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Abstract  
The purpose of the paper is to review the applications of non-cooperative bargaining theory to water 
related issues – which fall in the category of formal models of negotiation. The ultimate aim is that of, 
on the one hand, identify the conditions under which agreements are likely to emerge, and their 
characteristics; and, on the other hand, to support policy makers in devising the “rules of the game” 
that could help obtain a desired result. Despite the fact that allocation of natural resources, especially 
of trans-boundary nature, has all the characteristics of a negotiation problem, there are not many 
applications of formal negotiation theory to the issue. Therefore, this paper first discusses the non-
cooperative bargaining models applied to water allocation problems found in the literature. Particular 
attention will be given to those directly modelling the process of negotiation, although some attempts 
at finding strategies to maintain the efficient allocation solution will also be illustrated. In addition, 
this paper will focus on Negotiation Support Systems (NSS), developed to support the process of 
negotiation. This field of research is still relatively new, however, and NSS have not yet found much 
use in real life negotiation. The paper will conclude by highlighting the key remaining gaps in the 
literature. 
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1 Introduction 

Bargaining situations are pervasive in today’s life, from marriage to parenthood, to wage 

negotiations; even government policies are the outcome of negotiations amongst different 

parties or interested stakeholders. The interest in the investigation of negotiation theories 

and techniques has significantly increased in the research literature, and has expanded 

from its traditional domain of labour-management relation, to other strategic areas – such 

as trade and natural resources.  

In the theory of negotiation, a ‘conflict’ is interpreted as a situation in which the 

agents, decision makers, or ‘players’1 could mutually benefit from reaching an 

agreement, but have opposite interests over which agreement to conclude, i.e. how to 

cooperate. Where aims partially diverge, conflict and cooperation become two faces of 

the same coin, and should therefore be dealt with holistically. Negotiation theory seeks to 

identify the variables which determine the outcome of negotiations, bargaining power, 

and power relations, using a game theoretic (GT), formal approach. 

Many natural resource and environmental problems are best handled within a GT 

framework, and by means of formal GT models. In many issues related to natural 

resource management the characteristics of a Prisoner’s Dilemma game are present: the 

dominant strategy for players is not cooperative, and the resulting equilibrium is not 

Pareto efficient – the payoff for at least one individual could be improved, without some 

other individual being made worse off. Despite the fact that the cooperative outcome 

Pareto-dominates the equilibrium, cooperation is unlikely to result without outside 

intervention, or without altering the incentives’ structure, because all parties have 

incentives to free-ride, or defect, and binding agreements are often not possible. The 

allocation of a shared resource size is, on the other hand, often modelled as a game of 

pure conflict – in which the payoffs to one individual imply a reduction in the payoffs of 

his opponents. In these situations, players need to find a strategy to divide the resource in 

a way that is agreeable to all parties, and which possesses some desirable characteristics. 

Often, the allocation rule needs to be self-enforcing, especially in the context of 

                                                           
1 These could be individuals or groups of individuals, sectors, nations, etc.. 
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transboundary natural resources, where super-national body to enforce the agreement is 

not present. In order to determine which outcome will result from negotiations over the 

partition of a resource, models of non-cooperative bargaining theory focus on the process 

by which agreement is reached, approximating it through an offer and counteroffer 

procedure, following the seminal work by Rubinstein (1982). In this framework, players 

bargain over the allocation of a surplus of strictly positive size, by making offers over the 

partitions of the cake, or rejecting/accepting opponents’ proposals. This approach does 

not make a priori assumptions over the partition of the cake that will be reached in 

equilibrium, and, for multiple-issues and multilateral bargaining, there are indeed many 

partitions that can be sustained as an equilibrium to the game (see Negotiation Theory – 

Part 1). The approach allows an explicit treatment of issues such as equity and political 

power, which play a very strong role in real-life negotiations. However, it does not allow 

for the possibility of sub-coalitions of players to form: rather, it is implicitly assumed that 

all relevant players take part in the negotiation, and that the final allocation rule is agreed 

by all of them. 

It has been shown in the theoretical literature that cooperation can be sustained as 

an equilibrium outcome in the case of repeated games, even though the incentives to 

defect remain, especially in the case when players’ preference sets are very different (Just 

and Netanyahu (2000)). Cooperative behaviour may be induced by the use of threat 

strategies, whereby deviations from cooperation are punished by reverting to the non-

cooperative behaviour. Threat strategies are only effective if the gains from deviating in 

current periods are outweighed by the benefit losses from future non-cooperative payoffs. 

However, as in many cases the punishers incur costs from implementing the punishment 

strategies, threat strategies may not be credible, and the theoretical models predict that 

the non-cooperative outcome will result. 

Increasingly, negotiated policy making is advocated for as an approach to natural 

resource management, which could improve their management, both domestically and 

internationally. It is in fact widely agreed that negotiated policies are more in line with 

actual needs, are more readily accepted by the people concerned, and are therefore easier 

to implement and enforce. 
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The purpose of the paper is therefore to review the literature on non-cooperative 

bargaining approaches to water related issues – which fall in the category of formal 

models of negotiation. The ultimate aim is that of, on the one hand, identify the 

conditions under which agreements are likely to emerge, and their characteristics; and, on 

the other hand, to support policy makers in devising the “rules of the game”, in order 

obtain a desired result. Despite the fact that allocation of natural resources, especially of 

trans-boundary nature, has all the characteristics of a negotiation problem, there are not 

many applications of formal negotiation theory to the issue. In Section 2, the non-

cooperative bargaining models applied to water allocation problems found in the 

literature will be discussed. Particular attention will be given to those directly modelling 

the process of negotiation, although some attempts at finding strategies to maintain the 

efficient allocation solution will also be illustrated. Negotiations are complex processes, 

especially when more than two parties are involved, and more than one issue is to be 

decided upon. For this reason, Section 3 of this paper is concerned with presenting the 

main elements of Negotiation Support Systems (NSS), developed to support the process 

of negotiation. This field of research is still relatively new, however, and NSS have not 

yet found much use in real life negotiation. The paper will conclude by highlighting the 

key remaining gaps in the literature. 

 

2 Application of negotiation models to water issues 

Most of the literature on water allocation uses optimisation models to characterise the 

most efficient water allocation scheme. Mechanisms proposed typically include: marginal 

cost pricing; public sector allocation (government intervention); water markets; and user 

based allocation (Dinar et al. (1997)). Guiding principles for allocation may focus on 

economic efficiency or equity; the alternative allocation mechanisms respond to the two 

principles in different ways, and to different degrees.  

The economic literature focuses to a large extent on market allocation 

mechanisms (such as tradable water rights). It is argued that these allow the achievement 

of the efficient allocation at the least cost. For instance, Booker and Young (1994) build 

an optimisation model of transferable water rights, which includes a comprehensive 
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hydrological component (including water quality as well as quantity), and models both 

offstream (consumptive) and instream (non-consumptive) water demand. Their non-

linear optimisation model analyses the impact of alternative scenarios for the Colorado 

River basin, with respect to institutions and water demand, over the choice of water 

abstraction and salt discharges. The results indicate that an institutional allocation 

mechanism which allows intrastate water transfers based on both consumptive and non-

consumptive use values significantly improves welfare.  

Although the decentralised market solution is in theory efficient and least cost, 

and maximises welfare (in terms of economic surplus), there are various reasons why it 

may not work within the context of shared waters: for instance, non user values are not 

readily marketable; water is a highly strategic resource, and it is often politicised. Booker 

and Young themselves, in the above mentioned paper, recognise that the inclusion of 

non-consumptive use values is problematic both on technical and equity grounds: these 

benefits are non rival in consumption, and they may have asymmetric consequences for 

the bargaining parties – making the proposed allocation unlikely to be viewed as fair. 

In addition, the fact that water supply may vary stochastically through time 

introduces further complexities in the problem of managing the resource, adding one 

more reason why traditional approaches may not yield the expected welfare improving 

results. Some attempts at addressing uncertain water supply in theoretical models can be 

found in the literature, especially for groundwater resources. For instance, Zeitouni 

(2004) explores the optimal management of aquifers when the stock is uncertain, and 

proves that there is a threshold level determining whether there should be any abstraction 

at all. When pumping costs are sufficiently high, the optimal abstraction coincides with 

water recharge level. Tsur and Zemel (1995) explore how the possibility of irreversible 

changes in groundwater resources affects the optimal management and allocation rules. 

In the presence of such exogenous uncertainty the optimal process does not converge to a 

unique equilibrium steady state, and exploitation policies should be more conservative. 

Using groundwater and reservoirs as buffers against uncertainty can smooth 

stochastic variations in water supply out. Tsur (1990) and Tsur and Graham-Tomasi 

(1991), for instance, explore the role of groundwater as a buffer for stochastic variations 

in surface water levels – and finds that the stabilisation role of groundwater may well be 
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larger than the benefits derived from increasing water supply. Similarly, Roseta-Palma 

and Xepapadeas (2004) explore the role of water reservoirs in protecting users against 

uncertain water supply, and analyse the precautionary behaviour emerging from a robust-

control approach to modelling water resources. In this paper, the authors introduce 

uncertainty over the occurrence of precipitation, in the sense the stochastic process 

followed by precipitation is not perfectly known to the decision maker, and its 

implications for quantitative water used in both a static and a dynamic setting. A 

precautionary behaviour emerges in the dynamic setting, where the decision maker 

lowers surface water abstraction because of the integration of worse-case precipitations.  

All the above mentioned approaches, however, do not address explicitly the issue 

of how to allocate (uncertain) water resources among competing uses, leaving out the 

process of negotiation. 

The strategic and political nature of water, as well as its human right aspect, calls 

for a different approach to the allocation problem, one which considers the strategic 

behaviour of actors, as well as their motivations. Negotiation models can therefore 

provide very helpful insights into the actual allocation of water resources – by identifying 

strategies which may sustain cooperation as an outcome, and by taking into account 

strategic behaviour and social/political feasibility of the allocation proposed, as well as 

power asymmetries, incomplete information, and other relevant aspects of the process. 

2.1 Ground water management 

Groundwater exploitation is a typical case of open access resource, where externalities in 

consumption, therefore, exist. Although the paradoxical empirical results first obtained 

by Gisser and Sanchez (1980)2 have persisted in the groundwater literature, this has not 

prevented a substantial literature to develop, exploring the welfare implication of 

different management regimes. 

