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Abstract

In this paper, finite time dual neural networks with a new activation function are presented to solve quadratic programming problems.
The activation function has two tunable parameters, which give more flexibility to design a neural network. By Lyapunov theorem,
the finite-time stability can be derived for the proposed neural networks model, and the actual optimal solutions of the quadratic
programming problems can be obtained in finite time interval. Different from the existing recurrent neural networks for solving
the quadratic programming problems, the neural networks of this paper have a faster convergent speed, at the same time, reduced
oscillation when delay appears, and less sensitivity to the additive noise with careful selection the parameters. The effectiveness of
our methods are validated by theoretical analysis and numerical simulations.
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1. Introduction

Recently, recurrent neural networks have made great devel-
opment. They are widely applied in scientific and engineer-
ing field, for example, optimization (Smith (1999); Li, Lou
and Liu (2012)), control of chaos (Lin, Li and Liu (2012)),
pattern classification (Burrows and Niranjan (1994); Husken
and Stagge (2003)), signal processing (Skowronski and Harris
(2007)), robotics (Li, Chen, Liu, Li and Liang (2012)), solv-
ing time-varying Sylvester equation (Li, Chen and Liu (2013)),
the winners-take-all competition (Li, Liu and Li (2013); Liu
and Wang (2008); Hu and Zhang (2009)), convex quadratic
programming ( Zhang and Wang (2002); Xia and Sun (2009);
Xia Feng and Wang (2004)), kinematic control of redundant
manipulators ( Zhang, Wang and Xia (2003)) etc. Particularly,
the Hopfield neural networks (Hopfield (1984)), the recurrent
neural networks, can be used to online optimization.

With the development of recurrent neural networks, remark-
able advances have been made in the field of online optimiza-
tion. For example, by removing the explicit constraints and by
introducing a penalty term into the cost function, and a recur-
rent neural network is designed to solve the constrained opti-
mization problem in (Hopfield (1984); Rodriguez, Dominguez,
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Rueda and Sanchez (1990); Kennedy and Chua (1988)). How-
ever, the designed neural network only converges to the opti-
mal solution asymptotically. In order to obtain the accurate so-
lution, some scholars have done a lot of work. For example,
in (Wu, Xia, Li and Chen (1996)) and (Zhang and Constan-
tinides (1992)), dynamic Lagrange multipliers are introduced
to regulate the constraints and the optimal solution can be ob-
tained in finite time. However, the number of neurons in the
neural network is increased. The reason is that extra neurons
are required for the dynamics of the Lagrange multipliers. It
is well known that the complexity and cost of its hardware im-
plementation are relevant to the the number of neurons in the
neural network. Then, the research on reduction of neuron
number without losing efficiency and accuracy receives some
researchers’ attention (Hu and Zhang (2009); Liu and Wang
(2006); Wang (2010); Liu and Wang (2011); Li, Li and Wang
(2013). For instance, the authors in (Li, Li and Wang (2013))
present a dual neural network model with a continuous func-
tion, |x|rsign(x) (0 < r < 1). The finite-time convergence prop-
erty and the optimality of the proposed neural network for solv-
ing the quadratic programming problem are proven. The pa-
rameter r has an effect on the convergence time. The neural net-
work has a faster convergent speed with a smaller r. However,
the chattering phenomenon will happen, especially in the case
when time delay appears. On the other hand, the neural network
with a smaller r is less sensitive to additive noise. Therefore, it
is worth while to study finite-time dual networks for solving
quadratic programming problems with a relative high robust-
ness against time delay and noise.



In the paper, we present recurrent neural networks with a
tunable active function, k1|x|rsign(x)+k2x, where k1, k2 are tun-
able positive parameters. These parameters are not only helpful
to accelerate convergence speed, but also helpful to improve the
robustness of the neural network with appearance of time delay
and noise.

The paper is organized as follows. In Section 2, finite-time
criteria and upper bounds of the convergence time are reviewed.
In section 3, we present finite-time recurrent neural networks
with a tunable activation function for solving quadratic pro-
gramming problems. In section 4, numerical simulations are
given to show the effectiveness of our methods. Section 5 con-
cludes the paper.

