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Abstract

To obtain the superiority property of solving time-varying linear matrix in-
equalities (LMIs), three novel finite-time convergence zeroing neural network
(FTCZNN) models are designed and analyzed in this paper. First, to make
the Matlab toolbox calculation processing more conveniently, the matrix vec-
torization technique is used to transform matrix-valued FTCZNN models
into vector-valued FTCZNN models. Then, considering the importance of
nonlinear activation functions on the conventional zeroing neural network
(ZNN), the sign-bi-power activation function (AF), the improved sign-bi-
power AF and the tunable sign-bi-power AF are explored to establish the
FTCZNN models. Theoretical analysis shows that the FTCZNN models not
only can accelerate the convergence speed, but also can achieve finite-time
convergence. Computer numerical results ulteriorly confirm the effective-
ness and advantages of the FTCZNN models for finding the solution set of
time-varying LMIs.
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1. Introduction

For the past few years, as the inequalities grow in importance in various
applications, the approaches based on solving inequalities are widely used to
solve various problems in the engineering and science fields [1, 2, 3, 4, 5].
For example, in [6], a new way for solving inequalities which uses the pro-
jection neural network model was proposed. In [7], a method based on solv-
ing inequality was proposed and developed by Han et al., which was ap-
plied to non-fragile filtering for fuzzy systems. Besides, the linear matrix
inequalities (LMIs) are viewed as an effective approach and design formula-
tion, such as defining suitable LMIs to solve control design problems [8, 9].
In [10, 11, 12, 13], based on LMIs, they obtained the novel standards for
asymptotic stability of Cohen-Grossberg neural networks, recurrent neural
networks, delayed neural networks and delayed Hopfield neural networks, re-
spectively. Furthermore, the global stability condition of neural networks
is generally acquired by LMIs, such as Markovian jumping neural network
[14], discrete recurrent neural network [15], discrete delayed impulsive inter-
val neural network [16]. In addition, Liu et al. [17] realized the optimization
of coupled neural network based on LMIs. In a word, solving LMIs has been
a hot spot of research. Moreover, LMIs are widely used in practical applica-
tion, such as obstacle avoidance for redundant robots [18, 19], motion scheme
design based on physical limit avoidance [20, 21], robot speed minimization
[22] and robot manipulator control [23].

The conventional methods of solving LMIs are numerical algorithms that
can solve the problem with special circumstances. For instance, under the
condition that there is no analytic solution, the LMIs can be solved by convex
optimization techniques [24]. Orsi et al. [25] came up with a novel method
for solving LMIs based on alternating projection method, which controls
the process of asymptotic convergence to analytic solution using dynamic
systems. In order to accelerate the process of solving LMIs, Lin et al. [26]
used a gradient neural network to solve LMIs for the first time. Compared
with the traditional method, this method greatly reduced the solving time. In
[27], Xiao et al. defined three zeroing neural network (ZNN) design formulas
to solve LMIs. In [28, 29], Guo et al. presented a novel approach to solving
LMIs by converting inequalities to equations. Syed Ali [30] presented a novel
RNN based on LMIs to prove the global stability.
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However, the conventional algorithms and ZNN models [31] can not pro-
vide finite-time solution of LMIs. As is known that, Matlab toolbox can
find the numerical solution of ordinary differential equations. Meanwhile, it
can solve the linear inequalities by finding the upper bound of the solution
set, such as [32, 33]. At present, various recurrent neural network models
were presented to solve equality problems with finite-time convergence. For
instance, Yu et al. [34] put forward a novel activation function to achieve
strong robustness and fixed time convergence for solving nonlinear equation.
Matrix inversion was completed in finite time using the new ZNN model with
sign-bi-power AF [35]. However, there is no work to design a finite-time re-
current neural network to solve time-varying LMIs. In this work, based on
traditional ZNN models, three FTCZNN models are established by suggest-
ing three different sign-bi-power AFs which can make the error functions of
various neural network models converge to zero. The first one is the origi-
nal sign-bi-power AF, the second one is a modification of the first one via
amending sign-bi-power AF by adding a linear term, and the third one is
activated by tunable sign-bi-power AF which defines three tunable parame-
ters. Theoretical analysis shows that whatever the initial state is, the error
function generated by the proposed FTCZNN models always converges to
zero in finite time. Compared with the existing algorithms and conventional
ZNN models, the main advantage of the proposed FTCZNN models lies in
the fact that they can offer a faster rate and finite-time convergence property.
The numerical simulation results verify the superiority of FTCZNN models.