                                                           
2 What has become Gisser-Sanchez effect basically states that the magnitude of the benefits from optimally 
managing groundwater resources is negligible. The result rests mainly on the theoretical assumption of very 
steep groundwater use benefit curves (implying relative price insensitiveness of users), and on empirical 
observations comparing central control and open access management regimes for groundwater exploitation 
of the Pecos Basin in New Mexico. For a recent criticism to the Gisser-Sanchez effect see, for instance, 
Kounduri (2004).  
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 For instance, Dixon (1999) models a simplified version of groundwater 

exploitation, in which there are two agents with access to one of two interdependent and 

identical groundwater cells. Each agent lowers the water table in his own cell by 

pumping. The water table rises due to exogenous recharge, and water flows between the 

two cells according to specified environmental parameters. Agents maximise net benefits 

from water abstraction, subject to the equation of motion for the depth of water in each 

cell. This is a typical situation in which appropriation externalities exist – that is, in 

which actions by one agent have negative impacts on the benefits to other agents – and in 

which uncoordinated exploitation leads to inefficient outcomes. Dixon proceeds by 

estimating the non-cooperative, the optimal, and the collusive solutions (open and closed 

loop), and then compares the resulting welfare levels3.  

Under the myopic (non-cooperative) solution, each agent maximises his own net 

benefits, Πi
my discounted using the private discount factor, without taking into account 

the externalities of their water extraction on future water level. Under the socially optimal 

solution, the impact of pumping on ground-water levels is accounted for. Total profits, 

Πi
*, are maximised using the social discount factor, and the payoffs are equally split 

between the two identical users. Cooperative behaviour can be determined using two 

different solution concepts. Under open-loop solutions, agents maximise net present 

discounted4 value, Πi
OL, given the withdrawal of the others. The solution is a Nash 

equilibrium. Payoffs are larger than in the myopic case but, since agents still fail to 

account for the negative externalities imposed on others (stock externality), they are 

lower than the optimal payoff. The open loop solution overlooks strategic responses5, in 

which players pre-empt the opponents by extracting more (strategic externality). Yet, it 

can be realistic when players do not observe the state of the resource, for instance, and 

therefore cannot respond to opponents’ moves, or when some sort of binding agreement 

can be signed. When players behave strategically, the closed-loop solution should be 

used, which does not overlook strategic response, and predicts that users adjust their 

                                                           
3 When the social and private discount factors are equal, the social optimal is equivalent to the cooperative 
solution. 
4 Using real private discount rate. 
5 By assumption, in the open loop solution each agent take the opponent’s extraction path as given. 
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extraction paths according to observed actions by other players. The sub-game perfect 

equilibrium extraction paths (and payoffs) of the closed loop solution, Πi
CL, incorporate 

both the stock and strategic externality. Therefore, it is expected that Πi
CL < Πi

OL < Πi
*. 

Dixon applies this simplified model to groundwater use in the Joaquin Valley, 

taking baseline parameters from the existing literature when available, and making 

reasonable assumptions about the discount rate and length of the game. The results 

confirm the theoretical expectations: the difference between Πi
* and Πi

OL is given by the 

stock externality, and accounts for 18% of the overall difference between the collusive 

(optimal) and myopic payoffs. The strategic externality is measured by the difference 

between Πi
CL and Πi

OL, and amounts for another 7%. As expected, the myopic 

equilibrium is the farthest from the optimal equilibrium, with a 75% difference in 

payoffs.  

For trigger strategies6 to be feasible, agents must first agree on what to play in the 

periods prior to deviation – that is, they must agree on the cooperative exploitation paths. 

In addition, it is assumed that players can observe others’ actions. Dixon considers the 

trigger strategy in which a player extracts the collusive amount as long as all the others 

do the same in the preceding period. If one agent defects, all agents will return to the 

closed-loop equilibrium strategies for all successive periods. If the set of trigger strategies 

is a sub-game perfect Nash equilibrium (that is, if for each player j the best response is to 

play it, given that all other players also play it in each period), then collusion can be 

sustained as an equilibrium outcome of the game. 

Simulating the solutions for a given set of parameters, and varying the discount 

rate to assess its impact on the stability of trigger strategies of the kind described above, 

the author shows that, for reasonable parameters and low enough discount rates, it is 

possible for agents to set up a self-enforcing agreement to play the collusive solution – 

the “tragedy of the commons” is not necessarily the outcome of non-cooperative ground-

water exploitation. The critical value of the discount factor below which the set of trigger 

strategies does not form an equilibrium is 0.53 (for a discount rate of 0.89).  

                                                           
6 A trigger strategy is defined as a strategy in which a player starts by cooperating, and continues to 
cooperate provided that the opponent also cooperates. If the opponents cheat, then the player reverts to the 
non-cooperative strategy for a pre-defined period of time.  
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In the literature of game theoretic applications to natural resources, various 

authors propose the use of differential games7 to explore resource use strategies, and their 

efficiency and sustainability properties. In fact, resources are intrinsically dynamic – 

especially renewable resources, which vary through time according to the rate of growth 

of the resource stock, and other parameters. In the water realm, most applications are 

found in the groundwater literature. For instance, Provencher and Burt (1993) estimate 

the rate of groundwater extraction under common property management regime, 

identifying the externalities present under this management strategy, and investigating the 

effects of different risk-aversion parameters for water users.  

In this paper, the outcome emerges from dynamic strategies and the resulting 

resource evolution. The solution concept used is that of Feedback (or closed-loop) Nash 

equilibrium, where solutions assume that the state of the system at any one time depends 

on the past choices and outcomes, not only on the initial state8. Similarly, the same 

authors (Provencher and Burt (1994)) apply a dynamic model to compare the welfare 

effects of different property rights regime for groundwater pumping, when players have 

different risk-aversion factors: central (optimal) control dominates private property with 

tradable permits when water users are risk neutral, but with risk-averse firms both 

regimes are sub-optimal, and tradable property rights can be a feasible and desirable 

alternative to central control. This is because the market for permits provides 

opportunities for risk management in the face of changing conditions, flexibility which 

central control does not allow. Furthermore, in cases in which the value of a resource is 

lower under the private property rights regime than under command and control, in 

practice this difference is small, and the private property regime may be preferable on the 

grounds of easier implementation. 

                                                           
7 Differential games belong to a subclass of dynamic games called “state space games”, where a set of state 
variables describe the state of the dynamic system at any point in time during the game. The hypothesis is 
that the influence of past decisions on the payoffs at subsequent times is captured adequately by the 
evolution over time of the state variables. When the laws of motion of the state variable can be modelled in 
continuous time, the state space game becomes a differential games, whereas in the case of discrete time 
variables, the game is a difference game. Differential games, therefore, combine the principles of game 
theory, calculus of variation and control theory, to determine the strategic interactions between players in a 
dynamic context. 
8 Open Loop Nash Equilibria strategies, by contrast, assume that the controls depend on the initial state of 
the system under investigation, and time. 
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These approaches, however, concentrate on the efficiency and optimal control of 

groundwater exploitation, rather than on the “real-life” issue of allocating water among 

competing users – which is the main object of negotiating water policies. 9 

2.2 Allocation among sectors  

Competition among sectors for water use is the status quo in many countries, where often 

there is a conflict between agricultural and urban use, and environmental sustainability 

constraints. Negotiation over water allocation typically involves bargaining over multiple 

issues (for instance, water abstraction, as well as water quality), and multiple players – 

different user groups of the resource, e.g. farmers, urban dwellers, recreational users. 

A multi-person, multiple issues, negotiation model for water allocation is that 

developed by Rausser and Simon (1992). Their model is a framework for non-

cooperative, multilateral negotiation that explicitly incorporates the structure of the 

process, such as the input of each player in the bargaining, the partition of groups into 

sub-groups, and the issue space. In the bargaining game, a finite number of players select 

a policy from some collection of possible alternatives. Among the set of possible 

allocations, there is a disagreement policy, which will be imposed if the players fail to 

reach an agreement by the terminal time T. The authors examine the limit points of the 

equilibrium outcomes of the finite bargaining horizon game, as the time horizon is 

extended without bounds. The limit points are interpreted as a proxy for the equilibria of 

the bargaining game with finite but arbitrarily large bargaining rounds. 

Let I = {1,…,I} denote the finite set of players in the negotiation game, indexed 

by i. Players choose a policy package Xx∈ , where X is assumed to be a compact subset 

on the n-dimensional Euclidean space, and n denotes the number of issues to be 

negotiated.  

                                                           
9 In fact, approaching the issue of groundwater management using non-cooperative bargaining models 
could be quite useful even for development projects, such as the Groundwater and Soil Conservation 
project implemented in Nepal, and sponsored by the World Bank: in that context, exploring how the 
various stakeholders – farmers, local councils of different villages, government institutions, etc – view the 
water abstraction and the pattern of land use to identify proposals acceptable to all parties could have 
facilitated implementation, especially in the observed context of weak institutional presence. 
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For an agreed upon policy vector xρ, player i gets a utility of )(xui
ρ , whereas 

player i's disagreement payoff is 0uρ . By assumption, the set of admissible coalition is I = 

{1,…,I} that is, unanimity is needed to reach an agreement. The game has a finite number 

of rounds T. 

The negotiation game is played in the following way: at each round t < T, 

provided no agreement has yet been reached, a proposer is chosen according to 

exogenously specified vector of access probabilities, Iiiww ∈= )(ρ . The probability of 

player i being chosen, wi, is such that 0 < wi < 1, and ∑ =
i iw 1. The access probability of 

a player can be interpreted as her “political effectiveness”. The selected player makes a 

proposal for the policy vector in X, and the other players vote on whether to accept or 

reject it. If the proposal is accepted by all players, the game ends. Otherwise, another 

player is selected randomly to be a proposer in the next round. If the final round T is 

reached, and no policy vector in X has been unanimously agreed upon, the disagreement 

policy vector is imposed on players, who receive a payoff of 0uρ . In the model, it is 

assumed that there is a policy vector Xx∈  that strictly Pareto dominates 0uρ . 