2. Preliminaries

Consider the following system:

ẋ(t) = f (x(t)), f (0) = 0, x ∈ Rn, x(0) = x0, (1)

where f : D → Rn is continuous on an open neighborhood D
of the origin x = 0.

Definition 1 (Bhat and Bernstein (2000)): The equilibrium
x = 0 of (1) is finite-time convergent if there are an open neigh-
borhoodU of the origin and a function Tx : U \ {0} → (0,∞),
such that every solution trajectory x(t, x0) of (1) starting from
the initial point x0 ∈ U \ {0} is well-defined and unique in for-
ward time for t ∈ [0,Tx(x0)), and lim

t→Tx(x0)
x(t, x0) = 0. Then,

Tx(x0) is called the convergence time (of the initial state x0).
The equilibrium of (1) is finite-time stable if it is Lyapunov sta-
ble and finite-time convergent. If U = D = Rn, the origin is a
globally finite-time stable equilibrium.

The following Lemmas provide sufficient conditions for the
origin of the system (1) to be a finite-time stable equilibrium.

Lemma 1 (Bhat and Bernstein (2000)): Suppose there are a
C1 positive definite function V(x) defined on a neighborhood
U ⊂ Rn of the origin, and real numbers k1 > 0 and 0 < r < 1,
such that

V̇(x)|(1) ≤ −k1V(x)r,∀x ∈ U. (2)

Then, the origin of the system (1) is locally finite-time stable.
The convergence time T1, depending on the initial state x0, sat-
isfies

T1(x0) ≤ V(x0)1−r

k1(1 − r)
, (3)

for all x0 ∈ U. Further, if U = Rn and V(x) is radially un-
bounded (that is V(x) → +∞ as ‖x‖ → +∞), the origin of
system (1) is globally finite-time stable.

Lemma 2 (Shen and Xia (2008); Shen and Huang (2012)): If
there are a C1 positive definite function V(x) defined on a neigh-
borhoodU ⊂ Rn of the origin, and real numbers k1, k2 > 0 and
0 < r < 1, such that

V̇(x)|(1) ≤ −k1V(x)r − k2V(x),∀x ∈ U. (4)

Then, the origin of system (1) is finite-time stable. The conver-
gence time T2 satisfies

T2(x0) ≤
ln[1 + k2

k1
V(x0)1−r]

k2(1 − r)
, (5)

for all x0 ∈ U. If U = Rn and V(x) is radially unbounded, the
origin of system (1) is globally finite-time stable.

Remark 1: From Lemma 1 and Lemma 2, we can see the up-
per bound of the convergence time is relevant to r. It decreases
with decrease of r. When r is greater than 0 but sufficiently
close to 0, the term |x|rsign(x) is very close to sign(x) for x with
small absolute values values. Therefore, it may yield chatter-
ing phenomenon. For example, consider the following scalar
differential equation:

ẋ(t) = −|x(t)|rsign(x), 0 < r < 1. (6)

The trajectories of (6) with different value of r are given in
Fig.1. From Fig. 1 and Fig. 2, we can see that the trajec-
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Figure 1: The trajectories of (6) with different value of r
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Figure 2: Partial enlarged view of Figure 1

tory of (6) with r = 0.2 has the fastest convergence speed, but
the chatting phenomenon happens also. To overcome the prob-
lem, we can select a small value of k1 and a large value of k2 for
the following scalar differential equation:

ẋ(t) = −k1|x(t)|rsign(x) − k2x, 0 < r < 1. (7)
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Figure 3: The trajectory of (7) with r = 0.2, k1 = 0.0001, k2 = 15

The trajectory of (7) is shown in Fig. 3. From the Fig. 4, we
can see the chattering phenomenon disappears. In sliding mode
control, the introduction of −k2x, called reaching control, to
suppress chattering is the ideal of Gao and Hung in (Gao and
Hung (1993)).
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Figure 4: Partial enlarged view of Figure 3

The following Lemmas are also useful for our main results.
Lemma 3 (Li, Li and Wang (2013)): Let ‖x‖a is the a-norm

of x = [x1, x2, ..., xn]T , ‖x‖a = (
∑n

i=1 |xi|a)
1
a , for 0 < b < a, we

have

‖x‖a ≤ ‖x‖b. (8)