The remainder of this paper is divided into four sections. In Section 2,
the LMI problem is presented and the design method is given. Besides, the
FTCZNN model vectorization has been done. Section 3 provides the con-
vergence analysis. Section 4 shows the simulation results of three FTCZNN
models. Section 5 is the conclusion of this paper. Before ending this part, it
is necessary to point out the main contributions of this paper as below.

1) This paper proposes, researches and develops three novel FTCZNN
models for solving LMI problems via applying three superior AFs. They
achieve finite-time convergence for the online solution of LMI problems.
This naturally becomes the most significant highlight of this work.

2) Three different nonlinear AFs are presented to establish FTCZNN mod-
els, which is via defining matrix-valued error functions, instead of the
traditional scalar-valued energy functions.
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3) The theoretical analysis of the finite-time convergence guarantees the
accuracy of the proposed FTCZNN models. By Lyapunov stability
theory, the convergence upper bounds of FTCZNN models can be cal-
culated precisely.

4) Numerical simulation results verify the superior convergence perfor-
mance of three FTZCNN models for solving time-varying LMI prob-
lems, as compared with the existing ZNN models.

2. FTCZNN Models

In this section, some basic knowledge is presented at first. Then, based on
the conventional ZNN model for LMIs, three FTCZNN models are designed
by applying finite-time AFs.

2.1. Problem Formulation

In this part, the multi-dimensional time-varying LMI problem is formu-
lated as below:

A(t)X(t)B(t) ≤ C(t), (1)

where A(t) ∈ R
m×m, B(t) ∈ R

n×n and C(t) ∈ R
m×n denote time-varying

matrices. The purpose of this paper is to find the unknown solution set X(t)
which can make (1) hold true anytime.

2.2. ZNN Model

To monitor the process of solving LMIs, we define the matrix-vector error
function as follows:

E(t) = A(t)X(t)B(t)− C(t), (2)

where E(t) ∈ R
m×n.

Based on the efforts which have been done, the ZNN design formula for
establishing the neural model is constructed as

Ė(t) = −ǫSTP(E(0))♦Ψ(E(t)), (3)

where Ψ(·) : Rm×n → R
m×n is a monotonously increasingly odd activation

function array, ǫ is a positive parameter and STP(·) : Rn → R
n stands for a

set of step functions which is defined as

stp(a) =

{

1, a > 0;

0, a ≤ 0.
(4)
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Besides, the operator ♦ is defined as

b♦c =











b1c1
b2c2
...

bncn











. (5)

Note that the above ZNN design formula can make the error function con-
verge to zero exponentially. Substituting (2) into (3), we have its implicit
dynamic equation of the ZNN model:

A(t)Ẋ(t)B(t) =− ǫSTP(A(0)X(0)B(0)− C(0))♦Ψ(A(t)X(t)B(t)− C(t))

− Ȧ(t)X(t)B(t)−A(t)X(t)Ḃ(t) + Ċ(t).

(6)

2.3. ZNN Model Vectorization

According to the implicit dynamic equation of ZNN model (6), X(t) can
not be calculated directly in Matlab. To address this problem, the Kronecker
product is used to convert ZNN model (6) from the matrix form to the vector
form. Then, ZNN model (6) is transformed into the following vector-valued
one:

P (t)ẏ(t) =− ǫSTP(P (0)y(0)− vec(C(0)))♦Ψ(P (t)Y (t)− vec(C(t))

−Q(t)y(t)−R(t)y(t) + vec(Ċ(t)),
(7)

where P (t) = BT(t)⊗A(t) with P (0) = BT(0)⊗A(0), Q(t) = BT(t)⊗ Ȧ(t),
R(t) = ḂT(t) ⊗ A(t) and y(t) = vec(X(t)) with y(0) = vec(X(0)), where
vec(X(t)) and vec(Ċ(t)) denote the vectorization of X(t) and vec(Ċ(t)),
respectively. In the following part, three finite-time convergent AFs are
explored to shorten the convergence time and it is the first application to
FTCZNN models for solving time-varying LMIs.

2.4. Activation functions

In the past years, the following AFs are widely applied in ZNN models:
1) the linear activation function:

Ψ(x) = x; (8)
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2) the power activation function:

Ψ(x) = xp, p ≥ 3; (9)

3) the bipolar-sigmoid activation function:

Ψ(x) =
1 + exp(−p)

1− exp(−p)

1− exp(−px)

1 + exp(−px)
, p > 2; (10)

4) the power-sigmoid activation function:

Ψ(x) =
1

2
xp1 +

1 + exp(−p2)

1− exp(−p2)

1− exp(−p2x)

1 + exp(−p2x)
, p1 ≥ 3, p2 > 2. (11)

However, the above mentioned AFs only can make the error function
of ZNN model (6) converge to zero, and they cannot guarantee the finite
convergence time in solving time-varying LMIs. To solve this problem, three
superior finite-time AFs are applied to ZNNmodel (6), and the corresponding
FTCZNN models are thus derived.

