2,063 research outputs found

    Well-balanced finite volume schemes for nearly steady adiabatic flows

    Full text link
    We present well-balanced finite volume schemes designed to approximate the Euler equations with gravitation. They are based on a novel local steady state reconstruction. The schemes preserve a discrete equivalent of steady adiabatic flow, which includes non-hydrostatic equilibria. The proposed method works in Cartesian, cylindrical and spherical coordinates. The scheme is not tied to any specific numerical flux and can be combined with any consistent numerical flux for the Euler equations, which provides great flexibility and simplifies the integration into any standard finite volume algorithm. Furthermore, the schemes can cope with general convex equations of state, which is particularly important in astrophysical applications. Both first- and second-order accurate versions of the schemes and their extension to several space dimensions are presented. The superior performance of the well-balanced schemes compared to standard schemes is demonstrated in a variety of numerical experiments. The chosen numerical experiments include simple one-dimensional problems in both Cartesian and spherical geometry, as well as two-dimensional simulations of stellar accretion in cylindrical geometry with a complex multi-physics equation of state

    Bound-preserving and entropy-stable algebraic flux correction schemes for the shallow water equations with topography

    Full text link
    A well-designed numerical method for the shallow water equations (SWE) should ensure well-balancedness, nonnegativity of water heights, and entropy stability. For a continuous finite element discretization of a nonlinear hyperbolic system without source terms, positivity preservation and entropy stability can be enforced using the framework of algebraic flux correction (AFC). In this work, we develop a well-balanced AFC scheme for the SWE system including a topography source term. Our method preserves the lake at rest equilibrium up to machine precision. The low-order version represents a generalization of existing finite volume approaches to the finite element setting. The high-order extension is equipped with a property-preserving flux limiter. Nonnegativity of water heights is guaranteed under a standard CFL condition. Moreover, the flux-corrected space discretization satisfies a semi-discrete entropy inequality. New algorithms are proposed for realistic simulation of wetting and drying processes. Numerical examples for well-known benchmarks are presented to evaluate the performance of the scheme

    Well-balanced finite volume schemes for hydrodynamic equations with general free energy

    Get PDF
    Well balanced and free energy dissipative first- and second-order accurate finite volume schemes are proposed for a general class of hydrodynamic systems with linear and nonlinear damping. The natural Liapunov functional of the system, given by its free energy, allows for a characterization of the stationary states by its variation. An analog property at the discrete level enables us to preserve stationary states at machine precision while keeping the dissipation of the discrete free energy. These schemes allow for analysing accurately the stability properties of stationary states in challeging problems such as: phase transitions in collective behavior, generalized Euler-Poisson systems in chemotaxis and astrophysics, and models in dynamic density functional theories; having done a careful validation in a battery of relevant test cases.Comment: Videos from the simulations of this work are available at https://sergioperezresearch.wordpress.com/well-balance

    Stabilized Lattice Boltzmann-Enskog method for compressible flows and its application to one and two-component fluids in nanochannels

    Full text link
    A numerically stable method to solve the discretized Boltzmann-Enskog equation describing the behavior of non ideal fluids under inhomogeneous conditions is presented. The algorithm employed uses a Lagrangian finite-difference scheme for the treatment of the convective term and a forcing term to account for the molecular repulsion together with a Bhatnagar-Gross-Krook relaxation term. In order to eliminate the spurious currents induced by the numerical discretization procedure, we use a trapezoidal rule for the time integration together with a version of the two-distribution method of He et al. (J. Comp. Phys 152, 642 (1999)). Numerical tests show that, in the case of one component fluid in the presence of a spherical potential well, the proposed method reduces the numerical error by several orders of magnitude. We conduct another test by considering the flow of a two component fluid in a channel with a bottleneck and provide information about the density and velocity field in this structured geometry.Comment: to appear in Physical Review

    Numerical methods for all-speed flows for the Euler equations including well-balancing of source terms

    Get PDF
    This thesis regards the numerical simulation of inviscid compressible ideal gases which are described by the Euler equations. We propose a novel implicit explicit (IMEX) relaxation scheme to simulate flows from compressible as well as near incompressible regimes based on a Suliciu-type relaxation model. The Mach number plays an important role in the design of the scheme, as it has great influence on the flow behaviour and physical properties of solutions of the Euler equations. Our focus is on an accurate resolution of the Mach number independent material wave. A special feature of our scheme is that it can account for the influence of a gravitational field on the fluid flow and is applicable also in small Froude number regimes. The time step of the IMEX scheme is constrained only by the eigenvalues of the explicitly treated part and is independent of the Mach number allowing for large time steps independent of the flow regime. In addition, the scheme is provably asymptotic preserving and well-balanced for arbitrary a priori known hydrostatic equilibria independently of the considered Mach and Froude regime. Also, the scheme preserves the positivity of density and internal energy throughout the simulation, it is well suited for physical applications. To increase the accuracy, a natural extension to second order is provided. The theoretical properties of the given schemes are numerically validated by various test cases performed on Cartesian grids in multiple space dimensions

    A three-dimensional multidimensional gas-kinetic scheme for the Navier-Stokes equations under gravitational fields

    Full text link
    This paper extends the gas-kinetic scheme for one-dimensional inviscid shallow water equations (J. Comput. Phys. 178 (2002), pp. 533-562) to multidimensional gas dynamic equations under gravitational fields. Four important issues in the construction of a well-balanced scheme for gas dynamic equations are addressed. First, the inclusion of the gravitational source term into the flux function is necessary. Second, to achieve second-order accuracy of a well-balanced scheme, the Chapman-Enskog expansion of the Boltzmann equation with the inclusion of the external force term is used. Third, to avoid artificial heating in an isolated system under a gravitational field, the source term treatment inside each cell has to be evaluated consistently with the flux evaluation at the cell interface. Fourth, the multidimensional approach with the inclusion of tangential gradients in two-dimensional and three-dimensional cases becomes important in order to maintain the accuracy of the scheme. Many numerical examples are used to validate the above issues, which include the comparison between the solutions from the current scheme and the Strang splitting method. The methodology developed in this paper can also be applied to other systems, such as semi-conductor device simulations under electric fields.Comment: The name of first author was misspelled as C.T.Tian in the published paper. 35 pages,9 figure
    corecore