Lemma 4 (Hwang (2004)): Let A be a Hermitian matrix
of n, and let B be a principal sub-matrix of A of order n − 1.
If λn ≤ λn−1 ≤ ... ≤ λ2 ≤ λ1, lists the eigenvalues of A and
µn ≤ µn−1 ≤ ... ≤ µ3 ≤ µ2 the eigenvalues of B, then

λn ≤ µn ≤ λn−1 ≤ ... ≤ λ2 ≤ µ2 ≤ λ1. (9)

Lemma 5 (Li, Li and Wang (2013)): Let ε1 = λmin(EMET ),
εq = λmax(EMET ), where E ∈ Rq×n, M ∈ Rn×n, M = MT , and
let A1 = D(I−ρEMET )+ρEMET , where I is an identity matrix
of proper dimensions, D = diag(d1, d2, ..., dq) with 0 ≤ di ≤ 1
for i = 1, 2, ..., q, ρ ∈ R, 0 < ρ ≤ 2

εq
. Then,

A1 + AT
1 ≥ ρε1I (10)

xT (A1 + AT
1 )x ≥ ρε1xT x, for ∀x ∈ Rn. (11)

In addition, MET x = 0, when xT (A1 + AT
1 )x = 0.

3. Dual neural networks with a tunable activation function
for solving quadratic programming problem

Consider the following quadratic programming problem:

minimize
1
2

xT Wx + cT x, (12a)

subject to Ax = b, (12b)
l ≤ Ex ≤ h, (12c)

where x ∈ Rn, W ∈ Rn×n is a positive matrix, c ∈ Rn, A ∈ Rm×n,
b ∈ Rm, E ∈ Rq×n, h ∈ Rq, l ∈ Rq, m < n and h ≥ l. As in (Liu
and Wang (2006)), we assume that the equality constraint is
irredundant, that is, rank(A) = m.

According to Karush-Kuhn-Tucker (KKT) conditions (Boyd
and Vandenberghe (2004)), we have:

Wx + c + ATλ + ETµ = 0, (13)

Ax = b, (14)


Ex = h, if µ > 0,
l ≤ Ex ≤ h, if µ = 0,
Ex = l, if µ < 0,

(15)

where λ ∈ Rm and µ ∈ Rq are dual variables to the equality con-
straint (12b) and the inequality constraint (12c), respectively.
Introducing a saturation function, we have

ρEx = g(ρEx + µ), (16)

where ρ ∈ R, ρ > 0 is a scaling factor, and the saturation func-
tion g(x) = [g1(x1), g2(x2), ..., gq(xq)]T is defined as

gi(xi) =


ρhi, if xi > ρhi,
xi, if ρli ≤ xi ≤ ρhi,
ρli, if xi < ρli.

(17)

As in (Li, Li and Wang (2013)), we obtain

x = −[W−1ET −W−1AT (AW−1)−1AW−1ET ]µ −W−1c

+W−1AT (AW−1AT )−1(b + AW−1c), (18)

λ = −(AW−1AT )−1AW−1ETµ−(AW−1AT )−1(b+AW−1c). (19)

Define the following constant vector

s = W−1AT (AW−1AT )−1(b + AW−1c) −W−1c, (20)

M = W−1 −W−1AT (AW−1AT )−1AW−1. (21)

Then

−ρEMETµ + ρEs = g
(
(I − ρEMET )µ + ρEs

)
. (22)
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We use the following a layer of dynamic neurons to solve µ
in (22)

εµ̇ = − F
(
g
(
(I − ρEMET )µ + ρEs

)

+ρEMETµ − ρEs
)
, (23)

where ε is a scaling positive parameter, F (x) is a tunable acti-
vation function,

F (x) = k1|x|rsign(x) + k2x, (24)

0 < r < 1, k1, k2 are tunable positive parameters, for z =

[z1, z2, ..., zq]T ,

F (z) = [F (z1),F (z2), · · ·,F (zq)]T . (25)

The following dual network can be used to solve the pro-
gramming problem (12),

state equation : εµ̇ = −F
(
g
(
(I − ρEMET )µ + ρEs

)

+ ρEMETµ − ρEs
)
, (26a)

output equation : x = −METµ + s, (26b)

where g(·) is given by (17).