The sub-game perfect equilibrium of the game can be characterised as follows: 

⇒ At the terminal time T, player j accepts a proposal by player i (i≠j) iff 

j
T
ij uxu 0)( ≥ , that is, a player will only accept an offer in the final round, if it 

gives her at least as much utility as her disagreement payoff. 

⇒ Similarly, at time t < T, player j accepts a proposal by i iff 

)()( 1
1

+
=∑≥ t

ii
I

i i
t
ij xuwxu ρ , that is, if it yields at least as much utility as the expected 

continuation payoff, i.e. the wi-weighted sum of the utilities obtained from all 

parties’ (including herself) proposals in the following round. 

The authors show that, if X is compact and each player utility is strictly quasi-

concave in X, the game can be solved recursively to yield a unique solution vector, 

consisting of an equilibrium proposal in X for each player. Players propose their 

equilibrium policy vector whenever they are chosen to be the proposer in the first round 

(like in the Rubinstein’s model). Moreover, with probability 1, the other players will 

accept the proposal in round one. Convergence is ensured by the characteristics of the 
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disagreement outcome: if no compromise is reached in the last round, then a pre-specified 

disagreement policy is imposed, which yields to all players a lower utility than any 

negotiated outcome. 

The Rausser-Simon model of multilateral, multi-issues negotiation has been 

applied to water allocation problems in two different contexts: Adams et al. (1996) apply 

it to water allocation in California, where disputes over water resources are very common 

because of the conflicting demands of the large agricultural industry, expanding urban 

population, and strong environmental groups. The model is applied to the so-called “three 

way negotiations”, whereby the three major stakeholder groups (agricultural and urban 

users, and environmentalists) informally negotiate water allocation regimes – the degree 

to which water rights are transferable, the type and level of environmental standards, and 

the level of infrastructure development. 

Thoyer et al. (2001) and Simon et al. (2003) apply the Rausser-Simon model to 

negotiations over water use, water storage capacity, and user prices in France, where 

seven players (one farmer group for each of the three sub-basins of the river; two 

environmental groups; a water manager; and a representative of elected local councils, 

called “taxpayer”) bargain over seven policy dimensions (levels of irrigation quotas per 

hectare of cultivated land, in each of the sub-basins; residual flows allocated to 

environmental services; the price of water; and the size of three reservoir dams). 

These two situations, with their differences and similarities, offer good test cases 

for the Rausser-Simon model. Group preference ranking over the set of policies is 

specified, and utility functions constructed and estimated. Environmental and budgetary 

constraints are also modelled. The authors simulate the model under different scenarios, 

in order to analyse the impact of changes in the institutional setting of the game on the 

negotiated agreement. The parameters analysed are: bargaining power, measured by 

players’ access probability; heterogeneity (between and within group); and issue space. 

The results are consistent with intuition: in both applications, (i) increasing the 

political weight of a group leads to an allocated outcome relatively more favourable to 

that group – and of groups who have similar preferences. The political weight of a group, 

however, is not its sole source of bargaining power: the default strength, that is, the 

relative utility derived in case the no agreement policy is imposed, is also a source of 
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bargaining power. In Adams et al. (1996), the results of the simulations indicate that 

asymmetries in the disagreement payoff of the bargaining groups result in different 

negotiated agreement: more specifically, (ii) the higher is a group’s utility in 

disagreement, the more bargaining power the group has – and, therefore, the more 

favourable to that group the negotiated agreement is.  

In Thoyer et al. (2001), the simulations confirm the intuition with respect to the 

effect of removing one player from the negotiating table: that is, the resulting allocation 

scheme will be further away from the excluded group’s preferred position than when the 

group takes active part in the bargaining. More interestingly, a player’s preferences 

influence the negotiated agreement even when her political weight is zero, but she takes 

part in the negotiation process without intervening. This is a consequence of unanimity 

being the decision making rule.  

In their California application, Adams et al explore the effects of removing one 

policy dimension from the negotiated policy package, and of restricting its interval 

admissible values. Through their simulations, the authors conclude that significant gains 

from bargaining are lost when one policy dimension is excluded, and that restricting the 

admissible values a dimension can take has a non-linear impact on players’ utilities. So, 

for instance, when the range of admissible levels for infrastructure development is 

restricted, the utility of the group preferring less infrastructure to more increases for less 

stringent restriction, whilst the others’ utilities decrease. Eventually, however, even the 

utility of this group will start declining. The authors explain these results as a shrinking of 

the bargaining set – the mutual gains to be had through negotiations are lower. 

Adams et al. (1996) examine the impact of within-group heterogeneity on the 

final negotiated outcome, and the effect of imposing a spokesperson, who maximises the 

averaged utilities of the coalition members – with the effect of reducing group’s 

heterogeneity. In the first case, the group of farmers is divided into two sub-groups, A 

and B, with different preferences over only one policy dimension. In this case, agreement 

requires only quasi-unanimous approval, that is, agreement among the environmental and 

urban user groups, with either of A or B joining the sub-coalition. Intuitively, increasing 

the distance between A’s and B’s preferred negotiated outcome should weaken the 

groups’ bargaining power, as the two sub-groups compete to represent the interest of 
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farmers. In reality, the effect of different preferences over one policy issue (water transfer 

in the simulation) is affected by groups’ relative preferences over another policy variable 

(infrastructure investment in the simulation). In addition, the simulation analyses indicate 

that when there is a significant divergence of interests between coalition members, the 

introduction of a spokesperson will usually benefit the coalition as a whole. Yet, this is so 

because the negotiator can discriminate against one member: the negotiated allocation 

may therefore require side payments to be feasible, and induce the non favoured group to 

join. Further, changing the decision rule away from unanimity strengthens the negative 

effect of within group heterogeneity, as sub-groups compete to form larger coalitions. 

The analytical framework proposed can be applied to water resources to achieve 

sustainable governance, and it explicitly models the negotiation process recognising the 

importance of relative political influence and power in determining the disagreement 

outcome. The outcome of multilateral multi-issue negotiations depends crucially on the 

constitutional structure of the negotiation process, as well as groups’ preferences and 

internal structures. Moreover, by carefully selecting the issues to be negotiated over, and 

the stakeholders to take part in the bargaining, the decision maker can manipulate the 

outcome of the bargaining process.  

Although the Rausser-Simon model provides a useful tool to support negotiations, 

it has some simplifications that limit its applicability. First of all, convergence of the 

results relies on all players preferring any negotiated agreement to the default policy – yet 

this may not necessarily be the case, especially when some user groups are closer to the 

government than others.  

In addition, the model structure implies perfect information, whereas not only 

groups may not be fully aware of the preferences of other groups, but also they may not 

have themselves a clear ranking and tradeoffs amongst issues negotiated upon. Strategic 

misrepresentation of group preferences may also alter the result of the negotiation in 

practice, although this aspect fails to be captured by the model.  

Water resources are assumed to be deterministic and known at all points in time. 

Although in Simon et al. (2003) different scenarios are modelled – depending on the 

assumed abundance of water – they are all deterministic, and do not affect players’ 

preferences, ranking, or strategies. The traditional features of the model can be extended 
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to include issues such as asymmetric information, moral hazard, uncertainty, and network 

formation, (Rausser (2000)), but, to our knowledge, no attempts have yet been made. 

2.3 Allocation among countries  

Water resources are typically transboundary: allocation procedures and mechanisms are 

more problematic in this context, as widely discussed in the literature of international 

agreements (see for instance, Hanley and Folmer (1998)), as they require agreement 

among sovereign states as opposed to intra-country jurisdiction. The two main 

characteristics of the problem are: countries’ welfare are interdependent, through water 

quantity/quality; and all solutions to the allocation problem must be consistent with the 

principle of national sovereignty – that is, a country’s compliance with the agreement 

must be strictly voluntary and self-enforcing.  

A feature peculiar only to international river (as opposed to boundary rivers, seas 

or enclosed sea basins) is the unidirectionality of river flow, which makes the allocation 

process even more difficult. Within this context, static games may generate outcomes in 

which the dominant strategy for the upstream country is not to cooperate, whereas the 

downstream country’s dominant strategy is to cooperate. In this context, the resulting 

equilibrium is not efficient.  

Side payments10 have been suggested in the literature as means to induce the 

upstream country to internalise the externality. In repeated games, coordination problems 

can be resolved, and the cooperative action can be the resulting equilibrium of the game – 

interaction over time introduces the possibility of rewarding cooperative actions. 

This approach is embedded in the papers by Ambec and Sprumont (2000) and 

Kilgour and Dinar (2001), Kilgour and Dinar (1995) where compensation schemes are 

bargained over, which ensure the attainment of the “optimal” water allocation scheme in 

the international context. Similarly, Supalla et al. (2002) investigate a scheme in which a 

second price auction is implemented in order to establish the contribution of each user 

                                                           
10 When there are gains to be made from cooperation, but these are not equally distributed, cooperation can 
be achieved through the transfer of (part of) these gains from the parties who stand to gain to those who 
loose. The latter group is made at least as well off as under the non-cooperative arrangement.  
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group to a fixed amount of water for instream services, and how payments can be 

apportioned, to ensure the agreement is enforceable.  

Although the repeated game approach with side payment resolves the problem of 

coordination when a unidirectional externality is present, the resulting equilibrium may 

be seen as an application of the “victim pays” principle, as the downstream country has to 

effectively bribe the upstream country not to over-consume or over-pollute water. This 

regime may be undesirable: first, there is large consensus over the “polluter pays 

principle”11; second, and perhaps more importantly, countries are reluctant to implement 

“victim pays”, as this strategy is likely to earn victims a reputation of weak negotiators. 

Bennet et al. (1998) propose a different approach to solving unidirectional externalities in 

water sharing between countries, one which relies on issue linkage, rather than side 

payments. Similarly, Bhaduri and Barbier (2003) investigate the effects of linking the 

implementation of the Ganges River Agreement to a separate negotiation over water 

augmentation from Nepal. Despite the encouraging results shown in the literature on 

issue linkage, Just and Netanyahu (2000) question the welfare improving qualities of 

issue linkage in negotiation, which is useful only in cases where there are strong 

asymmetries in payoffs, and equity is a concern. 

