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1. Introduction. The construction of robust well-balanced numerical methods for conservation15

laws has attracted a lot of attention since the initial works of LeRoux and collaborators [38, 40]. The16

well-balanced property is equivalent to the exact C-property defined beforehand by Bermúdez and17

Vázquez in [5], and both of them refer to the ability of a numerical scheme to preserve the steady18

states at a discrete level and to accurately compute evolutions of small deviations from them. The19

historical evolution of well-balanced schemes is reviewed in [37]. On the other hand, the derivation of20

numerical schemes preserving structural properties of the evolutions under study such as dissipations or21

conservations of relevant physical quantities is an important line of research in hydrodynamic systems22

and their overdamped limits, see for instance [10,23,60,68]. In the present work, we propose numerical23

schemes with well-balanced and free energy dissipation properties for a general class of balance laws24

or hydrodynamic models with attractive-repulsive interaction forces, and linear or nonlinear damping25

effects, such as the Cucker-Smale alignment term in swarming. The general hydrodynamic system has26

the form27

(1.1)


∂tρ+∇ · (ρu) = 0, x ∈ Rd, t > 0,

∂t(ρu)+∇·(ρu⊗ u)= −∇P (ρ)− ρ∇H(x, ρ)− γρu−ρ
∫
Rd
ψ(x− y)(u(x)− u(y))ρ(y) dy,

28

where ρ = ρ(x, t) and u = u(x, t) are the density and the velocity, P (ρ) is the pressure, H(x, ρ)29

contains the attractive-repulsive effects from external V or interaction potentials W , assumed to be30

locally integrable, given by31

H(x, ρ) = V (x) +W (x) ? ρ,32

and ψ(x) is a nonnegative symmetric smooth function called the communication function in the Cucker-33

Smale model [21,22] describing collective behavior of systems due to alignment [11].34

The fractional-step methods [52] have been the widely-employed tool to simulate the temporal35

evolution of balance laws such as (1.1). They are based on a division of the problem in (1.1) into two36

∗Submitted to the editors DATE.
Funding: This work was funded by the EPSRC via Grant Number EP/P031587/1, IBM Visiting Professorship

of Applied Mathematics at Brown University, EPSRC via Grant Number EP/L020564/1, Imperial College President’s
PhD Scholarship and NSF via Grant Number DMS-1719410.
†Department of Mathematics, Imperial College London, SW7 2AZ, UK (carrillo@imperial.ac.uk).
‡Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK (s.kalliadasis@imperial.ac.uk).
§Department of Chemical Engineering and Mathematics, Imperial College London, SW7 2AZ, UK (see-

gio.perez15@imperial.ac.uk).
¶Division of Applied Mathematics, Brown University, Providence, RI 02912, USA (shu@dam.brown.edu).

1

This manuscript is for review purposes only.

mailto:carrillo@imperial.ac.uk
mailto:s.kalliadasis@imperial.ac.uk
mailto:seegio.perez15@imperial.ac.uk
mailto:seegio.perez15@imperial.ac.uk
mailto:shu@dam.brown.edu


2 J. A. CARRILO, S. KALLIADASIS, S. P. PEREZ, AND C.-W. SHU

simpler subproblems: the homogeneous hyperbolic system without source terms and the temporal evo-37

lution of density and momentum without the flux terms but including the sources. These subproblems38

are then resolved alternatively employing suitable numerical methods for each. This procedure intro-39

duces a splitting error which is acceptable for the temporal evolution, but becomes critical when the40

objective is to preserve the steady states. This is due to the fact that the steady state is reached when41

the fluxes are exactly balanced with the source terms in each discrete node of the domain. However,42

when solving alternatively the two subproblems, this discrete balance can never be achieved, since the43

fluxes and source terms are not resolved simultaneously.44

To correct this deficiency, well-balanced schemes are designed to discretely satisfy the balance45

between fluxes and sources when the steady state is reached [6]. The strategy to construct well-46

balanced schemes relies on the fact that, when the steady state is reached, there are some constant47

relations of the variables that hold in the domain. These relations allow the resolution of the fluxes48

and sources in the same level, thus avoiding the division that the fractional-step methods introduce.49

Moreover, if the system enjoys a dissipative property and it has a Liapunov functional, obtaining50

analogous tools at the discrete level is key for the derivation of well-balanced schemes. In this work51

the steady-state relations and the dissipative property are obtained by means of the associated free52

energy, which in the case of the system in (1.1) is formulated as53

(1.2) F [ρ] =

∫
Rd

Π(ρ)dx +

∫
Rd
V (x)ρ(x)dx +

1

2

∫
Rd

∫
Rd
W (x− y)ρ(x)ρ(y)dxdy,54

where55

(1.3) ρΠ′′(ρ) = P ′(ρ).56

The pressure P (ρ) and the potential term H(x, ρ) appearing in the general system (1.1) can be gathered57

by considering the associated free energy. Taking into account that the variation of the free energy in58

(1.2) with respect to the density ρ is equal to59

(1.4)
δF
δρ

= Π′(ρ) +H(x, ρ),60

it follows that the general system (1.1) can be written in a compact form as61

(1.5)


∂tρ+∇ · (ρu) = 0, x ∈ Rd, t > 0,

∂t(ρu)+∇·(ρu⊗ u)= −ρ∇δF
δρ
− γρu−ρ

∫
Rd
ψ(x− y)(u(x)− u(y))ρ(y) dy.

62

The system in (1.5) is rather general containing a wide variety of physical problems all under the63

so-called density functional theory (DFT) and its dynamic extension (DDFT) see e.g. [25,32–34,78,79]64

and the references therein. A variety of well-balanced schemes have already been constructed for65

specific choices of the terms Π(ρ), V (x) and W (x) in the free energy (1.2), see [1, 6, 27] for instance.66

Here the focus is set on the free energy and the natural structure of the system (1.5). It is naturally67

advantageous to consider the concept of free energy in the construction procedure of well-balanced68

schemes, since they rely on relations that hold in the steady states, and moreover, the variation of the69

free energy with respect to the density is constant when reaching these steady states, more precisely70

(1.6)
δF
δρ

= Π′(ρ) +H(x, ρ) = constant on each connected component of supp(ρ) and u = 0,71

where the constant can vary on different connected components of supp(ρ). As a result, the constant72

relations in the steady states, which are needed for well-balanced schemes, are directly provided by73

the variation of the free energy with respect to the density.74

The steady state relations in (1.6) hold due to the dissipation of the linear damping −ρu or75

nonlinear damping in the system (1.1), which eventually eliminates the momentum of the system.76
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This can be justified by means of the total energy of the system, defined as the sum of kinetic and free77

energy,78

(1.7) E(ρ,u) =

∫
Rd

1

2
ρ |u|2 dx + F(ρ),79

since it is formally dissipated, see [15,18,31], as80

(1.8)
dE(ρ,u)

dt
= −γ

∫
Rd
ρ |u|2 dx−

∫
Rd

∫
Rd
ψ(x− y) |u(y)− u(x)|2 ρ(x) ρ(y) dx dy.81

This last dissipation equation ensures that the total energy E(ρ,u) keeps decreasing in time while82

there is kinetic energy in the system. At the same time, since the definition of the total energy (1.7)83

also depends on the velocity u, it results that the velocity throughout the domain eventually vanishes.84

When u = 0 throughout the domain, the momentum equation in (1.5) reduces to85

ρ∇δF
δρ

= 0,86

meaning that in the support of the density the steady state relation (1.6) holds. However, for those87

points outside the support of the density and satisfying ρ = 0, the variation of the free energy with88

respect to the density does not need to keep the constant value when the steady state is reached. A89

discussion of the resulting steady states depending on Π(ρ) and H(x, ρ) is provided in [10,16,41].90

The system (1.1) also satisfies an entropy identity91

(1.9) ∂tη(ρ, ρu)+∇·G(ρ, ρu) = −ρu ·∇H(x, ρ)−γρ |u|2−ρ
∫
Rd
ψ(x−y)u(x) ·(u(x)−u(y))ρ(y) dy,92

where η(ρ, ρu) and G(ρ, ρu) are the entropy and the entropy flux defined as93

(1.10) η(ρ, ρu) = ρ
|u|2

2
+ Π(ρ), G(ρ, ρu) = ρu

(
|u|2

2
+ Π′(ρ)

)
.94

From a physical point of view the entropy is always a convex function of the density [49]. As a result,95

from (1.10) it is justified to assume that Π(ρ) is convex, meaning that Π′(ρ) has an inverse function for96

positive densities ρ. This last fact is a necessary requirement for the construction of the well-balanced97

schemes of this work, as it is explained in section 2. Finally, notice that from the entropy identity98

(1.9), one recovers the free energy dissipation (1.8) by integration using the continuity equation to deal99

with the forces term H(x, ρ) and using symmetrization of the nonlinear damping term due to ψ being100

symmetric.101

Let us also point out that the evolution of the center of mass of the density can be computed in102

some particular cases. In fact, it is not difficult to deduce from (1.5) that103

(1.11)
d

dt

∫
Rd

xρdx =

∫
Rd
ρudx and

d

dt

∫
Rd
ρudx = −

∫
Rd
∇V (x)ρdx− γ

∫
Rd
ρudx ,104

due to the antisymmetry of ∇W (x) and the symmetry of ψ(x). Therefore, in case V (x) is not present
or quadratic, (1.11) are explicitly solvable. Moreover, if the potential V (x) is symmetric, the initial
data for the density is symmetric, and the initial data for the velocity is antisymmetric, then the
solution to (1.5) keeps these symmetries in time, i.e., the density is symmetric and the velocity is
antisymetric for all times, and the center of mass is conserved

d

dt

∫
Rd

xρdx = 0 .
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The steady state relations (1.6) only hold when the linear damping term is included in system105

(1.1). When only the nonlinear damping of Cucker-Smale type is present, the system has the so-called106

moving steady states, see [11,13,18], which satisfy the more general relations107

(1.12)
δF
δρ

= constant on each connected component of supp(ρ) and u = constant.108

However, the construction of well-balanced schemes satisfying the moving steady state relations has109

proven to be more difficult than for the still steady states (1.6) without dissipation. For literature110

about well-balanced schemes for moving steady states without dissipation, we refer to [58,76].111

The most popular application in the literature for well-balanced schemes deals with the Saint-112

Venant system for shallow water flows with nonflat bottom [1, 6, 9, 53, 72, 75], for which Π(ρ) = g
2ρ

2,113

with g being the gravity constant, and H(x, ρ) depends on the bottom. Here it is important to114

remark the work of Audusse et al. in [1], where they propose a hydrostatic reconstruction that has115

successfully inspired more sophisticated well-balanced schemes in the area of shallow water equations116

[55, 57]. Another area where well-balanced schemes have been fruitful is chemosensitive movement,117

with the works of Filbet, Shu and their collaborators [26, 27, 36, 74]. In this case the pressure satisfies118

