribution to static or dynamically consistent generalized coordinate force ΓΓΓ cannot be

known without a parameter that is extremely difficult or impossible to measure without

invasive instrumentation like the muscle fiber stiffness. For simplicity, assume that an MTU’s

applied force can vary between 0 and the peak isometric force F 0
m, ∀m ∈ M ∃ F 0

m ∈ RRR.

Expansions of the calculation of muscle force using more complicated models is later explored.

Using a gain called the activation a such that

a ∈ AAA ∈ AAA ⊂ RmRmRm | AAA = [0, 1]m (3.2)

Equation 3.2 for muscle force can be expressed as Equation 3.3:
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F :AAA → FFF , am 7→ F (am) | [F (am) = F 0
mam] 2 (3.3)

The relationship between a muscle’s force (Equation 3.3) and the applied moment about

joints is derived from the definition of moments: applied force times a lever arm about said

joint and this relationship (Equation 3.4).

(∀c ∈ C)(∀m ∈M)ΓΓΓc,m = RRRc,mFFFmAAAm ∈ RRR (3.4)

For a system of c generalized coordinates and m muscles, matrices Rc×mRc×mRc×m can be

constructed that maps FFF to the moment contribution of each muscle about each coordinate

using the moment arm of each muscle about each coordinate. For convience, Equation 3.4

can be evaluated for each muscle in a MBS (Equation 3.5):

ΓΓΓc×m = Rc×mRc×mRc×m �FFF (3.5)

The operator � is an elementwise multiplication with FFF on each row of RRR, FFF n,m =

RRRn,mFFFm. It will be prudent to note that the moment arms matrix RRRn×m can be considered

a linear operator that projects FFF from RmRmRm into CCC as ΓΓΓ.

Projections are operators such that f : XXX → YYY , x 7→ f(x) and f may map one or more

elements of XXX to the same element of YYY (Figure 3.3).

Additionally, for more complicated models of muscle force, FFF maps muscle controls AAA

and muscle fiber lmlmlm, vmvmvm and tendon properties) to muscle forces contribution. Rc×mRc×mRc×m reflects

the geometric relationship mapping the change in system configuration, Q̇̇Q̇Q, to the change in

the total length of the MTU, l̇ll (Equation 3.6).

l̇ll = Rc×mRc×mRc×mQ̇̇Q̇Q (3.6)

In figure 3.1, the system Jacobian J6nt×cJ6nt×cJ6nt×c of a kinematic chain was described as an operator

that maps between the time derivatives of the generalized coordinates Q̇̇Q̇Q and the time
2This equation is a simplified expression for muscle force.
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Figure 3.3: The projection of a convex set onto some of its dimensions is also convex. This
is the simple parallel projection, but there are many kinds of projection operators. Skew,
scale, translate, rotate, orthographic, perspective. These geometric concepts form the basis
of computer graphics.
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Figure 3.4: A simple 2 DOF model with 4 muscle-tendon actuators for exploring the
feasible map problem.

derivatives of the OOO parameters Ẋ̇ẊX . This relationship is derived (Equation 3.7). For a

set of OOO speeds Ẋ̇ẊX and a set of generalized speeds Q̇̇Q̇Q:

J : Q̇QQ → Ẋ̇ẊX

J(QQQ) = ∂XXX
∂QQQ

J(QQQ) =
∂XXX
∂t
∂QQQ
∂t

→ ∂XXX
∂t

= J(QQQ)∂Q
QQ
∂t

Ẋ̇ẊX = J(QQQ)Q̇QQ

(3.7)

Ẋ̇ẊX parameters live in OOO: reflecting the 3 parameters of translation and 3 of orientation,

or similarly 6 possible force and moment, in OOO.

In this 2-link planar manipulator with 4 muscles (Figure 3.4):

It is possible to construct the sets of muscle contributions to static force (Equation 3.8).
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AAA = {a1, a2, a3, a4}

FFF = F (AAA) = {F (a1), F (a2), F (a3), F (a4)}

R2×4R2×4R2×4 =

R1,1 R1,2 R1,3 R1,4

R2,1 R2,2 R2,3 R2,4



Γ2×4Γ2×4Γ2×4 =

Γ1,1 Γ1,2 Γ1,3 Γ1,4

Γ2,1 Γ2,2 Γ2,3 Γ2,4

 = R2×4R2×4R2×4 �FFF =

F (a1)R1,1 F (a2)R1,2 F (a3)R1,3 F (a4)R1,4

F (a1)R2,1 F (a2)R2,2 F (a3)R2,3 F (a4)R2,4



J6×2J6×2J6×2 =



J1,1 J1,2

J2,1 J2,2

J3,1 J3,2

J4,1 J4,2

J5,1 J5,2

J6,1 J6,2


=



Jx,1 Jx,2

Jy,1 Jy,2

0 0

0 0

0 0

1 1


(3.8)

To map from joint moments to end effector forces, take the inverse transpose of the

Jacobian, J−TJ−TJ−T to satisfy the expression F6×mF6×mF6×m = J−TJ−TJ−TΓc×mΓc×mΓc×m [69]. Because J6×cJ6×cJ6×c, in this example,

is not square, there is no unique inverse of J6×cJ6×cJ6×c that satisfies Ic×cIc×cIc×c = J−1J−1J−1 ×J6×cJ6×cJ6×c. For a given

trajectory of the end effector in OOO, oftentimes the locations of joints are under-determined,

a problem known as kinematic redundancy. To alleviate these issues, a generalization of
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the matrix inverse operation known as the Moore-Penrose pseudo-inverse of JJJ , J+J+J+, which is

the minimum least-squares pseudo-inverse of JJJ such that J+ = (((JTJ)−1J+ = (((JTJ)−1J+ = (((JTJ)−1JTJTJT , is used. There

are actually many approaches to deal with the under-determined nature of the map from

angular velocities to endpoint linear velocities that roboticists use when designing closed

form solutions or performing forward kinematics, which include techniques like damping,

Jacobian transpose, and Tikhonov regularization. In robotics, the idea of controlling in

the under-determined location is known as controlling in the null space. Some biomechanics

researchers believe all movement disorders in biological systems manifest in this nullspace, of

course, sidestepping questions of if the nervous system thinks about controlling the system

in this way. In Chapter 4, the dynamically consistent inverse of JJJ , J̄̄J̄J substituting the

inertia matrix M−1
b×bM−1
b×bM−1
b×b for the nullspace is utilized to gain insights into dynamically consistent

downstream parameters in the dynamic as opposed to static domain (Equation 3.9).

F6×4F6×4F6×4 = J−T6×2J−T6×2J−T6×2Γ2×4Γ2×4Γ2×4 (3.9)

The columns of F6×mF6×mF6×m are each muscle’s maximal contribution to generalized forces at the

end effector.

Instead of the simplistic map F in the previous example, generally, muscle-tendon

actuators in modeling platforms such as OpenSim use models that involve passive and active

elements of muscles explored in Chapter 2: muscle fiber length lmlmlm, muscle fiber velocity vmvmvm,

and the muscle activations AAA, pennation angle ααα and tendon properties.

To circle back to discussions on the trade-offs between modeling complexity and accuracy,

a case study is designed to explore the significance of parameters lmlmlm or vmvmvm to the end effector

force during human gait and 3 possible models are derived. To avoid nonlinear operators,

assume that the tendon is inextensible (isovelocity/ no velocity) for each discrete time frame

of a kinematic task:

1. Peaks isometric model considers only F 0F 0F 0

2. Fiber length model considers lmlmlm and F 0F 0F 0
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Figure 3.5: A convex set in R2R2R2 (left) and nonconvex set in R2R2R2 (right).

3. Fiber velocity model considers lmlmlm, vmvmvm, and F 0F 0F 0 3

Using each of these three models, assuming a static configuration, one may map AAA→OOO.

The activations hypercube or AAA ⊂ RmRmRm forms a connected and convex RmRmRm subspace such that

AAA = [0, 1]m ⊂ RmRmRm (Figure 3.5). AAA is convex which implies every point along a line between

any two interior points is also an interior point of AAA. In R2R2R2, this hypercube is a unit square,

and in R3R3R3, this hypercube is a unit cube, and so on for higher dimensions.

The nice thing about convex sets is projections of convex sets into only some of their

dimensions will also always be convex sets; even multi-stepped maps like AAA→ RmRmRm → CCC→ OOO.

Additionally, even the projection of a convex set to a higher dimension remains convex: this

property is how homogeneous coordinates offered by Möbius can be used to translate an

image in RmRmRm.

The inverse problem, backing out the possible activations from dynamic OOO or CCC

constraints, is explored in Chapters 5 and 6. This relationship of using the projection
3Expressions of inextensible fiber force also involves scalars for passive contribution and is included in the

force calculation during procedures like OpenSim’s CMC and SO. While it is possible to separately obtain
the lmlmlm and vmvmvm multipliers as individual scalars during runtime in an ad hoc simulation using OpenSim and
the IK results, lm and vm are really coupled by definition. How the muscle moves on the F-V curve depends
on the starting and ending positions in the F-L curve, so it is not appropriate to make a model that considers
vm, but ignores lm. To understand, see the F-L-V surface from Chapter 2 again.
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Figure 3.6: Minkowski Sum of a set of 3 generator vectors (green). The boundaries of⊕
FFF can be found by sorting the vectors about their polar angle from the origin, positive

y-axis, and summing them in order. View the appendix for giftwrapping and minkowski sum
algorithms.

operators that map from controls to downstream parameters will become more relevant in

Chapter 4.

If AAA is convex, then the superset of all possible FFF mapped from elements of AAA, FFF ⊆ OOO,

is also convex where some vertices or extreme points of AAA map to vertices of FFF. One may

project AAA to only the forces or only the moments at the end effector that propagate from

the applied moments and this set will also still be convex. For an AAA, the lower bound of

FFF can be F6×mF6×mF6×m
lb = J−TJ−TJ−TRc×mRc×mRc×m � F ({0, . . . , 0})1×m and the upper bound can be F6×mF6×mF6×m

ub =

J−T6×cJ−T6×cJ−T6×cRc×mRc×mRc×m � F ({1, . . . , 1})1×m. Columns of FubFubFub are known as generators and reflect the

maximal contribution of each muscle to the end effector force. The generators can be used

to reconstruct the vertices of FFF using an operation called Minkowski Sum (⊕). ⊕ :AAA⊕BBB =

{a+b | a ∈ AAA, b ∈ BBB}. Matrix operations relatingAAA → FFF can be used to construct generators

of FFF from generators of AAA which are then used to reconstruct boundaries of FFF by ⊕FFF. The

vertices of FFF can be found using algorithms known as convex hull methods. There are many

algorithms for computing the Minkowski Sum (Figure 3.6) and subsequent convex hull some

of which are highlighted in the appendix (Algorithms 4, 5).
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3.2 Study: Pseudostatic Analysis

A case study is presented that explores defining AAA, constructing the map AAA → FFF → ΓΓΓ→ FFF ,

and finding ⊕FFF for each ∆t of a discrete domain kinematic trajectory of the gait cycle in

post hoc analysis with OpenSim. This case study is a sensitivity analysis to see how lmlmlm,

vmvmvm, and QQQ for subjects walking at each of 4 self-selected walking speeds while assuming

inextensible muscle tendons, influences different features that can be extracted from ⊕FFF,

namely capacity to propel and capacity to brake: critical aspects of human gait. Additionally,

this study serves as an exploration of the mechanical advantage offered by interactions of

the posture and muscle parameters.

3.2.1 Case Study Motivation

Humans move in their environment by actuating muscles whose forces transmit along

kinematic chains to generate reactions against the ground, and in turn, propel their COM.

Gait is achieved by modulating the force output of the legs using muscles and orienting the

COM; however, the mapping from muscle forces to end point forces necessary to achieve gait

is a complex process, involving many nonlinear components. Understanding this relationship

can prove useful in the design of control systems for gait and clinical gait analysis. This

pseudostatic analysis of force generating capability of the human legs over the course of the

gait cycle identified significant differences in braking and propulsive capacity in different

phases of gait. For a group of 7 subjects each walking at 4 self-selected walking speeds,

significant differences in the capacity to generate forces, accelerate the end effectors, and

in turn accelerate the COM in different parts of the gait cycle. Here, the contributions to

the ranges of force generating capacity of the limbs in the anterior-posterior directions due

muscle physiological parameters over the gait cycle was examined. No significant effects of

self selected gait speed on endpoint force space (FFF). Significant effects of muscle fiber velocity

(vmvmvm) on FFF were found.

The movement of biological systems begins with the mapping of desired controls from

the motor cortex which deal chiefly with purposeful movement in the CNS and propagates

action potentials along the nerves of the SNS. The electrical signal is then transformed
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into a chemical signal at the neuromuscular junction which in turn produces purposeful

movement by way of muscle activations. The relationship between the muscle activation

and the neurophysiology’s excitation is well understood, however the commands from the

motor cortex itself and how the motor cortex works in conjunction with the other parts

of the nervous system and the physiology itself is not yet understood. This ”black box”

problem of the controls that produce movement is confounded by the nature of the multi-

level redundancy of musculoskeletal system. Biological systems typically use many muscle

tendon (MTU) actuators that apply tension to bodies about the same joint or across multiple

joints.

By contrast, it can be ideal to control robots by manipulating each prismatic or revolute

joint using a single linear actuator or motor as it reduces complexity of control [72]. The

actuator redundancy of biological systems proves a complex problem in the analysis of the

nervous system’s role in the control of complex behavioral tasks. Additionally, biological

systems usually have many more joints than degrees of freedom (DOF). This coupled dynamic

and kinematic redundancy imposes a complex problem in the analysis of human movement

and control of humanoid systems [92, 93, 94]. For specific tasks or motions, there are

several sets of feasible controls that can achieve said motion: activations AAA, muscle fiber

lengths lmlmlm, and muscle fiber velocities vmvmvm. To account for the under-determined problem,

researchers use tools like optimization frameworks or make presuppositions about how the

motor cortex controls the body. Because of how the movement of limbs subsequently induces

changes in the inertial and gravitational forces, it subsequently affects the neural command

to adjust these movements, and it affects the length and velocity of each muscle-tendon, the

direction of muscle forces and moment arms, and the resulting dynamics of the multi-body

system. However, as no two individuals may necessarily utilize the same control scheme

even for the same trajectory in OOO, minimization techniques such as energy reduction or

power maximization are not necessarily or solely what the nervous system uses for control

[106]. Researchers are opting instead to investigate solution spaces in their entirety [93]. The

nature of the influence of specific muscles to support and progression [74, 73, 124] as well

as the influence of postural changes to a limb’s force generating capacity are well observed

[44, 55, 62].
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This work proposes an application of a computational framework and tools that can

be used in the three-dimensional analysis of gait by describing a lower limb’s mechanical

advantage in terms of output forces assuming a static pose over gait progression. To quantify

limb capability and to arrive at feasible sets of end effector forces in this framework, the

set containing all possible combinations of activations of muscles-tendon actuators (MTU),

AAA is mapped to a set of all possible end effector forces FFF ∈ OOO under static assumptions

for a specific model pose [109]. This study was motivated by other studies that did not

investigate the influences of muscle physiological parameters such as the normalized fiber

length (lmlmlm), fiber velocity (vmvmvm) and the postural changes introduced by modifying the gait

speed in investigating neural control through optimization frameworks [87, 89]. Feasible end

effector forces through a novel pseudo-static analysis that incorporated aspects of robotics,

computational geometry, and musculoskeletal modeling are explored.