 

2.3.1 International water allocation with side payments 
 
In Ambec and Sprumont (2000), the focus of the model is on the asymmetric access to 

water that countries have. In contrast with the majority of literature, which focuses on the 

problem of designing suitable institutions and mechanisms for sharing the resource, this 

paper is concerned with welfare allocation. A water allocation mechanism, to be 

sustainable, should be stable in the sense of the core (i.e. give coalition members at least 

as much utility as their secure level of welfare), and distribute welfare fairly. As fairness 

is not a universal concept, the definition given by the authors is that a welfare distribution 

is fair if no coalition or individual enjoys a welfare higher than its aspiration level, that is, 

higher than the welfare level it would enjoy in the absence of all other players – that is, if 

                                                           
11 Of course, whether the upstream or the downstream country should bear the burden of the agreement 
depends on the initial property rights allocation, on the perceived fairness of the allocation rule, on the 
countries’ relative political and economic power, development stage,… 
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it could use all the water available. The authors proceed as follows: first, they adopt a 

theoretical, cooperative approach to characterise an efficient and equitable welfare 

sharing arrangement. Then, they focus on non cooperative arrangements and 

decentralised behaviour, which could sustain the “optimal” solution. 

Let I = {1,…,I} be the set of agents sharing a river, which flows through their 

location, and order them according to their position, with i < j meaning that i is upstream 

of j. Agents have a utility function (differentiable, strictly concave and strictly increasing) 

defined over water and money, of the form iiiiii txbtxu += )(),(  - where xi represents 

water allocated to player i, and ti is player i's net money transfer. The river picks up 

volume along its course, increasing by a specified amount ei > 0 between any two 

locations. A consumption plan is any vector IRx +∈ . An allocation is a vector 
II RRtx ×∈ +),(  satisfying the feasibility constraints: 

∑
∈

≤
Ii

it 0  and ∑
∈

≤−
jPi

ii ex 0)( , for every Ij∈ , with Pj denoting the set of 

predecessors to player i. 

Let IRz∈  be a vector of welfare distribution of some allocations x and t.  

The optimal allocation, which defines an allocation (x*(I),t*(I)), is Pareto efficient 

if it maximises the sum of all agents’ benefits, and wastes no money. The core stability 

constraint and the fairness constraints (determining lower and upper bounds on welfare) 

single out the optimal consumption plan. Ambec and Sprumont prove that the only 

welfare distribution which satisfies both core stability and fairness constraints is the 

downstream incremental distribution, which lexicographically maximises the welfare of 

agent i, and its predecessors, subject to the core constraint.  

The authors consider two forms of decentralised behaviour: myopic competitive 

behaviour, and sophisticated strategic behaviour. In the former, a decentralised market 

structure is imposed through the allocation of tradable water rights: however, in order to 

achieve downstream incremental distribution, it is necessary to know players’ 

preferences. Allocating an equal share of property rights to agents, in particular, does not 

always lead to the stable and equitable welfare allocation defined above.  

Strategic behaviour is, on the other hand, to be expected when the number of 

players is small. Modelling the problem in a game theoretic context, the authors argue 
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that it is possible to implement in a sub-game perfect equilibrium the downstream 

incremental welfare distribution. The game is an extensive form non-cooperative 

bargaining game in which i, i-1,…,2,1 are successively allowed to make offers, which the 

others can either accept or reject. If player i's allocation offer is rejected, she gets the 

bundle (xn,tn)=(ei,0), and agent i-1 gets to propose an allocation for i-1 players. If the 

proposal is unanimously accepted, it is enforced in the successive stage. Otherwise, 

player i-1 gets a bundle (en-1,0). If the last stage of the game is reached, then player 2 

proposes an allocation for 2 players, which is enforced if player 1 agrees. Otherwise, 

player 2 and 1 get allocation (e2,0) and (e1,0) respectively. Backward induction shows 

that the downstream incremental welfare distribution is generated for every sub-game 

perfect equilibrium of the game and for every preference profile. 

As the Rausser and Simon models presented before, the model proposed by 

Ambec and Sprumont assumes perfect information and deterministic water supply. In 

addition, water allocation is determined according to optimality and efficiency principles, 

which do not take into account the strategic and political nature of the resource. Only 

monetary transfers are bargained over, and it is assumed that they can compensate for 

water transfers fully. Lastly, the model so formulated focuses on the rival aspect of water 

consumption, ignoring the non rival nature of water. Moreover, the marginal cost of 

consumption never exceeds the benefits. 

A similar problem is analysed by Kilgour and Dinar (1995) and Kilgour and Dinar 

(2001), where the possible welfare improving consequences of a more flexible water 

allocation scheme that takes into account not only the underlying hydrology, geography 

and economic conditions in a river basin, but also annual fluctuations in river flow, is 

investigated. What is proposed by the authors is an annual adjustment of allocation on the 

basis of new data and information gathered, which increases the accuracy of water 

quantity assessment. This adjustable scheme improves total welfare, relative to best fixed 

scheme. Whereas water allocation is uniquely determined, the monetary transfers are 

determined by the structure of the bargaining game: standard cooperative game theory 

models can be applied to produce a specification of the efficient compensation scheme. It 

turns out that, for a two person bargaining problem, virtually all the standard solution 

concepts yield the same result: the surplus benefit from compensation is divided equally 
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between the two agents. It would be interesting to explore the result given by a 

negotiation framework over both water sharing and money transfer – rather than 

cooperative agreements over monetary transfers alone – including some notion of 

fairness in the procedure.  

2.3.2 Auction games 
 
A different approach is adopted by Supalla et al. (2002), who apply auction theory to 

determine the shares of water for environmental services in the Platte river to be provided 

by the three states sharing the river.  

The Platte River flows through Colorado, Wyoming and Nebraska. Conflicts over 

water use – both within and among states – are rampant. In addition, the river system 

provides critical habitat for fish and wildlife. The central resource management problem 

is that there is insufficient water to satisfy competing consumptive needs, and instream 

flow for species conservation.  

Supalla et al use an auction mechanism to model part of the decision making 

process in the Platte river system. The issue of who is to supply a previously agreed 

(exogenously given, and determined by environmental services requirements) quantity of 

water to instream services is addressed within this framework.  

The auction is designed as a second price, sequential auction game, with repeated 

bidding and predetermined cost shares. The only players are the three states. Each of 

them bids in a pre-determined order to supply a given quantity of water (a block). The 

bidding is repeated until all parties except one (the low bidder) have passed. The block is 

then supplied by the low bidder, at a price equal to the second lowest bid. Note that cost 

shares are predetermined, and determine how much each state has to contribute to the 

common pool funds to purchase water for instream services.  

Consider a set of agents N = {1,2,3}, consisting of the three states (Colorado, 

Nebraska and Wyoming respectively). Cost shares12 are predetermined, and denoted by 

sn. The cost of supplying a quantity q is determined by water acquisition cost (ACn), and 

third party cost (TPn), that is, costs incurred by parties not directly involved in the 

procurement decision. In addition, states incur a political cost, PCn, where PCn represent 

an “equity” payment above the real opportunity cost of supplying a block of water, which 
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states may require as compensation for the political difficulties associated with 

reallocating water away from domestic consumption. All costs, with the exception of the 

political cost13, are common knowledge, and differ among states. States are induced to 

reveal their (true) supply preferences when each block of water is auctioned, by choosing 

either to supply it, or to pay someone else for its provision. The auction works in the 

following way: the winning bidder, j, supplies the block of water at a cost Cj(q), and 

receives a payment equal to the second lowest bid, B. However, the winner has to pay its 

predetermined share of supply cost, sj. The payoff from winning is therefore (1-sj)B-

Cj(q). The other players have to pay their pre-determined share of cost. In this case, 

players losing the auction incur a positive cost. It is well documented that, for a sealed 

bid second price auction, it is a dominant strategy for players to announce costs 

truthfully, but the model adopted by Supalla et al uses a descending order English auction 

design that does not necessarily lead to truthful cost revelation: however, because of the 

repeated nature of the game, it results in the same strategic actions. This strategy profile 

is a Nash equilibrium, and it is such that all players bid until only the two lowest cost 

players are left; then the agent with the second lowest cost stops at his costs, and the 

lowest cost player wins the auction with a bid equal to (or slightly below) the second 

lowest cost. 

Supalla et al estimate the AC and TP costs for the three states on the basis of 

existing data: acquisition costs were imputed from the existing literature, whereas TP 

costs were estimated assuming that only water from irrigation could be diverted: hence, 

TP costs were assumed to be the indirect economic losses associated with lower 

agricultural activity (e.g. lower employment levels, or lower yields). 

The inclusion of political costs is a mechanism for reaching an agreement where 

one would otherwise not exist, and to model the fact that political and strategic 

considerations are also at play, when deciding who should contribute the water for 

environmental services. PC costs are assumed to escalate exponentially with the quantity 

                                                                                                                                                                             
12 In addition the three states’ contribution, the Federal Government contributes a fixed share, s4. 
13 If all costs were known, for any given quantity of water Q, one could analytically solve for the cost 
minimising shares for each state. 
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of water supplied by one state, i.e., with the needed reallocation from national 

consumptive use to in-stream uses. 

Simulations of the second price auction to determine the share of instream water 

to be supplied by each state show that, if no political compensation is allowed, Nebraska 

would need to supply 79% of the water for environmental uses. This result is due to the 

fact that most of the low-cost water is to be found in Nebraska – yet this cost minimising 

scheme is unlikely to be politically acceptable. Nebraska is unlikely to be willing to 

supply so much of the water, and compensations are therefore necessary to find an 

agreement. Under moderate compensation, the aggregate cost of supplying the required 

amount of instream water increases by 16% per year, but the burden sharing is more 

likely to be accepted by all states. Even more so under a scheme of high compensation – 

although supply costs increase by 30%.  

The inclusion of political compensation in a second price auction increases the 

budgetary cost of providing the required amount of water, relative to the theoretical 

minimum cost, but at the same time it increases the probability that the supply 

arrangement will be implemented. In a real world setting, however, the real minimum is 

not known, and the second price auction at least minimises welfare costs, because the 

bidder with the lowest cost actually supplies the water. The actual cash transfer may be 

higher by an amount equal to the difference between the winning bid and the next highest 

price. The second price auction, and the inclusion of political compensation, change the 

sharing of welfare among the parties, but do not affect total welfare (the loss to the 

paying parties equal the gain to the receiving party). The political compensation makes 

the water supply plan politically acceptable. 