Π(ρ) = ρ (ln(ρ)− 1) andH depends on the chemotactic sensitivity and the chemical concentration. The119

list of applications of the system (1.1) continues growing with more choices of Π(ρ) and H(x, ρ) [74]:120

the elastic wave equation, nozzle flow problem, two phase flow model, etc.121

The orders of accuracy from the finite volume well-balanced schemes presented before range from122

first- and second-order [1,48,51,53,77] to higher-order versions [28,57,71,74]. Again, the most popular123

application has been shallow water equations, and the survey from Xing and Shu [75] provides a124

summary of all the shallow water methods with different accuracies. Some of the previous schemes125

proposed were equipped to satisfy natural properties of the systems under consideration, such as126

nonnegativity of the density [2, 48] or the satisfaction of a discrete entropy inequality [1, 27], enabling127

also the computation of dry states [28] . Theoretically the Godunov scheme satisfies all these properties128

[50], but its main drawback is its computationally expensive implementation. The high-order schemes129

usually rely on the WENO reconstructions originally proposed by Jiang and Shu [43].130

Other well-balanced numerical approaches employed to simulate the system (1.5) are finite dif-131

ferences [72, 73], which are equivalent to the finite volume methods for first-and second-order, and132

the discontinuous Galerkin methods [74]. The overdamped system of (1.5) with ψ ≡ 0, obtained in133

the free inertia limit where the momentum reaches equilibrium on a much faster timescale than the134

density, has also been numerically resolved for general free energies of the form (1.2), via finite volume135

schemes [10] or discontinuous Galerkin approaches [68]. This scheme for the overdamped system also136

conserves the dissipation of the free energy at the discrete approximation.137

The novelty of this work is twofold. Foremost, all these previous schemes were only applicable138

for specific choices of Π(ρ) and H(x, ρ), meaning that a general scheme valid for a wide range of139

applications is lacking. And while some previous schemes [74] could be employed in more general140

cases, the focus in the literature has been on the shallow water and chemotaxis equations. In addition,141

the function H(x, ρ), which results from summing V (x) and W (x) ? ρ as in (1), has so far been taken142

as dependent on x only, unlike the present work where it depends on ρ by means of the convolution143

with an interaction potential W (x).144

In this work we present a finite volume scheme for a general choice of Π(ρ) and H(x, ρ) which145

is first- and second-order accurate and satisfies the nonnegativity of the density, the well-balanced146

property, the semidiscrete entropy inequality and the semidiscrete free energy dissipation. Furthermore,147

as it is shown in example 3.9 of section 3, it can also be applied to more general free energies than the148

one in (1.2) and with the form149

(1.13) F [ρ] =

∫
Rd

Π(ρ)dx +

∫
Rd
V (x)ρ(x)dx +

1

2

∫
Rd
K (W (x) ? ρ(x)) ρ(x)dx,150

where K is a function depending on the convolution of ρ(x) with the kernel W (x). Its variation with151
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respect to the density satisfies152

(1.14)
δF
δρ

= Π′(ρ) + V (x) +
1

2
K (W (x) ? ρ) +

1

2
K ′ (W (x) ? ρ) (W (x) ? ρ) .153

These free energies arise in applications related to (D)DFT [25, 33], see [14] for other related free154

energies and properties.155

The other novel technical aspect of this work concerns the numerical treatment of the different156

source terms in (1.1). In fact, in order to keep the well-balanced property and the decay of the free157

energy we treat source terms differently. While the dissipative terms are harmless and treated by158

direct approximations, the fundamental question is how to choose the discretization of the potential159

term given by H(x, ρ) = V (x)+W (x)?ρ. For this purpose we appropriately extend the ideas in [6,27]160

to our case to keep the well-balanced property and the energy decay. The condition for stationary161

states (1.6) is crucial in defining an approximation of the term −ρ∇H(x, ρ) by a dicretization of162

∇P (ρ) which is consistent when the new reconstructed values of the density at the interfaces taking163

into account the potential H(x, ρ). This general treatment includes as specific cases both the shallow-164

water equations [1, 6] and the hyperbolic chemotaxis problem [27].165

Section 2 describes the first- and second-order well-balanced scheme reconstructions, and provides166

the proofs of their main properties. Section 3 contains the numerical simulations, with a first subsection167

3.1 where the validation of the well-balanced property and the orders of accuracy is conducted, and168

a second subsection 3.2 with numerical experiments from different applications. A wide range of free169

energies is employed to remark the extensive nature of our well-balanced scheme. A short summary170

and conclusions are offered in section 4.171

2. Well-balanced finite volume scheme. The terms appearing in the one-dimensional system172

(1.5) are usually gathered in the form of173

(2.1) ∂tU + ∂xF (U) = S(x, U),174

with175

U =

(
ρ
ρu

)
, F (U) =

(
ρu

ρu2 + P (ρ)

)
176

and177

S(x, U) =

 0

−ρ∂xH − γρu− ρ
∫
R
ψ(x− y)(u(x)− u(y))ρ(y) dy

 ,178

where U are the unknown variables, F (U) the fluxes and S(U) the sources. The one-dimensional finite179

volume approximation of (2.1) is obtained by breaking the domain into grid cells
(
xi−1/2

)
i∈Z and180

approximating in each of them the cell average of U . Then these cell averages are modified after each181

time step, depending on the flux through the edges of the grid cells and the cell average of the source182

term [52]. Finite volume schemes for hyperbolic systems employ an upwinding of the fluxes and in the183

semidiscrete case they provide a discrete version of (2.1) under the form184

(2.2)
dUi
dt

= −
Fi+ 1

2
− Fi− 1

2

∆xi
+ Si,185

where the cell average of U in the cell
(
xi− 1

2
, xi+ 1

2

)
is denoted as186

Ui =

(
ρi
ρiui

)
,187
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Fi+ 1
2

is an approximation of the flux F (U) at the point xi+ 1
2
, Si is an approximation of the source188

term S(x, U) in the cell
(
xi− 1

2
, xi+ 1

2

)
and ∆xi is the possibly variable mesh size ∆xi = xi+ 1

2
− xi− 1

2
.189

The approximation of the flux F (U) at the point xi+ 1
2
, denoted as Fi+ 1

2
, is achieved by means of a190

numerical flux F which depends on two reconstructed values of U at the left and right of the boundary191

between the cells i and i+ 1. These two values, U−
i+ 1

2

and U+
i+ 1

2

, are computed from the cell averages192

following different construction procedures that seek to satisfy certain properties, such as order of193

accuracy or nonnegativity. Two widely-employed reconstruction procedures are the second-order finite194

volume monotone upstream-centered scheme for conservation laws, referred to as MUSCL [59], or the195

weighted-essentially non-oscllatory schemes, widely known as WENO [66].196

Once these two reconstructed values are computed, Fi+ 1
2

is obtained from197

(2.3) Fi+ 1
2

= F
(
U−
i+ 1

2

, U+
i+ 1

2

)
.198

The numerical flux F is usually denoted as Riemann solver, since it provides a stable resolution of the199

Riemann problem located at the cell interfaces, where the left value of the variables in U−
i+ 1

2

and the200

right value U+
i+ 1

2

. The literature concerning Riemann solvers is vast and there are different choices for201

it [69]: Godunov, Lax-Friedrich, kinetic, Roe, etc. Some usual properties of the numerical flux that202

are assumed [1,6, 27] are:203

1. It is consistent with the physical flux, so that F(U,U) = F (U).204

2. It preserves the nonnegativity of the density ρi(t) for the homogeneous problem, where the205

numerical flux is computed as in (2.3).206

3. It satisfies a cell entropy inequality for the entropy pair (1.10) for the homogeneous problem.207

Then, according to [6], it is possible to find a numerical entropy flux G such that208
209

(2.4) G(Ui+1) +∇U η(Ui+1) (F(Ui, Ui+1)− F (Ui+1))210

≤ G(Ui, Ui+1) ≤ G(Ui) +∇U η(Ui) (F(Ui, Ui+1)− F (Ui)) ,211212

where ∇U η is the derivative of η with respect to U =

(
ρ
ρu

)
.213

The first- and second-order well-balanced schemes described in this section propose an alternative214

reconstruction procedure for U−
i+ 1

2

and U+
i+ 1

2

which ensures that the steady state in (1.6) is discretely215

preserved when starting from that steady state. Subsections 2.1 and 2.3 contain the first- and second-216

order schemes, respectively, together with their proved properties.217

2.1. First-order scheme. The basic first-order schemes approximate the flux Fi+ 1
2

by a numer-218

ical flux F which depends on the cell averaged values of U at the two adjacent cells, so that the inputs219

for the numerical flux in (2.3) are220

(2.5) Fi+ 1
2

= F (Ui, Ui+1) .221

The resolution of the finite volume scheme in (2.2) with a numerical flux of the form in (2.5) and222

a cell-centred evaluation of −ρ∂xH for the source term Si is not generally able to preserve the steady223

states, as it was shown in the initial works of well-balanced schemes [38, 40]. These steady states are224

provided in (1.6), and satisfy that the variation of the free energy with respect to the density has to225

be constant in each connected component of the support of the density. The discrete steady state is226

defined in a similar way,227

(2.6)

(
δF
δρ

)
i

= Π′(ρi) +Hi = CΓ in each ΛΓ,Γ ∈ N ,228

where ΛΓ, Γ ∈ N, denotes the possible infinite sequence indexed by Γ of subsets ΛΓ of subsequent indices229

i ∈ Z where ρi > 0 and ui = 0, and CΓ the corresponding constant in that connected component of230

the discrete support.231
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As it was emphasized above, the preservation of these steady states for particular choices of Π′(ρ)232

and H(x, ρ), such as shallow water [1] or chemotaxis [27], is paramount. A solution to allow this233

preservation was proposed in the work of Audusse et al. [1], where instead of evaluating the numerical234

flux as in (2.3), they chose235

(2.7) Fi+ 1
2

= F
(
U−
i+ 1

2

, U+
i+ 1

2

)
, where U±

i+ 1
2

=

(
ρ±
i+ 1

2

ρ±
i+ 1

2

u±
i+ 1

2

)
.236

The interface values U±
i+ 1

2

are reconstructed from Ui and Ui+1 by taking into account the steady state237

relation in (2.6). Contrary to other works in which the interface values are reconstructed to increase238

the order of accuracy, now the objective is to satisfy the well-balanced property. Bearing this in mind,239

we make use of (2.6) to the cells with centred nodes at xi and xi+1 to define the interface values such240

that241

Π′
(
ρ−
i+ 1

2

)
+Hi+ 1

2
= Π′ (ρi) +Hi,

Π′
(
ρ+
i+ 1

2

)
+Hi+ 1

2
= Π′ (ρi+1) +Hi+1,

242

where the term Hi+ 1
2

is evaluated to preserve consistency and stability, with an upwind or average243

value obtained as244

(2.8) Hi+ 1
2

= max (Hi, Hi+1) or Hi+ 1
2

=
1

2
(Hi +Hi+1) .245

Then, by denoting as ξ(s) the inverse function of Π′(s) for s > 0, we conclude that the interface values246

