12,656 research outputs found

    Finite Orbits of Language Operations

    Full text link
    We consider a set of natural operations on languages, and prove that the orbit of any language L under the monoid generated by this set is finite and bounded, independently of L. This generalizes previous results about complement, Kleene closure, and positive closure

    Finite Orbits of Language Operations

    Get PDF
    We consider a set of natural operations on languages, and prove that the orbit of any language L under the monoid generated by this set is finite and bounded, independently of L. This generalizes previous results about complement, Kleene closure, and positive closure

    SMT Solving for Functional Programming over Infinite Structures

    Get PDF
    We develop a simple functional programming language aimed at manipulating infinite, but first-order definable structures, such as the countably infinite clique graph or the set of all intervals with rational endpoints. Internally, such sets are represented by logical formulas that define them, and an external satisfiability modulo theories (SMT) solver is regularly run by the interpreter to check their basic properties. The language is implemented as a Haskell module.Comment: In Proceedings MSFP 2016, arXiv:1604.0038

    Timed pushdown automata revisited

    Full text link
    This paper contains two results on timed extensions of pushdown automata (PDA). As our first result we prove that the model of dense-timed PDA of Abdulla et al. collapses: it is expressively equivalent to dense-timed PDA with timeless stack. Motivated by this result, we advocate the framework of first-order definable PDA, a specialization of PDA in sets with atoms, as the right setting to define and investigate timed extensions of PDA. The general model obtained in this way is Turing complete. As our second result we prove NEXPTIME upper complexity bound for the non-emptiness problem for an expressive subclass. As a byproduct, we obtain a tight EXPTIME complexity bound for a more restrictive subclass of PDA with timeless stack, thus subsuming the complexity bound known for dense-timed PDA.Comment: full technical report of LICS'15 pape

    The algebraic dichotomy conjecture for infinite domain Constraint Satisfaction Problems

    Full text link
    We prove that an ω\omega-categorical core structure primitively positively interprets all finite structures with parameters if and only if some stabilizer of its polymorphism clone has a homomorphism to the clone of projections, and that this happens if and only if its polymorphism clone does not contain operations α\alpha, β\beta, ss satisfying the identity αs(x,y,x,z,y,z)βs(y,x,z,x,z,y)\alpha s(x,y,x,z,y,z) \approx \beta s(y,x,z,x,z,y). This establishes an algebraic criterion equivalent to the conjectured borderline between P and NP-complete CSPs over reducts of finitely bounded homogenous structures, and accomplishes one of the steps of a proposed strategy for reducing the infinite domain CSP dichotomy conjecture to the finite case. Our theorem is also of independent mathematical interest, characterizing a topological property of any ω\omega-categorical core structure (the existence of a continuous homomorphism of a stabilizer of its polymorphism clone to the projections) in purely algebraic terms (the failure of an identity as above).Comment: 15 page

    Order 3 Symmetry in the Clifford Hierarchy

    Get PDF
    We investigate the action of the first three levels of the Clifford hierarchy on sets of mutually unbiased bases comprising the Ivanovic MUB and the Alltop MUBs. Vectors in the Alltop MUBs exhibit additional symmetries when the dimension is a prime number equal to 1 modulo 3 and thus the set of all Alltop vectors splits into three Clifford orbits. These vectors form configurations with so-called Zauner subspaces, eigenspaces of order 3 elements of the Clifford group highly relevant to the SIC problem. We identify Alltop vectors as the magic states that appear in the context of fault-tolerant universal quantum computing, wherein the appearance of distinct Clifford orbits implies a surprising inequivalence between some magic states.Comment: 20 pages, 2 figures. Published versio

    Schaefer's theorem for graphs

    Full text link
    Schaefer's theorem is a complexity classification result for so-called Boolean constraint satisfaction problems: it states that every Boolean constraint satisfaction problem is either contained in one out of six classes and can be solved in polynomial time, or is NP-complete. We present an analog of this dichotomy result for the propositional logic of graphs instead of Boolean logic. In this generalization of Schaefer's result, the input consists of a set W of variables and a conjunction \Phi\ of statements ("constraints") about these variables in the language of graphs, where each statement is taken from a fixed finite set \Psi\ of allowed quantifier-free first-order formulas; the question is whether \Phi\ is satisfiable in a graph. We prove that either \Psi\ is contained in one out of 17 classes of graph formulas and the corresponding problem can be solved in polynomial time, or the problem is NP-complete. This is achieved by a universal-algebraic approach, which in turn allows us to use structural Ramsey theory. To apply the universal-algebraic approach, we formulate the computational problems under consideration as constraint satisfaction problems (CSPs) whose templates are first-order definable in the countably infinite random graph. Our method to classify the computational complexity of those CSPs is based on a Ramsey-theoretic analysis of functions acting on the random graph, and we develop general tools suitable for such an analysis which are of independent mathematical interest.Comment: 54 page

    Local integrability results in harmonic analysis on reductive groups in large positive characteristic

    Full text link
    Let GG be a connected reductive algebraic group over a non-Archimedean local field KK, and let gg be its Lie algebra. By a theorem of Harish-Chandra, if KK has characteristic zero, the Fourier transforms of orbital integrals are represented on the set of regular elements in g(K)g(K) by locally constant functions, which, extended by zero to all of g(K)g(K), are locally integrable. In this paper, we prove that these functions are in fact specializations of constructible motivic exponential functions. Combining this with the Transfer Principle for integrability [R. Cluckers, J. Gordon, I. Halupczok, "Transfer principles for integrability and boundedness conditions for motivic exponential functions", preprint arXiv:1111.4405], we obtain that Harish-Chandra's theorem holds also when KK is a non-Archimedean local field of sufficiently large positive characteristic. Under the hypothesis on the existence of the mock exponential map, this also implies local integrability of Harish-Chandra characters of admissible representations of G(K)G(K), where KK is an equicharacteristic field of sufficiently large (depending on the root datum of GG) characteristic.Comment: Compared to v2/v3: some proofs simplified, the main statement generalized; slightly reorganized. Regarding the automatically generated text overlap note: it overlaps with the Appendix B (which is part of arXiv:1208.1945) written by us; the appendix and this article cross-reference each other, and since the set-up is very similar, some overlap is unavoidabl
    corecore