The set of feasible end effector forces can be denoted as a space (FFF) which bounds the

possible muscle contributions to the end effector force. Bounds on FFF considering muscle

physiology for complex 3D musculoskeletal gait models were found. It was hypothesized

that there was a synergistic relationship between gait speed and increasing muscle model

complexity.

3.2.2 Methods

Experimental gait analysis data available on SimTK was analyzed from 7 subjects (7-18 yrs.)

walking over ground at four self-selected walking speeds: extra slow, slow, free, and fast [63].

A complex 23 DOF 92 MTU gait model along with inverse kinematics (IK) to compute joint

kinematics for each gait trial was used.

For each subject at each walking speed, CMC was used to obtain lmlmlm and vmvmvm. FFF was

determined for each frame of motion using the columns of
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Figure 3.7: Depicting the muscle moment arm RRR and the relationship to the output force
at the end effector FFF .
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Figure 3.8: 23 DOF 92 muscle model available in OpenSim. Scaled to reflect subject
anthropomentry and using subject-specific kinematic states. FFF are highlighted for left and
right legs.
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F6×mF6×mF6×m =



M1
x . . . Mm

x

M1
y . . . Mm

y

M1
z . . . Mm

z

F 1
x . . . Fm

x

F 1
y . . . Fm

y

F 1
Z . . . Fm

z


= J−T6×cJ−T6×cJ−T6×cRc×mRc×mRc×m �F1×mF1×mF1×m (3.10)

Where, for a limb with c generalized coordinates and m muscles, J−TJ−TJ−T is the least-squares

damped inverse transpose Jacobian which maps joint moments to end effector forces and

moments. Rc×mRc×mRc×m (Figure 3.7) is the muscle moment arms matrix which maps muscle forces

to joint moments and FFF is the muscle strength (mapping maximal muscle activations to peak

isometric muscle forces). For each model and kinematic data set, a post hoc simulation is

performed using the output state of CMC and the subject-specific model. The simulations’

models and states, comprising generalized coordinates, generalized velocities and the muscle-

tendon actuation fiber lengths and activations, were used to investigate the effects of muscle

fiber length lmlmlm and muscle fiber velocity vmvmvm on FFF for 3 cases of varying muscle physiology

inclusion (Figure 3.8).

All muscles operate on a force-length-velocity surface and the position of a muscle on

this surface varies over the gait cycle [5, 6, 7, 45], and to investigate the nonlinear mapping

of applied muscle forces to FFF, scalar mappings from a muscle’s peak isometric force to

its position on the F-L-V curve can be obtained at run-time using the MATLAB API for

OpenSim. Conveniently, the Millard2012 muscle model used in Gait2392 is designed such

that the force of a muscle is explicitly a function of the velocity component and the fiber

length component as scalars derived from the muscle F-L-V surface [71]:

From Equation 2.13 where the terms f l(lmlmlm) and f v(vmvmvm) reflect the position of the muscle

on the force-length and force-velocity curves respectively. The term fPE(lmlmlm) is the force of

the muscle due to the passive element, which is purely a function of the length of the muscle

unit assuming an inextensible tendon.

For no muscle physiology (case 1), f l(lmlmlm) and f v(vmvmvm) terms can be ignored such that the

muscle is assumed to be operating exclusively at the peak of the F-L-V surface. At each time,
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braking

propulsion
Figure 3.9: Comparing braking and propulsion feasible forces. This convention may not be
intuitive, but these sets are the spaces of OOO commands in the static domain. Action forces
or commands that brake are necessarily anterior to the center of pressure or COM of the
calcaneus while propulsion is necessarily posterior.
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Figure 3.10: differences in FFF at a single frame during swing phase, highlighting the influence
of lmlmlm and lmlmlm + vmvmvm consideration.

each muscle’s peak isometric force is obtained along with RRR and J−TJ−TJ−T . Muscle force set FFF is

computed as a function of the pennation angle that the muscle fibers form along the tendon

and the peak isometric force. The end effector forces (Equation 3.10) due to the applied

muscle forces can then be computed as a function of F0F0F0 and J−TJ−TJ−T and RRR. The feasible forces

are computed as per algorithm 1. The muscle fiber lengths and muscle moment arms change

over the gait cycle. Also, muscle fiber lengths are not purely a function of the geometry of

the underlying system, as the muscle models used in the gait model consist of both a muscle

and tendon.

For lmlmlm effects (case 2), the model is again updated to reflect CMC states for each percent

of gait, but the feasible forces are now computed using f l(lmlmlm) . This force-length multiplier

unique to the muscle’s current state can be found in OpenSim as per algorithm 2. This

force-length multiplier reflects the muscles position on the force-length curve and changes

with state.

For both lmlmlm and vmvmvm effects (case 3), the model is updated to reflect CMC states, but

the feasible force is now computed using both the force-length multiplier and force-velocity

multiplier, which reflects the muscle’s position on the force-length-velocity surface as per

algorithm 3. In all cases, the matrix of muscle moment arms about each joint was computed
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and used to compute the joint moments (Equation 3.11):

Γ6×cΓ6×cΓ6×c = Rc×mRc×mRc×mFFF (3.11)

FFF is the vector space which contains all possible end effector forces for a given model pose

mapped from all possible AAA in AAA and is computed by solving a vertex enumeration problem

using the Minkowski sums of non-convex sets which is a complex problem [39]. This is very

powerful, as the volume or boundaries of FFF can be used as a metric of mechanical advantage

and quantify if subjects can adequately perform support or propulsion with respect to gait

or balance recovery in healthy subjects, but it is a complex function of many inputs.

Solutions assuming static consistency can have practical utility particularly in the analysis

of gait [3]. FFF is computed using the end effector force contributions of each muscle within

the columns of the wrench matrix, FFF (Equation 3.10). For each volume, the components of

FFF volume that maps the muscles’ capacity to apply braking and propulsive forces (Figure

3.9) as the lower limb’s capability to apply braking and propulsive forces are critical to the

acceleration of the COM during gait.

Braking (bFFF) and propulsive (pFFF) volumes can be extracted from full FFF by using a

delaunay triangulation slicing algorithm to bifurcate FFF into a positive and negative sections

along the medial-lateral direction and recomputing the convex hull through QHull or a similar

algorithm.

3.2.3 Statistical Analysis

Braking and Propulsive FFF can then be compared by using 3 separate repeated measures

ANOVA in SPSS through the GLM procedure to verify statistical differences between

different levels of muscle physiological inclusion and different levels of self-selected walking

speed and to identify the sources of interaction effects.
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Figure 3.11: Total, propulsive and braking volume as the sum of pFFF and bFFF over progression
of gait. Different muscle physiological considerations and speeds are plotted with different
colors. Simple main effects analysis revealed significant differences across considerations in
mid stance and in mid swing.
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Table 3.1: Full, propulsive, and braking force volumes (N3)*: The mean difference is
significant at the 0.05 level. b: adjustment for multiple comparison: bonferroni.

consid. consid. mean diff std. error sig.b lb ub
Full
1 2 28814.6* 3776.3 0.001 16400.0 41229.3

3 -137297.9* 23951.3 0.004 -216036.7 -58559.2
2 1 -28814.7* 3776.3 0.001 -41229.3 -16400.1

3 -166112.6* 27359.0 0.003 -256054.0 -76171.2
3 1 137297.9* 23951.3 0.004 58559.2 216036.7

2 166112.6* 27359.0 0.003 76171.2 256054.0
propulsive
1 2 15136.6* 2136.0 0.001 8114.7 22158.6

3 -95367.2* 19099.2 0.007 -158154.9 -32579.4
2 1 -15136.6* 2136.0 0.001 -22158.6 -8114.7

3 -110503.8* 20766.6 0.005 -178773.1 -42234.5
3 1 95367.2* 19099.2 0.007 32579.4 158154.9

2 110503.8* 20766.6 0.005 42234.5 178773.1
braking
1 2 13678.0* 1720.2 0.001 8022.8 19333.3

3 41930.8* 6043.8 0.001 -61799.6 -22061.9
2 1 -13678.0* 1720.2 0.001 -19333.3 -8022.8

3 -55608.8* 7575.1 0.001 -80511.5 -30706.0
3 1 41930.8* 6043.8 0.001 22061.9 61799.6

2 55608.8* 7575.1 0.001 30706.1 80511.5
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3.2.4 Results

pFFF and bFFF were extracted from FFF over progression of gait for each subject walking at

each of the 4 self-selected walking speeds. Significant differences were found for different

physiological considerations (Figure 3.10).

Full volumes FFF

Mauchly’s test of sphericity identified that physiological consideration violated assumptions

of sphericity (χ2(2) = 22.263, p < .0005) so a Greenhouse-Geisser correction was applied

in subsequent data analyses. Different physiological considerations showed statistically

significant (Table 3.1) differences in FFF (F (6.035, 1.006) = 35.373, p = .001). Also, a

significant interaction term between consideration and time was observed (F (12.250, 2.042) =

19.978, p ≤ .0005). No significant effect of gait speed on FFF was observed (F (18, 3) =

2.007, p = .193) (Figure 3.11b).

Propulsive volumes pFFF

Mauchly’s test of sphericity identified that physiological consideration violated assumptions

of sphericity (χ2(2) = 16.641, p < .0005) so a Greenhouse-Geisser correction was applied

in subsequent data analyses. Different physiological considerations showed statistically

significant differences in FFF (F (6.11, 1.018) = 52.004, p ≤ .005). Also, a significant interaction

term between consideration and time was observed (F (10.964, 1.827) = 34.047, p ≤ .005).

No significant effect of gait speed on FFF was observed (F (18, 3) = 3.358, p = .042) (Figure

3.11d).

Braking volumes bFFF

Mauchly’s test of sphericity identified that physiological consideration violated assumptions

of sphericity (χ2(2) = 21.630, p < .0005) so a Greenhouse-Geisser correction was applied

in subsequent data analyses. Different physiological considerations showed statistically

significant differences in FFF (F (6.11, 1.018) = 26.899, p = .002). Also, a significant interaction

term between consideration and time was observed (F (11.872, 1.979) = 15.326, p = .001).
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No significant effect of gait speed on FFF was observed (F (18, 3) = 1.322, p = .301) (Figure

3.11f).

3.2.5 Discussion

The objective of this study was to explore the advantage afforded by muscle physiological

and postural differences to progression and braking during healthy gait at different self-

selected walking speeds. Several key differences in the capacities of the musculoskeletal

system to generate propulsive and braking forces under different physiological considerations

were identified. bFFF was maximized near midswing and early stance while pFFF was maximized

just after toe off. Prior research has found that there are also potentially other limiting factors

to the feasible end effector forces [52, 55]. FFF is a nonlinear function of several components,

derived from the musculoskeletal geometry during a specific pose in the gait cycle and the

muscle states derived using OpenSim’s CMC algorithm.

Postural differences induced by varying gait speed were much less significant than the

inclusion of lmlmlm or vmvmvm effects, implying that the differences in postures at varying self-selected

speed are much less important than the differences in gravitational, centrifugal and Coriolis

contributions at varying gait speed. The multiplicative effect of joint orientation and muscle

physiological considerations is a well observed phenomenon in literature [4]. Previously

established investigations of muscle physiology and gait speed or posture showed that there

were significant influences to downstream parameters like ground reaction forces at different

speeds/postures [7, 46, 73, 75, 104] and also prior research has shown postural differences

to be significant factors in gait efficiency [76, 61, 114]; however, these postural changes were

not as influential in this analysis. Observations of decreased muscle output at faster speeds

coincide with prior observations [75].

There are several key limitations in this method of analysis. First, the muscle forces

estimated with these dynamic simulations may not accurately reflect the forces generated

by individual subjects as some parameters of the model, such as the muscle max isometric

forces are not scaled [36, 81]. Second, the FFF is only computed assuming a static pose ignoring

gravitational forces and explores a space of command vectors capable of maintaining static
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equilibrium, while gait itself is a dynamic task. Further investigation should be done to see

if faster or slower modes of movement produce significant differences in speed.

Future work should include contributions of inertial and gravitational forces to FFF and

particularly explore the feasible space of forces capable of exploring support consistent

dynamic reaction force space. Also, future work should investigate if faster modes of

movement induce significant differences in FFF. The true superset of AAA capable of generating

the dynamically consistent subspace in FFF is a subspace of AAA [87]. Additionally, there should

be consideration of the centrifugal and Coriolis contributions to loading [47]. The inclusion

of muscle fiber length effects consistently reduced FFF over the gait cycle, while the inclusion

of fiber length and fiber velocity effects either increased or decreased FFF relative to peak

isometric depending on the phase of gait.

3.3 Chapter Summary

From this sensitivity analysis of the model pose over progression of gait at different gait

speeds, gait speed was not actually significant, but the fiber length and fiber velocity

considerations were significant to the contribution of feasible end effector forces over the gait

cycle. So, when performing feasible sets analysis in Chapters 4, 5, 6 and 7, fiber length and

fiber velocity multipliers will be included in the calculations. Postural differences induced by

increasing gait speed did not produce the significant changes to end effector force; however,

Chapter 4 will show that bounding activations by the joint moment constraints, then

projection operators can be constructed that map the muscle activations to a dynamically

consistent muscle-dependent OOO parameters, and under the dynamic domain, Ẍ̈ẌX , Ẋ̇ẊX , and Q̇̇Q̇Q do

influence the force generating capacity. In Chapter 5, the influence of muscle physiology on

the bounds of dynamically consistent bounds of activation space is revisited.
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Chapter 4

Dynamical Considerations and

Projection Operators

4.1 Chapter Background

The procedure from Chapter 3 is expanded, exploring how to map known subsets of AAA to

subsets of an arbitrary lower dimensional space for arbitrary MBS. To find supersets of

AAA that satisfy joint moment requirements determined using ID for a specific kinematic task

before exploring the projection from AAA to OOO using vertex enumeration, view Chapter 5 which

produces AAA constrained by ID joint moments ΓtaskΓtaskΓtask, AAA | ΓtaskΓtaskΓtask. High throughput tools that

transform high dimensional AAA using a known projection operator and a case study that shows

mapping AAA | ΓtaskΓtaskΓtask to supersets of dynamically consistent Ẍ̈ẌX and FtaskFtaskFtask are explored.