U±
i+ 1

2

are computed as247

(2.9)
ρ−
i+ 1

2

= ξ
(

Π′ (ρi) +Hi −Hi+ 1
2

)
+
, u−

i+ 1
2

= ui,

ρ+
i+ 1

2

= ξ
(

Π′ (ρi+1) +Hi+1 −Hi+ 1
2

)
+
, u+

i+ 1
2

= ui+1.
248

The function ξ(s) is well-defined for s > 0 since Π(s) is strictly convex, Π′′(s) > 0. This is always249

the case since, as mentioned in the introduction, the physical entropies are always strictly convex250

from (1.10). However, some physical entropies and applications allow for vacuum of the steady states,251

therefore we need to impose the value of ρ±
i+ 1

2

, given that they should be nonnegative. Henceforth,252

ξ(s) denotes the extension by zero of the inverse of Π′(s) whenever s > 0.253

Furthermore, the discretization of the source term is taken as254

(2.10) Si =
1

∆xi

(
0

P
(
ρ−
i+ 1

2

)
− P

(
ρ+
i− 1

2

))−
 0

γρiui + ρi
∑
j

∆xj(ui − uj)ρjψij

 ,255

which is motivated by the fact that in the steady state, with u = 0 in (2.1), the fluxes are balanced256

with the sources,257

ρ∂xΠ′(ρ) = −ρ∂xH.258

Here, ψij is an approximation of the average value of ψ on the interval centred at xi − xj of length259

∆xj . From here, and integrating over the cell volume, it results that260

(2.11)

∫ x
i+1

2

x
i− 1

2

−ρ∂xH dx =

∫ x
i+1

2

x
i− 1

2

ρ∂xΠ′(ρ) dx =

∫ x
i+1

2

x
i− 1

2

∂xP (ρ) dx = P (ρ−
i+ 1

2

)− P (ρ+
i− 1

2

),261
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with the relation between Π′(ρ) and P (ρ) was given in (1.3). This idea of distributing the source terms262

along the interfaces has already been explored in previous works [44].263

The discretization of the source term in (2.10) entails that the discrete balance between fluxes and264

sources is accomplished when Fi+ 1
2

= P (ρ−
i+ 1

2

) = P (ρ+
i+ 1

2

). The computation of the numerical fluxes265

expressed in (2.7), in which the interface values U±
i+ 1

2

are considered, enables this balance if in the266

steady states U−
i+ 1

2

= U+
i+ 1

2

= (ρ−
i+ 1

2

, 0) = (ρ+
i+ 1

2

, 0). Moreover, the discretization of the source term267

as in (2.10) may seem counter-intuitive when the system is far away from the steady state, given that268

the balanced expressed in (2.11) only holds in those states. In spite of this, the consistency with the269

original system in (2.1) is not lost, as it will be proved in subsection 2.2.270

Let us finally discuss the discretization of the potential H(x, ρ) = V (x)+W ∗ρ(x). We will always
approximate it as

Hi = Vi +
∑
j

∆xjWijρj , for all i ∈ Z ,

where Vi = V (xi) and Wij = W (xi − xj) in case the potential is smooth or choosing Wij as an271

average value of W on the interval centred at xi−xj of length ∆xj in case of general locally integrable272

potentials W . Let us also point out that this discretization keeps the symmetry of the discretized273

interaction potential Wij = Wji for all i, j ∈ Z whenever W is smooth or solved with equal size meshes274

∆xi = ∆xj for all i, j ∈ Z.275

2.2. Properties of the first-order scheme. The first-order semidiscrete scheme defined in276

(2.2), constructed with (2.7)-(2.10), and for a numerical flux F (Ui, Ui+1) = (Fρ,Fρu) (Ui, Ui+1) satis-277

fying the properties stated in the introduction of section 2, satisfies:278

(i) preservation of the nonnegativity of ρi(t);279

(ii) well-balanced property, thus preserving the steady states given by (2.6);280

(iii) consistency with the system (1.5);281

(iv) cell entropy inequality associated to the entropy pair (1.10),282

(2.12)

∆xi
dηi
dt

+ ∆xiHi
dρi
dt

+Gi+ 1
2
−Gi− 1

2
= −ui

γ∆xiρiui + ∆xiρi
∑
j

∆xjρj (ui − uj)ψij

 ,283

where ηi = Π (ρi) + 1
2ρiu

2
i and

Gi+ 1
2

= G
(
U−
i+ 1

2

, U+
i+ 1

2

)
+ Fρ

(
U−
i+ 1

2

, U+
i+ 1

2

)
Hi+ 1

2
.

(v) the discrete analog of the free energy dissipation property (1.8) given by284

(2.13)
d

dt
E∆(t) ≤ −γ

∑
i

∆xiρiu
2
i −

1

2

∑
i,j

∆xi∆xjρiρj (ui − uj)2
ψij285

with286

(2.14)

E∆ =
∑
i

∆xi
2
ρiu

2
i + F∆ and F∆ =

∑
i

∆xi [Π (ρi) + Viρi] +
1

2

∑
i,j

∆xi∆xjWijρiρj .287

(vi) the discrete analog of the evolution for centre of mass in (1.11),288

(2.15)
d

dt

(∑
i

∆xiρixi

)
=
∑
i

∆xiF
ρ
(
U−
i+ 1

2

, U+
i+ 1

2

)
,289

which is reduced to290

(2.16)
∑
i

∆xiρixi = 0291

This manuscript is for review purposes only.



WELL-BALANCED FINITE VOLUME SCHEMES FOR HYDRODYNAMIC EQUATIONS 9

when the initial density is symmetric and the initial velocity antisymmetric. This implies that292

the discrete centre of mass is conserved in time and centred at 0.293

Proof. Some of the following proofs follow the lines considered in [1, 27].294

(i) If a first-order numerical flux F (Ui, Ui+1) = (Fρ,Fρu) (Ui, Ui+1) for the homogeneous problem,295

such as the Lax-Friedrich scheme detailed in Appendix A, satisfies the nonnegativity of the296

density ρi(t), then it necessarily follows that297

(2.17) Fρ((ρi = 0, ui), (ρi+1, ui+1))− Fρ((ρi−1, ui−1), (ρi = 0, ui)) ≤ 0 ∀(ρi, ui)i.298

In our case, the sources do not contribute to the continuity equation in (2.1), and for the299

numerical flux in (2.7) we need to check that300

(2.18) Fρ
(
U−
i+ 1

2

, U+
i+ 1

2

)
− Fρ

(
U−
i− 1

2

, U+
i− 1

2

)
≤ 0301

whenever ρi = 0. When ρi = 0, the reconstruction in (2.8) and (2.9) yields ρ−
i+ 1

2

= ρ+
i+ 1

2

= 0302

since Π(ρ) is assumed to be convex, and (2.18) results in303

(2.19) Fρ((0, ui), (ρ
+
i+ 1

2

, ui+1))− Fρ((ρ−
i− 1

2

, ui−1), (ρi = 0, ui)) ≤ 0 ∀(ρ+
i+ 1

2

, ρ−
i+ 1

2

, ui)i.304

Then, given that the numerical scheme is chosen so that it preserves the nonnegativity of the305

density for the homogeneous problem and (2.17) holds, it follows that (2.19) is satisfied too.306

(ii) To preserve the steady state the discrete fluxes and source need to be balanced,307

(2.20) Fi+ 1
2
− Fi− 1

2
= ∆xSi.308

When the steady state holds it follows from (2.9) that ρ−
i+ 1

2

= ρ+
i+ 1

2

and u−
i+ 1

2

= u+
i− 1

2

= 0,309

and as a result U−
i+ 1

2

= U+
i+ 1

2

. Then, by consistency of the numerical flux F,310

(2.21)

Fi+ 1
2

= F
(

(ρ−
i+ 1

2

, 0), (ρ+
i+ 1

2

, 0)
)

= F (U−
i+ 1

2

) = F (U+
i+ 1

2

) =

(
0

P (ρ−
i+ 1

2

)

)
=

(
0

P (ρ+
i+ 1

2

)

)
.311

Concerning the source term Si of (2.10), in the steady state it is equal to312

(2.22) ∆xiSi =

(
0

P
(
ρ−
i+ 1

2

)
− P

(
ρ+
i− 1

2

))
.313

Then the balance in (2.20) is obtained from (2.21) and (2.22).314

(iii) For the consistency with the original system of (1.5) one has to apply the criterion in [6], by315

which two properties concerning the consistency with the exact flux F and the consistency316

with the source term need to be checked. Before proceeding, the finite volume discretization317

in (2.2) needs to be rewritten in a non-conservative form as318

(2.23)

dUi
dt

= −Fl(Ui, Ui+1, Hi, Hi+1)− Fr(Ui−1, Ui, Hi−1, Hi)

∆xi

−
(

0
γρiui + ρi

∑
j(ui − uj)ρjψ(xi − xj)

)319

where320

Fl(Ui, Ui+1, Hi, Hi+1) = Fi+ 1
2
−∆xiS

−
i+ 1

2

,

Fr(Ui−1, Ui, Hi−1, Hi) = Fi− 1
2

+ ∆xiS
+
i− 1

2

.
321
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Here the source term Si is considered as being distributed along the cells interfaces, satisfying322

Si = S−
i+ 1

2

+ S+
i− 1

2

−
(

0
γρiui + ρi

∑
j(ui − uj)ρjψ(xi − xj)

)
,

S−
i+ 1

2

=
1

∆xi

(
0

P (ρ−
i+ 1

2

)− P (ρi)

)
and S+

i− 1
2

=
1

∆xi

(
0

P (ρi)− P (ρ+
i− 1

2

)

)
.