Specifically, the fist sign-bi-power AF is given as follows:

Ψ1(x) =
1

2
|x|rsgn(x) +

1

2
|x|

1
r sgn(x), (12)

where 0 < r < 1 and sgn(·) is defined as

sgn(x) =











1, if x > 0;

0, if x = 0;

−1, if x < 0.

(13)

In order to accelerate convergence, on basis of sign-bi-power AF (12),
an improved sign-bi-power AF is designed by adding a linear term, and is
presented as below:

Ψ2(x) =
1

2
|x|rsgn(x) +

1

2
x+

1

2
|x|

1
r sgn(x). (14)

To further reduce the theoretical convergence time upper bound, a tun-
able sign-bi-power AF is presented as below:

Ψ3(x) =
1

2
k1|x|

rsgn(x) +
1

2
k2x+

1

2
k3|x|

1
r sgn(x). (15)
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2.5. FTCZNN models

In this section, by applying AFs (12), (14) and (15) to ZNN model (6), we
can obtain the corresponding three FTCZNN models to solve time-varying
LMIs. Their respective design processes of FTCZNN models are presented
as below.

1) FTCZNN-1 model : Similar to the design process of (6), we can obtain
the same error function. Then, the differential formula for this error function
is shown as

Ė(t) = −ǫSTP(E(0))♦Ψ1(E(t)), (16)

where Ψ1(·) denotes the sign-bi-power AF (12), E(0) denotes the initial error
of E(t) at t = 0, STP(·) and ♦ are defined as before.

At last, expanding the differential formula (16) by substituting E(t), the
dynamic equation corresponding to the FTCZNN-1 model is formed by

P (t)ẏ(t) =− ǫSTP(P (0)y(0)− vec(C(0)))♦Ψ1(P (t)y(t)− vec(C(t))

−Q(t)y(t)− R(t)y(t) + vec(Ċ(t))
(17)

where P (t) = BT(t)⊗ A(t), Q(t) = BT(t)⊗ Ȧ(t), R(t) = ḂT(t)⊗ A(t), and
y(t) = vec(X(t)).

2) FTCZNN-2 model : On the basis of FTCZNN-1 model (17), we change
the activation function to the improved sign-bi-power AF (14). Then, the
differential formula for the error function is obtained as follows:

Ė(t) = −ǫSTP(E(0))♦Ψ2(E(t)), (18)

and the corresponding FTCZNN-2 model is formed by

P (t)ẏ(t) =− ǫSTP(P (0)y(0)− vec(C(0)))♦Ψ2(P (t)y(t)− vec(C(t))

−Q(t)y(t)− R(t)y(t) + vec(Ċ(t)).
(19)

3) FTCZNN-3 model : On the foundation of FTCZNN-2 model (19),
adding the tunable parameters to shorten convergence time, the differential
formula for the error function is indicated below:

Ė(t) = −ǫSTP(E(0))♦Ψ3(E(t)). (20)

Then, expanding the above equation, we get the following FTCZNN-3 model:

P (t)ẏ(t) =− ǫSTP(P (0)y(0)− vec(C(0)))♦Ψ3(P (t)y(t)− vec(C(t))

−Q(t)y(t)− R(t)y(t) + vec(Ċ(t)).
(21)
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3. Theoretical Analysis

In this part, we theoretically substantiate the convergent property of the
proposed three FTCZNN models for solving LMIs. In addition, the finite-
time convergence performance of FTCZNN models will be proved, with spe-
cific upper bound estimated. It is worth mentioning that when the initial
state X(0) is inside the solution set, we have E(0) = A(0)X(0)B(0)−C(0) ≤
0. That is, as the time t goes by, X(t) always stay in the solution set. Thus,
in the following proofs, we only need to consider the situation when the initial
state X(0) is outside the solution set.

3.1. Global Convergence

It is the primary goal that we have to demonstrate the global convergence
of the proposed three FTCZNN models which are activated by three different
sign-bi-power activation functions.

Theorem 1 : Given smoothly time-varying coefficient matrices A(t) ∈
R

m×m, B(t) ∈ R
n×n and C(t) ∈ R

m×n, FTCZNN-1 model (17), FTCZNN-2
model (19) and FTCZNN-3 model (21) achieve the global convergence.

