By providing a framework of accounting for the shared ancestry inherent to
all life, phylogenetics is becoming the statistical foundation of biology. The
importance of model choice continues to grow as phylogenetic models continue to
increase in complexity to better capture micro and macroevolutionary processes.
In a Bayesian framework, the marginal likelihood is how data update our prior
beliefs about models, which gives us an intuitive measure of comparing model
fit that is grounded in probability theory. Given the rapid increase in the
number and complexity of phylogenetic models, methods for approximating
marginal likelihoods are increasingly important. Here we try to provide an
intuitive description of marginal likelihoods and why they are important in
Bayesian model testing. We also categorize and review methods for estimating
marginal likelihoods of phylogenetic models, highlighting several recent
methods that provide well-behaved estimates. Furthermore, we review some
empirical studies that demonstrate how marginal likelihoods can be used to
learn about models of evolution from biological data. We discuss promising
alternatives that can complement marginal likelihoods for Bayesian model
choice, including posterior-predictive methods. Using simulations, we find one
alternative method based on approximate-Bayesian computation (ABC) to be
biased. We conclude by discussing the challenges of Bayesian model choice and
future directions that promise to improve the approximation of marginal
likelihoods and Bayesian phylogenetics as a whole.Comment: 33 pages, 3 figure