The following Lemma is needed for the main results.

Lemma 6 (Li, Li and Wang (2013)): x∗ = −ρMETµ∗ + s is
the optimal solution to the programming problem (12), where
µ = µ∗ is an equilibrium point of (26).

Now we present the main result.
Theorem 1: With the tunable activation function (24), the

neural network (26) is stable in the sense of Lyapunov. When
the EMET has full rank, the neural network converges to an
equilibrium point µ∗ in finite time and the upper bound of the
convergence time T3 satisfies

T3 ≤ 2ε
ρε1k2

2(1 − r2)
ln

[
1 +

V1−r
0 k2

2(1 + r)1−r

k2
1

]
, (27)

where V0 = 1
r+1 ‖g((I−ρEMET )µ0 +ρEs)+ρEMETµ0−ρEs‖r+1

r+1
is the initial value of V(t), and V(t) is given as follows:

V(t) =
1

r + 1

∥∥∥∥g((I−ρEMET )µ+ρEs)+ρEMETµ−ρEs
∥∥∥∥

r+1

r+1
.

(28)

Proof: Along the trajectory of (26), the time derivative of
V(t) defined by (28) is given by

V̇(t) = µ̇T
(
J(I − ρEMET ) + ρEMET

)TF
(
g
(
(I − ρEMET )µ

+ρEs
)

+ ρEMETµ − ρEs
)

= −1
ε

(
F

(
g
(
(I−ρEMET )µ+ρEs

)
+ρEMETµ−ρEs

))T

(
J(I − ρEMET ) + ρEMET

)TF
(
g
(
(I − ρEMET )µ

+ρEs
)

+ ρEMETµ − ρEs
)
, (29)

where J = D+g is the upper-right Dini derivative of g
(
(I −

ρEMET )µ + ρEs
)
. According to (17), we have

J = diag(J1, J2, ..., Jn),

where

Ji =



1, if ρli ≤
(
(I − ρEMET )µ + ρEs

)
i
≤ ρhi

0, if
(
(I − ρEMET )µ + ρEs

)
i
≤ ρli or(

(I − ρEMET )µ + ρEs
)

i
≥ ρhi.

(30)

From Lemma 4 and Lemma 5, it follows

(
J(I−ρEMET )+ρEMET

)T
+
(
J(I−ρEMET )+ρEMET

)
≥ ρε1I.

(31)

Bringing (31) into (29), we have

V̇(t) ≤ −ρε1

2ε

∥∥∥∥∥∥
(
F

(
g
(
(I−ρEMET )µ+ρEs

)
+ρEMETµ−ρEs

))T ∥∥∥∥∥∥

∥∥∥∥∥F
(
g
(
(I − ρEMET )µ + ρEs

)
+ ρEMETµ − ρEs

)∥∥∥∥∥

= −ρε1

2ε

∥∥∥∥∥F
(
g
(
(I − ρEMET )µ+ ρEs

)
+ ρEMETµ− ρEs

)∥∥∥∥∥
2

= −ρε1

2ε

∥∥∥∥∥k1

(
g
(
(I − ρEMET )µ+ ρEs

)
+ ρEMETµ− ρEs

)r

+k2

(
g
(
(I − ρEMET )µ + ρEs

)
+ ρEMETµ − ρEs

)∥∥∥∥∥
2
. (32)

Lemma 3 implies that

V̇(t) ≤ −ρε1

2ε

(
k2

1

∥∥∥∥∥
(
g
(
(I−ρEMET )µ+ρEs

)
+ρEMETµ−ρEs

)∥∥∥∥∥
2r

2r

+k2
2

∥∥∥∥∥
(
g
(
(I − ρEMET )µ + ρEs

)
+ ρEMETµ − ρEs

)∥∥∥∥∥
2

2

)

≤ −ρε1

2ε

(
k2

1

∥∥∥∥∥
(
g
(
(I−ρEMET )µ+ρEs

)
+ρEMETµ−ρEs

)∥∥∥∥∥
r(r+1)

r+1

+k2
2

∥∥∥∥∥
(
g
(
(I − ρEMET )µ + ρEs

)
+ ρEMETµ − ρEs

)∥∥∥∥∥
r+1

r+1

)

Then, we have

V̇(t) ≤ −ρε1

2ε
[k2

1

(
(1 + r)V(t)

)r
+ k2

2(1 + r)V(t)]. (33)

By Lemma 2, we can get that V(t) = 0 when t > T3. This
completes the proof.
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In addition, by Lemma 6 we can get the optimal solution to
the programming problem in finite time.