4.1.1 Linear Operators

This research focuses on the maps between muscle controls and downstream parameters,

and how observations of downstream parameters constrains muscle controls. Following and

extrapolating on the example from Chapter 3, the map from muscle activation to end effector

force is defined (Equation 4.1):

AAA → FFF → ΓΓΓ→ FFF (4.1)
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Figure 4.1: OOO control for robots or musculoskeletal systems is all about dictating the end
effector trajectories XXX in OOO through command vectors or tasks and manipulating QQQ in the
null-space of CCC. Also, for floating base robots and biological systems, it involves how the
actuated DOF can be used to induce changes to the virtual DOF.

Where J−TJ−TJ−T is the projection operator that maps the muscle contributions to joint

moments to muscle contributions to end effector forces in the static domain; however, for

dynamically consistent values of FFF , J−TJ−TJ−T will not be sufficient as centrifugal and Coriolis

contributions to the task need to be accounted for. To this aim, some tools in OOO control

(Figure 4.1) and manipulator robotics can be adapted for the analysis of MBS in feasible

sets analysis [27, 28, 53, 101].

4.1.2 Manipulator Robotics Application

The relationship between ID and OOO formulation is explored. The relevance of OOO formulation

to the control of musculoskeletal systems is also explored. The muscle force contribution to

coordinate generalized forces in CCC is computed in Chapter 5.

For robotic manipulators, there are two paradigms for control: either control in OOO or

CCC. Systems can be controlled by moments commands or generalized coordinate forces, or

they can be controlled by tasks in OOO that push end effectors to follow desired kinematic

trajectories of the end effector in OOO. For people who design controls systems, this paradigm
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is a control law that maps XXX , Ẋ̇ẊX , Ẍ̈ẌX to QQQ, Q̇̇Q̇Q. OOO formulation from [53] shows that the map

between the moment commands ΓΓΓ and the physical constraint in OOO is uniquely determined

from extrapolations of principles from D’Alembert’s Principle or dually Gauss’ Principle

(Equation 4.2): 1

Λ(XXX )Ẍ̈ẌX + µ(XXX , Ẋ̇ẊX ) + p(XXX ) = FFF (4.2)

Where XXX = (x1 . . . xn) are the independent parameters of the system in OOO and ΛΛΛ is the

kinetic energy matrix. µµµ represents the contributions to the centrifugal and Coriolis forces on

bodies of the multibody system [26, 54]. Finally, ppp is the force due to gravity on bodies and

FFF is the external forces. The muscles of the model must account for the moments besides

contributions of the externally applied loads. Equation 4.3 will look familiar to those with

experience in ID in OpenSim:

M(QQQ)Q̈QQ+ C(QQQ, Q̇̇Q̇Q)Q̇QQ+G(QQQ) = ΓΓΓ (4.3)

Where QQQ is the vector of generalized coordinates of the model, Mb×bMb×bMb×b is the system Mass

Matrix, CCC is the vector of the Coriolis and centrifugal forces, GGG is the vector of gravitational

forces, and ΓΓΓ is the vector of generalized forces in CCC.

The map betweenQQQ of MBS to OOO is the kinematic Jacobian (Ẋ̇ẊX = J(QQQ)Q̇̇Q̇Q) and, similarly,

the map from ΛΛΛ in OOO formulation to MMM in the CCC equations of motion can be formulated

(Equation 4.4):

M(QQQ) = JT (QQQ)Λ(XXX )J(QQQ) (4.4)

MMM is really the kinetic energy weighted pseudo-inverse of the system Jacobian and MMM is

in fact the mass matrix. The difference being MMM operates for CCC and ΛΛΛ operates for OOO.

The joint space generalized forces can be mapped along a given set of frame tasks to OOO

(Equation 4.5):
1These concepts are natural laws: abstractions of the principle of least action. Minimize the Lagrangian

integral to identify the true trajectory of particles from the space of all possible trajectories.
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ΓtaskΓtaskΓtask = J(QQQ)TFtaskFtaskFtask (4.5)

For redundant systems, Equation 4.5 is expanded to Equation 4.6,

FtaskFtaskFtask = J̄(QQQ)ΓtaskΓtaskΓtask (4.6)

Where J̄̄J̄J (Equation 4.6) is the dynamically consistent Jacobian (Equation 4.7):

J̄ = M−1JT (JtM−1JT )−1J̄ = M−1JT (JtM−1JT )−1J̄ = M−1JT (JtM−1JT )−1 (4.7)

Similarly, for a vector of muscle forces FFF ,

ΓΓΓ = L(QQQ)TFFF (4.8)

Where L(QQQ) (Equation 4.8) is the ”muscle Jacobian” [29], which maps the configuration

of the model in CCC to the total length of the MTU length (Equations 4.9, 4.10).

l̇̇l̇l = L(QQQ)Q̇̇Q̇Q (4.9)

Specifically, this relation between joint moment and muscle force (Equation 4.9) is the

muscle moment arms matrix Rc×mRc×mRc×m [33, 93] from Chapter 3, so:

l̇̇l̇l = R(QQQ)Q̇̇Q̇Q (4.10)

These equations can be combined to arrive an equation of feasible accelerations of the

task (Equation 4.11):

Ẍ̈ẌX = J(QQQ)M(QQQ)−1(ΓΓΓ− JTlocFextJTlocFextJTlocFext) (4.11)

Where JlocJlocJloc would be the Jacobian from base node to the location on body of the externally

applied loads. From Chapter 3, there are expressions (Equation 4.12) for mapping the model

joint toques and the muscle activation level in conjunction with Equation 4.11:
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Ẍ̈ẌX = J(QQQ)M(QQQ)−1(R(QQQ)�F 0F 0F 0lmlmlmvmvmvmAAAcos(ααα)− JTlocJTlocJTlocFextFextFext) (4.12)

Note, there are maps from sets of feasible activations of the model to sets of dynamically

consistent end-effector forces.

Another tool would be to project AAA itself into the null-space (Equations 4.13, 4.14) of

the task to filter out activations that do not contribute to the task.

Nc×cNc×cNc×c = (Ic×cIc×cIc×c − J̄c×6J̄c×6J̄c×6J6×cJ6×cJ6×c) (4.13)

To construct a projector that maps AAA→ ANANAN :

Nm×mNm×mNm×m = RT
m×cRT
m×cRT
m×cNc×cNc×cNc×cRc×mRc×mRc×m (4.14)

MTU have both active and passive components. To deal with the dichotomy of active and

passive components depending on a selected model of muscle force, homogeneous coordinates

are leveraged (Equation 4.15):

1. Construct a projector reflecting the AAA-dependent components of force

2. Project to a dimension n+ 1

3. Return to n and translate by the AAA-independent components of force

PPP =

 P a−dependent
n×mP a−dependent
n×mP a−dependent
n×m 0

P a−independent
1×mP a−independent
1×mP a−independent
1×m 1

 (4.15)

P active
1×mP active
1×mP active
1×m contains theAAA-dependent contributions to the downstream parameter decomposed

by muscle, andP a−independent
1×mP a−independent
1×mP a−independent
1×m contains all theAAA-independent contributions. The idea of lifting

into a higher dimension to solve the problem is a tool used by LRS, the vertex enumeration

solver used in Chapter 5. What is particularly challenging about mapping from activation

vectors to some downstream parameter for which the projection operator can be constructed?

For a robust gait model of 25 muscles on each leg, AAA | some constraint could potentially have

hundreds upon hundreds of thousands of vertices in R92R92R92, and so for any chance of clinical
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relevance or to navigate inAAA as part of a control paradigm, there needs to be implementations

of rigorous methods for performing projection of vector spaces that deal with data sets on

the orders of GB or even TB in space.

For generalization to arbitrary linear projections for some tasks, command line tools were

developed for mapping every set of activation in a supplied file containing the activation sets

using an input projection operator. The code developed in this dissertation uses OpenMPI

and MPLRS, and allows the end user to run high dimensional problems with supercomputers

and clusters such as Titan available in Oak Ridge National Laboratory.

4.2 Study: Feasible Accelerations

4.2.1 Case Study Motivation

A case study is offered that constructs A | ΓtaskA | ΓtaskA | Γtask and maps to sets of Ẍ̈ẌX for two models freely

available with OpenSim for testing, tutorials, and proof-of-concepts. The static domain

tools from Chapter 3 are extrapolated to an induced acceleration analysis produced using

methods from Chapter 5. For a 2 DOF 6 muscle upper-extremity model, A | ΓtaskA | ΓtaskA | Γtask is mapped

to muscle contributions to OOO accelerations. Also, for a 10 DOF 18 muscle gait,A | ΓtaskA | ΓtaskA | Γtask is

mapped back to joint moments to highlight parity with the ID solution.

4.2.2 Methods

The Arm26 model (Figure 4.2) freely available with OpenSim is used to map feasible

activations to induced accelerations over the course of a simple elbow flexion task (Figure

4.3). CMC determined muscle excitations and resulting model states for a forward dynamic

simulation. A | ΓtaskA | ΓtaskA | Γtask was computed using the joint moments derived from OpenSim’s ID

procedure. Alternatively, ΓtaskΓtaskΓtask can be calculated from the FextFextFext at run-time in an ad hoc

analysis; however, this calculation was not performed in this study.

Feasible activations at each discrete time of the elbow flexion task were computed using

MPLRS as described in Chapter 5.
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biceps brachii long head
biceps brachii short head

brachioradialis

triceps lateral head
triceps medial head

triceps long head

Figure 4.2: Highlighting the 6 muscles of the 2 DOF 6 muscle model (Figures 4.3, 4.6).

66



Figure 4.3: Progression of task for the 2 DOF 6 muscles model (Figure 4.6).
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Figure 4.4: Diagram of the muscles of the Gait1018 model used to find feasible activation
space (V-FASV-FASV-FAS) bounds (Figure 4.8). Biarticular muscles are between primary colors.
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Figure 4.5: Progression of gait for the Gait1018 and Gait2354 models featured in Figures
4.8 and 5.6.

Similarly, a planar 10 DOF 18 muscle gait model (Figure 4.4) freely available with

OpenSim was also used to map feasible activations back to joint moments over the course of

the gait cycle (Figure 4.5). The model was scaled to the anthropometry of the subject(75 kg,

1.8 m). IK determined model kinematics matching experimental marker data of the subject

walking at 1.2 m/s on a treadmill. RRA adjusted model kinematics and inertial properties

to minimize dynamic inconsistencies between the model dynamics and experimental ground

reaction forces. Muscle maximal isometric force, optimal fiber length, tendon slack length,

pennation angle at the optimal fiber length, maximal eccentric force, parallel muscle fiber

stiffness, and active force-length-velocity scale factor and passive force-length scale factor

were extracted from each muscle over the course of the ad hoc simulation.

ΓtaskΓtaskΓtask (Equation 2.1) is decomposed into active muscle contributions and passive

contributions (Equation 4.16) and replacing the moment expression with the muscle force

and moment arm expressions (Equations 4.17, 4.18):
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Γtask − Γpassive = ΓactiveΓtask − Γpassive = ΓactiveΓtask − Γpassive = Γactive (4.16)

Γtask −Rc×mF
m
passive = Rc×mF

m
activeΓtask −Rc×mF

m
passive = Rc×mF

m
activeΓtask −Rc×mF

m
passive = Rc×mF

m
active (4.17)

Γtask −Rc×mF
m
passive = Rc×mF

m
0 lmvmaΓtask −Rc×mF

m
passive = Rc×mF

m
0 lmvmaΓtask −Rc×mF

m
passive = Rc×mF

m
0 lmvma cosα (4.18)

Boundaries of V-FASV-FASV-FAS over each frame of the gait cycle were then computed by vertex

enumeration using MPLRS (Chapter 5). Boundaries of activations that satisfy the joint

moments over each frame of the elbow flexion of Arm26 model and the gait cycle for the

Gait1018 model were then computed by vertex enumeration using MPLRS with procedures

later described in Chapter 5. Each vertex, representing a boundary of possible combinations

activations that satisfied the joint moment constraints, was then mapped using the projection

operator (Equation 4.19).

J̄ = M−1JTt (JtM−1JTt )−1J̄ = M−1JTt (JtM−1JTt )−1J̄ = M−1JTt (JtM−1JTt )−1 (4.19)

Note, to map the ID moments or dually the muscle moment contributions space that

satisfies the kinematic requirements of the task. Using Equation 4.2 and rearranging

(Equations 4.20, 4.21):

M(QQQ) = JT (QQQ)Λ(XXX )J(QQQ) (4.20)

FtFtFt = J̄Tt̄J
T
t̄J
T
t ΓtΓtΓt (4.21)

Then Equation 4.22 for feasible accelerations is defined [33]:

Ẍ̈ẌX = JTtJ
T
tJ
T
t M

−1M−1M−1ΓΓΓ (4.22)

Each vertex of A | ΓtaskA | ΓtaskA | Γtask, representing a boundary of possible AAA that satisfied the joint

moment constraints, was then mapped using the projection operator (Equation 4.22).
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Figure 4.6: Feasible activations of the 6 muscle arm model with OpenSim’s CMC solution
plotted in red. These results are described in detail in Chapter 5.

The boundaries of the space can be determined using a convex hull algorithm like 3D

Jarvis or gift-wrapping to find just the sets of possible dynamically consistent end effector

forces or moments, which represents the projection of the 6-Dimensional wrench space onto

just the 3 translational dimensions of Cartesian space.

Boundaries of feasible activations for the model over each frame of the gait cycle were

then computed by vertex enumeration using MPLRS.

4.2.3 Results

EveryAAA in feasible activations of the 6 muscles of the Arm26 model (Figure 4.6) for a simple

flexion task were mapped to one set of feasible accelerations (Figure 4.7).
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Figure 4.7: Feasible accelerations of the Arm26 model hand mapped from feasible
activations (Figure 4.6).
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Figure 4.8: Plotting the upper and lower bounds of feasible activations computed by finding
the upper and lower bounds for each muscle from the vertices of the feasible activation set
over progression of gait. OpenSim’s CMC solution is plotted in red. These results are
discussed in detail in Chapter 5.
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Figure 4.9: Vertices of A | ΓtaskA | ΓtaskA | Γtask (Figure 4.8) over each percent of gait are used to map to
joint moments derived from ID. Only Fx,Fy,Mz are nonzero as the model is planar.
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Figure 4.10: Software flowchart.

Similarly, every AAA in feasible activations (Figure 4.8) of the 18 muscles of the Gait1018

model (Figure 4.4) over the course of the gait cycle (Figure 4.5) were mapped to one

set of joint moments (Figure 4.9). Here is an expansion of feasible sets analysis of the

muscle contribution to the dynamic domain. This is a case study to highlight mapping a

dynamically consistent feasible activation set to an arbitrary downstream parameter set such

as OOO acceleration Ẍ̈ẌX or joint moments ΓΓΓ.