323

The consistency with the exact flux means that Fl(U,U,H,H) = Fr(U,U,H,H) = F (U). This324

is directly satisfied since U−
i+ 1

2

= Ui and U+
i+ 1

2

= Ui+1 whenever Hi+1 = Hi, due to (2.9).325

For the consistency with the source term the criterion to check is326

Fr(Ui, Ui+1, Hi, Hi+1)− Fl(Ui, Ui+1, Hi, Hi+1) =

(
0

−ρ(Hi+1 −Hi) + o(Hi+1 −Hi)

)
327

as Ui, Ui+1 → U and Hi, Hi+1 → H. For this case,328

(2.24)

Fr(Ui, Ui+1, Hi, Hi+1)− Fl(Ui, Ui+1, Hi, Hi+1) =

(
0

S+
i+ 1

2

+ S−
i+ 1

2

)
= 0

−(P (ξ(Π′(ρi+1) +Hi+1 −Hi+ 1
2
)− P (ρi+1)) + (P (ξ(Π′(ρi) +Hi −Hi+ 1

2
)− P (ρi))

 ,

329

where Hi+ 1
2

= max (Hi, Hi+1). By assuming without loss of generality that Hi+ 1
2

= Hi, the330

second term of the last matrix results in331

−P (ξ(Π′(ρi+1) +Hi+1 −Hi)) + P (ξ(Π′(ρi))) = −P (ξ(Π′(ρi+1) +Hi+1 +Hi))− P (ρi) .332

This term can be further approximated as333

−(P ◦ ξ)′(Π′(ρi+1)) (Hi+1 −Hi) + o(Hi+1 −Hi) = −ρi+1(Hi+1 −Hi) + o(Hi+1 −Hi)334

since335

(P ◦ ξ)′(Π′(ρi+1)) = P ′(ρi+1)
1

Π′′(ρi+1)
= ρi+1336

by taking derivatives in (ξ ◦ Π′)(ρ) = ρ and making use of (1.3). Finally, since ρi+1 → ρ,337

the consistency with the source term is satisfied. An analogous procedure can be followed338

whenever Hi+ 1
2

= Hi+1.339

(iv) To prove (2.12) we follow the strategy from [27]. We first set Gi+ 1
2

to be340

Gi+ 1
2

= G
(
U−
i+ 1

2

, U+
i+ 1

2

)
+ Fρ

(
U−
i+ 1

2

, U+
i+ 1

2

)
Hi+ 1

2
.341

Subsequently, and employing the inequalities for G
(
U−
i+ 1

2

, U+
i+ 1

2

)
in (2.4), it follows that342

Gi+ 1
2
−Gi− 1

2
≤ G

(
U−
i+ 1

2

)
+∇Uη

(
U−
i+ 1

2

)(
F
(
U−
i+ 1

2

, U+
i+ 1

2

)
− F

(
U−
i+ 1

2

))
−G

(
U+
i− 1

2

)
−∇Uη

(
U+
i− 1

2

)(
F
(
U−
i+ 1

2

, U+
i+ 1

2

)
− F

(
U+
i− 1

2

))
+ Fρ

(
U−
i+ 1

2

, U+
i+ 1

2

)
Hi+ 1

2
− Fρ

(
U−
i− 1

2

, U+
i− 1

2

)
Hi− 1

2
.

343
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This last inequality can be rewritten after some long computations as344

Gi+ 1
2
−Gi− 1

2
≤
(

Π′
(
ρ−
i+ 1

2

)
− 1

2
u2
i +Hi+ 1

2

)
Fρ
(
U−
i+ 1

2

, U+
i+ 1

2

)
−
(

Π′
(
ρ+
i− 1

2

)
− 1

2
u2
i +Hi− 1

2

)
Fρ
(
U−
i− 1

2

, U+
i− 1

2

)
+ ui

(
Fρu

(
U−
i+ 1

2

, U+
i+ 1

2

)
− Fρu

(
U−
i− 1

2

, U+
i− 1

2

)
+ P

(
ρ+
i− 1

2

)
− P

(
ρ−
i+ 1

2

))
.

345

From here, by bearing in mind the definition of ρ−
i+ 1

2

and ρ+
i− 1

2

in (2.9) and the definition of346

the scheme in (2.2)-(2.7)-(2.10), we get347

Gi+ 1
2
−Gi− 1

2
≤
(

Π′ (ρi)−
1

2
u2
i +Hi

)(
Fρ
(
U−
i+ 1

2

, U+
i+ 1

2

)
− Fρ

(
U−
i− 1

2

, U+
i− 1

2

))
+ ui

(
Fρu

(
U−
i+ 1

2

, U+
i+ 1

2

)
− Fρu

(
U−
i− 1

2

, U+
i− 1

2

)
+ P

(
ρ+
i− 1

2

)
− P

(
ρ−
i+ 1

2

))
= −

(
Π′ (ρi)−

1

2
u2
i +Hi

)
∆xi

dρi
dt
−∆xiui

d

dt
(ρiui)

− ui

γ∆xiρiui + ∆xiρi
∑
j

ρj (ui − uj)ψij

 .

348

Finally, this last inequality results in the desired cell entropy inequality (2.12) by rearranging349

according to (2.1), yielding350

(2.25) ∆xi
dηi
dt

+∆xiHi
dρi
dt

+Gi+ 1
2
−Gi− 1

2
= −ui

γ∆xiρiui + ∆xiρi
∑
j

ρj (ui − uj)ψij

 .351

(v) The last property of the scheme and formulas (2.13)-(2.14) follow by summing over the index352

i over identity (2.25), collecting terms and symmetrizing the dissipation using the symmetry353

of ψ.354

(vi) Starting from the finite volume equation for the density in (2.1),355

∆xi
dρi
dt

= −Fρ
(
U−
i+ 1

2

, U+
i+ 1

2

)
+ Fρ

(
U−
i− 1

2

, U+
i− 1

2

)
,356

one can multiply it by xi and sum it over the index i, resulting in357

d

dt

(∑
i

∆xiρixi

)
=
∑
i

xi

(
−Fρ

(
U−
i+ 1

2

, U+
i+ 1

2

)
+ Fρ

(
U−
i− 1

2

, U+
i− 1

2

))
.358

By rearranging and considering, for instance, periodic or no flux boundary conditions, we359

get (2.15).360

On the other hand, the finite volume equation for the momentum in (2.1), after summing over361

the index i, becomes362

(2.26)

d

dt

(∑
i

∆xiρiui

)
=
∑
i

(
P
(
ρ−
i+ 1

2

)
− P

(
ρ+
i− 1

2

))
− γ

∑
i

∆xiρiui

−
∑
i,j

∆xi∆xjρiρj(ui − uj)ψij ,
363

since the numerical fluxes cancel out due to the sum over the index i. In addition, the Cucker-364

Smale damping term also vanishes due to the symmetry in ψ(x). Finally, if the initial density365
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is symmetric and the initial velocity antisymmetric, the sum of pressures in the RHS of (2.26)366

is 0, due to the symmetry in the density. This implies that the discrete solution for the density367

and momentum maintains those symmetries, since (2.26) is simplified as368 ∑
i

∆xiρiui = 0369

and as a result (2.15) reduces to (2.16). This means that the discrete centre of mass is370

conserved in time and is centred at 0, for initial symmetric densities and initial antisymmetric371

velocities.372

Remark 2.1. As a consequence of the previous proofs, our scheme conserves all the structural373

properties of the hydrodynamic system (1.5) at the semidiscrete level including the dissipation of the374

discrete free energy (1.8) and the characterization of the steady states. These properties are analogous375

to those obtained for finite volume schemes in the overdamped limit [10,68].376

Remark 2.2. All the previous properties, which are applicable for free energies of the form (1.2),377

can be extended to the general free energies in (1.13). It can be shown indeed that the discrete analog378

of the free energy dissipation in (2.13) still holds for a discrete total energy defined as in (2.14) and a379

discrete free energy of the form380

(2.27) F∆ =
∑
i

∆xi [Π (ρi) + Viρi] +
1

2

∑
i

∆xiρiKi,381

where Ki is a discrete approximation of K(W (x) ? ρ) at the node xi and is evaluated as382

(2.28) Ki = K

∑
j

∆xjWijρj

 .383

2.3. Second-order extension. The usual procedure to extend a first-order scheme to second384

order is by computing the numerical fluxes (2.3) from limited reconstructed values of the density and385

momentum at each side of the boundary, contrary to the cell-centred values taken for the first order386

schemes (2.5). These values are classically computed in three steps: prediction of the gradients in each387

cell, linear extrapolation and limiting procedure to preserve nonnegativity. For instance, MUSCL [59]388

is a usual reconstruction procedure following these steps. From here the values ρi,l, ρi,r, ui,l and ui,r389

are obtained ∀i, where l indicates at the left of the boundary and r at the right. Then the inputs for390

the numerical flux in (2.3), for a usual second-order scheme, are391

Fi+ 1
2

= F (Ui,r, Ui+1,l) .392

This procedure has already been adapted to satisfy the well-balanced property and maintain the393

second order for specific applications, such as shallow water [1] or chemotaxis [27]. In this subsection394

the objective is to extend the procedure to general free energies of the form (1.2). As it happened for395

the well-balanced first-order scheme, the boundary values introduced in the numerical flux, which in396

this case are Ui,r and Ui+1,l, need to be adapted to satisfy the well-balanced property.397

For the well-balanced scheme the first step is to reconstruct the boundary values ρi,l, ρi,r, ui,l and398

ui,r following the three mentioned steps. In addition, the reconstructed values of the potential H(x, ρ)399

at the boundaries, Hi,l and Hi,r ∀i, have to be also computed. This is done as suggested in [1]. Instead400

of reconstructing directly Hi,l and Hi,r following the three mentioned steps, for certain applications401

one has to reconstruct firstly (Π′(ρ) +H(x, ρ))i to obtain (Π′(ρ) +H(x, ρ))i,l and (Π′(ρ) +H(x, ρ))i,r,402

and subsequently compute Hi,l and Hi,r as403

Hi,l = (Π′(ρ) +H(x, ρ))i,l −Π′ (ρi,l) ,

Hi,r = (Π′(ρ) +H(x, ρ))i,r −Π′ (ρi,r) .
404
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This is shown in [1] to be necessary in order to maintain nonnegativity and the steady state in appli-405

cations where there is an interface between dry and wet cells. For instance, these interfaces appear406

when considering pressures of the form P = ρm with m > 0, as it is shown in examples 3.4 and 3.6 of407

section 3. For other applications where vacuum regions do not occur, the values Hi,l and Hi,r can be408

directly reconstructed following the three mentioned steps.409

After this first step, the inputs for the numerical flux are updated from (2.3) to satisfy the well-410

balanced property as411

Fi+ 1
2

= F
(
U−
i+ 1

2

, U+
i+ 1

2

)
, where U−

i+ 1
2

=

(
ρ−
i+ 1

2

ρ−
i+ 1

2

ui,r

)
, U+

i+ 1
2

=

(
ρ+
i+ 1

2

ρ+
i+ 1

2

ui+1,l

)
.412

The interface values ρ±
i+ 1

2

are reconstructed as in the first-order scheme, by taking into account the413

steady state relation in (2.6). The application of (2.6) to the cells with centred nodes xi and xi+1414

leads to415

Π′
(
ρ−
i+ 1

2

)
+Hi+ 1

2
= Π′ (ρi,r) +Hi,r,

Π′
(
ρ+
i+ 1

2

)
+Hi+ 1

2
= Π′ (ρi+1,l) +Hi+1,l,

416

where the term Hi+ 1
2

is evaluated to preserve consistency and stability, with an upwind or average417

value obtained as418

Hi+ 1
2

= max (Hi,r, Hi+1,l) or Hi+ 1
2

=
1

2
(Hi,r +Hi+1,l) .419

Then, by denoting as ξ(x) the inverse function of Π′(x), the interface values ρ±
i+ 1

2

are computed as420

ρ−
i+ 1

2

= ξ
(

Π′ (ρi,r) +Hi,r −Hi+ 1
2

)
,

ρ+
i+ 1

2

= ξ
(

Π′ (ρi+1,l) +Hi+1,l −Hi+ 1
2

)
.