The simulations suggest that second price sequential auction is an effective tool to 

induce participants to reveal their true minimum price for supplying different quantities 

of water and guarantee that a feasible solution is found, although actual costs would 

depend on how much political compensation is required. 

The interesting feature of the model proposed by Supalla et al is the explicit 

inclusion of the political and strategic aspects linked to water sharing. Political feasibility 

of the allocation scheme (equivalent to some form of equity concern) has the effect of 

driving a wedge between the (economic) efficient agreement, and the actual outcome of a 
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negotiation process. It is therefore clear that efficiency cannot be the only consideration, 

when determining water allocation or cost sharing schemes. The inclusion of political 

considerations creates a bargaining space, which would not otherwise exist in practice – 

although the game theoretic models would indicate its existence in theory. 

It would be interesting to extend the model proposed by Supalla et al. (2002) to 

include negotiation over the quantity of water to be released for instream services, rather 

than only to determine which states should supply it, and at what cost. A two-level game, 

similar in concept to the one described in Section 3.4, could provide the required tools. 

A similar effect to the introduction of political compensation payment in the 

second price auction described by Supalla et al. (2002) can be obtained by linking water 

sharing to other issue of interest to at least two of the parties. Issue linkages play an 

important role in solving international externalities, especially in cases in which side-

payments would be needed, resulting in “victim pays principle”.  

 

2.3.3 Issue linkage 
 
Bennet et al. (1998) propose a modelling framework in which two players, engaged in 

negotiations over separate issues, may gain by linking the issue in a nested game 

(Tsebelis, (1990)). It is argued that countries with weak negotiation position often try to 

improve their leverage by linking issues: modelling water allocation non-cooperative 

bargaining situations as interconnected games can generate outcomes that cannot be 

obtained when issues are modelled independently. Issue linkages enlarges the bargaining 

set, by allowing countries to condition the outcome in the water allocation negotiations to 

past outcomes in non-water games. Two case studies are presented, in which the 

equilibrium of the negotiation game is non-cooperative, if the water allocation game is 

played in isolation, but a water sharing agreement can be found, if countries link water 

allocation to other issues. One of these is presented in more detail. 

Since the break-up of the Soviet Union, water conflicts in the Aral Sea have 

increased dramatically, and water quality has deteriorated. There are several factors that 

make it very difficult for countries to reach an agreement over water sharing, primarily 

the highly strategic role of water as a major input for food production, which make it the 

dominant strategy for each country to pursue uncoordinated, individual strategies. Bennet  
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et al. (1998) model water sharing between Uzbekistan and Tajikistan as a nested game: 

Tajikistan has the choice of developing the Amu Darya river to gain additional water, 

whereas Uzbekistan has to decide whether or not to support rebel groups in Tajikistan; in 

the other game, Tajikistan has to decide whether to abate air pollution affecting 

Uzbekistan – who can either subsidise abatement activities in Tajikistan, or not. If the 

games where played separately, the dominant strategies would be Divert and Support, 

with a payoff of [0,0], in the first game; and No abatement and No subsidies in the second 

game. These outcomes are clearly sub-optimal. If the games are played in a nested 

fashion, Uzbekistan’s dominant strategies are Not support and No subsidies, whereas 

Tajikistan’s are Divert and Abate. The payoff matrixes are reproduced below. 

 

A) The Amu Darya River Game 
  Tajikistan 
  Not divert Divert 

2  -2  Don’t support
 1  1.5 
1  0  

Uzbekistan 

Support 
 -1  0 

 

B) The Air Pollution Game 
  Tajikistan 
  Abate Don’t abate

3  -3  Subsidise 
 1  2 
4  0  

Uzbekistan 

Don’t 
subsidise  -1  0 

 

C) The Nested Game 
  Tajikistan 
  Not divert 

Abate 
Not divert 

Don’t abate
Divert 
Abate 

Don’t divert 
Don’t abate 

5  -1  1  -5  No support 
Subsidies  2  3  2.5  3.5 

6  2  2  -2  

 

No support 
No subsidies  0  1  0.5  1.5 

4  -2  3  -3  Support 
Subsidies  0  1  1  2 

5  1  4  0  

Uzbekistan 

Support 
No subsidies  -2  -1  -1  0 
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By allowing countries to link outcomes of the negotiations for the Amu Darya 

river basin and air quality, the bargaining space has been enlarged, and all countries are 

better off.  

Similar results are obtained in another application: allocating water of the 

Euphrates between Turkey and Syria, linked to a game in which water pollution levels by 

Syria in the Orontes River basin is also negotiated.  

Although the results obtained are interesting and encouraging, care must be taken 

in advocating for issue linkages: the payoffs used in the games are theoretical, and may 

well not reflect the true preference ranking of the players. It has been shown in the 

theoretical literature that, as long as the payoffs are of the same order of magnitude and 

represent the true ranking of players’ preferences, and the games have asymmetric 

prisoner’s dilemma payoffs structure, then the theoretical payoffs will suffice to illustrate 

the benefits of issue linkage (p. 74, Bennet et al. (1998)). However, careful consideration 

of the actual payoff is needed, to ensure that the theoretical ranking is indeed a true 

reflection of countries’ preferences. 

In the paper by Bhaduri and Barbier (2003), there is an attempt to link water 

transfers, and international water allocation negotiations. The authors examine the scope 

of extending the recent Ganges water sharing agreement14 between India and Bangladesh, 

linking it to an additional provision of water augmentation from Nepal. It is argued that 

this issue linkage would improve the negotiating leverage of the weaker (downstream) 

country, Bangladesh, and deter India from diverting water in excess of the share agreed 

under the treaty. 

The existing treaty contains no provision of water transfers from third parties, yet 

there are serious concerns that in the near future there will be an acute shortage of water 

to satisfy increasing water demands in both India and Bangladesh. By creating water 

storage facilities in Nepal, surplus water could be released to the Ganges during drought 

periods. As water release from Nepal is non-separable between India and Bangladesh, 

any such augmentation scheme would need to be negotiated by the three countries, and it 

                                                           
14 The Ganges River Treaty was signed between India and Bangladesh in 1996. For a detailed overview of 
the dispute between India and Bangladesh over sharing the Ganges see, for instance, Crow and Singh 
(2000). 
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would necessarily require India and Bangladesh to both pay for any additional water 

transfers from Nepal requested by any one country.  

Bhaduri and Barbier develop a Stackelberg leader-follower game to determine the 

optimal water diverted by India, with and without augmentation provision. Given the 

unilateral externality involved in water diversion by upstream countries, and given the 

stronger position of India, India is the leader, and Bangladesh the follower. In the case of 

water augmentation, it is argued that the bargaining position of Bangladesh is improved, 

as the country can unilaterally buy additional water from Nepal, increasing water costs to 

India as well. However, examining past attempts at achieving a sharing agreement, when 

Bangladesh insisted on linking water sharing with proposals to augment dry season flows 

in the Ganges through transfers from Nepal, suggest that India would not gain from a 

water augmentation scheme. 

In the model, it is assumed that water is allocated initially between the two 

countries on the basis of proportional rights, and that both countries have the option of 

purchasing water from Nepal. Consumptive use of water is therefore maximised 

individually, given transfers from Nepal – that is, an augmentation treaty would establish 

(fixed) shares of water from Nepal for both India and Bangladesh. India has the option of 

deviating unilaterally from the Ganges’s treaty, rather than buying water from Nepal. By 

contrast, Bangladesh can only increase its water supply, by purchasing additional water 

from Nepal – who will release additional water only if both countries pay. Thus, buying 

more water from Nepal, Bangladesh forces India to buy additional water as well. 

Countries use water input from either the Ganges or Nepal’s water release, to 

produce economic goods, and maximise net profits. The game can be solved by backward 

induction, first solving for Bangladesh’s reaction function to any arbitrary share of water 

diverted by India, then solving India’s problem given Bangladesh’s reaction.  

The results of the model imply that, if India’s share of water from Nepal increases 

relative to Bangladesh’s, the optimal amount of water diversion for India will decrease. 

However, when water scarcity is not binding for India, and there is no provision for water 

augmentation, India’s profits are higher, and there is a larger diversion of water from the 

Ganges. India is better off without a water augmentation scheme, and has therefore no 

incentives to agree to it. The Ganges Water Treaty is therefore likely to become unstable, 
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unless ways of inducing India to negotiate a water augmentation treaty are found: if water 

scarcity becomes more stringent for India, the country will have strong incentives to 

defect from the treaty.  

The results of the analysis do provide policy directions, in that they show that a 

water augmentation treaty is unlikely to be signed – despite it being necessary. However, 

the results depend crucially on the assumptions that the cost of water released from Nepal 

is decreasing in quantity: although this may be realistic for relatively low levels because 

of the initial infrastructural investment, it is likely that political considerations would 

make water release politically costly at higher quantities, as shown by Supalla et al. 

(2002). If water supply costs to Nepal are not declining with quantity, Bangladesh’s 

threat is not credible, and the proposed augmentation scheme would not lead to a more 

stable agreement on the sharing of Ganges’ waters. In addition, the authors stop short of 

providing ways in which India could be encouraged to sign a binding and enforceable 

trilateral water augmentation agreement, as it is not individually rational for the country 

to do so. 

Despite the encouraging results of issue linkage care must be taken in identifying 

linking opportunities. Just and Netanyahu (2000) examine the circumstances under which 

issue linkage can lead to an enlarged bargaining set. In general, issue linkages are more 

successful when the games are strongly asymmetric, and there are equity concerns. 

Linking games can bring benefits when the resulting feasible choice set for both players 

is expanded, and when it makes new strategies possible, that are not possible under the 

two independent games. Under these circumstances, countries are more likely to 

exchange in-kind side payments than monetary payments, and to sustain self enforceable 

agreements. In their paper, Just and Netanyahu analyse various game structures 

(prisoner’s dilemma; assurance; iterated dominance; and chicken), and compare the 

outcome in the isolated 2-person, 2 strategy games to the outcome if the games are 

linked. It is shown that, for the case of two PD games, the linked outcome dominates the 

aggregated outcomes only when the payoff combinations are substantially different from 

the full cooperation case. In these cases, outcomes other than full cooperation are chosen 

out of equity concerns. In many cases, however, and contrary to general assertions, 

linking games does not generate an enlarged bargaining set (in Just and Netanyahu 
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(2000), p. 97). Moreover, even in cases when linking does expand the bargaining set, the 

equilibrium outcome may not be affected. When linking games other than PD, the 

benefits of issue linkage are significantly lower: in these cases, a significant proportion of 

the frontiers of the aggregated and the linked games overlap, suggesting that the chances 

of coming to a full cooperative equilibrium are not increased to a significant extent by 

issue linkage. 