4.2.4 Discussion

The dynamically consistent accelerations are obtained by mapping the activation space for

each discrete time frame of the elbow flexion task. Conceptually, the superset of activations

that map to one set of generalized coordinate forces should also map to one set of end effector

accelerations. The bounds of V-FASV-FASV-FAS (Figure 4.8) are for the planar Gait1018 model, but

later in Chapter 5, a significantly more complex 23 DOF 54 muscles model is analyzed.

4.3 Tools

For advanced developers, an brief exploration of the code and paradigms used in Section 4.2

are outlined in this section (Figure 4.10).
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feasibleActivationForces This is the front-end python 3 package for computing feasible

force spaces. Construct a full activations hypercube or constrained activations hypercube and

map it using a procedurally generated map to OOO. MPLRS is used to solve vertex enumeration

problems in parallel. Full-Space-Map takes an input .map file containing a projection matrix

and an input activation polytope in .CSV format, and performs the operation P �AP �AP �A and

writes to a .force file where AAA is each vertices of the input polytope in AAA. One may trivially

parallelize this code by splitting the input CSV into multiple parts and running mapper on

more than one thread.

findBounds From a supplied feasible activation set for a specific time frame, compute

the upper and lower bounds of muscle activations for each muscle. This is essentially the

map from the vertex enumeration method of the activations H-rep to the minimization and

maximization of the activations H-rep as the LP problem. This is specifically NOT the

minimization or maximization of the sum of activations, but it is the LP minimization or

maximization such that the objective function is f = ai for every muscle i ∈ m. Understand

that the minimization of the sum total of muscle activations typical in tools like OpenSim

static optimization is a particular solution between the bounds determined by findBounds.

findMean From a supplied AAA, compute the mean of each muscle activation. Trivially,

it can be shown that the centroid of a feasible activation space is the sum of the vertices

divided by the number of vertices. Since activation is a convex subspace of activation space,

it also follows that the average of the vertices must also be a viable solution that satisfies

the kinematic and dynamic constraints. This is also known as the vertex center of the space.

mapper From a supplied AAA and HHH, for every individual feasible activation set AAA in AAA,

perform the matrix multiplication P �AP �AP �A. A typical use case would be to map feasible

muscle controls to muscle moment contribution to joints using the moment arms matrix ~R.

(fsm)full space map Fsm is a command line driver that calls mapper. Arguments are

the path to the activation set and the path to the projection operator which are both saved

as CSV.
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convert Convert is a command line driver that converts files from the cdd/ MPLRS format

to CSV and removes headers/footers. This is a convenience method for researchers that

transforms the vertex rational string format of MPLRS/LRS to CSV. This is similar to the

command line driver rat2float.c supplied with LRS.

4.4 Chapter Summary

The transmission of controls and muscle parameters to any dynamically dependent parameter

in OOO or CCC allows for characterizations of a model’s ability in the environment, and by

proxy, for a subject-specific musculoskeletal model, allows for characterizations of a subject’s

capability for a given task. High fidelity insights into a subject’s location relative to the

family of possible solutions, AAA for a given task. A trajectory in AAA that moves outside the

polytope bounds dictated by the task, necessitates a change in the kinematics. In Chapter

5, the inverse problem, identifying the space of all possible combinations of activations that

produce a specified OOO or CCC constraint, is formulated and performed. These tools are not

further used in this dissertation, but served as a sanity test to ensure that the API was

being called appropriately and to show that it was possible to back calculate the downstream

parameters if the activations space was obtained. In any case, the tools of this chapter may

be useful in feasible induced accelerations analysis or explorations of the nullspace of the

task.
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Chapter 5

Computing Feasible Controls

5.1 Chapter Background

Chapters 3 and 4 rigorously defined some principles of finding the feasible force space

comparable to forces found through induced accelerations analysis. Now, instead the inverse

problem is explored. Computing activations from end effector forces or joint moments is

complicated as it involves CG if researchers desire to characterize the full space. Researchers

might think that CG is unneeded because they frequently use optimization frameworks to

minimize a particular parameter like energy or muscle tension to obtain an optimized set of

controls that can drive a model in the forward dynamic sense, but these frameworks obligate

making assumptions about the black box that is neural control. Feasible sets analysis

through CG, while computationally expensive, is superior to optimization methods as it

facilitates platforms for machine learning and allows researchers to explore the parameter

space constrained by a dynamic task.

5.1.1 Geometry

While biomechanists and roboticists might think that visual comprehension of the geometric

concepts might be dull, a visual intuition about V-FASV-FASV-FAS is ultimately necessary to understand

how to turn an LP into a CG problem and later how to exploit the LP as a MCMC
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method: the computational tool used to probe a V-FASV-FASV-FAS interior instead of optimizing a

specific objective function f .

n-Dimensional euclidean spaces, RRRn, are abstract space with tuples where n independent

parameters may be defined. For example, in RRR3, points are of the form (x, y, z) for 3 arbitrary

parameters x,y,z. S ⊂ RRRn is a subspace S of RRRn such that S is a subset of RRRn. A hyperplane

is an (n− 1) subspace of RRRn. In RRR2, these objects are lines. In RRR3, these objects are planes.

This concept can be extrapolated for higher dimensions. Every (n − 1) hyperplane bisects

RRRn into two n-Dimensional subspaces of RRRn called halfspaces. A halfspace may be written

symbolically as an inequality of the form:

c1a1 + c2a2 + · · ·+ cn−1an−1 ≥ bi (5.1)

Where ai are activations for each muscle, ci are some coefficient, and bi are constraints.

Inequalities Ax ≤ b are equivalent to b − Ax ≥ 0 and matrices known as halfspace

representations HHH are (Equation 5.2):

H =
[
b | −A

]
(5.2)

In Chapter 3, the concept of convex sets was explored. Similarly, in geometry, there is a

concept of convex polytopes. In 2D, these objects are polygons (Figure 3.5), and in 3D, these

objects are polyhedra (Figures 5.1, 5.2). These polytopes are the simplest geometric objects

with flat faces of arbitrary dimension, and are usually just defined in terms of two possible

representations: VVV-polytopes and HHH-polytopes. V-FASV-FASV-FAS, or FAS-polytopes defined by their

vertex representation, consist of the set of vertices, the boundaries of FASFASFAS (Figure 5.1). By

contrast, H-FASH-FASH-FAS consist of the set of inequalities of the form Aa ≤ b that define FAS. From

H-FASH-FASH-FAS, it is possible to construct the boundaries of V-FASV-FASV-FAS by using the intersections of

several halfspaces.

Maximizing or minimizing the sum of activations only gives you a single vertex or interior

point of an entire RnRnRn V-FASV-FASV-FAS. The set of inequalities that form H-FASH-FASH-FAS, and the geometric

representation of the intersections of several halfspaces are both critical to understanding

how to navigate within V-FASV-FASV-FAS, a task tackled in Chapter 7.
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0 ≤ x ≤ 1
0 ≤ y ≤ 1
0 ≤ z ≤ 1

G-FASG-FASG-FAS =

x

y

z

V-FASV-FASV-FAS =



0 0 0
1 0 0
1 0 1
0 0 1
0 1 0
1 1 0
1 1 1
0 1 1



H-FASH-FASH-FAS =



0 1 0 0
0 0 1 0
0 0 0 1
1 −1 0 0
1 0 −1 0
1 0 0 −1


Figure 5.1: Four equivalent representations of the unit cube in R3.
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0 ≤ y ≤ 1
0 ≤ x ≤ 1
y ≤ 2− 2 x

G-FASG-FASG-FAS =

x

y

V-FASV-FASV-FAS =


0 0
1 0
.5 1
0 1



H-FASH-FASH-FAS =


−2 2 1
0 1 0
0 0 1
1 −1 0
1 0 −1


Figure 5.2: Four equivalent representations of a convex polygon in R2. Note that the row
in H-FASH-FASH-FAS [1 − 1 0] is redundant as can be seen in the graph and may be removed from the
H-FASH-FASH-FAS matrix.
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0

a2

a1

Figure 5.3: A simple 1 DOF model with 2 muscle-tendon actuators, highlighting the muscle
redundancy problem. There is more than 1 solution for actuator controls that can satisfy a
trajectory through operational space. Activation space here is the unit square.

Thinking about systems in terms of H-FASH-FASH-FAS has a unique challenge. While V-FASV-FASV-FAS

generally do not have redundancies unless dealing with floating-point tolerances or the

output of a Minkowski sum algorithm as used in Chapter 3, two linear systems may have

different H-FASH-FASH-FAS, but the same V-FASV-FASV-FAS (Figure 5.2). H-FASH-FASH-FAS that cannot be reduced further

by removing inequalities are called minimal and inequalities that are removed are called

redundant. Thankfully, thinking about feasible space in terms of H-FASH-FASH-FAS instead of V-FASV-FASV-FAS

has nice properties, even if forced to consider redundancy. For example, an intersection

operation of two H-FASH-FASH-FAS is trivial: just concatenate the HHH-matrices, whereas intersection of

two V-FASV-FASV-FAS is hard. Later in Chapter 7, redundant rows in H-FASH-FASH-FAS are shown to influence

central points of FAS.
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5.1.2 Muscle Redundancy

Hbounds =



0 1 0 . . . 0 0

0 0 1 . . . 0 0
... ... ... . . . ... ...

0 0 0 . . . 1 0

0 0 0 . . . 0 1

1 −1 0 . . . 0 0

1 0 −1 . . . 0 0
... ... ... . . . ... ...

1 0 0 . . . −1 0

1 0 0 . . . 0 −1



(5.3)

V-FASV-FASV-FAS is defined as the set of possible muscle-tendon actuator controls that can satisfy

the constraints identified through ID, or such that the maximal active component of muscle

moments can be scaled to match the ID solution accounting for the muscle passive component

of muscle moments and applied external generalized forces as per Equation 5.4.

ΓtaskΓtaskΓtask = F amf
m ~aRm×cRm×cRm×c + F pmf

m Rm×cRm×cRm×c − τext (5.4)

Or restructuring Equation 5.4 into the halfspace format in Equation 5.5 such that:

ΓtaskΓtaskΓtask − F pmf
m Rm×cRm×cRm×c + τext − F amf

m ~aRm×cRm×cRm×c = 0 (5.5)

H-FASH-FASH-FAS of an arbitrary musculoskeletal model at a particular time frame tsim can be

constructed by appending the ΓtaskΓtaskΓtask expressions (Equation 5.6) to theH-FASH-FASH-FAS (Equation 5.7)

of the unit hypercube in Rm:

H-FASH-FASH-FAS =

−ΓtaskΓtaskΓtask +∑
F pmf
m Rm×cRm×cRm×c + τext + E F amf

m1 R1×cR1×cR1×ca1 . . . F amf
mm R1×cR1×cR1×cam

ΓtaskΓtaskΓtask −
∑
F pmf
m Rm×cRm×cRm×c − τext + E −F amf

m1 R1×cR1×cR1×ca1 . . . −F amf
mm R1×cR1×cR1×cam

 (5.6)

83



H-FASH-FASH-FAS =



−ΓtaskΓtaskΓtask +∑
F pmf
m Rm×cRm×cRm×c + τext + E F amf

m1 R1×cR1×cR1×ca1 . . . F amf
mm R1×cR1×cR1×cam

ΓtaskΓtaskΓtask −
∑
F pmf
m Rm×cRm×cRm×c − τext + E −F amf

m1 R1×cR1×cR1×ca1 . . . −F amf
mm R1×cR1×cR1×cam

0 1 . . . 0

0 0 . . . 0
... ... . . . ...

0 0 . . . 0

0 0 . . . 1

1 −1 . . . 0

1 0 . . . 0
... ... . . . ...

1 0 . . . 0

1 0 . . . −1



(5.7)

Alternatively, moments expressions are used mapped to end-effector forces or D’Alembert’s

principle is used to derive expressions relating the inertial properties of bodies to dynamically

consistent accelerations. This method can have benefits as it reduces the number of

constraints as the set of coordinates of the model is usually much greater than 6 (the

maximum number of possible positional and orientational dimensions in Cartesian space).

The term E is a tolerance to the equality constraint to reduce stringency. Remember Chapter

4 showed some examples of taking an existing V-FASV-FASV-FAS and if it is possible to accurately

construct the projection operator, then it is possible to map the dynamically consistent

feasible forces to some downstream parameter. Muscles might work together, changing

their stiffness, increasing the contact force, but not necessarily changing the joint moments

required to drive the model. Again, one may flex biceps and triceps in different ways, yet

complete the same dynamic task, but different joint contact forces. Further, filtering V-FASV-FASV-FAS

using an experimental or model-derived joint contact force is shown in Chapter 6.

Touched in Chapter 2, if only the upper and lower bounds of each muscle over the course

of a dynamic task is desired, an equivalent problem is the following LP:
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∀m

min am

s.t.0 ≤ m ≤ 1

τ =
m∑
i=0

Hai

AND

maxmi

s.t.0 ≤ m ≤ 1

τ =
m∑
i=0

Hai

(5.8)

However, this optimization analysis (Equation 5.8) has marginal utility other than to

identify muscles that are necessary to perform a specific task. By contrast, the CG offers

us exactly how muscles are coupled to perform the task. How must the other muscles

compensate when one muscle is minimally or maximally activated is immediately observable

in feasible sets analysis. This is an extremely rich data set that is possible to generate

on each discrete time frame of the gait cycle and is conducive to analysis through MCMC

methods or neural networks. Any interior point of an activation space can be expressed as

the linear combination of the vertices of V-FASV-FASV-FAS. A case study is offered where V-FASV-FASV-FAS is

constrained by the ID moments. The results from this example should be familiar, as they

were used in Chapter 4 along with linear operators to map dynamically consistent activations

to interesting downstream parameters.

5.2 Study: Computing Feasible Controls

5.2.1 Case Study Motivation

Feasible sets analysis can be used to investigate the boundaries of control for arbitrary

models performing arbitrary tasks. The entirety of the space that defines the boundaries of

control, V-FASV-FASV-FAS, can be calculated at each discrete time of a kinematic trajectory using the

inverse dynamics moments ΓtaskΓtaskΓtask. Some case studies are offered using feasible sets analysis

with OpenSim’s freely available Arm26, Gait1018, and Gait2354 models, and the CG tool
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MPLRS [13]. Additionally, a reflection of Chapter 3 is offered where the feasible control for

one subject using a planar model is used to highlight the differences in V-FASV-FASV-FAS under different

levels of muscle model complexity.

5.2.2 Methods

First, a 2 DOF 6 muscles arm model (Figure 4.2) freely available with OpenSim was used

to identify feasible muscle activations that satisfy the ID-determined constraints over the

course of a simple elbow flexion task (Figure 4.3).