421

The source term is again distributed along the interfaces,422

Si = S−
i+ 1

2

+ S+
i− 1

2

+ Sci ,423

where424

S−
i+ 1

2

=
1

∆xi

(
0

P
(
ρ−
i+ 1

2

)
− P (ρi,r)

)
, S+

i− 1
2

=
1

∆xi

(
0

P (ρi,l)− P
(
ρ+
i− 1

2

))
.425

The inclusion of the central source term Sci is vital in order to preserve the second-order accuracy426

and well-balanced property of the scheme. This idea was firstly introduced in [46], where second order427

error estimates are derived under certain conditions for Sci . Further works customize this central source428

term Sci for particular applications such as shallow water equations [1, 45] or chemotaxis [27]. There429

is some flexibility in the choice of this term, as far as it satisfies two criteria for second-order accuracy430

and well-balancing. In the following remark we summarize the two criteria, which are described with431

more extend in Ref. [6] (specifically, (4.187) for second-order accuracy, and (4.204) for well-balancing).432

Remark 2.3. The central source term Sci preserves the second-order accuracy and well-balanced433

property of the scheme if the following two criteria are satisfied:434

(i) Second-order accuracy if435

(2.29)

Sci (ρi,l, ρi,r, Hi,l, Hi,r) =

(
0(

−ρi,l+ρi,r2 +O
(
|ρi,r − ρi,l|2 + |Hi,r −Hi,l|2

))
(Hi,r −Hi,l)

)
436
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as ρi,r − ρi,l → 0 and Hi,r −Hi,l → 0.437

(ii) Well-balanced property if438

(2.30) Sci (ρi,l, ρi,r, Hi,l, Hi,r) = F (ρi,r, Hi,r)− F (ρi,l, Hi,l) ,439

meaning that the steady states are let invariant.440

The objective here is to provide a general form of Sci which applies to general free energies of the441

form (1.2). Following the strategy in [6], we propose to approximate the generalized centred sources442

as443

Sci =
1

∆xi

(
0

P (ρi,r)− P (ρ∗i,r)− P (ρi,l) + P (ρ∗i,l)

)
−
(

0
γρiui + ρi

∑
j(ui − uj)ρjψ(xi − xj)

)
,444

where the values ρ∗i,l and ρ∗i,r are computed from the steady state relation (2.6) as445

ρ∗i,l = ξ (Π′ (ρi,l) +Hi,l −H∗i ) ,

ρ∗i,r = ξ (Π′ (ρi,r) +Hi,r −H∗i ) ,
446

and H∗i is a centred approximation of the potentials satisfying447

H∗i =
1

2
(Hi,l +Hi,r).448

The proposed structure of Sci is suggested in [6] and satisfies the two criteria for second-order accuracy449

(2.29) and well-balanced property (2.30).450

Overall, the second-order semidiscrete scheme defined in (2.2) and constructed as detailed in this451

subsection 2.3, and for a numerical flux F satisfying the properties stated in the introduction of section452

2, satisfies:453

(i) preservation of the nonnegativity of ρi(t);454

(ii) well-balanced property, thus preserving the steady states given by (2.6);455

(iii) consistency with the system (1.5);456

(iv) second-order accuracy.457

The proof of these properties is omitted here since it follows the same techniques from [1,27], and the458

general procedure is very similar to the one from the first-order scheme in subsection 2.2.459

3. Numerical tests. This section details numerical simulations in which the first- and second-460

order schemes from section 2 are employed. Firstly, subsection 3.1 contains the validation of the461

first- and second-order schemes: the well-balanced property and the order of accuracy of the schemes462

are tested in four different configurations. Secondly, subsection 3.2 illustrates the application of the463

numerical schemes to a variety of choices of the free energy, leading to interesting numerical experiments464

for which analytical results are limited in the literature.465

Unless otherwise stated, all simulations contain linear damping with γ = 1 and have a total unitary466

mass. Only the indicated ones contain the Cucker-Smale damping term, where the communication467

function satisfies468

ψ(x) =
1

(1 + |x|2)
1
4

.469

The pressure function in the simulations has the form of P (ρ) = ρm, with m ≥ 1. When m = 1470

the pressure satisfies the ideal-gas relation P (ρ) = ρ, and the density does not develop vacuum regions471

during the temporal evolution. For this case the employed numerical flux is the versatile local Lax-472

Friedrich flux. For the simulations where P (ρ) = ρm and m > 1 vacuum regions with ρ = 0 are473

generated. This implies that the hyperbolicity of the system (1.5) is lost in those regions, and the local474

Lax-Friedrich scheme fails. As a result, an appropiate numerical flux has to be implemented to handle475
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the vacuum regions. In this case a kinetic solver based on [64], and already implemented in previous476

works [2], is employed.477

The time discretization is acomplished by means of the third order TVD Runge-Kutta method [39]478

and the CFL number is taken as 0.7 in all the simulations. The boundary conditions are chosen to479

be no flux. For more details about the numerical fluxes, temporal discretization, boundary conditions480

and CFL number, we remit the reader to Appendix A.481

Videos from all the simulations displayed in this work are available at [62].482

3.1. Validation of the numerical scheme. The validation of the schemes from section 2 in-483

cludes a test for the well-balanced property and a test for the order of accuracy in the transient regimes.484

These tests are completed in four different examples with steady states satisfying (1.6), which differ485

in the choice of the free energy, potentials and the inclusion of Cucker-Smale damping terms. An486

additional fifth example presenting moving steady states of the form (1.12) is considered to show that487

our schemes satisfy the order of accuracy test even for this challenging steady states.488

The well-balanced property test evaluates whether the steady state solution is preserved in time489

up to machine precision. As a result, the initial condition of the simulation has to be directly the490

steady state. The results of this test for the four examples of this section are presented in table 1. All491

the simulations are run from t = 0 to t = 5, and the number of cells is 50.492

Table 1: Preservation of the steady state for the examples 3.1, 3.2, 3.3 and 3.4 with the first- and
second-order schemes and double precision, at t = 5

Order of the scheme L1 error L∞ error

Example 3.1
1st 9.1012E-18 1.1102E-16
2nd 2.3191E-17 2.2843E-16

Example 3.2
1st 7.8666E-18 1.1102E-16
2nd 1.4975E-17 1.5057E-16

Example 3.3
1st 5.5020E-17 6.6613E-16
2nd 6.4514E-17 7.2164E-16

Example 3.4
1st 1.3728E-17 2.2204E-16
2nd 3.4478E-18 1.1102E-16

The order of accuracy in the transient regimes test is based on evaluating the L1 error of a493

numerical solution for a particular choice of ∆x with respect to a reference solution, and for a time494

when the steady state is not reached yet. Subsequent L1 errors are obtained after halving the ∆x495

of the previous numerical solution, doubling in this way the total number of cells. The order of the496

scheme is then computed as497

(3.1) Order of the scheme = ln2

(
L1 error(∆x)

L1 error(∆x/2)

)
,498

and the ∆x is halved four times.499

The reference solution is frequently taken as an explicit solution of the system that is being500

tested. In this case, the system in (1.5) does not have an explicit solution in time for the free energies501

presented here, even though the steady solution can be analytically computed. Since we are interested502

in evaluating the order of accuracy away from equilibrium, the reference solution is computed from the503

same numerical scheme but with a really small ∆x, so that the numerical solution can be considered504

as the exact one. In all cases here the reference solution is obtained from a mesh with 25600 cells,505

while the numerical solutions employ a number of cells between 50 and 400.506

The results from the accuracy tests are shown in the tables 2, 3, 4, 5 and 6. The simulations507

were run with the configurations specified in each example and from t = 0 to t = 0.3, unless otherwise508

stated. The final time of t = 0.3 is taken so that all examples are in the transient regime.509
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Example 3.1 (Ideal-gas pressure and attractive potential). In this example the pressure satisfies510

P (ρ) = ρ and there is an external potential of the form V (x) = x2

2 . As a result, the relation holding511

in the steady state is512

(3.2)
δF
δρ

= Π′(ρ) +H = ln(ρ) +
x2

2
= constant on supp(ρ) and u = 0.513

The steady state, for an initial mass M0, explicitly satisfies514

(3.3) ρ∞ = M0
e−x

2/2∫
R e
−x2/2dx

.515

For the order of accuracy test the initial conditions are516

(3.4) ρ(x, t = 0) = M0

0.2 + 5 cos
(
πx
10

)∫
R
(
0.2 + 5 cos

(
πx
10

))
dx
, ρu(x, t = 0) = −0.05 sin

(πx
10

)
, x ∈ [−5, 5],517

with M0 equals to 1 so that the total mass is unitary. The order of accuracy test from this example is518

shown in table 2, and the evolution of the density, momentum, variation of the free energy with respect519

to the density, total energy and free energy are depicted in figure 1. From 1 (D) one can notice how520

the discrete total energy always decreases in time, due to the discrete free energy dissipation property521

(2.13), and how there is an exchange between free energy and kinetic energy which makes the discrete522

free energy plot oscillate.523

Table 2: Accuracy test for Example 3.1 with the first and second-order schemes, at t = 0.3

Number of
cells

First-order Second-order
L1 error order L1 error order

50 6.8797E-03 - 7.6166E-04 -
100 3.4068E-03 1.01 2.0206E-04 1.91
200 1.6826E-03 1.02 5.0308E-05 2.01
400 8.3104E-04 1.02 1.2879E-05 1.97

Example 3.2 (Ideal-gas pressure, attractive potential and Cucker-Smale damping terms). In this524

example the pressure satisfies P (ρ) = ρ and there is an external potential of the form V (x) = x2

2 .525

The difference with example 3.1 is that the Cucker-Smale damping terms are included, and the linear526

damping term −ρu excluded.527

The relation holding in the steady state is expressed in (3.2) and the steady state satisfies (3.3).528

The initial conditions are also (3.4). The order of accuracy test from this example is shown in table 3,529

and the evolution of the density, momentum, variation of the free energy with respect to the density,530

total energy and free energy are depicted in figure 2. The lack of linear damping leads to higher531

oscillations in the momentum plots in comparison to figure 1. There is also an exchange of kinetic and532

free energy during the temporal evolution, which could be noticed from the oscillations of the discrete533

free energy in figure 2 (D).534

Example 3.3 (Ideal-gas pressure and attractive kernel). In this case study the pressure satisfies535

P (ρ) = ρ and there is an interaction potential with a kernel of the form W (x) = x2

2 . The steady state536

for a general total mass M0 is again equal to the steady states from examples 3.1 and 3.2 with unit537

mass. The linear damping coefficient γ has been reduced, γ = 0.01, in order to compare the evolution538

with respect to the previous examples.539

The initial conditions for the order of accuracy test are the ones from example 3.1 in (3.4). The540

order of accuracy test from this example is shown in table 4, and the evolution of the density, momen-541

tum, variation of the free energy with respect to the density, total energy and free energy are depicted542
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free energy (d) Evolution of the total and free energy

Fig. 1: Temporal evolution of Example 3.1.