Proof : According to the definitions of the novel AFs, we have

Ψ1(−x) =
1

2
| − x|rsgn(−x) +

1

2
| − x|

1
r sgn(−x)

=−
1

2
|x|rsgn(x)−

1

2
|x|

1
r sgn(x)

=−Ψ1(x);

(22)

Ψ2(−x) =
1

2
| − x|rsgn(−x)−

1

2
x+

1

2
| − x|

1
r sgn(−x)

=−
1

2
|x|rsgn(x)−

1

2
x−

1

2
|x|

1
r sgn(x)

=−Ψ2(x);

(23)

Ψ3(−x) =
1

2
k1| − x|rsgn(−x)−

1

2
k2x+

1

2
k3| − x|

1
r sgn(−x)

=−
1

2
k1|x|

rsgn(x)−
1

2
k2x−

1

2
k3|x|

1
r sgn(x)

=−Ψ3(x).

(24)

Therefore, we can know that the three AFs are monotonically increasing odd
functions.
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Then, let us define a Lyapunov function uij(t) = ̺2ij(t)/2, where ̺ij(t) is
the element of E(t) which is defined in (2). Since X(0) is outside the solution
set, STP(E(0)) = 1 which means that every element of STP(E(0)) equals to
1. Therefore, we have STP(̺ij(0)) = 1. Thus, u̇ij(t) is computed as

u̇ij(t) =
duij(t)

dt
= −ǫ̺ij(t) ˙̺ij(t) = −ǫ̺ij(t)Ψk(̺ij(t)), k = 1, 2, 3. (25)

As shown in the above, Ψk(·) is monotonically increasing, so we obtain

̺ij(t)Ψk(̺ij(t))

{

> 0, if ̺ij(t) 6= 0;

= 0, if ̺ij(t) = 0;
(26)

which guarantees that u̇ij(t) < 0 for ̺ij(t) 6= 0, and uij(t) = 0 for ̺ij(t) = 0.
That is to say, ̺ij(t) ≤ 0 for any i, j, so E(t) can converge to zero.

The proof is completed. �

3.2. Finite-Time Convergence Analysis

The three FTCZNN models not only can achieve global convergence but
also can accomplish the finite-time convergence. In another word, they have
better convergence performance. In this section, we will provide three the-
orems to show the finite-time convergent property of the proposed three
FTCZNN models.

Theorem 2 : Given smoothly time-varying coefficient matrices A(t) ∈
R

m×m, B(t) ∈ R
n×n and C(t) ∈ R

m×n, FTCZNN-1 model (17) can achieve
finite-time convergence. The convergence time upper bound T1 satisfies the
following equation:

T1 ≤

{

2r(L(0)(r−1)/2r
−1)

ǫ(r−1)
+ 2

ǫ(1−r)
, L(0) ≥ 1,

2
ǫ(1−r)

L(0)(1−r)/2, L(0) < 1,
(27)

where L(0) = |̺+(0)|2 with ̺+(0) = max{|̺ij(0)|}.
Proof : When X(0) is outside the solution set, STP(E(0)) = 1 which

means that every element of STP(E(0)) equals to 1. Therefore, we have
STP(̺ij(0)) = 1. From (16), we acquire

˙̺ij(t) = −ǫΨ1(̺ij(t)), i = 1, 2, · · · , n. (28)

Then, we define ̺+(t) = max|(̺ij(t))| which is used to calculate the con-
vergence time upper bound. By Comparison Lemma, we have −|̺+(t)| <
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̺ij(t) < |̺+(t)|. Hence, we just need guarantee that |̺+(t)| achieves finite-
time convergence. Substituting the expression of |̺+(t)| into (28), we have

˙̺+(t) = −ǫΨ1(̺
+(t)).

Define the Lyapunov function L(t) = |̺+(t)|2, whose time derivative along
this dynamics is computed as follows:

L̇(t) = 2̺+(t) ˙̺+(t)

= −2ǫ̺+(t)Ψ1(̺
+(t))

= −ǫ(|̺+(t)|r+1 + |̺+(t)|
1
r
+1)

= −ǫ(L
r+1
2 + L

r+1
2r ).

(29)

If L(0) ≥ 1, from the equation (29), we have the following inequality:

L̇ ≤ −ǫL
r+1
2r , (30)

from which we can obtain

dL ≤ −ǫL
r+1
2r dt. (31)

Integrating both sides of the formula (31) from 0 to t, we have

∫ L(t)

L(0)

L−
r+1
2r dL ≤ −ǫ

∫ t

0

dt.