Second, A planar gait model with 10 degrees of freedom and 18 muscles available in

OpenSim was used to explore the influence of muscle physiological consideration on the

boundaries of V-FASV-FASV-FAS over progression of gait. The model was scaled to the anthropometry of

the subject (75 kg, 1.8 m). IK determined model kinematics matching experimental marker

data of the subject walking at 1.2 m/s on a treadmill. RRA adjusted model kinematics

and inertial properties to minimize dynamic inconsistencies between the model dynamics

and experimental ground reaction forces. CMC determined muscle excitations and resulting

model states for a forward dynamic simulation.

Additionally, using data collected as part of [50], the freely available Gait2354 model

(Figures 5.4) packaged with OpenSim [86] was scaled to the anthropometry of the subject

(1.8 m, 75.16 kg). IK procedure was used to determine the model kinematics matching

experimental marker data walking on treadmill at a self selected speed. RRA was used to

minimize dynamic inconsistencies in the model dynamics and experimental ground reaction

forces. CMC determined muscle excitations and resulting model states for a forward dynamic

simulation.

For each of the 3 models described, for each discrete time of the kinematic task, the

boundaries of activation space are computed by constructing H-FASH-FASH-FAS (Equation 5.7) and

performing CG using MPLRS [13].

86



gluteus medius

piriformis

sartorius

tensor fascia latae
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medial gastrocnemius

vastus intermedius

tibialis anterior
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Figure 5.4: Diagram of the muscles of the Gait2354 model used to find V-FASV-FASV-FAS bounds
(Figure 5.6). Biarticular muscles are between primary colors.
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5.2.3 Results

The ID-constrained V-FASV-FASV-FAS bounds were found for the simple Arm26 model. The nonzero

lower bounds of biceps brachii long head (Figure 4.6) imply that for this model, this muscle

is necessary: it is impossible to perform the elbow flexion without using biceps brachii long

head.

Similarly, the planar Gait1018 model (Figure 4.4) was used to find feasible muscle

activations over the course of the gait cycle. These results agree well with the OpenSim

CMC solution (Figure 4.8). Necessary muscles can be observed from nonzero lower bounds:

particularly iliopsoas near the right toe off is necessary for performing the hip flexion to

prepare the leg for swing phase. Also, tibialis anterior plays a critical role in the ankle

plantar-flexion during the heelstrike. Note that the specific kinematic trajectories analyzed

in this feasible sets analysis show that iliopsoas and tibialis anterior are not just critical,

but absolutely necessary to performing these specific behavioral tasks, it may be possible

to modify the kinematics in such a way that still produces gait without needing these two

muscles.

To revisit the static parameter analysis from Chapter 3 (Figure 5.5), V-FASV-FASV-FAS was different

under different physiological considerations. vmvmvm considerations increased the necessity of

tib ant during ankle dorsiflexion near heel strike at 0%. Interestingly, no muscles became

less necessary when including vmvmvm over progression of gait as would be indicated by a lowered

lower bound, therefore including the muscle parameters seems to constrain feasible controls,

but further analysis with more complicated multi-joint models should be explored.

In the analysis of the Gait2354 (Figure 5.6), very few muscles were found to be necessary

as indicated by nonzero lower bounds on muscle activation. Nonzero lower activation bounds

indicated that only glut med1 during toe off and tib ant during heel strike were deemed

necessary muscles for gait, and other muscles were able to account for the functions of these

two muscles. Interestingly, increasing the model complexity from Gait1018 to Gait2354

reduced the necessity of muscles. These results align with previous works that used linear

optimization to identify bounds of muscle activation over the course of the gait cycle [87];

however, these papers used a more complex model featuring 92 muscles instead of the 54
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Figure 5.5: Revisiting Chapter 3. From the pseudostatic analysis, it is possible to
investigate how muscle model complexity influences the bounds on FAS.
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Figure 5.6: V-FASV-FASV-FAS of the 24 leg muscles over the course of the gait cycle with the OpenSim
CMC solution in red.
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muscle model analyzed here. CG is limited to within 40 muscles even with sophistication

such as trivial parallelization or running the analysis on supercomputers/clusters due to the

computational complexity of CG.

5.2.4 Discussion

In each of the 3 models investigated, ID-constrained V-FASV-FASV-FAS (Figures 4.6, 4.8, and 5.6) bounds

the OpenSim CMC solution and highlights that there is a wide range of possible combinations

of actuator controls instead of the optimal solutions found through CMC or SO.

Key differences in the feasible activation ranges were identified under different muscle

physiological consideration (Figure 5.5). For some muscles like iliopsoas, V-FASV-FASV-FAS bounds

under the vmvmvm consideration were constrained from the peak isometric case, whereas for some

muscles like tibialis anterior, the inclusion of vmvmvm considerations increased the lower bound of

feasible activations and increased muscle necessity. Near toe off, vmvmvm consideration constrained

V-FASV-FASV-FAS for muscles (glut max, vastus lateralis, iliopsoas,rectus femoris, gastrocnemeus), but

increased V-FASV-FASV-FAS bounds for soleus and hamstrings. These results mirror concerns discussed

previously in the literature [7, 117] and highlight the importance of the muscle physiology

being incorporated in the muscle model to obtain more accurate controls approximations.

Feasible sets analysis has promise in the design of MCMC methods, yet remains

computationally expensive; however, it may be possible to reduce computational complexity

by grouping muscles by function or to perform a principal component analysis to identify

muscle synergies and performing feasible sets on a reduced dimension muscle synergy set

instead of a large muscle set.

5.3 Tools

For advanced developers, an in-depth exploration of the mathematics and code and

paradigms used are outlined in this section (Figure 5.7).
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fasWrapper

feasible
activation forces

OpenSim’s API

MPLRS

full space map

Figure 5.7: Software flowchart.

feasibleActivation

Feasible activation sets analysis such that the activations HHHrepresentation is only bounded

by the ID constraints

5.4 Chapter Summary

This basic framework of constructing H-FASH-FASH-FAS to fully define the parameter space at each

discrete time over the gait cycle is the basic framework that is expanded in Chapters 6

and 7. While Chapter 6 continues on the path of using H-FASH-FASH-FAS to CG to concretely define

activations V-FASV-FASV-FAS for each discrete time of the dynamic task, Chapter 7 instead usesH-FASH-FASH-FAS

to navigate the interior of feasible space using probability distributions.
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Chapter 6

Constraining Feasible Controls by

Experimental Joint Forces

6.1 Chapter Background

It is possible to take the methodologies developed in Chapter 5 and find the V-FASV-FASV-FAS of the

muscles and constrain by an experimentally recorded or in silico derived muscle-dependent

parameter [32, 60]. In this chapter, the joint contact forces (JCF) derived using OpenSim

Joint Reaction Analysis (JRA) is used to constrain feasible controls; however, the method

of constructing H-FASH-FASH-FAS over each discrete time of a kinematic task by using a procedurally

generated analytical solution may be extrapolated to any muscle dependent parameter. Also,

the method of using JRA to constrain controls can be extrapolated to using data recorded

with an instrumented knee.

6.1.1 Procedurally Constructing Constraints

The topology of the multibody tree (Figure 6.1) is important as it is a graph containing the

information about how forces need to be summed to obtain downstream parameters. The

connection from ground to pelvis represents the virtual DOFs relating the base node pelvis to

the position and orientation of the entire system in the global cartesian frame. It is possible

to programmatically define the path from relevant leaves of the multibody graph to the
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femurR

tibiaR

talusR

calcnR

toesR

patellaR

femurL

tibiaL

talusL

calcnL

toesL

patellaL

torso

Figure 6.1: A typical multibody tree of a gait focused musculoskeletal model. The path to
compute left knee loads is depicted in red. The linkage between the ground and the pelvis
reflects the virtual DOFs that describe the MBS position and orientation relative to the OOO
origin.
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body1 body2

Figure 6.2: Joint relating the connection between body1 and body2 as a dashed line, and
the muscle (red) applying tension to bodies (blue).

important body of a joint desired to be constrained, by constructing a directed graph based on

the bodies that compose each joint. OpenSim is a fantastic tool for musculoskeletal modeling;

however, it does not offer analytical expressions for the JCF, so methods of estimating the

loads have to be implemented to construct FAS constraints that map to JCF [32, 59, 64, 123].

Similarly, there exist plugins that solve for the JCF, yet no solutions exist that procedurally

construct the analytical expressions. 1 A limitation of this approach is the inability to

deal with closed-loop kinematic chains; however, future work should be able to address this

limitation.

Generally, when solving for JCF, one approach is to work up the kinematic chain from

the location of the applied external loads and considering the linear acceleration of bodies

at tsim [4, 37, 113, 118, 124].

6.1.2 Muscle Lines of Action

Muscles apply tension (Figure 6.2) in directions from points on the bodies where their tendons

insert to the bone (Figure 2.8) [32]. In OpenSim, it is trivial to find the geometry path of a

muscle and the line of action of the applied on-body force.

To relate the experimentally recorded JCF to the model AAA:

Fj = ~Fmamfb1
+ · · ·+ ~Fmamfbb

+
~Fmpmfb1

+ · · ·+ ~Fmpmfbb
+

Fextb1 + · · ·+ Fextbb+

~ab1mb1 + · · ·+ ~abbmbb

(6.1)

1These tools instead rely on Simbody to do that hard work.
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By rearranging Equation 6.1 and concatenating this matrix to the Equations 5.3 and 5.6:

RHS =
∑[

Fj − ~Fmpmfb∑
1→b
− ~Fextb∑

1→b

]

LHS = ~Fmamfb∑
1→b

H =



−Γtask+∑(F pmf
m Rm×c)

+τext + E

F amf
m1 R1×ca1 . . . F amf

mm−1R1×cam−1 F amf
mm R1×cam

Γtask−∑(F pmf
m Rm×c)

−τext + E

−F amf
m1 R1×ca1 . . . −F amf

mm−1R1×cam−1 −F amf
mm R1×cam

−RHS + E2 LHSa1 . . . LHSam−1 LHSam

RHS + E2 −LHSa1 . . . −LHSam−1 −LHSam
0 1 . . . 0 0

0 0 . . . 0 0
... ... . . . ... ...

0 0 . . . 1 0

0 0 . . . 0 1

1 −1 . . . 0 0

1 0 . . . 0 0
... ... . . . ... ...

1 0 . . . −1 0

1 0 . . . 0 −1



(6.2)
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6.2 Study: Constraining Controls by Joint Loads

6.2.1 Case Study Motivation

Biomechanics researchers or clinicians generally rely on optimization to find sets of muscle-

tendon actuator controls capable of driving a musculoskeletal model in forward dynamic

simulations to gain insights into neural control. Similarly, when humans design robots,

they want each degree of freedom or generalized coordinate to be controlled by a single

motor or linear actuator. By contrast, biological systems employ many redundant muscles

that overlap in function which is a complicated controls problem. To address this issue,

researchers compute AAA by minimizing parameters like energy or muscle tension. V-FASV-FASV-FAS is

the set of all possibleAAA that can satisfy the ID and IK constraints for a specific discrete time.

The joint contact forces are a function of both the inertial properties of the bodies and also

the geometry and physiology of the muscles that span the joints [17]. Instead of relying on

optimization, an analytical approximation of joint contact forces is used to constrain V-FASV-FASV-FAS

found using CG.

6.2.2 Methods

It is possible to construct a linear equation of the form (Equation 5.1) that maps the active

muscle force contribution to a parameter like generalized force. Coefficients of such equations

can be combined to form the halfspace representation (HHH) of a convex polytope. Rewriting

Equation 6.2 in a more concise form (Equation 6.3):
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H =



−Γtask τ1 τ2 . . . τm

−Rexp F1 F2 . . . Fm

Γtask −τ1 −τ2 . . . −τm
Rexp −F1 −F2 . . . −Fm

0 a1 0 . . . 0

0 0 a2 . . . 0
... ... ... . . . ...

0 0 0 . . . am

1 −a1 0 . . . 0

1 0 −a2 . . . 0
... ... ... . . . ...

1 0 0 . . . −am



(6.3)

V-FASV-FASV-FAS is found by CG on H-FASH-FASH-FAS using an algorithm such as reverse search developed

by Avis and Fukuda [10]. While computationally expensive relative to optimization, CG

produces extremely rich data sets that describe the boundaries of the possible combinations

of every muscle and avoids pitfalls like finding only local minima.

6.2.3 Results

The joint-constrained V-FASV-FASV-FAS bounds were found for the simple arm26 model (Figure 6.3)

freely available with OpenSim where the elbow loading obtained using JRA is used to

constrain V-FASV-FASV-FAS. JCF-constrained V-FASV-FASV-FAS bounds the OpenSim CMC solution. Perhaps

not surprisingly, biceps brachii long head is important for elbow flexion and becomes more

necessary when constraining by the JCF.

Similarly, the planar Gait1018 model (Figure 6.4) provided with OpenSim was used to

generate in silico joint contact forces of the knee over the course of the gait cycle. OpenSim

CMC and JRA were used to generate experimental joint forces. These results agree well with

the OpenSim CMC solution (Figure 6.5). Hamstrings and gastrocnemius can be significantly

constrained while other muscles have much higher space for variability.
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Figure 6.3: Similarly, V-FASV-FASV-FAS for an upper extremity model performing an elbow flexion
with the hand supinated. Joint loads were determined using OpenSim JRA.
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Figure 6.4: Diagram of the muscles of the Gait1018 model used to find V-FASV-FASV-FAS bounds
in Figure 6.5 highlighting the most constrained muscles in bold. Biarticular muscles are
between primary colors.

The previous Gait1018 analysis is applied to the more complex Gait2354 model (Figure

6.6) available freely with OpenSim. The boundaries of V-FASV-FASV-FAS is constrained by the knee

loading. JCF-constrained V-FASV-FASV-FAS bounds the CMC solution as in the previous two examples

(Figure 6.7). Feasible AAA for medial gastroc, rectus femoris, vastus intermedius and biceps

femoris long head is very significantly constrained relative to other muscles, highlighting the

relative importance of these muscles in the generation of knee loads. These results differ

slightly from the Gait1018 results (Figure 6.4) as models with more muscles have more

room to manipulate the muscles to produce the desired forces. This analysis was performed

without any grouping of muscles by function or muscle synergies, so these aspects of control

are not reflected, but may be an interesting avenue for future work. Feasible sets analysis

captures the CMC solution using the joint reactions, but highlights that there is a range of

possible controls.
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Figure 6.5: V-FASV-FASV-FAS for the right leg constrained by the JCF. JRA determined joint contact
forces of the right knee only, which are functions of the muscle states derived from CMC.
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Figure 6.6: Diagram of the muscles of the Gait2354 model used to find V-FASV-FASV-FAS bounds
(Figure 6.7) highlighting the most constrained muscles in bold. Biarticular muscles are
between primary colors.
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Figure 6.7: Feasible JCF used to constrain the V-FASV-FASV-FAS using the joint contact force
expression.
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Using the frameworks developed from previous chapters, additional constraints are added

by appending them to H-FASH-FASH-FAS. The procedure for constructing equations that describe the

relationships between muscle AAA and the interstitial forces at a selected joint are described.