Table 3: Accuracy test for Example 3.2 with the first and second-order schemes, at t = 0.3

Number of
cells

First-order Second-order
L1 error order L1 error order

50 6.3195E-03 - 7.3045E-04 -
100 3.2658E-03 0.95 1.9462E-04 1.91
200 1.6373E-03 1.00 4.8629E-05 2.00
400 8.7771E-04 1.01 1.2468E-05 1.97

in figure 3. Due to the low value of γ in the linear damping, there is a repeated exchange of free543

energy and kinetic energy during the temporal evolution, which can be noticed from the oscillations544

of the free energy plot in figure 3 (D). In the previous examples the linear damping term dissipates545

the momentum in a faster timescale and these exchanges only last for a few oscillations. One can also546

notice that the time to reach the steady state is higher than in the previous examples.547

This manuscript is for review purposes only.



18 J. A. CARRILO, S. KALLIADASIS, S. P. PEREZ, AND C.-W. SHU

(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free energy (d) Evolution of the total and free energy

Fig. 2: Temporal evolution of Example 3.2.

Table 4: Accuracy test for Example 3.3 with the first and second-order schemes, at t = 0.3

Number of
cells

First-order Second-order
L1 error order L1 error order

50 6.6938E-03 - 7.6135E-04 -
100 3.4702E-03 0.95 2.0207E-04 1.91
200 1.7410E-03 1.00 5.0306E-05 2.01
400 8.6890E-04 1.00 1.2879E-05 1.97

Example 3.4 (Pressure proportional to square of density and attractive potential). For this ex-548

ample the pressure satisfies P (ρ) = ρ2 and there is an external potential of the form V (x) = x2

2 .549

Contrary to the previous examples 3.1, 3.2 and 3.3, the choice of P (ρ) = ρ2 implies that regions of550

vacuum where ρ = 0 appear in the evolution and steady solution of the system. As explained in the551

introduction of this section, the numerical flux employed for this case is a kinetic solver based on [6].552
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free energy (d) Evolution of the total and free energy

Fig. 3: Temporal evolution of Example 3.3.

The steady state for this example with an initial mass of M0 satisfies553

ρ∞(x) =

 −
1

4

(
x+ 3

√
3M0

)(
x− 3

√
3M0

)
for x ∈

[
− 3
√

3M0,
3
√

3M0

]
,

0 otherwise.

554

The initial conditions taken for the order of accuracy test are555

ρ(x, t = 0) = M0
0.1 + e−x

2∫
R
(
0.1 + e−x2

)
dx
, ρu(x, t = 0) = −0.2 sin

(πx
10

)
, x ∈ [−5, 5],556

with M0 being the mass of the system and equal to 1. The order of accuracy test from this example557

is shown in table 5, and the evolution of the density, momentum, variation of the free energy with558

respect to the density, total energy and free energy are depicted in figure 4. The initial kinetic energy559

represents a large part of the initial total energy, and there is also an exchange between the kinetic560

energy and the free energy resulting in the oscillations for the plot of the discrete free energy.561
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As a remark, in this example the order of accuracy for the schemes with order higher than one is562

reduced to one both in the vacuum and interface regions, as it is also pointed out in [27]. The orders563

showed in table 5 are computed by considering only the cells in the support of the density that are564

away from the interface region, and the vacuum regions are not taken into consideration.565

(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free energy (d) Evolution of the total and free energy

Fig. 4: Temporal evolution of Example 3.4.

Table 5: Accuracy test for Example 3.4 with the first and second-order schemes, at t = 0.3

Number of
cells

First-order Second-order
L1 error order L1 error order

50 6.8826E-03 - 1.0735E-03 -
100 3.5106E-03 0.97 2.9188E-04 1.88
200 1.7596E-03 1.00 7.6113E-05 1.94
400 8.8184E-04 1.00 1.9103E-05 1.99
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Example 3.5 (Moving steady state with ideal-gas pressure, attractive kernel and Cucker-Smale566

damping term). The purpose of this example is to show that our scheme from section 2 preserves the567

order of accuracy for moving steady states of the form (1.12), where the velocity is not dissipated. As568

mentioned in the introduction, the generalization of well-balanced schemes to preserve moving steady569

states has proven to be quite complicated [58,76], and it is not the aim of this work to construct such570

schemes.571

For this example the pressure satisfies P (ρ) = ρ and there is an interaction potential with a572

kernel of the form W (x) = x2

2 . The linear damping is eliminated and the Cucker-Smale damping term573

included. Under this configuration, there exists an explicit solution for system (1.5) consisting in a574

travelling wave of the form575

(3.5) ρ(x, t) = M0
e−(x−ut)2/2∫
R e
−x2/2dx

, u(x, t) = 0.2,576

with M0 equals to 1 so that the total mass is unitary. As a result, the order of accuracy test can be577

accomplished by computing the error with respect to the exact reference solution, contrary to what578

was proposed in the previous examples. It should be remarked however that the velocity and the579

variation of the free energy with respect to the density profiles are not kept constant along the domain580

by our numerical scheme, since the well-balanced property for moving steady states is not satisfied.581

The initial conditions for our simulation are (3.5) at t = 0, in a numerical domain with x ∈ [−8, 9].582

The simulation is run until t = 3. The table of errors for different number of cells is showed in table 6,583

and a depiction of the evolution of the system is illustrated in figure 5. The velocity and the variation584

of the free energy plots are not included since they are not maintained constant with our scheme.

Table 6: Accuracy test for Example 3.5 with the first and second-order schemes, at t = 3

Number of
cells

First-order Second-order
L1 error order L1 error order

50 9.84245E-03 - 2.78988E-03 -
100 4.92029E-03 1.00 9.09342E-04 1.62
200 2.44627E-03 1.01 2.55340E-04 1.83
400 1.21228E-03 1.01 7.47905E-05 1.77

585

3.2. Numerical experiments. This subsection applies the well-balanced scheme in section 2 to586

a variety of free energies from systems which have acquired an important consideration in the literature.587

Some of these systems have been mainly studied in their overdamped form, resulting when γ → ∞,588

and as a result our well-balanced scheme can be useful in determining the role that inertia plays in589

those systems.590

Example 3.6 (Pressure proportional to square of density and double-well potential). In this591

example the pressure is taken as in example 3.4, with P (ρ) = ρ2, thus leading to vacuum regions. The592

external potential are chosen to have a double-well shape of the form V (x) = a x4−b x2, with a, b > 0.593

This system exhibits a variety of steady states depending on the symmetry of the initial condition, the594

initial mass and the shape of the external potential V (x). The general expression for the steady states595

is596

ρ∞ = (C(x)− V (x))+ =
(
C(x)− a x4 + b x2

)
+
,597

where C(x) is a piecewise constant function, zero outside the support of the density. Notice that C(x)598

can attain a different value in each connected component of the support of the density.599
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(a) Evolution of the density (b) Evolution of the total and free energy

Fig. 5: Temporal evolution of Example 3.5.

Three different initial data are simulated in order to compare the resulting long time asymptotics,600

i.e., we show that different steady states are achieved corresponding to different initial data. The initial601

conditions are602

ρ(x, t = 0) = M0
0.1 + e−(x−x0)2∫

R
(
0.1 + e−(x−x0)2

)
dx
, ρu(x, t = 0) = −0.2 sin

(πx
10

)
, x ∈ [−10, 10],603

with M0 equal to 1 so that the total mass is unitary. When x0 = 0, the initial density is symmetric,604

and when x0 6= 0 the initial density is asymmetric.605

a. First case: The external potential satisfies V (x) = x4

4 −
3x2

2 and the initial density is symmetric606

with x0 = 0. For this configuration the steady solution presents two disconnected bumps of607

density with the same mass in each of them, as it is shown in figure 6 (A) and (B). The608

variation of the free energy with respect to the density presents the same constant value in609

the two disconnected supports of the density. The evolution is symmetric throughout.610

b. Second case: The external potential satisfies V (x) = x4

4 −
3x2

2 and the initial density is asym-611

metric with x0 = 1. The final steady density is characterised again by the two disconnected612

supports but for this configuration the mass in each of them varies, as shown in figure 6 (C)613

and (D). Similarly, the variation of the free energy with respect to the density presents different614

constant values in the two disconnected supports of the density.615

c. Third case: for this last configuration the external potential is varied and satisfies V (x) =616
x4

4 −
x2

2 , and the initial density is asymmetric with x0 = 1. For this case, even though the617

initial density is asymmetric, the final steady density is symmetric and compactly supported618

due to the shape of the potential, as it is shown in figure 6 (E) and (F). The variation of619

the free energy with respect to the density presents constant value in all the support of the620

density.621

This behavior shows that this problem has a complicated bifurcation diagram and corresponding622

stability properties depending on the parameters, for instance the coefficient on the potential well623

controling the depth and support of the wells used above.624

Example 3.7 (Ideal pressure with noise parameter and its phase transition). The model proposed625

for this example has a pressure satisfying P (ρ) = σρ, where σ is a noise parameter, and external and626

interaction potentials chosen to be V (x) = x4

4 −
x2

2 and W (x) = x2

2 , respectively. The corresponding627
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(a) Density in first case (b) Variation of the free energy in first case

(c) Density in second case (d) Evolution of the variation of the free energy
in second case

(e) Density in third case (f) Variation of the free energy in third case

Fig. 6: Temporal evolution of the first, second and third cases from example 3.6.
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model in the overdamped limit has been previously studied in the context of collective behaviour [3],628

mean field limits [35], and systemic risk [30], see also [70] for the proof in one dimension.629