Simplifying the inequality after integration yields to

L(t) ≤

[

r − 1

2r
(−ǫt +

2r

r − 1
L(0)

r−1
2r )

]
2r
r−1

. (32)

Setting the left-hand side of this inequality equal to 1, we get the value of t1:

t1 =
2r(L(0)(r−1)/2r − 1)

ǫ(r − 1)
. (33)

Thus, after time t1, L(t) decreases to 1. When L(t) ≤ 1, the inequality (29)
shows that

L̇ ≤ −ǫL
r+1
2 . (34)
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Similar to solving for t1, we compute the remaining convergence time t2:

t2 =
2

(1− r)ǫ
. (35)

Hence, we obtain the convergence time upper bound T1 < t1 + t2.
If L(0) ≤ 1, from the equation (29), we have the following inequality:

L̇ ≤ −ǫL
r+1
2 , and dL ≤ −ǫL

r+1
2 dt.

Integrating both sides of the differential inequality
∫ L(t)

L(0)
L−

r+1
2 dL ≤ −ǫ

∫ t

0
dt,

the convergence time upper bound t3 can be computed as

t3 =
2

ǫ(1− r)
L(0)

(1−r)
2 . (36)

The proof is completed. �

Theorem 3 : Given smoothly time-varying coefficient matrices A(t) ∈
R

m×m, B(t) ∈ R
n×n and C(t) ∈ R

m×n, FTCZNN-2 model (19) can accom-
plish finite-time convergence for solving time-varying LMIs. The convergence
time upper bound T2 is calculated as

T2 ≤











2r ln

[

2

L(0)(r−1)/2r+1

]

ǫ(1−r)
+ 2 ln 2

ǫ(1−r)
, L(0) ≥ 1,

2 ln[1+L(0)(1−r)/2]
ǫ(1−r)

, L(0) < 1,

(37)

where r, ǫ and L(0) are defined as before.
Proof : Similar to Theorem 2, from (18), we have

˙̺ij(t) = −ǫΨ2(̺ij(t)), i = 1, 2, · · · , n. (38)

Then, the derivative of the Lyapunov function along time t is computed as
follows:

L̇ = 2̺+(t) ˙̺+(t)

= −2ǫ̺+(t)Ψ2(̺
+(t))

= −ǫ(|̺+(t)|r+1 + |̺+(t)|2 + |̺+(t)|
1
r
+1)

= −ǫ(L
r+1
2 + L+ L

r+1
2r ).

(39)

If L(0) ≥ 1, considering the equation (39), the following inequality is satisfied:

L̇ ≤ −ǫ(L+ L
r+1
2r ), (40)
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which can be rewritten as

dL

L(r+1)/2r + L
≤ −ǫdt. (41)

Integrating the formula (41) from 0 to t yields

∫ L(t)

L(0)

1

L(r+1)/2r + L
dL ≤

∫ t

0

−ǫ dt,

which can be rewritten as follows:

2r

r − 1

∫ L(t)

L(0)

1

1 + L(r−1)/2r
d(L(r−1)/2r) ≤

∫ t

0

−ǫ dt.

Let L(t) equal to 1, t4 satisfies the following equality:

t4 =
2r ln

[

2
L(0)(r−1)/2r+1

]

ǫ(1− r)
. (42)

When t ≥ t4, we have L(t) ≤ 1. It follows from the condition (39) that

L̇ ≤ −ǫ(L
r+1
2 + L). (43)

There exists t5 satisfying the equation:

t5 =
2 ln 2

ǫ(1− r)
. (44)

The convergence time upper bound T2 < t4 + t5.
If L(0) ≤ 1, the inequality (43) holds and its differential form can be

obtained:
dL

L+ L(r+1)/2
≤ −ǫdt (45)

Integrating both sides of the formula from 0 to t, we have

∫ L(t)

L(0)

1

L+ L(r+1)/2
dL ≤

∫ t

0

−ǫ dt.

which can be rewritten as

2

1− r

∫ L(t)

L(0)

1

1 + L(1−r)/2
d(L(1−r)/2) ≤

∫ t

0

−ǫ dt.
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Thus, the convergence upper bound T2 < t6 satisfies the following equation:

t6 =
2 ln

[

1 + L(0)(1−r)/2
]

ǫ(1− r)
. (46)