6.2.4 Discussion

Filtering feasible activation by the experimental JCF constrains V-FASV-FASV-FAS over the gait cycle.

Analytical approximations of joint reactions using muscle lines of action and the body inertial

properties were determined for each frame of an ad hoc simulation at run-time.

Muscles apply tensions to their attached bodies along a path known as the line of action

which is a function of the geometry and muscle routing, and changes over time as the model

performs a kinematic task. These analyses were performed using CMC states; however, the

IK solution can also just as easily be used similar to the SO procedure. These analytical

approximation of JCF can be obtained at run-time trivially for models that do not have closed

loop kinematic chains. Future works should investigate implementing different kinds of joints

and various types of actuators that were not investigated in this analysis. JCF constrained

FAS bounds OpenSim’s CMC solution and highlights that there is great variability of possible

AAA that may satisfy the JCF requirements of the motion. These results have clinical relevance

for the analysis of osteoarthritis in subjects with instrumented joints, and can be used to

compare filtered EMG with joint-constrained V-FASV-FASV-FAS bounds and vertices. Additionally, these

methods can be easily expanded to investigate other muscle-dependent constraints.

6.3 Tools

For advanced developers, an in-depth exploration of the mathematics and code and

paradigms used are outlined in this section (Figure 6.8).

feasibleActivationConstrained.py FAS analysis such that the AAA HHH-representation is

bounded by an experimental JCF and the inverse dynamics solution.
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feasible activation
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Figure 6.8: Chapter 6 software components.

6.4 Chapter Summary

Procedurally constructed H-FASH-FASH-FAS using any muscle dependent downstream parameters such

as JCF constrain FAS significantly and also bounds CMC’s solutions within filtered feasible

space. Navigating a multibody tree down from the base node (in gait models, this node

will be the pelvis) to the location of applied loads and navigating up to where the JCF are

applied is employed in feasibleActivationsConstrained.py.
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Chapter 7

Windowing for Controls: Feasible

Activation Space Trajectories

7.1 Chapter Background

In previous chapters FAS were found that satisfied the ID or JCF constraints necessary to

drive the forward dynamic simulation. In this chapter, a high-throughput MCMC approach

to computing H-FASH-FASH-FAS over time using only the first order AAA dynamics is explored. FAS

Trajectories (FAST) is an MCMC method of computed muscle control that exploits the

fundamental aspects of convex H-FASH-FASH-FAS as explored in the previous chapters of this research.

7.1.1 Challenges

The CG problems explored in Chapters 5 and 6 produce large high fidelity data sets that

researchers can use to construct MCMC by way of arbitrary linear combinations of the AAA

vertices, but these methods are constrained by the nature of the CG problem. Problems of

sufficient dimension (a sufficient number of muscles) have disk space and computational

time requirements that exceed the bounds of human existence itself. Until there are

breakthroughs in P = NP or quantum computation, it is not really possible to make tools

that researchers and clinicians can use with complex models of many muscles. Instead, some

conic optimization and MCMC methods are exploited that are designed specifically for the
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analysis of polytopes: exactly the objects constructed in Chapters 5 and 6. Chiefly, there

are two key problems:

1. how to move inside one H-FASH-FASH-FAS without finding the equivalent V-FASV-FASV-FAS

2. how to move between two H-FASH-FASH-FAS for different discrete times

Definitionally, unless in statics or assuming the exact same model pose with the same

applied external loads, AAA that produce one ΓtaskΓtaskΓtask for a specific discrete time are never equal

toAAA that produce another ΓtaskΓtaskΓtask for a different discrete time. This relationship is why looking

at the upper and lower bounds of the FAS is so deceiving. Just because the upper and lower

bounds plots shown in Chapters 4, 5 and 6 at two distinct time points are the same, it does

not imply that combinations of AAA that produced a particular movement are the same at all,

unless of course, the QQQ, Q̇̇Q̇Q, Q̈̈Q̈Q and FextFextFext are exactly the same.

7.1.2 First Order Muscle Activation Dynamics

Before exploring MCMC, a review of first order muscleAAA dynamics as outlined in dynamical

models written in Winters, and again in Thelen, is in order (Figure 7.1), and then the upper

and lower bounds of FAS for a future time frame in a discrete time analysis is derived. A

muscle’s force comprises potentially three components. An active muscle force is a function

of the lmlmlm of a muscle, vmvmvm of a muscle, and the muscle’s AAA level. The rate of firing neural

excitations from the brain are mapped to this excitation level, which reflect the effective

Calcium ion level within muscle cells. For OpenSim models, it is typical to use either Thelen

or Millard muscle models, and so, this discussion is pertinent to this research. Muscles

apply tension to bones along tendons, which attach to bones. Additionally, a muscle also

has a passive force which is a function exclusively of the muscle lmlmlms. While important for

musculoskeletal modeling, for slow behavioral tasks or the analysis of rigid tendon driven

robotic manipulators, the dichotomy between active and passive muscle force can be ignored.

The entirety of the length of MTU is a function of the coordinates of the model; however,

the individual lengths of the muscle and the tendon are each a function of the AAA and vmvmvm.

For this reason, controllers for muscle tendon actuators in OpenSim rely on using both the

muscle AAA level and the muscle lmlmlm.
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Figure 7.1: Figure from Thelen2003 [96] (left) and Millard2012 [71] (right). Both of these
models are very similar equilibrium-type muscle models with the main difference is that
Millard2012 has additional parameters and toggles, such as the ability to ignore tendon
compliance.

For the Thelen muscle model, muscle force is defined in Equation 3.9.

From Equation 2.13, ƒL(lmlmlm) is the gain representing the position of the muscle on the

F-L curve, and ƒV (vmvmvm) is the position of the muscle on the F-L-V surface and ƒPE(lmlmlm) is the

position of the muscle on the passive force length curve.

These equations of muscle forces should be familiar, but here the first order muscle AAA

dynamics are analyzed.

da

dt
= u− a
τ(a, u) (7.1)

τ(a, u) =
τact(0.5 + 1.5a) : u > a

τdeact/(0.5 + 1.5a) : u ≤ a
(7.2)

Where u is the excitation, which reflects the map to the muscle activation a, u → a

occurs via the accumulation of Calcium ions in the muscle. Upper and lower bounds on AAA

in the next discrete time frame are now derived.

Let ulb = 0 and uub = 1 be the upper bound and lower bounds on muscle excitation.

Muscles can be maximally or minimally excited by substituting these bounds to Equation

7.2.
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Lower Bound:

τ(a, 0) =
τact(0.5 + 1.5a) : 0 > a

τdeact/(0.5 + 1.5a) : 0 ≤ a
(7.3)

0 < a so from Equation 7.3, it is possible to derive (Equation 7.4):

τ(a, 0) = τdeact/(0.5 + 1.5a) (7.4)

Upper Bound:

τ(a, 1) =
τact(0.5 + 1.5a) : 1 > a

τdeact/(0.5 + 1.5a) : 1 ≤ a
(7.5)

Take the first conditional of Equation 7.5 to be always true (Equation 7.6),

τ(a, 1) = τact(0.5 + 1.5a) (7.6)

Now to compute upper and lower bounds on AAA, alb and aub from the Equation 7.1:

Let activations vector aaa be constructed from the set AAA and let uuu be the vector of neural

excitations for each muscle and let ∆t be the frame time for a simulation of n discrete time

frames:

Lower Bound:

Let uuu =
[
0 0 . . . 0

]
and let aaa =

[
a1 a2 . . . am

]
.

da

dt

da

dt

da

dt
lb = uuu− aaa

τ(aaa,uuu) = −a
aa(0.5 + 1.5aaa)

τdeact
= (−0.5aaa− 1.5aaa2)

τdeact
(7.7)

Equation 7.7 involves finite differences to relate back to activations so:

aaalb = aaa+ ∆tda
dt

da

dt

da

dt
lb = aaa+ ∆t(−0.5aaa− 1.5aaa2)

τdeact
(7.8)

Upper Bound:

Let uuu =
[
1 1 . . . 1

]
and let aaa =

[
a1 a2 . . . am

]
.
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da

dt

da

dt

da

dt
ub = uuu− aaa

τ(aaa,uuu) = (uuu− aaa)τact(0.5 + 1.5aaa) = τact(.5uuu+ aaa− 1.5aaa2) (7.9)

Equation 7.9 can be written as Equation 7.10, similarly to Equation 7.8:

aaaub = aaa+ ∆tda
dt

da

dt

da

dt
ub = aaa+ ∆tτact(.5uuu+ aaa− 1.5aaa2) (7.10)

The beautiful thing about working with halfspaces is that hypercube bounds can be

changed really easily. Remember the halfspace representation from Chapter 5 where at the

end of H-FASH-FASH-FAS is the matrix (Equation 5.3).

This halfspace representation represents a unit hypercube in RRRn for a system of n muscles.

To change H-FASH-FASH-FAS to reflect the first order dynamics muscle AAA bounds:

H∆a∆t =



−a1
lb 1 0 . . . 0

−a2
lb 0 1 . . . 0

... ... ... . . . ...

−amlb 0 0 . . . 1

a1
ub −1 0 . . . 0

a2
ub 0 −1 . . . 0
... ... ... . . . ...

amub 0 0 . . . −1



(7.11)

The upper and lower bounds of the future time frame (Equations 7.7, 7.9) and this new

H∆a∆t (Equation 7.11) is appended to the ID constraintH or similarly any other procedurally

constructed muscle dependent constraint. Ideally there would be some analytical/ functional

approach for determining the feasible muscle AAA. Definitionally, the sets of AAA that satisfy

the ID constraint for one time frame can never equal the sets of feasible AAA that satisfy the

ID constraints for another time frame unless the ID constraint itself is equal between time

frames and the model assumes the same pose.
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7.1.3 Application of the Bounds on Muscle Activation to CG

Previously in the literature, the Hit-and-Run (HAR) algorithm has been proposed as a

tool that can be used to sample H-FASH-FASH-FAS; however, HAR suffers in the dynamic case as ID-

constrained H-FASH-FASH-FAS are thin and HAR often gets trapped locally within the V-FASV-FASV-FAS without

rescaling operations [24].

Concepts of polytope centers, HAR, and a polytope-focused MCMC method, the Dikin

Walk (DW), are explored as methods of tunneling for feasible AAA and getting insights into

the structure of feasible space.

7.1.4 Minimal Activation

Minimizing ‖a‖ is similar to approaches used in SO and CMC, but both SO and CMC use

a quadratic objective instead of the simple linear objective. V-FASV-FASV-FAS encompasses a wide

assortment of possible solutions that satisfy the dynamic task; however, approaches like

CMC arrive at singular solutions with stringent constraints on how the objective can be

changed, making it challenging or even impossible to construct models of impaired control.
1

7.1.5 ”Centers” of FAS

The fortunate aspect of working with convex sets is that the mean of the vertices of the

polytope is an interior point. 2

Axiom 1. The vertex center of a convexH-FASH-FASH-FAS is the average of the vertices of that polytope.

If v is the number of vertices of the VVV of an equivalent H-FASH-FASH-FAS:

avc = 1
v

v∑
i=0

ai

Axiom 1 is the least useful to us as it obligates us to perform CG from the H-FASH-FASH-FAS from

Chapters 5 and 6. Clinicians and researchers want fast methods, and they cannot wait hours
1Perhaps definitionally, impaired control is not optimal.
2If this relationship is not immediately obvious, just average the vertices of a square, or the ends of a line

segment or the corners of a cube.
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Figure 7.2: highlighting the acc, the center of the largest hypersphere that fits within
H-FASH-FASH-FAS.

to perform CG. Additionally, the vertex center need not be the optimal starting position.

These ideas of centers are explored in Section 2.2.4.

To that aim, there is another definition of a ”central point” that lies within V-FASV-FASV-FAS: the

Chebyshev center acc. Every H-FASH-FASH-FAS has at least one largest possible hypersphere that may

lay within it. It has a radius r and has a feasible location acc.

Axiom 2. acc of H-FASH-FASH-FAS is the point that satisfies the following LP: Inject an additional

variable r which is the length of the radius of the largest euclidean ball that fits within the

H-FASH-FASH-FAS.
max r

s.t. bi − Aix− ‖Ai‖r ≥ 0

Axiom 2 has more utility than the vertex center (Figure 7.2) since it can be computed

in reasonable time using LP, but the H-FASH-FASH-FAS used in feasible muscle sets analysis are ”thin”:

relaxed from a stringent equality constraint only by a factor ε, so these H-FASH-FASH-FAS technically

have many possible solutions that satisfy definitionally for acc.
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Figure 7.3: acc can often be a bad estimate of the center of H-FASH-FASH-FAS, particularly when the
polytope is ”thin”.

It is not uncommon to compute the acc of a thin H-FASH-FASH-FAS only to arrive at a relative

extremum within V-FASV-FASV-FAS as opposed to warm starts (Figure 7.3).

For each H-FASH-FASH-FAS, there is a unique analytical center aac. aac is distinct from the

vertex center described in Axiom 1. One V-FASV-FASV-FAS may have many equivalent H-FASH-FASH-FAS due

to constraint redundancy. aac is sensitive to redundancy of the constraints applied to the

system. Therefore, many H-FASH-FASH-FAS that have the same V-FASV-FASV-FAS representation, and thus, the

same vertex center, can have different aac. In statics and dynamics, this distinction between

the analytical and vertex centers is akin to the distinction between the geometric centroid and

the center of mass of a body. The aac ofH-FASH-FASH-FAS can be found by performing a maximization

on what is known as the logarithmic potential function Px.

Axiom 3. aac of H-FASH-FASH-FAS is the point that satisfies the following CP:

max
a

m∑
i=1

log (bi − ATi a)
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Similarly a weighted aac can be found for a given set of weights wi:

max
a

m∑
i=1

wi log (bi − ATi a)

The log-sum expression in Axiom 3 is a structure that proves useful later in sampling

H-FASH-FASH-FAS. This expression is known as a type of barrier function that maps the matrixH-FASH-FASH-FAS

into a single function.

Lemma 7.1. aac can be approximated by newton’s iterative method [82] with the newton

direction as

δnt = (ATS−2A)−1ATy

s.t. S = diag(1
y

)

yi = bi − Aiai

Lemma 7.2. When sampling from an H-FASH-FASH-FAS with a uniform distribution, for N →∞, the

mean of sample points approaches the aac.