We find that this hydrodynamic system exhibits a supercritical pitchfork bifurcation in the center630

of mass x̂ of the steady state when varying the noise parameter σ as its overdamped limit counterpart631

discussed above. For values of σ higher than a certain threshold, all teady states are symmetric and632

have the center of mass x̂ at x = 0. However, when σ decreases below that threshold, the pitchfork633

bifurcation takes place. On the one hand, if the center of mass of the initial density is at x = 0, the634

final center of mass in the steady state remains at x = 0. On the other hand, if the center of mass635

of the initial density is at x 6= 0, the center of mass of the steady state approaches asymptotically to636

x = 1 or x = −1 as σ → 0, depending on the sign of the initial center of mass. Finally, when σ = 0,637

the steady state turns into a Dirac delta at x = 0, x = 1 or x = −1, depending on the initial density.638

The pitchfork bifurcation is supercritical since the branch of the bifurcation corresponding to x̂ = 0

(a) Bifurcation diagram (b) Steady state profiles for different σ

Fig. 7: Bifurcation diagram (A) and steady states for different values of the noise parameter σ (B)
from Example 3.7

639

is unstable. This means that any deviation from an initial center of mass at x = 0 leads to a steady640

center of mass located in one of the two branches of the parabola in the bifurcation state.641

The numerical scheme outlined in section 2 captures this bifurcation diagram for the evolution642

of the hydrodynamic system. The results are shown in figure 7. In it, (A) depicts the bifurcation643

diagram of the final centre of mass when the noise parameter σ is varied, and for an initial center644

of mass at x 6= 0. For a symmetric initial density and antisymmetric velocity, the centre of mass645

numerically remains at x = 0 for an adequate stopping criterion, since property (vi) in subsection 2.2646

holds. However, any slight error in the numerical computation unavoidably leads to a steady state647

deviating towards any of the two stable branches, due to the strong unstable nature of the branch with648

x = 0. In (B) of figure 7 there is an illustration of the steady states resulting from an initial center649

of mass located at x > 0, for different choices of the noise parameter σ. For σ = 0.001, which is the650

smallest value of σ simulated, the density profile approaches the theoretical Dirac delta expected at651

x = 1 when σ → 0. When σ = 0 the hyperbolicity of the system in (1.5) is lost since the pressure term652

vanishes, and as a result the numerical approach in section 2 cannot be applied.653

The numerical strategy followed to recover the bifurcation diagram is based on the so-called dif-654

ferential continuation. It simply means that, as σ → 0, the subsequent simulations with new and lower655

values of σ have as initial conditions the previous steady state from the last simulation. This allows656

to complete the bifurcation diagram, since otherwise the simulations with really small σ take long657
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time to converge for general initial conditions. In addition, to maintain sufficient resolution for the658

steady states close to the Dirac delta, the mesh is adapted for each simulation. This is accomplished659

by firstly interpolating the previous steady state with a piecewise cubic hermite polynomial, which660

preserves the shape and avoids oscillations, and secondly by creating a new and narrower mesh where661

the interpolating polynomial is employed to construct the new initial condition for the differential662

continuation.663

Example 3.8 (Hydrodynamic generalization of the Keller-Segel system - Generalized Euler-Poisson664

systems). The original Keller-Segel model has been widely employed in chemotaxis, which is usually665

defined as the directed movement of cells and organisms in response to chemical gradients [47]. These666

systems also find their applications in astrophysics and gravitation [24, 67]. It is a system of two667

coupled drift-diffusion differential equations for the density ρ and the chemoattractant concentration668

S,669 ∂tρ = ∇ · (∇P (ρ)− χρ∇S) ,

∂tS = Ds∆S − θS + βρ.
670

In this system P (ρ) is the pressure, and the biological/physical meaning of the constants χ, Ds, α and671

β can be reviewed in the literature [4, 41, 42]. For this example they are simplified as usual so that672

χ = Ds = β = 1 and θ = 0. A further assumption usually taken in the literature is that ∂tρ is very big in673

comparison to ∂tS [41], leading to a simplification of the equation for the chemoattractant concentration674

S, which becomes the Poisson equation −∆S = ρ. Hydrodynamic extensions of the model, which675

include inertial effects, have also been proven to be essential for certain applications [19,20,29], leading676

to a hyperbolic system of equations with linear damping which in one dimension reads as677 
∂tρ+ ∂x (ρu) = 0,

∂t(ρu)+ ∂x(ρu2)= −∂xP (ρ) + ∂xS − γρu,

−∂xxS = ρ.

678

By using the fundamental solution of the Laplacian in one dimension, this equation becomes 2S = |x|?ρ.679

This term, after neglecting the constant, can be plugged in the momentum equation so that the last680

equation for S can be removed. As a result, the hydrodynamic Keller-Segel model is reduced to the681

system of equations (1.1) considered in this work, with W (x) = |x|/2, V (x) = 0 and ψ ≡ 0. As682

a final generalization [10], the original interaction potential W (x) = |x|/2 can be extended to be a683

homogeneous kernel W (x) = |x|α/α, where α > −1. By convention, W (x) = ln |x| for α = 0. Further684

generalizations are Morse-like potentials as in [10,17] where W (x) = 1− exp(−|x|α/α) with α > 0.685

The solution of this system can present a rich variety of behaviours due to the competition between686

the attraction from the local kernel W (x) and the repulsion caused by the diffusion of the pressure687

P (ρ), as reviewed in [7, 8]. By appropriately tuning the parameters α in the kernel W (x) and m in688

the pressure P (ρ), one can find compactly supported steady states, self-similar behavior, or finite-689

time blow up. Three different regimes have been studied in the overdamped generalized Keller-Segel690

model [10]: diffusion dominated regime (m > 1 − α), balanced regime (m = 1 − α) where a critical691

mass separates self-similar and blow-up behaviour, and aggregation-dominated regime (m < 1 − α).692

These three regimes have not been so far analytically studied for the hydrodynamic system except for693

few particular cases [12, 13], and the presence of inertia indicates that the initial momentum profile694

plays a role together with the mass of the system to separate diffusive from blow-up behaviour.695

The well-balanced scheme provided in section 2 is a useful tool to effectively reach the varied696

steady states resulting from different values of α and m. The objective of this example is to provide697

some numerical experiments to show the richness of possible behaviors. This scheme can be eventu-698

ally employed to numerically validate the theoretical studies concerning the existence of the different699

regimes for the hydrodynamic system for instance, or how the choice of the initial momentum or the700
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total mass can lead to diffusive or blow-up behaviour. This will be explored further elsewhere.701

(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free energy (d) Evolution of the total and free energy

Fig. 8: Temporal evolution of Example 3.8 with compactly-supported steady state.

We have conducted two simulations with different choices of the paramenters α and m. In both702

m > 1, so that a proper numerical flux able to deal with vacuum regions has to be implemented. As703

emphasised in the introduction of this section, the kinetic scheme developed in [63] is employed. Both704

of the simulations share the same initial conditions,705

ρ(x, t = 0) = M0
e−

4(x+2)2

10 + e−
4(x−2)2

10∫
R

(
e−

4(x−2)2

10 + e−
4(x+2)2

10

)
dx
, ρu(x, t = 0) = 0, x ∈ [−8, 8],706

where the total mass M0 of the system is 1.707

In the first simulation the choice of parameters is α = 0.5 and m = 1.5. According to the regime708

classification for the overdamped system, this would correspond to the diffusion-dominated regime. In709

the overdamped limit, solutions exist globally in time, and the steady state is compactly supported.710

The results are depicted in figure 8 and adequately agree with this regime. In the steady state the711

variation of the free energy with respect to density has a constant value only in the support of the712
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density, as expected. The total energy decreases in time and there is no exchange between the free713

energy and the kinetic energy since the free energy in figure 8 (D) does not oscillate.714

(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free energy (d) Evolution of the total and free energy

Fig. 9: Temporal evolution of Example 3.8 with finite-time blow up.

The second simulation has a choice of parameters of α = −0.5 and m = 1.3. In the case of the715

overdamped system this would correspond to the aggregation-dominated regime, where blow-up and716

diffusive behaviour coexist and depend on the initial density profile. The results from this simulation717

of the hydrodynamic system are illustrated in figure 9. For this particular initial condition there is718

analytically finite-time blow up. Our scheme, due to the conservation of mass of the finite volume719

scheme, concentrates all the mass in one single cell in finite time, that is, the scheme achieves in finite720

time the better approximation to a Dirac Delta at a point with the chosen mesh. Once this happens,721

this artificial numerical steady state depending on the mesh is kept for all times. From figure 9 (C)722

it is evident that the variation of the free energy with respect to density does not reach a constant723

value, and in figure 9 (D) the free energy presents a sharp decay when the concentration in one cell is724

produced (around t ≈ 65). The value of the slope in the free energy plot theoretically tends to −∞ due725

to the blow up, but in the simulation the decay is halted due to conservation of mass and the artificial726

steady state. This agrees with the fact that the expected Dirac delta profile in the density at the blow727

This manuscript is for review purposes only.



28 J. A. CARRILO, S. KALLIADASIS, S. P. PEREZ, AND C.-W. SHU

up time is obviously not reached numerically. It was also checked that this phenomena repeats for728

all meshes leading to more concentrated artificial steady states with more negative free energy values729

for more refined meshes. For other more spreaded initial conditions our scheme produces diffusive730

behaviour as expected from theoretical considerations.731

(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free energy (d) Evolution of the total and free energy

Fig. 10: Temporal evolution of Example 3.8 with Morse-type potential and three initial density bumps.

A further simulation is carried out to explore the convergence in time towards equilibration with a732

Morse-type potential of the form W (x) = −e−|x|2/2/
√

2π. With this potential the attraction between733

two bumps of density separated at a considerable distance is quite small. However, when enough time734

has passed and the bumps get closer, they merge in an exponentially fast pace due to the convexity735

of the Gaussian potential, and a new equilibrium is reached with just one bump. The interesting fact736

about this system is therefore the existence of two timescales: the time to get the bumps of density737

close enough, which could be arbitrarily slow, and the time to merge the bumps, which is exponentially738

fast in time.739

We have set up a simulation whose initial state presents three bumps of density, with the initial740
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conditions satisfying741

ρ(x, t = 0) = M0
e−

(x+3)2

2 + e−
(x−3)2

2 + 0.55e−
(x−8.5)2

2∫
R

(
e−

(x+3)2

2 + e−
(x−3)2

2 + 0.55e−
(x−8.5)2

2

)
dx
, ρu(x, t = 0) = 0, x ∈ [−8, 12],742

and the total mass of the system equal to M0 = 1.2. The parameter m in the pressure satisfies m = 3,743

and the effect of the linear damping is reduced by assigning γ = 0.05.744

The results are depicted in 10. In (A) one can observe how the two central bumps of density merge745

after some time, and how the third bump, with less mass, starts getting closer in time until it also746

blends. This is also reflected in the evolution of the free energy in figure 10 (D), where there are two747

sharp and exponential decays corresponding to the merges of the bumps.748

Example 3.9 (DDFT for 1D hard rods). Classical (D)DFT is a theoretical framework provided by749

nonequilibrium statistical mechanics but has increasingly become a widely-employed method for the750

computational scrutiny of the microscopic structure of both uniform and non-uniform fluids [25, 33,751