The dominance of linking over aggregated payoff is obtained only when full 

cooperation is not preferred: this may be because, although full cooperation may be 

efficient, it may not be equitable: players are therefore reluctant to pursue full 

cooperation, but partial cooperation strategies may be feasible, which give them a payoff 

preferred to non-cooperation and to full cooperation, given equity considerations. This 

may explain why, especially in the international arena, players pursue seemingly 

irrational strategies, and do not prefer full cooperation. 

2.4 Two level games 

As illustrated by the applications discussed so far, water allocation can be at two level – 

nationally, between different user groups, consumptive and non-consumptive uses, etc – 

and at the international level – among different countries sharing the same resource. 

Although discussed separately, these two levels are interrelated – how much water can be 

allocated among sectors ultimately depends on how much water is available – which may 

depend on how an international water body is divided. On the other hand, how much a 

country is willing to compromise on international water allocation may depend on its 

national settings, power groups, priorities, etc. Typically, a decision at one level has 

significant implications for the other level of negotiation: models which fail to take this 

interdependence into account may therefore be misleading.  

Two-level games (Putnam (1988)) provide some insights as to which agreement is 

to be expected, when two negotiation games are interdependent. According to Putnam, 

“the politics of many international negotiations can be conceived as a two-level game. At 

the national level, domestic groups pursue their interests by pressuring the government to 

adopt favourable policies and politicians seek power by constructing coalitions among 

those groups. At the international level, national governments seek to maximise their own 
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ability to satisfy domestic pressures, while minimising the adverse consequences of 

foreign developments” (p. 436). 

In their 1996 working paper, Richards and Singh (1996) provide a simplified 2-

level game of two countries bargaining over water allocation, when within country 

negotiations between two user groups also take place. State agents are assumed to be 

benevolent, and the initial allocation of water (both within and between countries) 

inefficient. Richards and Singh develop a cooperative model of bargaining for both levels 

of negotiation, on the assumption that the cooperative solution approximates the (more 

suitable) non cooperative game, when the discount rate is sufficiently low (as shown in 

Binmore et al. (1986)).  

In the paper by Richards and Singh (1996), there are 2 countries, A and B, and 

two groups within each country, 1 and 2 in country A, 3 and 4 in country B. Utility 

depends on two good, water, w, and a numeraire good, y. Utility functions are assumed to 

be quasi-linear, implying transferable utility, and the Pareto frontiers are straight lines or 

hyper-planes. The initial allocation of water and numeraire good is ii yw , respectively, for 

i =1,…,4. Initial utility for group i is therefore iiiiii ywvywu += )(),( . The initial utility is 

assumed to be the disagreement payoff, di, (or threat point) of the water bargaining game. 

Let wi
* denote the optimal water allocation. The condition for water optimality is 

that the marginal utility of water be equated across groups. The reallocation of water 

requires compensatory payments, ti
*. The optimal amount of water is uniquely 

determined, but the transfers of the numeraire good needed to sustain the optimal water 

allocation are determined by the outcome of the bargaining game(s).  

The bargaining game varies, according to the assumptions made with respect to 

the two levels of the game. For instance, when only national or international negotiations 

take place, the Nash bargaining solution (or its generalisation to n-players), with di as the 

disagreement payoffs, is the relevant model. On the other hand, when the negotiations at 

the two levels are linked, the disagreement payoffs change, and so does the Nash 

bargaining solution: 

- when national negotiations are only a fallback strategies, if international 

negotiations between the four user groups fail, the disagreement payoff in 
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the international game is determined by the utilities to players in the 

national only negotiation game; 

- when domestic negotiations take place only after successful negotiation 

between the countries, the international bargaining game takes the initial 

allocation of water as the disagreement point; 

- if national bargaining always follows international bargaining, the 

disagreement points in the first game are given by the Nash bargaining 

solution to the game when only domestic negotiations take place15. 

Comparing the equilibrium allocations of the bargaining games under the 

different scenarios, the following results emerge: 

- a group may prefer domestic negotiations only to all-party international 

negotiations only, when its relative bargaining power is reduced in an all-

parties negotiations. 

- All-parties and two-nations bargaining at the international levels give the 

same result. This generalisation, however, does not hold for other models: 

equivalence holds if the relative bargaining strength of domestic groups 

vs. each other is the same at both negotiation levels. 

- International bargaining, followed by national bargaining independently of 

the outcome, is preferred by all parties to domestic negotiations alone. 

- The country that gains more from a domestic agreement has a higher 

disagreement payoff at the international level, and therefore prefers to 

have negotiations which assume that domestic bargaining will always 

occur, independently of the results of the international bargaining. 

It appears clear that what matters in the determination of the outcome of the 

bargaining game is the disagreement point. Intuitively, the higher is the disagreement 

payoff relative to that of the others, the stronger is the bargaining position of the group or 

country. 

In the case of asymmetric countries, where one country can hold national 

negotiation in the event of failed international negotiations, whereas the other cannot, the 

country which is less flexible is penalised. It follows that it is a dominant strategy for 
                                                           
15 Other symmetric cases reduce to one of these three. 
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each national government to commit to domestic negotiations irrespective of what the 

other government does, as this improves the threat point in the international bargaining 

game. 

This paper shows, through the use of a simplified cooperative bargaining model 

with transferable utility and perfect information, that linked two-level (domestic and 

international) bargaining over water allocation leads to different results than national or 

international bargaining taken in isolation. The result is important in understanding why 

some agreement fail to be achieved, or do not seem to be efficient, when the bargaining 

model only accounts for either of the two levels and treats agents as monolithic. 

However, the use of the Nash bargaining solution as the solution concept may provide 

misleading results: although it does approximate the non-cooperative solution under 

certain conditions, it may not be the case in this context – especially when modelling 4 

parties negotiations. 

2.5 Water quality  

Determining the most desirable water quality levels – and how it should be attained – 

may also be subject to negotiation, between government and polluters, for instance. This 

is the approach taken by Sauer et al. (2003), who develop a model for negotiation over 

water pollution level between polluters and a regulating authority. Key to the bargaining 

model is the asymmetry in information (true pollution abatement costs are only known to 

polluters), and the use of market based instruments to reach the desired goal. 

The game is an extensive form game with two types of players – an authority and 

polluters – who alternate their proposal until an agreement is found, subject to 

environmental and financial constraints. The negotiation proceeds as follows: in the first 

step, the authority sets per unit pollution charge – which is not negotiable. Polluters 

respond by proposing a development project which would help reducing emissions, and 

the required financial support from the authority. This is to be financed through pollution 

charges. The authority ranks the proposal according to their cost effectiveness (cost per 

unit of pollution abated), and agrees to fund the most effective projects within the fund’s 

limits. The discussion continues until a solution is agreed upon, which also meets the 

required environmental quality. 
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Šauer et al apply the model to an ideal case on the basis of river pollution levels 

and emission charges in the Czech Republic, with the goal of achieving the best 

distribution of Fund’s money to polluters. In the first negotiation round, the authority sets 

the vector of unit payments for each pollutant j, denoted by pj. These unit charges are 

taken from Czech regulations. The authority also computes the amount of payments to 

the fund in period 1, equal to ∑∑
j

ijj
i

zp , where zij is the emission of pollutant j by 

polluter i. In the second stage, polluters compute the minimum subsidy requirement for 

the abatement investment, Di, and provide information about the abated level of emission, 

ei. Authorities are now in a position to rank proposed projects, and establish which ones 

will be funded given their budget constraint. If some funds remain unused, they are 

brought forward to the next time period. Polluters evaluate the subsidy support and, in the 

last round of negotiation, the outcome of the proposed solution is evaluated in terms of its 

environmental impact. If the minimum environmental quality is met, binding agreements 

are signed, and the negotiated plan is implemented. In the simulated results, the 

environmental constraints were met in round one of the negotiation. 

This model presents an offer-counteroffer bargaining procedure, where agreement 

is sought over the distribution of subsidies for “environmental technologies”, which 

improve the quality of river water. The central authority bargains individually with 

polluters, but the strategic behaviour of polluters is not analysed in depth. In addition, 

there is no bargaining over the desired level of environmental quality – which is instead 

set by legislation. Yet, it is shown in the theoretical models (see Negotiation Theory – 

Part 1) that the issue space matters in determining the negotiated outcome. It is possible 

to envisage two different solutions to the game: either polluters cooperate on some or all 

environmental improving projects, and agree on how to share the costs and benefits of 

cooperation; or each polluter acts individually, in a non-cooperative fashion, without 

considering possible synergies with other operators. 

Similarly, Kerschbamer and Maderner explore the implications of information 

asymmetries on the equilibrium compensation payments required by an upstream country 

to reduce river pollution. As illustrated in the models by Ambec and Sprumont (2000), 

Kilgour and Dinar (1995), and Kilgour and Dinar (2001), in the case of shared river the 
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unidirectionality of the externality implies that upstream countries have no incentives to 

cooperate, whereas downstream countries would stand to gain from cooperation: side 

payments are required to induce the upstream country to participate in the cooperative 

agreement.  

Whereas water allocation was the issue in these models, the model by 

Kerschbamer et al investigates the implications for river pollution. In their simplified 

model, a downstream country, d, proposes a package to an upstream country, u, which 

pollutes the river16. This package consists in the desired level of pollution abatement on 

behalf of u, and in the compensation offered by d to u to achieve this abatement level. 

However, because of asymmetries in information, the victim is unable to determine with 

certainty polluter’s preferences towards environmental protection: the observed river 

quality level may be the result of ambient pollution, or of uncontrolled emissions of the 

upstream country.  