That completes the proof. �

Theorem 4 : Given smoothly time-varying coefficient matrices A(t) ∈
R

m×m, B(t) ∈ R
n×n and C(t) ∈ R

m×n, FTCZNN-3 model (21) can accom-
plish finite-time convergence and greatly shorten the convergence time. Its
upper bound T3 satisfies the following formula:

T4 ≤



















2r ln





1+
k2
k3

L(0)(r−1)/2r

1+
k2
k3





k2ǫ(r−1)
+

2 ln
[

1+
k2
k1

]

k2ǫ(1−r)
, L(0) ≥ 1,

2 ln
[

1+
k2
k1

L(0)(1−r)/2
]

k2ǫ(1−r)
, L(0) < 1,

(47)

where r, ǫ and L(0) are defined as before.
Proof : From (20), the ijth element of E(t) can be rewritten as

˙̺ij(t) = −ǫΨ3(̺ij(t)). (48)

According to the definition of the Lyapunov function as before, its derivative
that reflects the dynamic change of the model is obtained as

L̇ = 2̺+(t) ˙̺+(t)

= −2ǫ̺+(t)Ψ3(̺
+(t))

= −ǫ(k1|̺
+(t)|r+1 + k2|̺

+(t)|2 + k3|̺
+(t)|

1
r
+1)

= −ǫ(Lk1
r+1
2 + k2L+ k3L

r+1
2r ).

(49)

If L(0) > 1, the following result is satisfied:

L̇ ≤ −ǫ(k2L+ k3L
r+1
2r ), (50)

which can be written as

2r

k3(r − 1)
·

d(L(r−1)/2r)

1 + k2
k3
L((r − 1)/2r)

≤ −ǫt. (51)

Integrating two side of (51) from 0 to t,

2r

k2(r − 1)

∫ L(t)

L(0)

1

1 + k2
k3
L((r − 1)/2r)

d(L(r−1)/2r) ≤

∫ t

0

−ǫ dt. (52)
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Let L(t) equal to 1, we can get the time t7:

t7 =
2r

k2ǫ(1− r)
ln

[

1 + k2
k3
L(0)(r−1)/2r

1 + k2
k3

]

. (53)

When L(0) < 1, (49) satisfies the following equation:

L̇ ≤ −ǫ(k1L
r+1
2 + k2L). (54)

Repeating this process until the L(t) converges to 0, we can get t8:

t8 =
2 ln

[

1 + k2
k1

]

k2ǫ(1− r)
. (55)

The upper bound of convergence time T4 < t7 + t8.
If L(0) < 1, analog to the proving course of L(0) > 1, the derivative of

Lyapunov function can be shown as

2

k2(1− r)

∫ L(t)

L(0)

1

1 + k2
k1
L(1−r)/2

d(L(1−r)/2) ≤

∫ t

0

−ǫ dt.

In the same way, integrating both side of the type, we can calculate the
convergence time t9 as

t9 =
2 ln

[

1 + k2
k1
L(0)(1−r)/2

]

k2ǫ(1− r)
. (56)

This proof is completed. �

4. Simulative Verification

In the previous two sections, three FTCZNN models together with their
theoretical analysis have been presented. In this part, for illustration and
comparison, a numerical example is given to evaluate the performance of
the FTCZNN models activated by different AFs for solving time-varying
LMIs. To testify the superiority of three FTCZNN models, some comparative
experiments have also been conducted under the same conditions.
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Figure 1: Trajectories of state vector x(t) by applying FTCZNN-1 model (17) to solve
LMI (1) when x(0) is outside Ω(0) with ǫ = 1 and r = 0.3 . (a) x11(t) (b) x12(t) (c) x21(t)
(d) x22(t) (e) x31(t) (f) x32(t)

4.1. Constant Parameter

For illustration and simulation, let us consider a specific time-varying
LMI with the following coefficient matrices A(t), B(t) and C(t):

A(t) =





3 + sin(4t) cos(4t)/2 cos(4t)
cos(4t)/2 3 + sin(4t) cos(4t)/2
cos(4t) cos(4t)/2 3 + sin(4t)



 ,

B(t) =

[

sin(4t) cos(4t)
−cos(4t) sin(4t)

]

and

C(t) =





sin(3t) cos(3t)
cos(4t) + 1 sin(4t) + 1

sin(5t) + cos(5t) sin(5t)cos(5t)



 .

