19,458 research outputs found

    A "poor man's" approach to topology optimization of natural convection problems

    Full text link
    Topology optimization of natural convection problems is computationally expensive, due to the large number of degrees of freedom (DOFs) in the model and its two-way coupled nature. Herein, a method is presented to reduce the computational effort by use of a reduced-order model governed by simplified physics. The proposed method models the fluid flow using a potential flow model, which introduces an additional fluid property. This material property currently requires tuning of the model by comparison to numerical Navier-Stokes based solutions. Topology optimization based on the reduced-order model is shown to provide qualitatively similar designs, as those obtained using a full Navier-Stokes based model. The number of DOFs is reduced by 50% in two dimensions and the computational complexity is evaluated to be approximately 12.5% of the full model. We further compare to optimized designs obtained utilizing Newton's convection law.Comment: Preprint version. Please refer to final version in Structural Multidisciplinary Optimization https://doi.org/10.1007/s00158-019-02215-

    A cut finite element method for coupled bulk-surface problems on time-dependent domains

    Full text link
    In this contribution we present a new computational method for coupled bulk-surface problems on time-dependent domains. The method is based on a space-time formulation using discontinuous piecewise linear elements in time and continuous piecewise linear elements in space on a fixed background mesh. The domain is represented using a piecewise linear level set function on the background mesh and a cut finite element method is used to discretize the bulk and surface problems. In the cut finite element method the bilinear forms associated with the weak formulation of the problem are directly evaluated on the bulk domain and the surface defined by the level set, essentially using the restrictions of the piecewise linear functions to the computational domain. In addition a stabilization term is added to stabilize convection as well as the resulting algebraic system that is solved in each time step. We show in numerical examples that the resulting method is accurate and stable and results in well conditioned algebraic systems independent of the position of the interface relative to the background mesh

    Space-time domain decomposition for advection-diffusion problems in mixed formulations

    Get PDF
    This paper is concerned with the numerical solution of porous-media flow and transport problems , i. e. heterogeneous, advection-diffusion problems. Its aim is to investigate numerical schemes for these problems in which different time steps can be used in different parts of the domain. Global-in-time, non-overlapping domain-decomposition methods are coupled with operator splitting making possible the different treatment of the advection and diffusion terms. Two domain-decomposition methods are considered: one uses the time-dependent Steklov--Poincar{\'e} operator and the other uses optimized Schwarz waveform relaxation (OSWR) based on Robin transmission conditions. For each method, a mixed formulation of an interface problem on the space-time interface is derived, and different time grids are employed to adapt to different time scales in the subdomains. A generalized Neumann-Neumann preconditioner is proposed for the first method. To illustrate the two methods numerical results for two-dimensional problems with strong heterogeneities are presented. These include both academic problems and more realistic prototypes for simulations for the underground storage of nuclear waste

    The pear-shaped fate of an ice melting front

    Get PDF
    A fluid-structure interaction problem with the melting of water around a heated horizontal circular cylinder is analysed with numerical simulations. Dynamic meshing was used for evolving the flow domain in time as the melting front extended radially outward from the cylinder; a node shuffle algorithm was used to retain mesh quality across the significant mesh deformation. We simulated one case above the density inversion point of water and one case below, yielding pear-shaped melting fronts due to thermal plumes either rising or falling from the cylinder, respectively. Results were compared with previous experimental studies and the melting front profiles matched reasonably well and melting rates were in agreement. We confirm that natural convection plays a significant role in the transport of energy as the melt zone increases, and needs to be considered for accurately modelling phase change under these conditions.Comment: Accepted for the 12th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries. SINTEF, Trondheim, Norway. May 30th - June 1st, 201
    • 

    corecore