In contrast with the existing literature, this model compares the agreement 

solution with the equilibrium status quo situation, in which the two players maximise 

their own utility, taking other’s actions as given – with respect to the Nash-Cournot 

solution, therefore. In the negotiation case, the offer of compensation by d implies two 

opposing incentives for u: (1) to understate own concern for the environment, and 

overestimate the benefits of the status quo. This would require d to offer higher 

compensation to induce u to participate in the agreement. And (2), to overstate own 

concern for the environment, so as to induce d to believe that high environmental 

standards are already applied, and any additional emission reduction is therefore very 

costly.  

The authors show that, in equilibrium, the second effect dominates the first, and 

the optimal bribe is such that the more caring polluters may be induced to refuse it – that 

is, the equilibrium abatement level of all players, but the least caring one, is distorted 

downwards. This result is in contrast with existing literature, which suggests that under 

asymmetric information the binding incentive problem is to prevent polluters from 

claiming not to care about the environment. The difference in result is generated by the 
                                                           
16 As in the case of bargaining games with side-payments, one could argue that this approach is not 
desirable because it seems to confute the polluter pays principle (vs. the victim pays principle). See also 
Footnote 10.  
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different starting point of the negotiation – that is, whereas in this paper the starting point 

is the equilibrium Nash-Cournot solution, previous literature derived solutions from non-

equilibrium status quo. In a Nash-Cournot solution, the more caring polluters have 

already implemented higher environmental standards. 

When economic sectors use water in a non-consumptive way, competition may 

arise when different water levels and quality are preferred by each sector. This is the case 

analysed by Krawczyk and Tidball (2003), who develop a model for intertemporal 

competition for water levels in the Camargue region in southern France. In this two 

person, finite horizon dynamic game, fishermen and watercress producers have 

conflicting interests over water levels – with the former preferring high level of water, 

and the latter lower water levels. Simulation results show that sustaining the natural water 

level is not possible in a decentralised way, through non cooperative behaviour, and 

government intervention is therefore necessary to lessen the negative impacts of agents’ 

economic activities: it is in fact possible for a Government to compel agents to a 

feedback Nash equilibrium where environmental standards are obeyed. 

Roseta-Palma (2002), on the other hand, combines dynamic models of 

groundwater exploitation to aquifer pollution models, where the externality comes from 

productive activities, with the aim of analysing the interaction between quality-quantity 

trade-offs. Despite its simplifying assumptions, the model provides some interesting 

results: when taking joint decisions over quality and quantity, for instance, the efficient-

steady state polluting activities may be higher than the one chosen under private, 

uncoordinated resource management, as long as steady-state water quality is higher. 

Despite the interesting and stimulating results, however, this model of water quality-

quantity does not explicitly represent the bargaining process among competing, 

uncoordinated agents exploiting or otherwise affecting groundwater resources.  

 

3 Negotiation Support System Tools 

In general, game theoretic models provide descriptions of the negotiation process, and 

prescriptions of how players should behave. However, as experimental evidence has 

shown, the predictions of the standard theoretical models are often not realised in real 



 

 33

negotiation processes, and the models are therefore not very useful as decision support 

tools. The complexity of many negotiation problems calls for the use of computer models 

to support the process: negotiation is viewed as a kind of multiparty decision making 

activity: through strategies and movements, players try to achieve points within the 

bargaining space, or  an acceptance region. The process of negotiating does not only 

entail the presentation of proposals and compromises, but also the attempts of players to 

elicit opponents’ preferences and strategies. Parties to the negotiation must attempt to 

identify and explore the impacts of various alternatives, the ensuing cost and benefit 

sharing scheme, etc.  

Negotiation Support System (NSS) are a special case of Decision Support System, 

where the tool is designed to support the process of negotiation (p.260, Holsapple et al. 

(1997)) when there is disagreement among various parties as to what decision to adopt. In 

order for an NSS to be developed, stakeholders and stakeholders’ preferences need to be 

well defined. The programme itself must be flexible enough to accommodate changing 

issues and preferences, not to constrain or limit the options and their identification 

(Thiesse et al. (1998)).  

NSS can provide support for a variety of issues, and at different stages of the 

negotiation process: NSS can therefore be classified according to their function as either 

Negotiation Preparation Systems – supporting pre-negotiation strategic planning – or as 

Negotiation Information Management Systems – facilitating negotiation in real time. The 

latter group can be further classified into Negotiation Context Support System models – 

which focus on the behaviour of the system, and how it evolves, given some strategic 

choices; and Negotiation Process Support System models, which are instead concerned 

with the process of negotiations and the dynamics involved, identifying possible areas of 

agreement among conflicting parties. These NSS are designed to assist the negotiation 

process by increasing the likelihood that a mutually beneficial agreement is found, or by 

improving on an inefficient agreement.  

The literature on negotiation support tools is varied, and mostly focuses on the 

conceptual developments of software and models. However, a few applications to water 

negotiations can be found. We will present in what follows some examples of NSS 

developed for resolving water conflicts. In the first part, Negotiation Context Support 
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Systems will be discussed through the Multi-Agent and Agent-Based Systems discussed 

by Becu et al. (2003) and Barreteau et al. (2003), and the status quo analysis illustrated 

by Li et al. (2004). The development and use of Negotiation Process Support System 

models is on the other hand represented by two applications, by Thiesse et al. (1998) and 

Hämäläinen et al. (2001). 

3.1 Negotiation Context Support System Models 

In order to enter effectively into negotiations and to facilitate the achievement of an 

agreement, stakeholders need descriptive and integrative models of the issues to be 

negotiated. This is the idea behind the use of Multi-Agent Systems (MAS) to simulate 

different water management scenarios, and hence help parties to identify the preferred 

management solution.  

Becu et al. (2003) developed a MAS to simulate small catchment water, in order 

to facilitate water management in Thailand. CATCHSCAPE enables the simulation of a 

catchment’s features, as well as farmers’ individual decisions. CATCHSCAPE is an 

integrative, spatially distributed and individually-based model – able to cope with the 

complexity and dynamics of catchment management issues. The NSS is composed of: a 

biophysical module, simulating the hydro geological cycle, irrigation scheme 

management, and crop and vegetation dynamics; a social module, describing the social 

dynamics in terms of resources (land, water, cash and labour force). Water management 

is described according to the different level of water control (collective, individual, 

catchment).  

To increase models’ flexibility, Barreteau et al. (2003) propose an Agent-Based 

Simulation (ABS) tool to support negotiations over water allocation among farmers in the 

Drome river valley in the South of France. Their work is based on an experiment 

conducted on water allocation rules. 

The major water use in the Drome river valley is for agriculture: for this reason, 

the focus of the research is on NSS to support the allocation of water to irrigation. The 

first model, SimSage, was developed to assess the collective consequences of various 

scenarios of water allocation rules, and resource availability. Scenarios were generated in 

terms of downstream water flow levels, occurrence of crisis, water pumping restriction 
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levels, etc. The simulated scenarios were then presented to farmers for discussion, and for 

choosing the best policy alternative. A second model was developed, the GibiDrome, in 

order to tackle new requirements – such as the definition of practically enforceable 

allocation rules. This second model used the same input data and assumptions as 

SimSage, but a different architecture. GibiDrome is an ABM in which each class of 

agents has a set of variables to choose, satisfying given constraints, and interactions with 

other agents.  

GibiDrome has proven to be much more flexible than SimSage, as it was designed 

to accept new scenarios of complementary resources. The flexibility of programming 

characteristics of ABM makes these tools more suitable for this type of negotiation, 

which takes place in highly evolving contexts.  

In assessing their usefulness as negotiation support tools, the authors conclude 

that ABM, in addition to being flexible, enlarge the field of information to stakeholders, 

and reveal connections between components of the model, which would not otherwise be 

apparent. ABMs are thus efficient at supporting negotiations, facilitating the organisation 

and management of the collective decision making process. ABM models may act as 

catalysts to generate discussion among stakeholders, playing a role akin to Single Text 

Negotiation procedures, and help in identifying factors of strategic relevance. Precisely 

for this reason, according to the authors the exercise of building the ABM model in a 

participatory way – that is, choosing the values and variables to be included together with 

stakeholders – may be more valuable than the realism of the model itself. Li et al. (2004) 

model conflict over water sharing between the US and Canada as a strategic conflict 

amongst different interest groups, adopting a graph approach. The graph model of 

conflict resolution is a simple but efficient decision support tool, which takes as the unit 

of analysis the outcome of the conflict, rather than individuals’ choices. It is implemented 

using decision support systems, which speed up the stability analysis, and hence make the 

tool more useful as a decision support tool. Players’ preferences are considered when 

conducting a stability analysis, that is, when individual and aggregate stabilities of a state 

are analysed17. Stability analysis is essentially a static exercise, treating each possible 

                                                           
17 The stability of a state can be assessed using a variety of concepts, from individual/collective rationality 
to sequential stability. 
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outcome individually, and assessing whether players have individual or collective 

incentives to deviate from it. It does not address the issue of how the state is achieved. 

Starting from the status quo, the graph method can be used to analyse the 

evolution of the conflict, and assesses the likelihood that a given solution to the conflict is 

reached (status quo analysis). This exercise can provide useful insights on whether a 

status is attainable, and how a player should act or interact with other players, to direct 

the conflict to the desired solution.  

A status quo analysis diagram is a directed graph, rooted in the status quo. The 

basic components are states, and moves and countermoves of players are then represented 

as direct arcs joining the states. At each iterative step, an algorithm determines which 

states can be reached at each stage, by examining the list of unidirectional improving 

states that are attainable at the immediate previous step for all players18. Two consecutive 

moves by one player are ruled out. The process stops when no more states or arcs can be 

added to the diagram.  

From the status quo analysis, it is possible to assess the reachability of outcomes – 

only those which appear in the graph are attainable. Outcomes which only have incoming 

arcs are strong equilibria, and satisfy stability conditions. The graph analysis allows the 

identification of paths leading to a desired equilibrium, and can therefore prescribe 

strategies to guide the conflict towards the desired direction. 