If the CG for an H-FASH-FASH-FAS is already performed, from Lemma 7.1, to investigate the most

likely AAA, a fair central point to use is avc of the H-FASH-FASH-FAS.

Lemma 7.3. For N → ∞, the samples points distribution approaches the distribution that

gains vector ggg was selected from.

Checking if ppp is an interior point of H-FASH-FASH-FAS is trivial: just verify if every inequality of

H-FASH-FASH-FAS is satisfied for the point ppp. If any number inequalities fail to hold, then p cannot be

within this H-FASH-FASH-FAS.

7.1.6 Hit-and-Run (HAR)

In the static domain, where there is a wide range on the constraint, HAR is a fantastic

tool for sampling V-FASV-FASV-FAS. Remember that the halfspace representation of H-FASH-FASH-FAS is just the
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Figure 7.4: Start at an interior point and find the λ to each halfspace.

intersection of several halfspaces instead of the vertices and that a halfspace is a subspace

of RRRn created when the space is bisected RRRn by a hyperplane [2, 65, 66]. For some arbitrary

point ppp within FAS, a vector of the shortest euclidean distances from this point ppp, to each of

the hyperplanes that construct an H-FASH-FASH-FAS is constructed. The points on the halfspaces that

form FAS from ppp along these shortest euclidean distances may or may not necessarily be

within the H-FASH-FASH-FAS. It is also possible to project these along an arbitrary direction to arrive

at the shortest euclidean distances along the current direction to arrive at a given halfspace,

known as λi for each Ai. A negative euclidean norm signifies that the halfspace is in the

opposite direction from the supplied unitary direction vector.

Each halfspace is dual to the normal vectors from that halfspace, and there exist normal

vector from the halfspaces that cross the point ppp (Figure 7.4).

For a given hyper-spherical unitary direction, it is possible to find the distances λi from

the point ppp to each of the halfspaces that comprise A (Figure 7.5). The shortest positive and

negative λ can be used to select a new point along the unitary direction that definitionally

must lie within V-FASV-FASV-FAS (Figure 7.6). This method is repeated as necessary. As per Lemmas
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Figure 7.5: Pick a unitary direction from the standard Gaussian ggg.

7.2 and 7.3, enough sample points on V-FASV-FASV-FAS interiors will lead the sample distribution toward

the sampling distribution.

For some gains vector ggg and a set of vectors vvvaux following the shortest euclidean distance

from an arbitrary point ppp. In the case that H-FASH-FASH-FAS is not non-redundant, an additional step

is performed to check if a point ppp+ ggg � vvv is within H-FASH-FASH-FAS, and if it is outside, then do not

update ppp. By simply filtering the upper and lower bounds on λ to the smallest positive and

smallest negative, it is possible to solve this issue; however, ideally, it would be beneficial

to perform a redundancy removal on the H-FASH-FASH-FAS to remove redundant inequalities. In the

dynamic case, HAR (Algorithm 6) suffers because the iteration gets trapped locally as it hits

the sides of V-FASV-FASV-FAS. There are scaling methods for dealing with this issue, but instead an

116



Figure 7.6: Iteratively select points that lay within V-FASV-FASV-FAS.

adaptation of an MCMC method that is specialized for dealing with polytopes as opposed

to purely linear systems was developed: the Dikin walk.

7.1.7 Dikin Walk (DW)

In the iterative Newtons approximation for the analytical center, (ATS−2A)−1 is an inverse

Hessian matrix. As the Jacobian is a matrix of first order partials, the Hessian is a matrix

of second order partials. The Hessian matrix (Equation 7.12) is just the Jacobian of the

gradient of a function: H = J(∇f).

H =



δ2f
δa2

1

δ2f
δa1δa2

. . . δ2f
δa1δam

δ2f
δa2δa1

δ2f
δa2

2
. . . δ2f

δa2δam
... ... . . . ...
δ2f

δamδa1

δ2f
δamδa2

. . . δ2f
δa2
m


(7.12)

Additionally, the concept of barrier functions were touched on in this chapter when

solving for the analytical center through the conic maximization of the log potential, using
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Figure 7.7: the log barrier of the ”home plate”-shaped H-FASH-FASH-FAS shown many times
previously: z = ∑m

i=1 log (bi − ATi a)

the logical extension of the Lemma 7.2 (Figure 7.7), a complicated system of many linear

constraints equations can be formulated, visualized, and optimized as a single function.

In the thin V-FASV-FASV-FAS produced in the dynamically constrained problem and the joint contact

force constrained problem, the HAR procedure tends to get trapped locally as it bounces

on the edges of a thin V-FASV-FASV-FAS and succumbs under ill-conditioned Jacobian matrix for OOO

constraints: an unfortunate event that happens extremely often for biological systems.

The concept of the Chebyshev center and the largest possible euclidean ball that may fit

within a H-FASH-FASH-FAS can be extrapolated to ellipsoids called John ellipsoids.

A special John ellipsoid can be found by computing the Hessian of the log barrier

function used in the conic maximization: it is possible to arrive at an expression for an

ellipsoid known as the Dikin ellipsoid. The Dikin ellipsoid is the central feature of the

Dikin walk [34]: to iteratively compute these and to select a new sample from the ellipsoid

interior to use in the computation of the future frame Hessian. While the HAR algorithm is

dependent on the condition number ofH-FASH-FASH-FAS, the Dikin walk is affine-invariant: the mixing

time and the selection of sufficiently different samples do not depend on features typical in

multibody dynamics like kinematic singularities [21]. Fortunately, this Hessian is symmetric

and positive-definite, which simplifies inverse calculation.
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In the standard Dikin walk, the future frame u is called a proposal vector which is chosen

at random from a uniform distribution centered on the currentAAA, a, and where Da = ∇2F(a)

is the Hessian of the log barrier (Equation 7.13):

{u ∈ RRRm|(u− a)TDa(u− a) ≤ R} (7.13)

There is a Dikin walk variant where instead of the uniform distribution, the proposal

vector is chosen from a Gaussian with the covariance determined from the Dikin ellipsoid,

which was has been shown to produce proposals with a high probability of landing in V-FASV-FASV-FAS

[83, 51]. In the next section, a novel variant of the Dikin walk where proposals are drawn

from a multivariate skew normal instead of the Gaussian distribution to preferably weight

deactivation future states is explored.

7.1.8 Modified Dikin with Multivariate Skew Normal

An unfortunate consequence of using the first order AAA dynamics to find aub and alb is that if

the standard Gaussian is used to sample H-FASH-FASH-FAS, AAA will tend up toward maximal excitation

under typical physiological selection of muscle τact = .01 and τdeact = .04. In order to

generate curves that are similar to CMC, a modification of the Dikin walk is offered so that

the proposal vectors are drawn instead of a Gaussian distribution (Figure 7.8), a skewed

multivariate normal distribution that prefers proposal vectors that tend toward more equally

weighted activation/deactivation from the previous discrete time. And these two features,

that the future frame AAA are bounded by the upper and lower bounds from first order AAA

dynamics expressions explored earlier in this chapter and Dikin walk proposals are drawn

from the multivariate skew normal are enough to produce CMC-like plots with variance

determined from the skew factors (Figure 7.9). The skew Gaussian allows for modifying the

likelihood of activation or deactivation relative to the boundaries of FAS; however, there is

no closed form solution for the shape parameter α. A proof of how the skewness is estimated

and then used to compute a maximum likelihood-based estimate of α is provided.

The multivariate skew normal can be written in the form (Equations 7.14, 7.15, 7.16):
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Figure 7.8: Two views of the bivariate standard Gaussian.
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Figure 7.9: A multivariate skew normal with α = 10 for both a1 and a2.

f(a) = 2φ(a)Φ(αa) (7.14)

Where Φ(a) is the cumulative distribution function:

Φ(a) = 1
2(1 + erf( αa√

2
)) (7.15)

And φ(a) is the probability density function:

φ(a) = 1√
2π
e−

a2
2 (7.16)

erf(a) is also known as the Gaussian error function [112].

The Bowley skewness of a distribution is a function of the quartiles (Equation 7.17):

γ = Q3 +Q1 − 2Q2

Q3 −Q1
(7.17)

The quartiles from the median at−1 are selected (Equation 7.18):
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alb Q1 at−1 Q3 aub

Figure 7.10: The euclidean distances from the upper and lower bounds to at−1 is
asymmetrical so the expected value sampling from the standard normal favors activation over
deactivation. It is possible to trivially estimate the quartiles as functions of the euclidean
distance from at−1 to alb and aub and apply this method in a correction (Equation 7.20).

Q1 = at−1 + .67∆tτdeact
2

Q2 = at−1

Q3 = at−1 + .67∆tτact
2

(7.18)

In Equation 7.18, .67 is the z-statistic for Q1 and the sample probability distribution

quartiles are estimated on each side. FAST employs Equation 7.19 to estimate the shape

factor α via the method of moments (Figure 7.10). Using the Bowley skewness estimate, it

is possible to compute α by inverting the skewness function:

|δ| =

√√√√π

2
|γ| 23

|γ| 23 + (4−π
2 ) 2

3
(7.19)

and finally:

α̂ = δ√
1− δ2

(7.20)

Note that the domain of |δ| (Equation 7.20) is between −1 and 1 so near extreme values

forAAA, poor skewness might be computed, but generallyAAA that tend to hug 0.0 or 1.0 indicate

a poor model fit by way of muscle weakness or high reserves, so this estimate should be fine
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Figure 7.11: A flowchart of the FAST analysis is offered. Parameters can be tuned (Table
7.1) in order to find families of solutions which more closely match CMC (Figure 7.12), or
they can be tuned to model abnormal control.

for the purposes of computed control. Now some FAST analysis is performed on the 3 models

previously seen through this dissertation.

7.2 Study: Feasible Activation Space Trajectories (FAST)

7.2.1 Case Study Motivation

FAST is a probabilistic alternative to CMC or SO. Instead of minimizing an objective

function, FAST leverages the H-FASH-FASH-FAS which wholly defines the relationship between AAA and

ΓtaskΓtaskΓtask, and exploits the geometry of H-FASH-FASH-FAS without performing the vertex enumeration.

7.2.2 Methods

FAST optimizes a CP in each discrete time frame of a kinematic task to solve for aac within

FAS as one possible choice of initialization parameters; however, several choices of starting

positions may be used which will influence the starting distributions of output curves (Table

7.1). Then, a DW variant is performed using a multivariate skew normal based on the bounds
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Table 7.1: List of the tunable parameters featured in the FAST analysis.

parameter influence
initialization influences starting distributions (SO, CMC, aac,acc,amin,amax)
dikin walk radius r solution variation from initialization
dikin walk # steps solution variation from initialization,increases computational time
shape parameter α soft objective, likelihood of cocontraction or deactivation

determined from first order AAA dynamics and the last time frame activation selection as per

algorithm 7. Additionally, a high level flowchart of the FAST analysis is offered (Figure

7.11).

For each frame of the kinematic task, H-FASH-FASH-FAS is formed and then used to compute the

Hessian Da = ∇Fa.

Then a new point is selected from the ellipsoid {u ∈ Rd|(u−a)TDa(u−a) ≤ R}according

to a skew normal Gaussian ggg(z) where the skew parameter is estimated using Bowley’s

skewness estimate. First, a parameter exploration of the influence of α on the output

trajectories is shown. Then a case study is provided that finds H-FASH-FASH-FAS for each discrete

time of a kinematic trajectory for gait which is then constrained using the FAST procedure

for a 10 DOF 18 muscles gait model freely available and packaged with OpenSim. Similarly,

H-FASH-FASH-FAS is constrained for a more complicated 23 DOF 54 muscles gait model also packaged

with OpenSim. Finally, H-FASH-FASH-FAS constrained along with the joint loading constraint is used

to constrain FAS trajectories.

7.2.3 Results

The parameter α can be considered a ”soft” objective (Figure 7.12), it essentially increases

the likelihood of observing samples with co-contraction of muscles during FAST.

Additionally, increased negative skew decreases the likelihood of co-contraction and tends

toward the optimal CMC/SO solution.

FAST analysis of the Gait1018 model (Figure 7.13) produced curves that match well

with CMC for some muscles, particularly gastrocnemius and vastus. These results indicate
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Figure 7.12: An investigation of how different base skew parameters on proposal
distributions influence the output trajectories. 10 sample trajectories were drawn for each
level. All the FAS trajectories depicted in the plot satisfy the ID determined constraints to
within tolerance and additionally satisfy the first order AAA dynamics determined window at
each time point.
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Figure 7.13: 100 representative samples from FAS. FAST samples lay within the feasible
bounds dictated in Chapter 5.
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Figure 7.14: 50 representative samples from FAST analysis 2354. Again, FAST samples
lay within the feasible bounds dictated in Chapter 5.

that the structure of feasible control space is much more organized than previously depicted

when the muscle activation dynamics are used to muscle activations together in time [108].

Moving to the more complicated Gait2354 model, some muscles align very well with

the CMC solution (Figure 7.14). Noting the high activation of vastus intermedius after toe

off, future work should investigate modifying the skew normal distribution using a scaling

method such that muscles are weighted by some combination of moment arms and muscle

peak isometric forces in order to preferably weight other knee extensors.

By tuning the parameters (Table 7.1), it should be possible to find the families of solutions

that lay closer to CMC’s choices for controls; however, the intention of FAST is not to be a

Las Vegas method of finding the CMC solution, but to provide variability in output solutions
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Figure 7.15: FAST analysis of the Arm26 model, feasible activations are selected from the
joint force constrained FAS.

along with tunable parameters in order to model abnormal control in a way that CMC and

SO can not.

Instead of the ID constraint, it is also possible to use the analytical elbow contact forces

developed in Chapter 6 (Figure 7.15). Feasible activations for biceps brachii long follow

more closely to the CMC solution thanks to constraining activations by the joint contact

forces derived by joint reaction analysis. Constraining by the joint loading constrains FAST

solutions to more closely match the CMC solution. Some muscles, most notably triceps

long head, brachioradialis and biceps long head, tended to produce activation curves that

matched very closely to the CMC solution.

FAST analysis of the Gait1018 model constrained by the JCF (Figure 7.16) was also

performed. All FAST trajectories are bounded by the upper and lower bounds determined

using the methodologies from Chapters 5 and 6. Using only a Gaussian controls process

along with the procedurally generated constraint, it is possible to extract sets of controls

that are similar to CMC with variation. FAST is extremely powerful as every single FAST

analysis output definitionally satisfies the ID requirements of the task without the use of

controllers.
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Figure 7.16: FAST analysis of the gait1018 model using the joint loading constraint
developed in Chapter 6, feasible activations are selected from the joint force constrained
FAS.
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Figure 7.17: Chapter 7 software components.