Fig. 1 shows the state trajectories of X(t) by applying FTCZNN-1 model
(17) with ǫ = 1 and r = 0.5, where the red solid lines represent the theoretical
upper bound of the solution set with each element denoted by x∗

ij(t), while
the blue dotted lines show the actual trajectories with each element denoted
by xij(t). It can be seen that the blue dotted line gradually coincides with
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Figure 2: Comparisons of three FTCZNN models with the conventional ZNN models
activated by other AFs with ǫ = 1 and r = 0.3 when L(0) > 1. (a) By FTCZNN-1 model
(17) and FTCZNN-2 model (19). (b) By FTCZNN-1 model (17) and FTCZNN-3 model
(21).

the red one over time. In other words, the simulation results shown in Fig.
1 (a)-(f) can constitute the solution of the above time-varying LMI.

Then, the residual errors ‖P (t)y(t) − vec(C(t))‖2 = ‖A(t)X(t)B(t) −
C(t)‖F (where ‖·‖2 denotes two norm of a vector and ‖·‖F denotes Frobenius
norm of a matrix) are shown in Fig. 2. Obviously, the residual error function
reflects the whole convergence process. From Fig. 2, three FTCZNN models
obviously have shorter convergence time than the conventional ZNN models
activated by the linear activation function (8), the power function (9), the
bipolar-sigmoid function (10) and the smooth power-sigmoid function (11)
[40, 41, 42, 43]. Moreover, among them, FTCZNN-3 model (21) with three
tunable parameters obtains the best convergence performance for solving
LMIs. In addition, it can be seen that such three FTCZNN models can reach
zero within 3 s. Meanwhile, the corresponding results of the traditional ZNN
models for finding LMIs solution still have some estimation errors at this
time.

For the sake of demonstrating the finite-time convergence property of
FTCZNN models for solving LMIs, a specific initial state X(0) is given. Ac-
cording to the preceding theorems, we can calculate the convergence time
upper bound. Considering that different states can lead to different conver-
gence upper bound, the simulation cases are decomposed into two parts.

Case I Let X(0) = [−1,−0.5;−3, 2;−1.5, 1], which represents that
A(0)X(0)B(0) − C(0) = [−0.5,−7;−8.25,−11.25;−4.5,−7], and L(0) =
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Figure 3: Comparisons of three FTCZNN models with the conventional ZNN models
activated by other AFs with ǫ = 1 and r = 0.3 when L(0) < 1. (a) By FTCZNN-1 model
(17) and FTCZNN-2 model (19). (b) By FTCZNN-1 model (17) and FTCZNN-3 model
(21).

|̺+(0)|2 = (11.25)2 = 126.5625. The parameters of FTCZNN-1 model (17)
are given as r = 0.3 and ǫ = 1. By Theorem 2, the convergence time upper
bound ta is given as

ta =
2r(L(0)(r−1)/2r − 1)

ǫ(r − 1)
+

2

ǫ(1− r)
≈ 3.7113 s.

Let r = 0.3 and ǫ = 1. By Theorem 3, the convergence time upper bound tb
for FTCZNN-2 model (19) is given as

tb =
2r ln

[

2
L(0)(r−1)/2r+1

]

ǫ(1− r)
+

2 ln 2

ǫ(1− r)
≈ 2.3942 s.

Keeping r and ǫ the unchanged, let k1 = 1, k2 = 10, and k3 = 1. According
to Theorem 4, the convergence time upper bound tc for FTCZNN-3 model
(21) is computed as

tc =

2r ln

[

1+
k2
k3

L(0)(r−1)/2r

1+
k2
k3

]

k3ǫ(1 − r)
+

2 ln
[

1 + k2
k1

]

k1ǫ(1− r)
≈ 1.0227 s.

From Fig. 2, it can be seen that the actual convergence time is smaller
or equal to their corresponding theoretical upper bound of convergence time.
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Figure 4: Comparisons among three cases of FTCZNN-3 model (21) with different tunable
parameters. (a) L(0) > 1. (b) L(0) < 1.

Specifically, FTCZNN-3 model (21) for solving LMIs can converge to zero
within 0.75 s, FTCZNN-2 model (19) spends 2.12 s, and FTCZNN-1 model
(17) needs 2.95 s to complete the process of convergence. Moreover, the dis-
tance between the actual time and theoretical analysis value can express the
convergence performance. Hence, it can easily be concluded that FTCZNN-3
model (21) has the best convergence performance, followed by FTCZNN-2
model (19), and finally FTCZNN-1 model (17).

Case II Let X(0) = [0.3, 0.008; 0.1,−0.08;−0.34,−0.3], which repre-
sents that A(0)X(0)B(0)−C(0) = [0.71,−0.79; 0.15,−0.004;−0.78, 0.6], and
L(0) = |̺+(0)|2 = (0.79)2 = 0.6241 < 1. The parameters of FTCZNN-1
model (17) are given as r = 0.3 and ǫ = 1. By Theorem 2, the convergence
time upper bound ta is given as

ta =
2

ǫ(1 − r)
L(0)(1−r)/2 ≈ 2.4225 s.