If k1 = k2 = 1, we have the activation function

F (x) = |x|rsign(x) + x. (34)

We have the following corollary for (26) with the activation
function (34).

Corollary 1: The neural network (26) with the activation
function (34) is stable in the sense of Lyapunov. In addition, if
EMET has full rank, the neural network converges to an equi-
librium point µ∗ in finite time and the upper bound of the con-
vergence time T4 satisfies

T4 ≤
2εln[1 + V1−r

0 (1 + r)1−r]
ρε1(1 − r2)

, (35)

where V0 is given in Theorem 1.

Proof : Using the same method as Theorem 1, we can ob-
tain the result.

Remark 2: In Theorem 1, the term k2x is added to ac-
celerate the convergent speed of the neural network. The pa-
rameters k1, k2 give more flexibility to solve the quadratic pro-
gramming problem. By careful section of k1, k2, the chattering
phenomenon will be avoided. Moreover, the tunable activation
function can also decrease the sensitivity to additive noise.

4. Numerical Simulations

In the section, we give a numerical example to illustrative
the neural network (26) with the tunable activation function (24).
The simulation is performed with the programming language
Matlab 7.10.0 on a desktop computer with the Intel (R) Core(TM)
G640 Duo CPU at 2.80 GHz, 1.59 GHz and 1.90 GB of RAM.
The configuration parameters are given as: variable-step, ode45,
relative tolerance 1e-10.

Example: The quadratic programming problem is to

minimize 3x2
1 + 3x2

2 + 4x2
3 + 5x2

4 + 3x1x2+

5x1x3 + x2x4 − 11x1 − 5x4, (36a)
subject to 3x1 − 3x2 − 2x3 + 4x4 = 0, (36b)

4x1 + x2 − x3 − 24x4 = 0, (36c)
−73 ≤ −50x1 + 50x2 ≤ −50, (36d)
−20 ≤ 32x1 + 10x3 ≤ 41. (36e)

For the example, we have

W =



6 3 5 0
3 6 0 1
5 0 8 0
0 1 0 10


, c =



−11
0
0
−5


, b =

[
0
0

]
,

A =

[
3 −3 −2 1
4 1 −1 −2

]
, E =

[ −50 50 0 0
32 0 10 0

]
,

l =

[ −73
−20

]
, h =

[ −50
41

]
.

The largest and smallest eigenvalue of the matrix EMET

are εq = 138.4337 and ε1 = 18.5319, respectively. Moreover,
EMET has full rank, satisfying the conditions of Theorem 1.
Then, the neural network (26) converges to the optimal solu-
tion in finite time. In addition, we choose ρ = 0.01 ≤ 2

εq
, the

scaling factor ε = 10−8 in the simulation. We use this example
to systematically evaluate the performance of the proposed acti-
vation function in three aspects: convergence speed, sensitively
to additive noise and robustness against time delay.

(1) Convergence speed

In the part, we compare the convergence speed and the chat-
tering phenomenon with the activation function (24), and the
following activation function given in (Li, Li and Wang (2013)):

F (x) = |x|rsign(x), 0 < r < 1. (37)