The status quo analysis is applied a posteriori in this paper to the water disputes 

in the Flathead river, which flows from British Columbia (Canada) into Flathead Lake in 

Montana (US). The methodology assesses the reachability of the equilibria, and examines 

the dynamics of the conflict, as it evolved from 1988 onwards. The set of possible 

outcomes, given players’ strategies, is identified, and listed. Preference ranking over 

feasible set for each of the four players is then inferred from players’ behaviour, and 

imposed on the feasible states19. Stability analysis is carried out on all the outcomes: the 

application of the method identifies three strong equilibrium solutions to this conflict, 

which are the therefore most likely outcomes. Status quo analysis is then carried out, 
                                                           
18 Other algorithms have been developed, which allow the any unilateral move. These may lead to different 
conclusions about the feasibility of equilibria. 
19 The graph model can handle both transitive and intransitive preferences. However, in this case, 
preferences are assumed to be transitive. 
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using a NSS to implement the graph-generating algorithm. Feasible equilibria, and paths 

to reach them, are identified: of the 55 possible outcomes identified in stability analysis, 

only 23 may be reached from the status quo, provided that players can only make 

unilateral improving moves. The model singles out three strong equilibria, and the paths 

to reach them. And in fact it is one of these equilibria that materialised in the actual 

negotiation process, consistent with one of the three shortest paths in the status quo 

analysis. 

3.2 Negotiation Process Support System Model 

Whilst the previous NSS were concerned with predicting the possible outcomes and 

simulating various scenarios, the Interactive Computer-Assisted Negotiation Process 

Support System (ICANS) guides parties in real time negotiation towards the selection of 

a mutually beneficial agreement in a dynamic, multiple issues, multilateral negotiation 

(Thiesse et al. (1998)). 

ICANS supports the identification of relevant issues, as well as their 

feasible/acceptable ranges. Information on parties’ preference over single issues, as well 

as ranking of those issues, must be provided (confidentially), to construct partial relative 

satisfaction functions. ICANS creates internal measures of total relative satisfactions for 

each party, from any set of issue values. These are based on party’s relative satisfaction 

functions – one for each issue – aggregated to a total satisfaction function. In this way, 

comparison among multiple alternative proposals for each party are possible. From this 

information, the NSS is able to generate an acceptable set of issue values, starting from 

parties’ individual proposals. The alternative generated by ICANS will be such that, for 

every party, it is (at least) equivalent in terms of relative satisfaction to their initial 

proposal. If such an alternative does not exist, then the alternative generated by ICANS 

will be such that each party’s total relative satisfaction will be reduced by a minimum 

equal amount. Once a tentative agreement is identified, ICANS will explore possible 

Pareto improving alternatives. In order to move the agreement towards the Pareto 

frontier, ICANS find those values that maximise the minimum gain in total relative 

satisfaction, while assuring that the total net gain to all parties cannot be further 

improved.  
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Thiesse et al tested the effectiveness of ICANS in a series of limited controlled 

experiments with simulated two party water resources conflicts. Issues to be negotiated 

over varied from 2 to 7. The results suggest that programmes like ICANS can help 

negotiators find an agreement, and then improve on the agreement. However, equity 

issues are not incorporated in the NSS, nor can they be, unless players are prepared to 

make subjective judgments about the relative worth of benefits to different parties. The 

usefulness of NSS programmes depends on the willingness of parties to supply (truthful) 

information about their preferences and ranking: concerns over the possibility that parties 

may try to influence the outcome of the negotiation by providing false information 

remain, but it is not clear whether players can indeed determine the effectiveness of 

cheating.  

The use of multi-criteria decision making software as a basis for supporting water 

negotiation is also explored by Hämäläinen et al. (2001). The framework proposed starts 

from the multi-criteria structuring and modelling phase, and ends in the final negotiation 

support. The NSS is tested with two role-playing groups to assess the method of 

improving directions – an iterative method for identifying Pareto-optimal alternatives. 

The proposed NSS differs from ICANS discussed by Thiesse et al in the algorithm and 

method adopted to generate improving alternatives from the initial tentative agreement: 

however, as pointed out by various authors, there exist a variety of methodologies that 

can be used to generate compromises, and improve on them. Direct comparison among 

different NSS is however not useful, as they rest of different assumptions and rely on 

different procedures. The choice of which methodology should be used depends crucially 

on the constitutional structure of the negotiation process. 

The process is organised in three phases. Initially, the stakeholders are identified, 

together with their most important decision criteria. In this structuring phase, the decision 

variables are chosen – in this case, the decision variable is target water levels at different 

times of the year. Value tree analysis can be used to evaluate the range of admissible 

values for the control variables, as well as their likely impacts on other variables of 

relevance (e.g. risk of flooding, ecological factors,…). In the second stage, a set of 

Pareto-optimal alternative is generated, using the method of improving directions and the 

related Joint Gains NSS – based on the Single Negotiation Text negotiation strategy. In 
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the final phase, the identified Pareto-optimal alternatives are ranked by stakeholders, and 

through joint problem representation, agreement over one alternative is sought. 

The three-steps procedure is applied to water level regulation in a lake-river 

system in Finland (Lake Paijanne, Lakes Konnivesi and Routsalainen, and River 

Kymijoki). Major interest groups and interests are identified, together with the values that 

need to be maximised through management of water levels (the control variables), such 

as water quality, economic benefit, electricity generation, etc.  

Starting from the status quo, parties’ preferences are identified locally, by asking 

to compare alternatives. In this way, the direction of improvement for each player can be 

identified. Only local preferences are required, so that players’ utility functions need not 

be completely described, and only a part of this local information needs to be revealed to 

the mediator.  

The basic principle of the method of improving direction20 is to produce a 

sequence of moves such that subsequent alternatives are preferred by all parties to the 

previous ones, so that the set of efficient alternatives is gradually approached. Starting at 

an initial alternative, parties’ preferences about alternative in the neighbourhood are 

identified. Directions along which alternatives are preferred to the initial point are 

therefore singled out – these are the directions along which players gain most compared 

to other directions (utility function gradient direction), and can be identified by selecting 

the player’s most preferred alternative on an appropriately chosen circle around the initial 

point. A jointly improving direction can then be calculated solving a non-linear 

optimisation problem. The next step is to find a jointly preferred alternative on the jointly 

improving direction. The procedure is repeated until jointly improving alternatives cannot 

be found. 

The resulting NSS was tested in two role-playing experiments. These showed that 

players can understand the method, and answer the required questions consistently. The 

experiments support the use of gradient methods of optimisation – significant 

improvements can already be seen after two iterations. In addition, the method of 

improving direction allows learning, and changes in preferences during the process. 

                                                           
20 For a detail exposition of the method, see Hämäläinen et al. (2001). 
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It should be noted that this method can only be useful when the objectives and 

preferences of players are not completely opposite to those of another because, in this 

case, almost all feasible alternatives become Pareto optimal. In these situations, NSS 

could be based on generating specific bargaining solutions based on different fairness 

rules. For instance, the adjusted winner procedure proposed by Brams and Taylor (1996, 

2000) for allocating different goods among different parties has received a lot of attention 

in the literature. 

The aim of NSS should be to offer negotiators the possibility of defining and 

evaluating possible settlements: however, despite the (theoretical) potential of NSS tools 

to help decision makers to manage conflicts over water use (and other types of conflict), 

most NSS reported in the literature are still in the conceptual stage, and play a relatively 

passive role in the negotiation process. Often, they support a professional mediator, rather 

than the negotiating parties themselves. Yet decision makers could benefit from improved 

tools to identify the zone of agreement when there are conflicting interests, and to 

improve on the agreement, when this is not efficient. Not only is the development of NSS 

in its initial stage, but also, and perhaps more importantly, there remains a gap between 

scientists working in the field, and decision makers who would benefit from the tool.  

Recent developments are encouraging, but more efforts are needed at integrating 

formal theories into NSS development, and in disseminating the use of such a tool in real-

life negotiation settlements.  

 

4 Concluding comments 

Many natural resource and environmental problems involve negotiations over how to 

share resources, or how to determine their quality. Most of the economic literature 

addresses these problems from an optimisation point of view, specifying a priori the 

characteristics that the agreements should have – most notably, (economic) efficiency. 

Yet, non-cooperative game theory can not only provide a useful framework for deciding 

how to better share or manage a common resource, but also, and perhaps more 

importantly, it can help identify which mechanisms and management regimes can be 
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implemented and sustained in situations where enforcement is problematic, or binding 

agreements cannot be signed. 

In fact, the existence of a negotiated settlement Pareto-superior to non-cooperative 

behaviour is no guarantee that the players will agree to cooperate: a shift in emphasis is 

needed, towards the development of negotiation models which make no assumptions 

about which agreement will be reached, but rather provide a structure for the negotiation 

process itself. Given the complexity of the processes and issues often involved, NSS have 

a high potential to help in the process of finding an agreement acceptable to all parties, 

and on improving on that agreement. The proposed approach may support the negotiation 

process either directly or indirectly, by shortening the time-span needed to reach an 

agreement through the (theoretical) identification of an “acceptability space”. That is, the 

values for which a proposal is more likely to be accepted are identified, and proposals 

which would be (almost) certainly rejected can be ruled out at the outset. The negotiation 

process can then start directly with acceptable agreements, improving on them.  

Alternatively, when the tool is used to support policy making, it can help select a 

set of policies which is self-enforcing and, therefore, acceptable. As shown in various 

papers, the self-enforcing allocation is not necessarily the one which is most efficient 

from the economic point of view, but rather the one which is socially and/or politically 

acceptable as well. 

It must indeed be realised that efficiency cannot be the only criterion against 

which to judge the agreed allocation scheme: other issues, such as perceived equity, 

political power, and strategic considerations, play a key role in negotiations – especially 

for resources such as water, which are politically charged. “Optimal” management 

schemes – that is, regimes which are least cost and waste no resource – may not be 

feasible and/or socially acceptable, hence leading to a failure of implementation, or even 

to outright rejection of the policy. The value added of exploring management problems 

within a non-cooperative bargaining framework is indeed related to the extent to which 

the approach helps finding politically and socially acceptable compromises, as political 

and social constraints are often disregarded in economic analyses. 

Finally, what is still missing in the literature is a negotiation model which 

considers also incomplete information over the resource itself. A multiple issues, multiple 
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parties negotiation model, which explicitly addresses the bargaining process without 

making assumptions over which allocation should be achieved, and which accounts for 

the stochasticity of the resource, as well as the political, social and strategic feasibility of 

any allocation scheme, would significantly contribute to decreasing conflicts over water.  
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