54, 78, 79]. The DDFT equations have the same form as in (1.5) when the hydrodynamic interactions752

are neglected. The starting point in (D)DFT is a functional F [ρ] for the fluid’s free energy which753

encodes all microscopic information such as the ideal-gas part, short-range repulsive effects induced by754

molecular packing, attractive interactions and external fields. This functional can be exactly derived755

only for a limited number of applications, for instance the one-dimensional hard rod system from756

Percus [61]. However, in general it has to be approximated by making appropriate assumptions, as757

e.g. in the so-called fundamental-measure theory of Rosenfeld [65]. These assumptions are usually758

validated by carrying out appropriate test simulations (e.g. of the underlying stochastic dynamics)759

to compare e.g. the DDFT system with the approximate free-energy functional to the microscopic760

reference system [32].761

The objective of this example is to show that the numerical scheme in section 2 can also be applied762

to the physical free-energy functionals employed in (D)DFT, which satisfy the more complex expression763

for the free energy described in (1.13), and with a variation satisfying (1.14). For this example the764

focus is on the hard rods system in one dimension. Its free energy has a part depending on the local765

density and which satisfies the classical form for an ideal gas, with P (ρ) = ρ. It is therefore usually766

denoted as the ideal part of the free energy,767

Fid[ρ] =

∫
Π(ρ)dx =

∫
ρ(x) (ln ρ− 1) dx.768

There is also a part of general free energy in (1.13) which contains the non-local dependence of the769

density, and has different exact or approximative forms depending of the system under consideration.770

In (D)DFT it is denoted as the excessive free energy, and for the hard rods satisfies771

Fex[ρ] =
1

2

∫
K (W (x) ? ρ(x)) ρ(x)dx772

= −1

2

∫
ρ(x+ σ/2) ln (1− η(x)) dx− 1

2

∫
ρ(x− σ/2) ln (1− η(x)) dx,773

774

where σ is the length of a hard rod and η(x) the local packing fraction representing the probability775

that a point x is covered by a hard rod,776

η(x) =

∫ σ
2

−σ2
ρ(x+ y)dy.777

The function K(x) in this case satisfies K(x) = ln(1 − x) and the kernel W (x) takes the form of a778

characteristic function which limits the interval of the packing function (3.9). To obtain the excessive779

free energy for the hard rods one has to also consider changes of variables in the integrals. The last780
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free energy (d) Evolution of the total and free energy

Fig. 11: Temporal evolution of Example 3.9 with 8 hard rods and a confining potential.

part of the general free energy in (1.13) corresponds to the effect of the external potential V (x). On781

the whole, the variation of the free energy in (1.13) with respect to the density, for the case of hard782

rods, satisfies783

δF [ρ]

δρ
=
δFid[ρ]

δρ
+
δFex[ρ]

δρ
+ V (x)784

= ln(ρ)− 1

2
ln

(
1−

∫ x

x−σ
ρ(y)dy

)
− 1

2
ln

(
1−

∫ x+σ

x

ρ(y)dy

)
785

+
1

2

∫ x+σ/2

x−σ/2

(
ρ(x+ σ/2) + ρ(x− σ/2)

1− η(x)

)
dx+ V (x).786

787

This system can be straightforwardly simulated with the well-balanced scheme from section 2 by788

gathering the excessive part of the free energy and the external potentials under the term H(x, ρ), so789
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that790

H(x, ρ) =
δFex[ρ]

δρ
+ V (x).791

The first simulation seeks to capture the steady state reached by 8 hard rods of unitary mass and792

length σ = 1 under the presence of an external potential of the form V (x) = x2. The initial conditions793

of the simulation are794

ρ(x, t = 0) = e−
x2

20.372 , ρu(x, t = 0) = 0, x ∈ [−13, 13],795

where the density is chosen so that the total mass of the system is 8. The results are plotted in796

figure 11. The steady state reached for the density reveals layering due to the confining effects of the797

external potential and the repulsion between the hard rods. These layering effects can be amplified by798

increasing the coefficient in the external potential. It is also observed how each of the 8 peaks has a799

unitary width. This is due to the fact that the length of the hard rods σ was taken as 1. The variation800

of the free energy with respect to the density also reaches a constant value in all the domain. For801

microscopic simulations of the underlying stochastic dynamics for similar examples we refer the reader802

to [33].803

Starting from this last steady state, the second simulation performed for this example shows how804

the hard rods diffuse when the confining potential is removed. This simulation has as initial condition805

the previous steady state from figure 11 and the external potential is set to V (x) = 0. The results806

are depicted in figure 12, and they share the same features of the simulations in [56]. The final steady807

state of the density is uniform profile resultant from the diffusion of the hard rods, and in this situation808

the variation of the free energy with respect to the density also reaches a constant value in the steady809

state, as expected.810

4. Conclusions. We have introduced first- and second-order accurate finite volume schemes for811

a large family of hydrodynamic equations with general free energy, positivity preserving and free812

energy decaying properties. These hydrodynamic models with damping naturally arise in dynamic813

density functional theories and the accurate computation of their stable steady states is crucial to814

understand their phase transitions and stability properties. The models possess a common variational815

structure based on the physical free energy functional from statistical mechanics. The numerical816

schemes proposed capture very well steady states and their equilibration dynamics due to the crucial817

free energy decaying property resulting into well-balanced schemes. The schemes were validated in818

well-known test cases and the chosen numerical experiments corroborate these conclusions for intricate819

phase transitions and complicated free energies.820

There are also several new avenues of possible future directions. Indeed, we believe the com-821

putational framework and associated methodologies presented here can be useful for the study of822

bifurcations and phase transitions for systems where the free energy is known from experiments only,823

either physical or in-silico ones, and then our framework can be adopted in a “data-driven” approach.824

Of particular extension would also be extension to multi-dimensional problems. Two-dimensional825

problems in particular would be of direct relevance to surface diffusion and therefore to technological826

processes in materials science and catalysis. We shall examine these and related problems in future827

studies.828
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free energy (d) Evolution of the total and free energy

Fig. 12: Temporal evolution of Example 3.9 with 8 hard rods and no potential.
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Appendix A. Numerical flux, temporal scheme, and CFL condition employed in the837

numerical simulations. This appendix aims to present the necessary details to compute the numer-838

ical flux, boundary conditions, the CFL condition, and the temporal discretization for the simulations839

in section 3.840

The pressure function in the simulations has the form of P (ρ) = ρm, with m ≥ 1. When m = 0841

the pressure satisfies the ideal-gas relation P (ρ) = ρ, and the density does not present vacuum regions842

during the temporal evolution. For this case the employed numerical flux is the versatile local Lax-843

Friedrich flux, which approximates the flux at the boundary Fi+ 1
2

in (2.3) as844

(A.1) Fi+ 1
2

= F
(
U−
i+ 1

2

, U+
i+ 1

2

)
=

1

2

(
F
(
U−
i+ 1

2

)
+ F

(
U+
i+ 1

2

)
− λi+ 1

2

(
U+
i+ 1

2

− U−
i+ 1

2

))
,845
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where λ is taken as the maximum of the absolute value of the eigenvalues of the system,846

(A.2) λi+ 1
2

= max(
U−
i+1

2

,U+

i+1
2

)
{∣∣∣u+

√
P ′(ρ)

∣∣∣ , ∣∣∣u−√P ′(ρ)
∣∣∣} .847

This maximum is taken locally for every node, resulting in different values of λ along the lines of nodes.848

It is also possible to take the maximum globally, leading to the classical Lax-Friedrich scheme.849

For the simulations where P (ρ) = ρm and m > 1 vacuum regions with ρ = 0 are generated. This850

implies that the hiperbolicity of the system (1.5) is lost in those regions, and the local Lax-Friedrich851

scheme fails. As a result, an appropiate numerical flux has to be implemented to handle the vacuum852

regions. In this case a kinetic solver based on [64] is employed. This solver is constructed from853

kinetic formalisms applied in macroscopic models, and has already been employed in previous works854

for shallow-water applications [2]. The flux at the boundary Fi+ 1
2

in (2.3) is computed from855

(A.3) Fi+ 1
2

= F
(
U−
i+ 1

2

, U+
i+ 1

2

)
= A−

(
U−
i+ 1

2

)
+A+

(
U+
i+ 1

2

)
,856

where857

(A.4) A− (ρ, ρu) =

∫
ξ≥0

ξ

(
1
ξ

)
M(ρ, u− ξ) dξ, A+ (ρ, ρu) =

∫
ξ≤0

ξ

(
1
ξ

)
M(ρ, u− ξ) dξ.858

The function M(ρ, ξ) is chosen accordingly to the kinetic representation of the macroscopic system,859

and for this case satisfies860

(A.5) M(ρ, ξ) = ρ
2−m

2 χ

(
ξ

ρ
m−1

2

)
.861

The function χ(ω) can be chosen in different ways. For this simulations we simply take it as a862

characteristic function,863

(A.6) χ(ω) =
1√
12
1{|ω|≤√3},864

although [64] presents other possible choices for χ(ω). Further valid numerical fluxes able to treat865

vacuum, such as the Rusanov flux or the Suliciu relaxation solver, are reviewed in [6].866

The boundary conditions are taken to be no flux both for the density and the momentum equations.867

As a result, the evaluation of the numerical fluxes (2.3) at the boundaries of the domain is taken as868

(A.7) Fi− 1
2

= 0 if i = 1 and Fi+ 1
2

= 0 if i = n.869

The time discretization is acomplished by means of the third order TDV Runge-Kutta method [39].870

From (2.1) we can define L(U) as L(U) = S(x, U) − ∂xF (U), so that ∂tU = L(U). Then, the third871

order TDV Runge-Kutta temporal scheme to advance from Un to Un+1 with a time step ∆t reads872

U (1) = Un + ∆tL (Un) ,873

U (2) =
3

4
Un +

1

4
U (1) +

1

4
∆tL

(
U (1)

)
,874

Un+1 =
1

3
Un +

2

3
U (2) +

2

3
∆tL

(
U (2)

)
.875

876

The time step ∆t for the case of Lax-Friedrich flux is chosen from the CFL condition,877

(A.8) ∆t = CFL
mini ∆xi

max
∀
(
U−
i+1

2

,U+

i+1
2

) {∣∣∣u+
√
P ′(ρ)

∣∣∣ , ∣∣∣u−√P ′(ρ)
∣∣∣} ,878
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and the ∆t for the kinetic flux, with a function χ(ω) as in (A.6), is chosen as879

(A.9) ∆t = CFL
mini ∆xi

max
∀
(
U−
i+1

2

,U+

i+1
2

) {|u|+ 3
m−1

4

} .880

The CFL number is taken as 0.7 in all the simulations.881
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