28,373 research outputs found

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers

    Applications of negotiation theory to water issues

    Get PDF
    The authors review the applications of noncooperative bargaining theory to waterrelated issues-which fall in the category of formal models of negotiation. They aim to identify the conditions under which agreements are likely to emerge and their characteristics, to support policymakers in devising the"rules of the game"that could help obtain a desired result. Despite the fact that allocation of natural resources, especially trans-boundary allocation, has all the characteristics of a negotiation problem, there are not many applications of formal negotiation theory to the issue. Therefore, the authors first discuss the noncooperative bargaining models applied to water allocation problems found in the literature. Key findings include the important role noncooperative negotiations can play in cases where binding agreements cannot be signed; the value added of politically and socially acceptable compromises; and the need for a negotiated model that considers incomplete information over the negotiated resource.Water Supply and Sanitation Governance and Institutions,Town Water Supply and Sanitation,Water and Industry,Environmental Economics&Policies,Water Conservation

    Applications of negotiation theory to water issues

    Get PDF
    The purpose of the paper is to review the applications of non-cooperative bargaining theory to water related issues – which fall in the category of formal models of negotiation. The ultimate aim is that of, on the one hand, identify the conditions under which agreements are likely to emerge, and their characteristics; and, on the other hand, to support policy makers in devising the “rules of the game” that could help obtain a desired result. Despite the fact that allocation of natural resources, especially of trans-boundary nature, has all the characteristics of a negotiation problem, there are not many applications of formal negotiation theory to the issue. Therefore, this paper first discusses the noncooperative bargaining models applied to water allocation problems found in the literature. Particular attention will be given to those directly modelling the process of negotiation, although some attempts at finding strategies to maintain the efficient allocation solution will also be illustrated. In addition, this paper will focus on Negotiation Support Systems (NSS), developed to support the process of negotiation. This field of research is still relatively new, however, and NSS have not yet found much use in real life negotiation. The paper will conclude by highlighting the key remaining gaps in the literature.Negotiation theory, Bragaining, Coalitions, Fairness, Agreements

    Applications of Negotiation Theory to Water Issues

    Get PDF
    The purpose of the paper is to review the applications of non-cooperative bargaining theory to water related issues – which fall in the category of formal models of negotiation. The ultimate aim is that to, on the one hand, identify the conditions under which agreements are likely to emerge, and their characteristics; and, on the other hand, to support policy makers in devising the “rules of the game” that could help obtain a desired result. Despite the fact that allocation of natural resources, especially of trans-boundary nature, has all the characteristics of a negotiation problem, there are not many applications of formal negotiation theory to the issue. Therefore, this paper first discusses the non-cooperative bargaining models applied to water allocation problems found in the literature. Particular attention will be given to those directly modelling the process of negotiation, although some attempts at finding strategies to maintain the efficient allocation solution will also be illustrated. In addition, this paper will focus on Negotiation Support Systems (NSS), developed to support the process of negotiation. This field of research is still relatively new, however, and NSS have not yet found much use in real life negotiation. The paper will conclude by highlighting the key remaining gaps in the literature.Negotiation theory, Water, Agreeements, Stochasticity, Stakeholders

    Marginal likelihoods in phylogenetics: a review of methods and applications

    Full text link
    By providing a framework of accounting for the shared ancestry inherent to all life, phylogenetics is becoming the statistical foundation of biology. The importance of model choice continues to grow as phylogenetic models continue to increase in complexity to better capture micro and macroevolutionary processes. In a Bayesian framework, the marginal likelihood is how data update our prior beliefs about models, which gives us an intuitive measure of comparing model fit that is grounded in probability theory. Given the rapid increase in the number and complexity of phylogenetic models, methods for approximating marginal likelihoods are increasingly important. Here we try to provide an intuitive description of marginal likelihoods and why they are important in Bayesian model testing. We also categorize and review methods for estimating marginal likelihoods of phylogenetic models, highlighting several recent methods that provide well-behaved estimates. Furthermore, we review some empirical studies that demonstrate how marginal likelihoods can be used to learn about models of evolution from biological data. We discuss promising alternatives that can complement marginal likelihoods for Bayesian model choice, including posterior-predictive methods. Using simulations, we find one alternative method based on approximate-Bayesian computation (ABC) to be biased. We conclude by discussing the challenges of Bayesian model choice and future directions that promise to improve the approximation of marginal likelihoods and Bayesian phylogenetics as a whole.Comment: 33 pages, 3 figure
    corecore