The initial value of µ is given by µ0 =

[
0.17
0.09

]
. By simple

computation, we can obtain the upper bound of T3 in (27) is
4.5774 × 10−8 with r = 0.6, k1 = 1, k2 = 1. The the upper
bound of the convergence time T5 is 14.3147 × 10−8 in (Li,
Li and Wang (2013)). Obviously, we have 14.3147 × 10−8 >
4.5774 × 10−8. Fig. 5 and Fig. 6 show the results.
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Figure 5: The transient behavior of µ with the activation function (24) and (37)
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Although reducing the value of r can speed up the con-
vergent speed of the neural network with the activation func-
tion (37), it will present the chattering phenomenon when r
is sufficiently close to 0. With the proposed activation func-
tion (24), we can make the value of k2 larger and the value of k1
smaller to reduce or even eliminate the chattering phenomenon
and at the same time to accelerate up the convergent speed. Fig.
7 and Fig. 8 show the simulation results.
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Figure 7: The transient behavior of errors under r = 0.2 with the activation
function (24) and (37)
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Figure 8: Partial enlarged view of Figure 7

(2) Sensitively to additive noise

In practice, the dynamics of the neural network may been
disturbed by noise. In the part, we will compare the sensitiv-
ity to additive noise with the activation function (24) and (37),
respectively. For simplicity, we only consider the presence of
noise in the state equation.

state equation : εµ̇ = −F1(g((I − ρEMET )µ + ρEs)

+ ρEMETµ − ρEs) + v, (38a)

output equation : x = −METµ + s, (38b)

where v is zero mean Gaussian white noise with covariance σI.
The simulation results are given in Fig. 9 and Fig. 10.
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Figure 9: Error under r = 0.6 with noise level σ = 1 by the method in (Li, Li
and Wang (2013))
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Figure 10: Error under r = 0.6 with noise level σ = 1 by our method

From Fig. 9 and Fig. 10, we can see that the neural network
with the tunable activation function (24) is less sensitive to ad-
ditive noise than the one with (37).

(3) Robustness against time delay

In the above two parts, time delay is not taken into account
for the neural network model. But in implementation of the
neural network, for example implementation with analog cir-
cuits by neural network, time delay is always inevitable due to
limited response rate and sometimes it is crucial to the stability
of the system. So, the following part, we evaluate the influence
of time delay on the neural computing with our tunable activa-
tion function and the activation function in (Li, Li and Wang
(2013)) under different time delay. We consider the feedback
channel of the state equation with time delay:

state equation : εµ̇(t) = −F1(g((I − ρEMET )µ(t − ø)+

ρEs) + ρEMETµ(t − ø) − ρEs), (39a)

output equation : x = −METµ(t − ø) + s, (39b)

where ø is the time delay. As in (Li, Li and Wang (2013)), we
use the 1

ε
as the time unit τ.

The neural network in (Li, Li and Wang (2013)) will be
more possible to oscillate with a smaller r when time delay ap-
pears. So making the value of r larger will be helpful to reduce

6



the oscillate phenomenon. But we know the convergence time
will become longer with a larger value of r. We can further de-
crease the oscillation and obtain a shorter convergent time by
carefully section of parameters k1, k2. We give the simulations
in the following situations, respectively:

Fig. 11: r = 1, time delay 1τ;
Fig. 12: r = 0.8, time delay 0.2τ;
Fig. 13: r = 0.2, time delay 0.008τ;
Fig. 14: r = 0, time delay 0.04τ.
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Figure 11: Comparisons of errors under r = 1 with the time delay equal to 1τ
by the activation functions (24) and (37)
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Figure 12: Comparisons of errors under r = 0.8 with the time delay equal to
0.2τ by the activation functions (24) and (37)
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Figure 13: Comparisons of errors under r = 0.2 with the time delay equal to
0.008τ by the activation functions (24) and (37)
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Figure 14: Comparisons of errors under r = 0 with the time delay equal to
0.04τ by the activation functions (24) and (37)

5. Conclusion

In the paper, finite time dual neural networks with a new
activation function were presented to solve quadratic program-
ming problems. The activation function has two tunable pa-
rameters, which give more flexibility to design a neural net-
work. By Lyapunov theorem, the finite-time stability could be
derived for the proposed neural networks model, and the ac-
tual optimal solutions of the quadratic programming problems
could be obtained in finite time interval. Different from the ex-
isting recurrent neural networks for solving the quadratic pro-
gramming problems, the neural networks of this paper have a
faster convergent speed, at the same time, reduced oscillation
when delay appears, and less sensitivity to the additive noise
with careful selection the parameters. The effectiveness of our
methods were validated by theoretical analysis and numerical
simulations.
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