While using FTCZNN-2 model (19) to solve (1), by Theorem 3, the conver-
gence time upper bound tb is given as

tb =
2 ln

[

1 + L(0)(1−r)/2
]

ǫ(1− r)
≈ 1.7544 s.

Let k1 = 1, k2 = 10, and k3 = 1, by Theorem 4, the convergence time upper
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Figure 5: Transient behaviors of the error function ‖E(t)‖2 synthesized by FTCZNN-3
model (21) with k2 = 1,k3 = 1 and different values of k1.

bound tc for FTCZNN-3 model (21) is calculated as

tc =
2 ln

[

1 + k2
k1
L(0)(1−r)/2

]

k2ǫ(1− r)
≈ 0.6426 s.

Similar to the situation when L(0) > 1, from Fig. 3, three FTCZNN mod-
els have better convergence performance. In addition, the distance between
the theoretical computational time and the actual time using FTCZNN-3
model (21) is shorter than the other. It demonstrates the superiority of
FTCZNN-3 model (21) with the tunable sign-bi-power AF via numerical
simulations.

For further investigation, we have done a contrast experiment to deter-
mine which parameter has the greatest effect on the convergence rate of
FTCZNN-3 model (21). In Fig. 4, the aforementioned LMI problem can
be solved by setting three different cases for FTCZNN-3 model (21), i.e.,
k1 = 10, k2 = 1 and k3 = 1; k1 = 1, k2 = 10 and k3 = 1; and k1 = 0, k2 = 1
and k3 = 10. According to the simulation results, we can see that three cases
are able to make the residual error achieve to zero rapidly. Under the first
case, i.e., k1 = 10, k2 = 1 and k3 = 1, the convergence time is least. This
is consistent with the results of theoretical analysis. Because whatever the
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Figure 6: Comparisons between FTCZNNmodel (16) and the varying-parameter FTCZNN
model (57) for solving time-varying linear matrix inequalities. (a) Free noise. (b) Random
noise generated from 0.1 ∗ rand(6, 1).

initial state L(0) is, there is always a period when L(0) < 1. In other words,
the time from L(0) < 1 to 0 is unavoidable and must be experienced. What
determines the length of convergence time for FTCZNN-3 model (21) is the
value of k1, so the greater k1, the shorter convergence time.

Furthermore, in Fig. 5, it is worth pointing out that the convergence time
reduced from 2.17 seconds to 0.425 seconds when the value of k1 is increased
from 1 to10. When k1 = 100, the residual error only needs 0.055 seconds to
converge to zero. Therefore, the value of k1 is an important influential factor
for the convergence time of FTCZNN-3 model (21) when applied to solving
time-varying LMIs.

4.2. Varying Parameter FTCZNN Model

Inspired by [36, 37, 38, 39], the varying parameters have been considered
in the traditional ZNN models. Hence, in this subsection, a varying param-
eter is added to FTCZNN model (16) for solving time-varying linear matrix
inequalities, and the varying parameter FTCZNN model can be directly given
as

Ė(t) = −(tγ + γ)STP(E(0))♦Ψ(E(t)), (57)

where γ ≥ 2, STP(·) is defined in formula (4), the operator ♦ is defined
in equation (5), and Ψ(·) is the sign-bi-power activation function which is
defined in equation (12).
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Using the same example in Subsection 4.1, from Fig. 6, it can be seen
that the varying-parameter FTCZNN model (57) with γ = 3 has better
performance in convergence rate, convergence time and robustness. In the
future work, these features may be further researched and applied to practical
engineering fields.

5. Conclusions

For the purpose of solving the time-varying LMIs more faster and in
finite-time, three FTCZNN models have been presented and investigated in
this work by exploring three nonlinear activation functions. It has been first
proved that three FTCZNN models are globally stable according to the Lya-
punov theory. Then, the convergence upper bounds of three FTCZNN models
have been estimated to prove the finite-time convergence performance. Nu-
merical comparison results ulteriorly reveal the superiority performance of
three FTCZNN models for solving LMIs. That is to say, the state solution-
s by using FTCZNN models can converge to the theoretical solution set of
time-varying LMIs accurately and rapidly. The future work may focus on the
following two topics. One is the study and investigation of the application of
time-varying linear matrix inequality in practice. The other is to develop and
optimize the neural models to possess superior convergence performance.
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