7.2.4 Discussion

FAST allows researchers to make computed controls that satisfy the ΓtaskΓtaskΓtask constraints

similarly to SO or CMC without relying on the quadratic objective or the use of controllers,

instead FAST uses a skew normal multivariate Gaussian that is weighted based on the last

time frame activations. Whereas CMC or SO are unable to model neural impairment because

of adherence to optimization objectives, FAST analysis allows users methods of investigating

suboptimal control perceived in crouched gait, cerebral palsy, or stroke. Moving from the

hard objective sense to the ”soft” skew probability on steps, allows for interesting properties

such as a parameter that governs the chance of co-contraction (Figure 7.12). For the models

tested in this research, the FAST analysis proved up to 30 times faster than CMC, especially

in lower dimensional models: while CMC of the Arm26 model is on the order of minutes,

FAST completes on the order of seconds. These methods may prove invaluable for researchers

performing principal components analysis or designing systems for complex machine learning

tasks like gesture recognition from computed controls. Additionally, if the joint loading is

known, H-FASH-FASH-FAS can be further constrained by the known loads and used to obtain solutions

that are closer to CMC, but still have deviations.
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7.3 Tools

For advanced developers, an in-depth exploration of the mathematics and code and

paradigms used are outlined in this section (Figure 7.17). A synthesis of python, C++, and

C++ wrapped within Python through SWIG was used. Researchers need extremely high

throughput data processing with C++, but it helps to abstract tools through wrappers, front

ends and python libraries since clinicians or even most researchers do not care about things

like pointers or command line arguments.

feasibleActivationWindowing.py Generates the feasibleAAA similar to feasibleActivation,

but also computes the feasibleAAA constrained to the limitations determined by the first order

AAA dynamics.

sampler From a supplied H-FASH-FASH-FAS decomposed into an A file and b file, representing the

augmented matrices [−b|A] where Ax ≤ b,sampler is a command line wrapper program that

loads AAA and bbb and a starting location into a polytope object (see polytope.cpp) and performs

a HAR of the polytope (see hitandrun.cpp). A good idea for a starting position can be the

vertex center found using findMean, Chebyshev center or analytical center of the FAS by

optimization on an activation set.

stats Generate statistics of a sampler data set. Allows user to compute a confidence

interval from supplied alpha, mean and standard deviations.

polytope.h From a suppliedH-FASH-FASH-FAS decomposed into an A file and b file, representing the

augmented matrices [−b|A] where Ax ≤ b

hitandrun.h For a polytope object, perform a hit-and-run of the interior of the convex

hull. Hit-and-run also wraps the methods for conic maximization on the analytical center.

convert file.py This is a clone of the C++ file that converts MPLRS files to CSV.

extend ArrayDouble.py Convert SimTK::ArrayDouble to Python numpy array.
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find coordinates in multibody tree order.py Returns a model’s multibody tree order

as a list.

get data from storage by label.py Load data from a storage into a series of key-value

pairs that can be accessed by storage column label.

interp.py Using the Python API for OpenSim, linearly interpolate a SimTK::Storage

object to n frames.

make output directory.py Convenience method that makes an output directory from

the CWD if it doesn’t exist.

multibodyGraph.py Construct a multibody graph and various tools for navigating

directed graphs.

to np matrix.py Convert an OpenSim::Matrix into a numpy matrix.

to python list.py Convert arbitrary OpenSim vectors into Python list objects.

fasWrapper.py An example wrapper function that calls the various FAS methods.

7.4 Chapter Summary

Previously in the literature, HAR MCMC was theorized as a tool for sampling FAS; instead

the WK MCMC is used in the development of FAST. FAST is a probabilistic computed

control algorithm that uses a variant of the Dikin walk in order to sample H-FASH-FASH-FAS over the

course of a dynamic task. FAST can use either the IK solution or an existing CMC states

trajectory in order to obtain other feasible trajectories. FAST works for arbitrary tasks

of arbitrary models just like CMC and SO. Additionally, instead of just the ID constraint,

FAST can be used withH-FASH-FASH-FAS-representations constructed from any downstream parameter

from the muscle activations at each discrete time.
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Chapter 8

Concluding Remarks

This dissertation implemented methods of performing feasible sets analysis over the course

of a dynamic task for arbitrary musculoskeletal models. Using the methods in Chapter 5, it

is possible to compute the sets of activations that satisfy the inverse dynamics constraints

of arbitrary tasks for arbitrary models.

Using these task constrained activation sets, it is possible to map them to a downstream

parameter using the methods in Chapter 4. Additionally, it was shown that the inverse

problem halfspace representations developed in Chapter 5 could be even further constrained

by the joint loading by procedurally constructing the analytical expression of the joint loads.

Note though, that the methods developed in Chapter 6 are not isolated to joint loads.

If the analytical expression can be constructed for any muscle-dependent parameter such as

fiber length and then observed in the lab by way of fluoroscopy, then they can be used as

constraints in the halfspace representations.

In Chapter 7, a probabilistic computed control algorithm called FAST was developed

that constrains feasible muscle activation by any user constructed n-dimensional geometry

that wholly defines the task and random walks to activations over progression of the task

instead of performing the typical quadratic optimization.
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Figure 8.1: Simple 3D two body model.

8.1 Future Work

8.1.1 The Functional Approach and Variational Calculus

Be well aware that all the equations thus far deal with multibody systems existing in

particular states (discrete times) of CCC trajectories: they are linear approximations for a

given state of what really should be functional expressions.

Look at feasible trajectories in Chapter 7: these paths in feasible space are families

of curves with functional forms that live in the non-convex space over the time domain.

While functional approaches or Finite Elements analyses are popular methods in structural

engineering where there is a boundary value problem with some arbitrary continuous operator

and use some discretization method on the domain like Galerkin, the finite elements approach

can be broadly applied to all sorts of engineering problems by the application of variational

calculus, even rigid multibody dynamics (Figure 8.1). It is possible to derive a functional
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expression of activations upper bounds and lower bounds with continuous time derivatives,

but this exercise is left to the reader as future work. A finite elements approach to multibody

dynamics:

It is possible to write the equations of motion (Equation 8.1)

a = dv

dt
= 1
m

∑
Fa = dv

dt
= 1
m

∑
Fa = dv

dt
= 1
m

∑
F (8.1)

Where FFF are MBS forces that live in OOO.

And it is possible to write the conservation of angular momentum as (Equation 8.2):

dQ
dt

=
∑

(r � F )T
dQ
dt

=
∑

(r � F )TdQ
dt

=
∑

(r � F )T (8.2)

To formulate this problem as a Boundary Value Problem: where over the domain of a

body, Ωb, at the center of mass (Equation 8.3):

∫
Ωb
rρδΩb = 0

∫
Ωb
rρδΩb = 0

∫
Ωb
rρδΩb = 0 (8.3)

For any fixed point ppp in the body frame α − β − γ when the body has a center of mass

xxx in the global frame (x− y − z) (Equation 8.4):

dp

dt
= 0

dp

dt
= 0dp

dt
= 0 (8.4)

Because, these bodies are assumed rigid here (Equation 8.5):

Q =
∫

Ωb
ρr � vδΩb =

∫
Ωb
ρr � dr

dt
δΩb +

∫
Ωb
ρrδΩb �

dx

dt
Q =

∫
Ωb
ρr � vδΩb =

∫
Ωb
ρr � dr

dt
δΩb +

∫
Ωb
ρrδΩb �

dx

dt
Q =

∫
Ωb
ρr � vδΩb =

∫
Ωb
ρr � dr

dt
δΩb +

∫
Ωb
ρrδΩb �

dx

dt
(8.5)

But dr
dt

= 0, so (Equation 8.6).

Q =
∫

Ωb
ρrδΩb �

dx̂

dt
=
∫

Ωb
ρr � (ω � r)δΩbQ =

∫
Ωb
ρrδΩb �

dx̂

dt
=
∫

Ωb
ρr � (ω � r)δΩbQ =

∫
Ωb
ρrδΩb �

dx̂

dt
=
∫

Ωb
ρr � (ω � r)δΩb (8.6)

Where ωωω is the angular velocity vector and note that this mapping is linear map over the

domain.

It is possible to write (Equation 8.7):
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Q = IωQ = IωQ = Iω (8.7)

Where the inertia matrix I is a function (Equation 8.8):

I =
[
ρrzrzδxy − rxry

]
I =

[
ρrzrzδxy − rxry

]
I =

[
ρrzrzδxy − rxry

]
(8.8)

If unfamiliar with FEM, δ is the Dirac delta. Finally, Equation 8.6 can be rewritten

(Equation 8.9):

dq

dt
+ ω � q =

∑
r � f

dq

dt
+ ω � q =

∑
r � fdq

dt
+ ω � q =

∑
r � f (8.9)

The tasks of incorporating applied muscle forces on Ωb, discretization, and considering

complicated multibody systems are out of the scope of this paper and are left as homework

for the reader, but it should be clear that the future trajectory of this research is to design

rigorous functional approaches, investigate for closed form solutions to feasible sets analysis,

and discretizations over the time domain.

8.1.2 Trajectory

Future work should explore avenues for implementing the tools in real-time control of

robotic manipulators. Further exploration into parameter tuning and methods of scaling

the Dikin walk weights from Chapter 7 should be performed. Additionally, other probability

distributions and MCMC methods should be explored as optimizations to the tools developed

in this research. It would be nice to have someone write a plugin that can be imported into

popular programs such as AnyBody or OpenSim. Generally these principles have been

adapted for the post hoc analysis of OpenSim models; however, it would be beneficial

for researchers to develop tools for the computation and visualization of feasible controls

of a model at run-time from within OpenSim. The methods of Chapter 6 were only

performed using the in silico results of OpenSim’s joint reaction analysis, and a practical

application using instrumented joints or some other muscle-dependent measurable parameter

is in order. It is possible to use these results in tandem with muscle synergies analysis or task
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prioritization schemes instead of just muscle activations. Also, enabling other researchers

to magnify their computed control sets by a significant number will help facilitate further

developments in biomechanics and has profound implications in clinical motion analysis.
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A Algorithms

Algorithm 1 Case 1 EFS (Peak Isometric F0)
Input Model M, CMC-derived set of states ST , desired end-effector Bef
Output F0-derived feasible force space over specific motion

1: load M
2: load ST
3: for all s in ST do
4: load s
5: for all coordinates c in M do
6: for all muscles m in M do
7: MA(c,m) = compute moment arm of m about c
8: F(c,m) = Fm

0 cos(θm) where θm is a model state-dependant scalar.
9: τ(c,m) =MA(c,m) ∗ F(c,m)
10: end for
11: end for
12: compute station jacobian J of Bef at COM
13: W(s) = J−T τ

14: EFS1(s) = ⊕(forces of W) where ⊕ = Minkowski sum of columns
15: end for

Algorithm 2 Case 2 EFS (Fiber Length l̃M)
Input Model M, CMC-derived set of states ST , desired end-effector Bef

Output F
l̃M -derived feasible force space over specific motion

1: load M

2: load ST
3: for all s in ST do

4: load s

5: equilibrate muscles assuming 0 Fiber Velocity

6: for all coordinates c in M do

7: for all muscles m in M do

8: MA(c,m) = compute moment arm of m about c

9: F
l̃M (c,m) = Fm

0 clcos(θm) + FP MF where θm and cl are model state-dependant scalar.

10: τ(c,m) =MA(c,m) ∗ F
l̃M (c,m)

11: end for

12: end for

13: compute station jacobian J of Bef at COM

14: W(s) = J−T τ

15: EFS2(s) = ⊕(forces of W)

16: end for

Algorithm 3 Case 3 EFS (Fiber Length & Fiber Velocity l̃M & ṽM)
Input Model M, CMC-derived set of states ST , desired end-effector Bef

Output F
l̃M &ṽM -derived feasible force space over specific motion

1: load M

2: load ST
3: for all s in ST do

4: load s

5: for all coordinates c in M do

6: for all muscles m in M do

7: MA(c,m) = compute moment arm of m about c

8: F
l̃M &ṽM (c,m) = Fm

0 clcvcos(θm) + FP MF where θm, cl, and cv are model state-dependant scalars.

9: τ(c,m) =MA(c,m) ∗ F
l̃M &ṽM (c,m)

10: end for

11: end for

12: compute station jacobian J of Bef at COM

13: W(s) = J−T τ

14: EFS3(s) = ⊕(forces of W)

15: end for
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Algorithm 4 2D EFS Computation
Input forces of W Wf of length m

Output Area A, 2D convex hull of EFS C

1: c=0

2: for i1 = 0 to m− 1 do

3: S = [0; 0; 0]

4: sort columns of Wf as 2D vectors by increasing polar angle starting from Wf (:, i1) (this can also just be presorted and circularly indexed)

5: for i2 = 0 to m− 1 do

6: S +=Wf (:, i2)

7: P(:, c) = S

8: c+ = 1

9: end for

10: end for

11: use a convex hull algorithm like 2D giftwrap of P to find A and C

Algorithm 5 3D EFS Computation
Input forces of W Wf of length m

Output Volume V, 3D convex hull of EFS C

1: c=0

2: for i1 = 0 to m− 2 do

3: S1 =Wf (:, i1)

4: S2 = [0; 0; 0]

5: Pick Wf (:, i1)

6: Find the orthonormal basis of Wf (:, i1)

7: project vectors from 3D to the orthonormal basis

8: sort the vectors by polar angle in the orthonormal basis

9: for i2 = 0 to m− 2 do

10: S1 +=Wf (:, i2)

11: P(:, c) = S1

12: c += 1

13: S2 +=Wf (:, i2)

14: P(:, c) = S2

15: c += 1

16: end for

17: end for

18: use a convex hull algorithm like 3D Jarvis of P to find V and C

Algorithm 6 Hit and Run
Input H H-representation of convex polytope, initial point p0

Output new point p

1: [bn×1|An×m] = Hn×m+1

2: r = rand(m) (dist range[0,1])

3: current = p

4: for i1 = 0 to n− 1 do

5: hs = A(i, :)

6: aux = auxiliar point from p to A(i, :)

7: veci = aux− p

8: end for

9: for i1 = 0 to n− 1 do

10: current+ = veci ∗ ri

11: end for

12: p = current

13: Go to 1
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Algorithm 7 FAST
Input ΓtaskΓtaskΓtask for discrete time step ∆t of a behavioral task and ca and cd

Output feasible activation space trajectory A

1: t = 0

2: A = ∅

3: ∀i ∈ m, lbi = 0, ubi = 1

4: construct H from ΓtaskΓtaskΓtask at t and ub and lb

5: find analytical center aac of H

6: Dikin walk inside H from aac to new at

7: append at to A

8: ∀i ∈ m, lbi = ati + ∆t ∗ 1−ati
ca

, ubi = ati + ∆t ∗ 0−ati
cd

9: t = t + 1

10: Go to 4
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